
LECTURE 6: THE ONE IN WHICH WE HIT THE SLOPES

ELDEN ELMANTO

1. The slope spectral sequence

Let us now fix a perfect field κ of characteristic p > 0. As a result of what we have done, for
any smooth κ-scheme X we obtain from the slope filtration:

Fil>∗slopeRΓcrys(X/W) := RΓZar(X; WΩ>∗
X )→ RΓcrys(X/W),

the slope spectral sequence:

(1.0.1) Eij1 = Hj(X; WΩi)(=: Hi(WΩjX))⇒ Hi+j
crys(X/W);

the differentials have bidegree dr = (r, 1− r). This spectral sequence displays as:

· · · Hi+2(WΩj−1X ) Hi+2(WΩjX) Hi+2(WΩj+1
X ) · · ·

· · · Hi+1(WΩj−1X ) Hi+2(WΩjX) Hi+1(WΩj+1
X ) · · ·

· · · Hi(WΩj−1X ) Hi(WΩjX) Hi(WΩj+1
X ) · · ·

d1

d2

d1 d1

d1

d2

d1 d1

d1 d1 d1

As usual we have the induced filtration

Fil>jHi
crys(X/W) := Im(Hi(X,WΩ>j

X )→ Hi
crys(X/W));

with the graded pieces being

Fil>jHi/Fil>j+1Hi = Ej,i−j∞ .

The following theorem is one of the key points of the slope spectral sequence

Theorem 1.0.2 (Illusie, after Bloch). Assume further that X is proper. For all r > 1, the
differentials dr ⊗K are all zero.

We will briefly discuss a proof of the above theorem after we have been introduced into the
formalism of slopes. From now on we will use the following notation for the Hodge-Witt
cohomology groups:

Hi(WΩjX) := Hi(X; WΩjX),

and similar such notation for cohomology with values in the sheaves WrΩ
j ; we abbreviate

crystalline cohomology via:

Hi(X) := Hi
crys(X/W).
1
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1.1. Some basic analysis. One of the early achievements of crystalline cohomology are results
of Nygaard [Nyg79b, Nyg79a]:

(1) if X is a proper, smooth variety over Q we have seen that the Hodge-to-de Rham spectral
sequence degenerates. An older incarnation of this is the fact that “all regular 1-forms
on X” are closed: the map

d : H0(X; Ω1
X)→ H0(X,Ω2

X)

is zero. This turns out to not work out in positive characteristics and, when X is a
surface, controls Hodge-to-de Rham degeneration. In [Nyg79a], Nygaard proved that
as soon as we know that Pic(X) is reduced, we actually do have this degeneration.

(2) Nygaard further proved in [Nyg79b] that a K3 surface over an algebraically closed field
of characteristic p > 0 has no global vector fields, i.e.,

H0(Ω1
X) = 0.

This result was proved by Rudakov and Shafarevich first.

We will not try to explain his proofs, but use it as an excuse to perform some basic analysis
about the crystalline cohomology of low dimensional varieties using the slope spectral sequence.
For a surface the slope spectral sequence looks like (and there is no more space for groups or
differentials):

H2(WOX) H2(WΩ1
X) H2(WΩ2

X)

H1(WOX) H1(WΩ1
X) H1(WΩ2

X)

H0(WOX) H0(WΩ1
X) H0(WΩ2

X)

Let’s investigate H1. In fact, the bottom row’s differentials are all zero (of course the next
result works for more than just surfaces)

Lemma 1.1.1. For any smooth κ-variety X, the maps d1 : H0(WΩjX) → H0(WΩj+1
X ) are all

zero.

Proof. This is a combination of two facts: that d1 ⊗ K is zero by Theorem 1.0.2 and that the
0-th cohomology groups are torsion free (only thing we need to check is that they are p-torsion
free). But, by construction these WΩj ’s are p-torsion free on each affine open of X and thus
the global sections are p-torsion free (since taking global sections is a left exact functor and
preserves injective maps!). �

From this display, we get:

Lemma 1.1.2. For any κ-smooth, proper variety X, H0(WOX) ∼= H0(X) which computes
Wπ0(X), where π0(X) is the set of geometric connected components of X.

