
LECTURE 5: THE ONE WHERE WE ACTUALLY CONSTRUCT THE

COMPLEX

ELDEN ELMANTO

1. Strict Dieudonné algebras

Let’s recall where we are at. We have discussed the notion of a Dieudonné algebra and
discussed how if R is a p-torsionfree ring with a lift of Frobenius ϕ, then the de Rham complex
Ω∗R is canonically a Dieudonné algebra. We have also described two processes: saturation

which adds in elements of the form pnt1/p
n

or, more precisely, ensures that any element x
such that dx is p-divisible is actually F-divisible. We have also produce a new operation on a
saturated Dieudonné complex called V. For any such complex, we can speak of the quotients
Wr(M)∗ obtained by quotening out Vrx and dVrx. We can then speak of the V-completion of
a Dieudonné complex; a saturated complex which is also V-complete (implicitly p-torsionfree)
is said to be strict. The main theorem of the previous lectures says that the functor

M 7→W(Sat(M))∗

is a left adjoint to the inclusion of strict Dieudonné complexes. Now if M∗ is a Dieudonné
algebra, we want to say that W(Sat(M))∗ is canonically a Dieudonné algebra whose underlying
complex is strict.

Anyway, let us remind ourselves of what it means to be a Dieudonné algebra

Definition 1.0.1. A Dieudonné algebra is a commutative algebra object in DC satisfying:

(1) An = 0 for n < 0;
(2) for each x ∈ A0, Fx is congruent to xp modulo p;
(3) every homogeneous element of odd degree satisfies x2 = 0.

We make a couple of remarks about Definition 1.0.1:

Remark 1.0.2. Firstly, we can always extract an underlying strict cdga from a Dieudonné
algebra. From now on we will not use the words strict anymore in front of cdga as all of them
will be strict and they mean something else in our context. Unwinding the definitions, the
map F is always a homomorphism of underlying cga’s (of course not commuting with the d).
Morphisms of Dieudonné-algebras must commute with the F.

Remark 1.0.3. Let A∗ be a saturated Dieudonné algebra. Then, from the fact that A−1 = 0,
we get that

W1(A)0 = A0/VA0.

Let us see that W1(A)0 is an Fp-algebra. Indeed we see that V(1) = V(F(1)) = p and thus we
have killed p.

Lemma 1.0.4. Let A∗ be a saturated Dieudonné algebra, then there is a unique ring structure
on W(Sat(A))∗ and a canonical map A∗ → W(Sat(A))∗ which is also a map of strict cdga’s.
Furthermore W(Sat(A))∗ is a strict Dieudonné algebra.

Proof. For the first claim, the only bit is to prove that Im(Vr) + Im(dVr) is a dg-ideal for each
r > 0. Let us see this for r = 1: we need to compute xV(y); the thing to do is to prove the
projection formula

xVy = V(F(x)y).
1
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With this and the identity
d(xVy) = xdVy ± dxVy,

we get
xdVy = d(xVy)± dxVy = d(V((Fx)y))±V(F(dx)y).

The projection formula itself is proved in this way: we may check it after applying F since it is
injective. Then

F(xVy) = F(x)F(V(y)) = pF(x)y = F(V(F(x)y)).

At this point we conclude that W(Sat(A))∗ is a strict cdga. It is also evident that the negative
degree parts vanish.

For the “furthermore” part we need to verify part (2) of Definition 1.0.1 for W(Sat(A))∗. In
fact this condition is the same thing thing as verifying that Fx = xp modulo V (exercise). So
we need to prove that F is the usual Frobenius on W1.

�

Therefore we say that A∗ is a strict Dieudonné algebra if it is saturated and the map
A∗ →W(A)∗ is an isomorphism.

Definition 1.0.5. The R be a Fp-algebra, then the saturated de Rham-Witt complex of
R is the initial strict Dieudonné algebra, denoted by WΩ∗R equipped with a map R→ A0/VA0.

Theorem 1.0.6. The saturated de Rham-Witt complex of R exists.

Proof. By Lemma 1.0.7, any map R → A0/VA0 factors through its reduction, hence we may
assume that R is reduced. In this situation, the ring of witt vectors W(R) is p-torsion free.
Hence, we are allowed to regard Ω∗W(R) as a strict Dieudonné algebra under W(ϕ) = F, the

Witt vector Frobenius of W(R). Let A∗ be given by

WSat(Ω∗W(R)).