Now let us examine H1(WOX). The first nontrivial result is the claim that

H1(WOX)→ H1(WΩ1
X)

is still always zero whenever X is furthermore proper; let’s assume this for the rest of these
notes. By the way this already gives us:

Lemma 1.1.3. If X is smooth and proper, then RΓcrys(X/W) is a perfect complex of W-
modules. In particular, the cohomology groups are finitely generated W-modules.
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Proof. It suffices to prove that RΓcrys(X/W) ⊗L W/p is perfect. We claim that: RΓdR(Xκ) '
RΓcrys(X/W)⊗L W/p. Indeed, recall that a morphism of saturated Dieudonné complexes is a
mod-p quasi-isomorphism if and only if the map on W1 is an isomorphism [BLM21, Corollary
2.7.4]. Along the same lines, one can prove that [BLM21, Remark 2.7.3] for any such complex,
M/p ' W1(M)∗ is a quasi-isomorphism. Hence, the claim follows from de Rham comparison.
Finally, the result follows from perfectness of de Rham cohomology which is well-known. �

Remark 1.1.4. We also have Poincaré duality [Ber74, Théorème VII.2.3]. Again X is smooth
and proper of dimension d and furthermore geometrically connected, then we have a trace map
(which is an isomorphism) [Ber74, Proposition 2.1]

Tr : H2d(X)→W.

This induces a perfect pairing

Hi(X)⊗H2d−i(X)→W.

These results can be proved by de Rham comparison as in Lemma 1.1.3.

This is a combination of two results. First, we have the following result due to Serre [Ser58,
Proposition 4]:

Lemma 1.1.5 (Serre). The W-module H1(WOX) is free of finite rank.

Proof. This is the analog of the following fact: if X is a manifold (or anytime singular cohomol-
ogy is computed via sheaf cohomology [Pet22]), we have that H1(X;Z) is torsion-free. Indeed,

the short exact sequence of sheaves 0→ Z n−→ Z→ Z/n→ 0 induces an exact sequence

H0(X;Z)→ H0(X;Z/n)→ H1(X;Z)[n]→ 0;

but then the first map is actually surjective since they compute connected components.
Now the same proof sort of works: we have an exact sequence of sheaves

0→WO
Vk

−−→WO→WkO→ 0,

which leads us to examine

H0(WOX)→ H0(WkOX)→ H1(WOX)[Vk]→ 0,

and the first map is surjective since H0 computes connected components. This means that
H1(WOX) is actually Vk-torsionfree.

We want to now conclude that it is pk-torsion free as well. Let us assume that the finiteness
is true (see [Ill79, Proposition II 2.17] for a proof). This means that the module of interest has
bounded V∞-torsion. Since p = FV we have that

H1(WOX)[Vk] ⊂ H1(WOX)[pk];

the goal is to prove that these two subgroups are equal for k = ∞ (which means that it is
actually equal for some finite k since we have assumed finiteness). For k = ∞, we write the
inclusion above as T ⊂ T′ and it suffices to prove that VMT′ = 0 for some M� 0. We have an
induced injective map

V : T′/T→ T′/T.

But since T′/T is a finitely generated free W-module, the map above is an isomorphism. We
can thus write

T′ = VT′ + T,

whence VNT′ = VN+1T′ = · · · for N big enough such that VNT = 0. We have the the V-
filtration is separated, i.e., ∩VkH1(WOX) = 0 [Ill79, Corollaire II 2.5]. Thus we must have that
VNT = 0 and therefore T′ ⊂ T. �

Next, Nygaard gave a criterion for when d is zero using structural features of these Hodge-
Witt cohomology groups.
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Lemma 1.1.6. [Nyg79a, Lemma 2.5] Let d : L→ M be a map of W-modules and F (resp. V)
is a ϕ-linear (resp. ϕ−1-linear) endomorphism of M (resp. L). Equip, L and M with topologies
compatibly with W such that d is continuous, the one on M is separated and the topology on L
is weaker than the V-adic topology. If FdV = d and the chains

ker d ⊂ ker Fd ⊂ · · · ker Fnd ⊂ · · ·L
Im d ⊂ Im Fd ⊂ · · · Im Fnd ⊂ · · ·M

stabilize then d = 0.

Serre’s lemma proves that the chain in the domain stabilizes. To apply Nygaard’s criterion
we examine

Im d ⊂ Im Fd ⊂ · · · Im Fnd ⊂ · · · ⊂ H1(WΩ1
X)

We first observe that E1,1
2 = E1,1

∞ = ker(d : H1(WΩ1
X)→ H1(WΩ2

X))/ Im d; this is a subquotient
of H2(X) and is thus finitely generated. We further have that Im Fnd ⊂ ker d for all n and thus
we have a chain

Im Fd/ Im d ⊂ Im F2d/ Im d ⊂ · · · Im Fnd/ Im d ⊂ · · ·E1,1
∞

which does stabilize by the finite generation of E1,1
∞ . We conclude:

Proposition 1.1.7. The group H1(X) always decomposes as

0→ H0(WΩ1
X)→ H1(X)→ H1(WOX)→ 0.

One conclusion is that:

Corollary 1.1.8. Assume further that X is proper, the W-module H1
crys(X/W) is always tor-

sionfree.

Hence, for X a smooth proper, geometrically connected curve: we get that

H0(X) ∼= H0(WΩX);

H2(X) ∼= H1(WΩ1
X);

(1.1.9) 0→ H0(WΩ1
X)→ H1(X)→ H1(WOX)→ 0.

By Poincaré duality for crystalline cohomology such that H0 is dual to H2 in this case, mutually
isomorphic to W.

For a surface, Nygaard analyzed that the only possible differential which is nonzero is

H2(WOX)→ H2(WΩ1
X),

which will be zero as soon as we know that it is finitely generated. In fact, the slope spectral
sequence is controlled by what happens at E1: for its collapse it suffices to prove that the
d1-differentials are zero [Nyg79a, Proposition 2.2].

2. Slopes and applications

Let us fix some notation:

(1) let κ be a perfect field of characteristic p > 0;
(2) we write ϕ : (W :=)Wκ → Wκ to be the Witt-vector Frobenius just to limit the

confusion with all the Frobenii floating around;
(3) We write K := W[ 1p ], the fraction field of W.

An F-isocrystal is a pair (M,F) where

(1) M is a finitely generated W-module;
(2) F : M→ M a ϕ-linear endomorphism of M such that F[ 1p ] is invertible, i.e., a map

ϕ∗M
F−→ M

which is an invertible after ⊗WK.
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The category of F-isocrystals will be denoted by IsocF(κ); maps are appropriate commutative
diagrams. We might also consider the isogeny category of isocrystals IsocF(κ)Q: this is the
localization at maps of isocrystals which are isomorphisms after inverting p.

Remark 2.0.1. We have followed the definition given by Katz in [Kat79, Basic Definition].
This might differ with what other people might mean by an isocrystal: some people say that
such a thing is a finite dimensional F-vector space V equipped with a Frobenius-semilinear map
F which is also a bijection. In other words, the datum of the lattice is not accounted for. This
latter notion is closer to the isogeny category.

Let us give examples of some F-isocrystals

Example 2.0.2. We can make one up: let λ = n
m be a fraction expressed in its lowest term.

Write

M(λ) = W[T]/(Tm − pn) ∼= Zp[T]/(Tm − pn)⊗Zp
W.

The F is given by multiplication by ·T⊗ϕ. Explicitly: we can choose a W-basis for M( nm ) given

by {1, · · · ,Tm−1} so that the action of F is given by:

F(x1, · · · , xm) = (pnϕ(xm), ϕ(x1), · · · , ϕ(xm−1)).