Let B∗ be a strict Dieudonné algebra. Then the following are equivalence pieces of data:

(1) a map WSat(Ω∗W(R))→ B∗ of Dieduonné algebras;

(2) a map Sat(Ω∗W(R))→ B∗ of Dieudonné algebras;

(3) a map Ω∗W(R) → B∗ of Dieudonné algebras;

(4) a map W(R)→ B which intertwines the frobenii;
(5) a map R→ B0/VB0 of rings.

The equivalence of (1), (2) and (3) follows from universal properties. The equivalence of (3)
and (4) follows from the universal properties of the de Rham complex. The equivalence of (4)
and (5) is then Lemma 1.0.8 which is the key point.

�

Lemma 1.0.7. Let A∗ be a saturated Dieudonné algebra, then A0/VA0 is a reduced Fp-algebra.

Proof. Since V(1) = V(F(1)) = p, we have that p ∈ VA0 and thus A0/VA0 is an Fp-algebra.
We now claim that A0/VA0 is reduced: let x ∈ A0 and assume that xp = 0 so that xp ∈ VA0;
we claim that x ∈ VA0. Since A∗ is a Dieudonné algebra, and Fx = xp modulo p, we see that
Fx = Vy for some y in A0. Applying the differential we get that dVy = dFx = pFdx. But since
A∗ is saturated, we get that y is in the image of F. To prove that x ∈ VA0 it then suffices to
prove that Fx is since F is injective; this follows from:

Fx = Vy = VFz = FVz.

�

The next lemma is absolutely key.

Lemma 1.0.8. Let B∗ be a strict Dieudonné algebra and R a commutative Fp-algebra. Then
the following two pieces of data are equivalent:

(1) a ring map R→ B0/VB0;
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(2) a ring map W(R)→ B0 such that

W(R) B0

R B0/VB0;

and there is commutation with the Frobenius

W(R) B0

W(R) B0.

F F

Proof. We observe two weird, interrelated things about this Lemma: first we are trying to
map out of the Witt vectors of an Fp-algebra (usually we map in) and secondly the claims
only involve B0 and ungraded rings (or rings places in degree zero). So something is really
happening.

Here’s the magic claim: B0 must be isomorphic to W(B0/VB0) and the B0-Frobenius must
be the Witt vector Frobenius; this is forced by the strict Dieudonné algebra structure. Having
this we are done: the map W(R)→ B0 is W of R→ B0/VB0; to prove uniqueness we just need
to characterize maps between W of Fp-algebras of the form W(f); we skip this and refer the
reader to [BLM21, Lemma 3.6.4].

Let’s prove this: write S = B0/VB0 and from Lemma 1.0.7, S is a reduced Fp-algebra. Again,
since it is reduced, W(S) is p-torsionfree. By universal properties of the Witt vectors, we get
map u : B0 →W(S) such that:

W(S) B0

S B0/VB0;

u

=

and

W(S) B0

W(S) B0.

F F

u

u

It then suffices to prove that u is an isomorphism.

Step 1 We claim that uV = Vu. We can check this after applying F; using the second diagram
above we get

F(uVx) = uFVx.

But FVx = px so the above is equal to upx = pux = FVux and we are done. Therefore
the map u preserves the V-filtration on both sides.

Step 2 We thus get maps

ur : B0/VrB0 →Wr(S)

compatible with u. Since B∗ is strict, it suffices to prove that each ur is an isomorphism.
To prove this we consider the diagram of exact sequences

0 B0/VB0 B0/VrB0 B0/Vr−1B0 0

0 S Wr(S) Wr−1(S) 0.

Vr−1

u ur ur−1

Vr−1

The left most map is the identity, the right most map is an isomorphism by inductive
hypothesis.
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�

1.1. Summary of construction. We thus have constructed a functor

CAlg♥Fp
→ DA R 7→WΩ∗R;

by construction it factors through a small subcategory which we like

CAlg♥Fp
→ DAstr.

It is well-defined because of universal properties: the only thing we ever need to map into
an object of DAstr is a morphism of Fp-algebras R0 → B/VB0. The engine behind this
computation is the realization that we can recover B0 from B/VB0 via

W(B/VB0) = B0,

which is assured by the completed-saturated nature of B∗. One additional thing to keep in
mind: WΩ∗R is derived p-complete, since is V-complete, by a result discussed in the previous
lecture. We also note that, by construction, WΩ∗R acquires the structure of an algebra over
WΩ∗Fp

= Zp. To reflect this dependence on Fp, we write

WΩ∗R/Fp
∈ K(Zp).