Example 2.0.3. Let X be a smooth and projective. The absolute Frobenius on X given by
FX : X→ FX induces the structure on an isocrystal on Hi

crys(X/W) for all i > 0; we denote the
endomorphism by

ΦX : ϕ∗RΓ(X/W)→ RΓ(X/W) ΦiX : ϕ∗H
i
crys(X/W)→ Hi

crys(X/W).

We note that ΦX differs from the “internal” or “Dieudonné-theoretic” Frobenius by exactly pi

in degree i:

ΦX = piF : WΩiX →WΩiX.

We will see that this is a key invariant of X. In any case, ΦiX endows each Hi
crys(X/W) the

structure of an F-isocrystal: the point is to check that the map ΦX is injective modulo torsion
as a consequence of Poincaré duality1.

The following is a key structural result in the theory of isocrystals.

Theorem 2.0.4 (Dieudonné-Manin). Let κ be an algebraically closed field. Then the isogeny
category of isocrystals is semisimple2 where the simple objects3 are exactly

M( nm ) n and m are coprime, n > 0.

In particular, any object can be written as

M ∼=
⊕
λ∈Q

M(λ).

If κ was not algebraically closed and (M,F) is an isocrystal, then we can consider K, the
fraction field of Wκ where κ is a fixed closure of κ. Then (M ⊗W K,F ⊗ ϕ) defines an F-
isocrystal over κ up to isogeny, whence, by descent, it can be decomposed (up to isomorphism)
by Theorem 2.0.4

M ∼=
⊕

Mλ,

where Mλ is the largest subobject with Mλ ⊗W K ∼= M(λ)⊗K.

1Proof: on top cohomology, the map ΦX agrees with ϕ the Frobenius of W. Let x ∈ Hi
crys(X/W) be a

nonzero class, then we claim that ΦX is a nonzero class; indeed by Poincaré duality we may choose β such that
α ∪ β is the class 1 in W but then ΦX(α) ∪ ΦX(β) = ΦX(α ∪ β) hence nonzero.

2A semisimple category is an abelian category where every object is a finite direct sum of simples.
3Recall that an object is simple if 0 and the object itself are the only quotients.
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Definition 2.0.5. The (Newton) slopes of an F-isocrystal M is the sequence of rational
numbers (defined up to isogeny)

(λ1, · · · , λr),
where

0 6 λ1 6 λ2 6 · · · 6 λr,
given by

(n1/m1, · · · , n1/m1, n2/m2, · · · , n2/m2, · · · )
extracted from a decomposition of M⊗W(κ); where nj/mj is repeated according to the number
of copies of E(nj/mj).

Definition 2.0.6. For any F-isocrystal M and any interval I ⊂ Q, let us write

MI =
⊕
λ∈I

Mλ

where Mλ is a component of slope λ.

Example 2.0.7. A Dieudonné module is an F-isocrystal of slope [0, 1]; more precisely:
it is given by a finitely generated free W-module M equipped with a semilinear Frobenius
endomorphsim F : M → M such that pM ⊂ FM such that F is an isomorphism after inverting
p. In particular V is defined on such objects and we have that VF = FV = p just like the
definition of a Dieudonné complex. There is an equivalence of categories between p-divisible
formal groups and Dieudonné modules [Gro74]. This equivalence, under the functor called M,
can be described explicitly in some cases:

(1) if G is the the p-divisible group associated to the p∞-torsion of an abelian scheme, then
it is precisely given by H1

crys(A/W) [BBM82, Théorm̀e 2.5.6];
(2) if G = Qp/Zp, then M(G) = W with F = p · ϕ [BBM82, Proposition 4.2.1.6];
(3) if G = µp∞ , then M(G) = W with F = ϕ [BBM82, Proposition 4.2.1.6];

The formalism of slopes helps us collapse the slope spectral sequence. This is not immediate
and it requires the following input:

(1) the action of V is topologically nilpotent on Hj(X; WΩi) [Ill79, Corollaire II.2.5];
(2) Hj(X; WΩi) modulo p∞-torsion is free of finite type [Ill79, Théoromè II.2.13].