By the usual Kan extension maneuvers we can globalize our construction. I will mention two
caveats (which were already implicit in our discussion of de Rham cohomology) in doing this:

(1) we should only really consider the de Rham Witt complex on smooth Fp-schemes; the
rest of values are determined by left Kan extension.

(2) While the de Rham Witt complex appears naturally as a cochain complex, its globaliza-
tion (which is a right Kan extension) would require that we think of it as an object in
the derived ∞-category; the cochain complex structure is then captured by an analog
of the Hodge filtration on the global values.

Formally, we perform the following two procedures: first we take a left Kan extension

CAlg♥Fp
K(Zp)

CAlgFp
D(Zp);

WΩ∗−/Fp

and then take the right Kan extension to all animated Fp-schemes

CAlgFp
K(Zp)

AniSchop
Fp

D(Zp);

The resulting functor
LRΓcrys(−/Zp) : AniSchop

Fp
→ D(Zp).

is called derived crystalline cohomology. If X is a smooth Fp-scheme,

1.2. An example: Gnm. We will use Lemma 1.3.2 in order to calculate WΩ∗Gn
m

. Let R =

Z[x±1
1 , · · · , x±1

r ]. Let’s try to compute WΩ∗R/p. First, we package Ω∗R in a compact way:

Ω∗R =
∧
R

R · {dlogxi} dxni = nxni dlogxi.

To make it into a Dieudonné algebra we define its Frobenius as F(xi) = xpi ; we are then forced
to have that F(dx) = xp−1dx+ d(δ(x)). But then this forces

F(dlogxi) = F( 1
xi

)F(dxi) = 1
xp
i
(xp−1
i dxi + d(0)) = dlogxi.
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We now describe its saturation. Set R∞ := Z[x
± 1
p∞

1 , · · · , x
± 1
p∞

r ]. Then Ω∗R[F−1] is the
exterior algebra

Ω∗R[F−1] =
∧
R∞

R∞ · {dlogxi}.

Remember that its differential:

Ω∗R[F−1]
d−→ Ω∗R[F−1, p−1]

is given by
d(F−nx) = p−nF−ndx;

hence:

d(x
a
pn

i ) = d(F−nxai ) = 1
pn F−ndxai = 1

pn F−n(axai dlog(xi)) = a
pn F−n(xai )F−n(dlog(xi));

which means

d(x
a
pn

i ) = a
pnx

a
pn

i (dlog(xi)).

Now, recall that the saturation is smaller: we must look at those forms ω for which dω is also
integral, i.e., has no denominators! Hence we conclude that at degree zero, we must look at

finite sums of bx
a
pn

i such that pn divides b. So this means that elements like

pjx
1
pn

i j > n

are allowed. Whereas things like

pjx
1
pn

i j < n

or

`x
1
pn

i (`, p) = 1

are never allowed. Of course the elements of integral powers xki (k ∈ Z) are allowed anyway.
How about in degree one? If r = 1, then we do have that

Sat(Ω∗R)1 ∼= R · dlogxi.

In general, however, we only have an inclusion:

Sat(Ω∗R)1 ∼=
⊕

06i6r

R · dlogxi.

Now we want to compute the action of V in order to compute WkΩ∗Fp[x±1
1 ,··· ,x±1

r ]
. Let us

assume, for simplicity that r = 1 and write the variable as T. We compute V now: we have
that FV = p and so we must have that (assuming (a, p) = 1)

V(bT
a
pk ) = pbT

a
pk+1 V(dlogT) = pdlogT.

where n is an integer. Now, let’s see what

Wk(Ω∗Fp[T±1])
0 = E0/VkE0 k > 1.

look like. Well, we see that this object is a Z/pk-module since pk = Vk(1) and that must be
killed. Furthermore we see that Tj where j ∈ Z is an integral power is never possibly killed.
Hence there is a summand ⊕

j∈Z
Z/pk · Tj ⊂Wk(Ω∗Fp[T±1])

0.