What goes into the collapse is to use a modified version of the operator V on each term of the
spectral sequence which turns out to have different slopes: the differentials cannot ever preserve
slopes for combinatorial reasons. The full argument is carried out in Bloch’s paper [Blo77]. For
us, the key result about crystals is the following:

Theorem 2.0.8. [Ill79, Corollaire 3.5] Let X be a smooth proper κ-variety. Then, the canonical
map H∗crys(X/W)→ H∗(X; WΩ6i) induces an isomorphism:

H∗crys(X/W)[0,i[ → H∗(WΩ6i−1
X ).

Example 2.0.9. Let us try to understand the isocrystal structure of an elliptic curve. First,
we have that, abstractly: H1(X) ∼= W ⊕W just like in usual algebraic topology. The exact
sequence (1.1.9) rationally decomposes H1(X) into H1(WOX) and H0(WΩ1

X); in characteristic
zero we have that

h1,0 = h0,1 = 1,

However, it turns out that an elliptic curve in positive characteristics can have either:

(ordinary) h0,1 = dimW(H1(WOX)) = 1, Frobenius acts by p0; h1,0 = dimW(H0(WΩ1
X)) = 1,

Frobenius acts by p
(supersingular) h0,1 = 2, h1,0 = 0 and H1(X) ∼= H1(X)[1/2].
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2.1. An application: Esnault’s theorem. We now discuss one of the best results of all time,
it is essentially a one page paper in Inventiones [Esn03]. Let κ = Fq, q = pa. The following is
a simple, yet very powerful, observation.

Lemma 2.1.1. Assume that X is geometrically connected, proper and smooth over κ and that

Hi(X; WO) = 0 i > 0.

Then:

|X(κ)| ≡ 1 mod p.

In particular a κ rational point must exist.

Proof. We have the Lefschetz trace formula for crystalline cohomology [É88, Théorème 1.6]. In
our case, this says that:

|X(κ)| =
∑

(−1)iTrace(Froba|Hi(X)⊗K).

Hence if Hi(X; WO) = 0, then Theorem 2.0.8 says that all Frobenius eigenvalues have positive
p-adic valuations, i.e., no slope zero part. Furthermore since X is geometrically connected, the
action of the Frobenius is trivial. Therefore, except for cohomological degree zero part, every
other eigenvalues are divisible by p. Hence, we get the result.

�

Remark 2.1.2. By using the Riemann hypothesis for crystalline cohomology [KM74], we get
an expression for the zeta function of X:

exp(
∑
n>0

|X(Fqn)| t
n

n ) = ζX(t) =
∏

06i6dim(X)

det(1− Fa|Hi(X)⊗K)(−1)
i+1

.

This gives a slightly stronger result: for any finite extension Fqn of κ, we have

|X(Fqn)| ≡ 1 mod p ∀n.

Recall that a Fano variety over a field κ is a geometrically connected, projective, smooth
variety whose dualizing sheaf ω is antiample (that is to say, −ωX is ample).

Theorem 2.1.3 (Esnault; Lang’s conjecture). Let X be a Fano variety over a finite field
κ = Fq=pn . Then X admits a rational point.

Proof. We begin with a (substantial) result of Kollar, Miyaoka and Mori [KMM92] and Cam-
pana [Cam92]: for any field k, a Fano variety is rationally chain connected: roughly, over a
closure any two points can be connected by a chain of rational curves. This has the following
consequence: X has a zero cycle of degree one and CH0(X ×κ k(X)) is Z via the degree map

(in fact this is true for L in place of k(X) for L algebraically closed). This forces (rational)
decomposition of the diagonal [BS83]; see Lemma 3.0.8:

N[∆X] = α×X + Γ ∈ CHdim(X)(X×X)

where ξ is zero cycle of degree one, and Z is narrow (as defined below); say Z is supported on
X×D where D ↪→ X is a proper closed reduced subscheme.