So we should now look at those components which has non-integral powers. Before we mod out
by V, this can be indexed as ⊕

a∈Zr{0},(a,p)=1,n>1

Z · {pnT
a
pn };
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Since Vn(Ta) = pnT
a
pn we can rearrange:⊕

a∈Zr{0},(a,p)=1,n>1

Z · {Vn(Ta)};

Hence, for a fixed k, the complementary summand is⊕
a∈Zr{0},(a,p)=1,n>1

Z/pk−n · {Vn(Ta)} ⊂Wk(Ω∗Fp[T±1])
0.

So anytime we have that n > k, elements with T-powers given by T
a
pn all die off since they are

forced to have zero coefficients.
Let us have a look at E1; this is just:

Z[T±1/p∞ ] · dlogT

Noting that (by the formula for d above):

d(Vn(Ta)) = d(pnT
a
pn ) = pn a

pn T
a
pn dlogT;

we can rewrite the above as

Z[T±1] · dlogT⊕
⊕

a∈Zr{0},(a,p)=1,n>1

Z · {dVn(Ta)};

Therefore we get that

(WkΩ∗)1 = Z/pk[T±1] · dlogT⊕
⊕

a∈Zr{0},(a,p)=1,n>1

Z/pk−n · {dVn(Ta)};

Proceeding like this, we can prove the following result of Deligne’s:

Lemma 1.2.1. Let R = Fp[T±1
1 , · · ·T±1

r ,Tr+1, · · · ,Tr+s]. Then WkΩ∗R/Fp
contains the com-

plex
Ω∗Z/pk[T±1

1 ,···T±1
r ,Tr+1,··· ,Tr+s]/(Z/pk)

as a direct summand. Its complement is acyclic.

1.3. Smooth and de Rham comparison. Our next goal is to prove the following key result
in the theory: it compares crystalline cohomology with the de Rham cohomology of a smooth
lift.

Theorem 1.3.1. [BLM21, Theorems 4.2.3-4, lifting comparison] Let R be a commutative ring
which is p-torsion free such that R/p is a smooth over a perfect ring κ of characteristic p > 0,
and ϕ : R→ R a lift of Frobenius. Then there is a map of Dieudonné algebras:

µ : Ω̂∗R →WΩ∗R/p,

whose degree 0 part fits into a diagram:

R Ω̂0
R WΩ0

R/p

R/p W1Ω0
R/p.

µ

Furthermore, µ is a quasi-isomorphism.

First, let us construct µ. Recall that the completed de Rham complex is defined to be

Ω̂∗R := lim Ω∗R/p
nΩ∗R.

In general, the canonical map Ω∗R → Ω̂∗R is not an isomorphism: for example if we look at at
R = Z[T], the map

Z[T]→ limZ[T]/pn
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is not an isomorphism, even if Z is replaced by Zp.
Whenever R is p-torsionfree and comes equipped with a lift of the Frobenius, then we have

the structure of a Dieudonné algebra F : Ω̂∗R → ηpΩ̂
∗
R, induced by the one on the uncompleted

de Rham complex. We note that Ω̂∗R is p-adically complete though it is not p-torsion free
in general. Yet, it has the following universal property: it is the initial p-complete and p-
torsionfree1 Dieudonné algebra equipped with a map R → A0 which intertwines ϕ and F. In

particular, after Lemma 1.0.8, a map Ω̂∗R → A∗ where A∗ is assumed to be strict is the same
thing as a map R→ A0/VA0 (indeed: by the universal property of the Witt vectors we have a
map R→W(R/p) and so we might as well replace R with W(R/p) from Lemma 1.0.8 applies).

So the map µ : Ω̂∗R →WΩ∗R is constructed via the map R→ R/p→WΩ0
R/VWΩ0

R where the
second map comes from the universal property of the de Rham-Witt complex (even without
choosing a model). We now claim:

Lemma 1.3.2. The map µ induces an isomorphism of Dieudonné algebras after applying WSat.

Proof. Of course, WSat does not change the target of µ. Let A∗ is a strict Dieudonné algebra,
we need to prove that the map

Hom(WΩ∗R/p,A
∗)

µ∗−→ Hom(WSat(Ω̂∗R),A∗),

is an isomorphism. Using the universal properties on both sides, we see the above map identifies
with:

Hom(R/pR,A0/VA0)→ Hom(R,A0/VA0).

But this is bijective since A0/VA0 is an Fp-algebra. �

To proceed further, we need to discuss Cartier smoothness in this context.