There is the “usual formalism” of correspondences acting on crystalline cohomology and
the action of ∆, as a correspondence, is given by Γ∗ up to torsion (because the action of
α × X is trivial since it factors through the crystalline cohomology noting that α is supported
in subscheme of dimension zero). But now Γ∗ applied to Hi(X) ⊗ K sends this group to the
kernel of the map Hi(X) ⊗ K → Hi(X r D) ⊗ K and hence, the image of Γ∗ is in the image
of the pushforward Hi

D(X) ⊗ K → Hi(X) ⊗ K. But now we claim that the Frobenius acts on
Hi

D(X) ⊗ K acts by slopes > 1; in fact if Z is any non-empty closed subvariety of dimension
> 1 then Hi

Z(X) enjoys this property. Indeed, if Z is smooth and codimension c, then we have
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the purity isomorphism Hi
Z(X)⊗K ∼= Hi−c(Z)⊗K which intertwines Frob with pcFrob4; since

c > 1 the slopes must be > 1 since the slopes of H∗(Z) must be > 0. In general, one carries out
a standard stratification argument noting that in the argument, the slopes cannot decrease.

�

3. Digression: decomposition of the diagonal

Let k be a field; unless otherwise stated every variety here is smooth and proper. We say
that X is universally CH0-trivial if the map

deg : CH0(XF)→ Z
is an isomorphism for any field extension F of k. Here deg is the map that sends∑

ni[pi] 7→
∑

nideg(k(pi)/k).

It is useful to adopt the following notation as well for any variety X:

CH0(X)0 := ker(deg) ⊂,
the group of zero cycles of degree zero. So X is universally CH0-trivial whenever CH0(X)0 =
0.

Example 3.0.1. If X = Spec L→ Spec k is a finite Galois extension, then CH0(XL) ∼=
⊕
|G| Z

so it is not universally CH0-trivial.

Example 3.0.2. Since CH0(PnK) for any field K is isomorphic to Z via the degree map, projec-
tive space are universally

Being universally CH0-trivial is one of those conditions where one can check “by hand.”
Here’s one way to verify this condition:

Lemma 3.0.3. Assume further that X is geometrically connected. Then the following are
equivalent:

(1) X is universally CH0-trivial;
(2) X has a zero cycle of degree one and CH0(X× k(X))0 = 0.

We will prove this lemma after we add on one more equivalent conditions in the above list.
It is the condition that we are ultimately interested and is “motivic” in nature in that it has
consequences across all cohomology theories that one might associate to X.

Definition 3.0.4 (Bloch-Srinivas). A smooth proper variety X over k, of dimension d. We say
that a cycle Z ∈ CHk(X×X) is narrow if it is supported on X×V for some V ↪→ X an reduced
subscheme of codimension > 1, i.e., for some V, under the map

(3.0.5) CHk(X×X)→ CHk(X×V)

the cycle Z is zero. We say that X has a decomposition of the diagonal if the following
equality holds in CHd(X×X):

[∆X] = α×X + Z ∈ CHd(X×X)

where Z is narrow and α is of degree one. We say that X has a rational decomposition of
the diagonal if there exists an integer N such that

N[∆X] = α×X + Z ∈ CHd(X×X)

where N is narrow and α is of degree one. Equivalently, the equation (3.0.5) holds in the
rationalization CHd(X×X)Q.

The following theorem is due to Bloch and Srinivas [BS83].

4This is quite annoying to find a reference for: in [Ber97, Proposition 1.9] it was proved that rationalized
crystalline cohomology for a smooth proper scheme coincides with rigid cohomology and then we have the purity
isomorphism for rigid cohomology [Chi98, Theorem 2.4].
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Theorem 3.0.6. Assume further that X is geometrically connected. Then the following are
equivalent:

(1) X is universally CH0-trivial;
(2) X has a zero cycle of degree one and CH0(X× k(X))0 = 0;
(3) X has a decomposition of the diagonal.

Proof. Condition (2) is a special case of (1). Let us prove that (2) implies (3). Let K := k(X)
and j : XK → X × X be the canonical map. Then the class j∗[∆X] and j∗(α � [X]) where α
is of degree one are both degree 1 cycles (the reader is left to check this). Therefore, by the
assumption of (2), both cycles are rationally equivalent in CH0(X× k(X)). Since:

CH0(X× k(X)) ∼= CHd(X× k(X)) ∼= colim
U⊂X

CHd(X×U)

where U is open, the cycle j∗([∆X]−α�[X]) is zero for some U large enough. By the localization
sequence in Chow theory, it the pushforward of a cycle β where β is narrow.

Let us prove (3) implies (1). Observe that correspondences act on Chow groups in the sense
that we have a map

CHd(X×X)→ End(CH0(X))

by doing “push-and-pull” as usual in such a way that the graph of any morphism f induces the
pullback of cycles. We note that ∆X induces the identity endomorphism since it is the graph
of the identity map. We claim that for any cycle β ∈ CH0(X):

β = deg(β)α,

where α is the degree one cycle coming from assumption (3).
To this end, compute (α� [X])∗(β): write p1, p2 : X×X→ X for the projections, then using

(mainly) the projection formula we get:

(α� [X])∗(β) = p1∗(α · p∗2(β)) = α · p1∗p∗2(β) = α · deg(β).

To this end, we need to prove that Z∗(β) = 0. We can write [Z] = i∗Z
′ where Z′ is supported

on V × X and i : V × X ⊂ X × X is the immersion. The key is the small lemma below. Once
we have this we note that for any elementary zero cycle [p] we get:

Z∗([p]) = (i∗(Z
′))∗([p]) = p2∗([{p} ×X] · i∗(Z′)) = 0

since we may assume that

({p} ×X) ∩ (X r V)×X.

�

Lemma 3.0.7. As above, for any zero cycle z ∈ CH0(X), then for any nonempty open U ⊂ X,
there exists a cycle z′ supported away from X r U such that z′ = z in CH0(X).

Proof sketch. Pass a curve through z such that it touches U; this lets us assume that X is a
curve. Then we can (using quasi-projectivity of X) find a function ϕ which has poles described
by z and zero’s supported on U, i.e., div(ϕ) = z′ − z. This says that in CH0(X) we have that
z′ = z. �

All this is nice, but having a decomposition of the diagonal on the nose is a restrictive
condition. So we contend ourselves with the rational version which is much easier to check:

Lemma 3.0.8. As soon as the following holds:

• there is a degree one zero cycle α and CH0(X × k(X)) = 0 where k(X) is an algebraic
closure of k(X),

X admits a rational decomposition of the diagonal.
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Proof. Given any finite, field extension F′/F we have the transfer map on zero cycles

CH0(XF′)→ CH0(XF);

such that the composite
CH0(XF)→ CH0(XF′)→ CH0(XF)

is multiplication by the degree. Therefore, in the argument of Theorem 3.0.6 we can only
conclude that there exists some integer N such that

j∗(N([∆X]− α� [X])) = 0

for N large enough and U large enough. The same argument lets us conclude. �
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[É88] J.-Y. Étesse, Rationalité et valeurs de fonctions L en cohomologie cristalline, Ann. Inst. Fourier

(Grenoble) 38 (1988), no. 4, pp. 33–92, http://www.numdam.org/item?id=AIF_1988__38_4_33_0

[Esn03] H. Esnault, Varieties over a finite field with trivial Chow group of 0-cycles have a rational point,
Invent. Math. 151 (2003), no. 1, pp. 187–191, https://doi.org/10.1007/s00222-002-0261-8

[Gro74] A. Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné, p. 155
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