1.3.3. Cartier smoothness. The following is an important result and axiomatizes what we have
already seen with the Cartier isomorphism

Proposition 1.3.4 (Décalage). Let M∗ be a complex of abelian groups which is p-torsionfree,
Then we have a quasi-isomorphism of cochain complexes

γ : (ηpM)∗/p(ηpM)∗ → H∗(M/pM);

where

γ(x) = [ xpn ] |x| = n;

and H∗(M/pM) is equipped with the Bockstein differential.

Proof. We note that the source is a quotient of the complex ηpM, hence any element in it is
divisible by p to its degree. Hence the expression x

pn makes sense; it is even unique because M

is p-torsionfree. Furthermore, d( x
pn ) is p-divisible because dx is divisible by pn+1, therefore it

is a cycle in H∗(M/pM). This explains why the map of interest is well-defined.
Now, the Bockstein differential is produced by looking at the exact sequence of complexes

0→ M/pM→ M/p2M→ M/pM→ 0;

and the resulting boundary map on long exact sequences β : Hn(M/pM) → Hn+1(M/pM). If
we trace through the formula for β we see that β([x]) = [p−1dx]. So we claim that we have a

1Assume that A∗ is a p-torsionfree Dieudonné complex. We claim that the map f : Ω∗
R → A∗ induced by a

map R→ A0 intertwines the Frobenii on both sides. We can reduce to the case that ω = dx and we claim that
pfFdx = pFdfx; but this is the case:

pfF(dx) = pf(xp−1dx+ d(δ(x)) = f(pxp−1dx+ d(ϕ(x)− xp)) = f(dϕ(x)) = dFϕ(x) = pFd(f(x)).
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commutative diagram

Mn/p Hn(M/pM)

Mn+1/p Hn+1(M/pM);

d β

which follows from

β([γ(x)]) = β([p−nx]) = [p−n−1x] = [γ(dx)].

Now, we see that the map (ηpM)∗/p(ηpM)∗ → H∗(M/pM) is clearly levelwise surjective. Let
K∗ be the kernel; we claim that it is acyclic. So what does it mean for x ∈ (ηpM)∗/p(ηpM)∗ to
be in the kernel? Well this means that

x
pn = dy + pz,

and thus

x = dpny + pn+1z;

whence Kn is a quotient of pn+1Mn + dpnMn−1. It is easy to then check that

Kn = pn+1Mn + dpnMn−1/(pn+1Mn ∩ d−1pn+2Mn+1),

from the definition of ηpM. Let us now claim that any element in Kn which is a cocycle is also
a coboundary. Let x be such an element, then

0 = dx = d2(pny) + d(pn+1z) = 0 + pn+1dz ∈ Kn+1,

whence d(pn+1z) ∈ pn+2Mn+1 and thus pn+1z ∈ d−1pn+2Mn+1. Therefore, x can actually
represented by just dpny and hence a coboundary. �

We said that the above quasi-isomorphism is like the Cartier isomorphism. To make this
relationship we examine the following triangle of complexes

(1.3.5)

M∗/pM∗ (ηpM)∗/p(ηpM)∗

H∗(M/pM)

αF

F γ

We have seen that γ is a quasi-isomorphism, hence the map αF is a quasi-isomorphism if and
only if F is a quasi-isomorphism. We make the following definition

Definition 1.3.6. A Dieudonné complex is Cartier smooth if it is p-torsion-free and the map

(M∗/pM∗, d)
F−→ (M∗/pM∗, 0)

is a quasi-isomorphism. In other words, the Frobenius induces an isomorphism of graded abelian
groups

M∗/pM∗ ∼= H∗(M∗/pM∗).

We note the following:

Lemma 1.3.7. Let R be a p-torsionfree ring and ϕ a lift of the Frobenius. Assume that R/p is
smooth over a perfect field κ of characteristic p > 0 (or, more generally, a perfect ring). Then

Ω̂∗R is Cartier smooth.

Proof. Note that Ω̂∗R/pΩ̂
∗
R
∼= Ω̂∗R/p. We have already seen that the Cartier isomorphism holds

in this setting. We need to say why Ω̂∗R is p-torsion free. But then Ω̂∗R/p
nΩ̂∗R

∼= Ω∗(R/pn)/Wn(κ)

which is smooth since R/p is smooth by assumption. Hence, Ω̂∗R/p
nΩ̂∗R is a finitely generated

projective module of finite rank. From this we conclude p-torsionfree-ness.
�
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Hence any Dieudonné complex which is Cartier smooth enjoys the quasi-isomorphism

M/pM
'−→ (ηpM)∗/p(ηpM)∗.

The upshot is that we can control the quasi-isomorphism type of the saturation of M∗ which is
Cartier smooth since it is given by a colimit of these ηp’s.

Theorem 1.3.8. [BLM21, Theorem 2.4.2] Let M∗ be a Cartier smooth Dieudonné complex.
Then the canonical map

M∗ → Sat(M∗)

induces a quasi-isomorphism

M∗/pM∗ → Sat(M∗)/pSat(M∗).

Furthermore if each of the group M∗ is p-adically complete, then the map

M∗ →WSat(M∗)

is a quasi-isomorphism.

Proof. The first claim follows by the preceding discussion. By the hypothesis that M∗ is p-
adically complete, we need only prove that

M∗/pM∗ →WSat(M∗)/pWSat(M∗)

is a quasi-isomorphism. We factor this as

M∗/pM∗ → Sat(M∗)/pSat(M∗)→WSat(M∗)/pWSat(M∗);

the first map is a quasi-isomorphism by the first claim. The second map is a map between two
saturated Dieudonné complexes, hence to check the desired quasi-isomorphism we need only
check that the map

W1(Sat(M))∗ →W1(W(Sat(M))∗

is an isomorphism which we have already seen. �

Proof of Theorem 1.3.1. After the above theorem, Theorem 1.3.1 essentially follows from noting

that Ω̂∗R is Cartier smooth, which we have already seen. Indeed, it suffices, after Lemma 1.3.2
to prove that

Ω̂∗R →WSat(Ω̂∗R)

is a quasi-isomorphism but this is a special case of the above theorem. �

Next, we formulate and sketch a proof of the de Rham comparison. In this situation, we
begin not with a lift but R merely a Fp-algebra. We have a tautological map R→W1Ω∗R which
induces a map

νR : Ω∗R →W1Ω∗R,

by universal properties of the de Rham complex.

Theorem 1.3.9. [BLM21, Theorem 4.3.1, de Rham comparison] Let R be a regular noetherian
Fp-algebra, then we have a canonical isomorphism

νR : Ω∗R →W1Ω∗R.

Proof. We break this proof into steps:

(1) starting life with R being smooth over a perfect field κ we may choose a formally smooth,
p-complete lift A of R with a lift of the Frobenius ϕ. We then use Lemma 1.3.2 (rather,
the discussion preceding it) to furnish a map

µ : Ω̂∗A →WΩ∗R,
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whose degree zero part fits into:

A Ω̂0
A WΩ0

R

A/p W1Ω0
R.

µ

(2) From the above commutativity we conclude that we may factors νR as

Ω∗R
∼= Ω̂∗A/pΩ̂

∗
A

ν/p−−→WΩ∗R/pWΩ∗R →W1Ω∗R.

This makes our lives better.
(3) The map µ and the naturality of the Cartier map and the Frobenius on the de Rham-

Witt complex induces a square

Ω̂∗A/pΩ̂
∗
A H∗(Ω̂∗A/pΩ̂

∗
A)

WΩ∗R/pWΩ∗R H∗(WΩ∗R/pWΩ∗R);

but we can stick in νR as

Ω̂∗A/pΩ̂
∗
A H∗(Ω̂∗A/pΩ̂

∗
A)

WΩ∗R/pWΩ∗R W1Ω∗R H∗(WΩ∗R/pWΩ∗R).

ν

But now we have the Cartier isomorphism which is an isomorphism on the top horizontal
map, the lifting comparison isomorphism for the right vertical map and the isomorphism
at the bottom by virtue of the saturatedness of the de Rham-Witt complex.

(4) The general case follows by Néron-Popescu after noting that the formation of the de
Rham-Witt complex preserves filtered colimits [BLM21, Corollary 4.3.5].

�

Remark 1.3.10. Theorem 1.3.9 says that whenever R is a regular Fp-algebra, we have an
isomorphism

W1Ω0
R = WΩ0

R/VWΩ0
R
∼= Ω0

R = R.

But now we know from Lemma 1.0.8 (rather, its proof) that WΩ0
R
∼= W(WΩ0

R/VWΩ0
R) = W(R).

This is not obvious from just the construction of the de Rham witt complex.
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