
LECTURE 8: THE ONE WHERE WE DO SOME GEOMETRY

ELDEN ELMANTO

1. Motivation: Weil reciprocity

Let Σ be a Riemann surface. Around a point p ∈ Σ we may choose a local parameter
which is simply a meromorphic function on Σ which has a simple zero around p; we call this
πp. Given any meromorphic function g on Σ, we may expand g around p and express itas

g =
∑
m>k

amπ
m
p = akπ

k
p + ak+1π

k+1
p + · · · .

André Weil proved the following remarkable theorem which constrains the holomorphic func-
tions that can appear on Σ. Let f, g be two rational functions, written as

f = akπ
k
p + ak+1π

k+1
p + · · · ;

g = b`π
`
p + a`+1π

`+1
p + · · ·

then define the local factor at p to be

∂p(f, g) = (−1)k`
bk`
a`k
∈ C.

The local factors turn out to not depend on choices and furthermore satisfy:

∂p(f, g1g2) = ∂p(f, g1) · ∂p(f, g2) ∂p(f1f2, g) = ∂p(f1, g) · ∂p(f2, g)

as well as

∂p(f, 1− f) = 1.

Weil then proved the following remarkable theorem:

Theorem 1.0.1 (Weil’s reciprocity law). For any two nonconstant meromorphic functions f, g∏
p∈Σ

∂p(f, g) = 1.

An even more concrete result is the following consequence: let us write div(g) to be the
formal sums of zero’s and poles of a rational function; we write f(div(g)) to be the product of
the value of f at div(g) counted with multiplicities:

Corollary 1.0.2. For any rational functions such that div(g) and div(f) have disjoint support,
then f(div(g)) = g(div(f)).

This is the most geometric, I think, of the various reciprocity laws that one encounters in
arithmetic geometry. One of the points of today’s lecture is to see this occur in Bloch’s higher
Chow groups and Milnor’s version of algebraic K-theory.

2. Bloch’s higher Chow groups and motivic cohomology

Our goal now is to introduce another one of the principal actors of this class: Bloch’s higher
Chow groups.
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2 E. ELMANTO

Definition 2.0.1. Let q > 0. We set

∆q := SpecZ[T0, · · · ,Tq]/
∑

Ti = 1.

This is a scheme, abstractly isomorphic to Aq. For each fixed q > 1, looking at

V(Ti) ↪→ ∆q i = 0, · · · , q

defines q+1 divisors, abstractly isomorphic to ∆q−1 ∼= Aq−1. We call an arbitrary intersections
of subschemes of this form (for any q > 1) the faces. We display all of this as a (semi-
)cosimplicial scheme which ∆q in degree q, denoted by ∆•.

Remark 2.0.2. Here are the first few algebraic simplices with the faces drawn on them:

 
9 1 9 2

Iggy I sonofa21simplex

9 O 9 1 9 2

FIE

I.ITET

I notpropercurve

We will work only with ∆•k, the base change to a field. This avoids many nightmares having
to do with the right definition of dimension of intersections at different fibers.

Definition 2.0.3. If X is a k-variety and Z,W are two subvarieties of X, we say that Z
interects W properly if every component of Z ∩W has codimX(Z) + codimX(W) (note that
for any component P, codimX(P) 6 codimX(Z) + codimX(W) always if the ambient scheme is
regular). We write

Z tW,

whenever Z intersects W properly.

Remark 2.0.4. We give some easy examples:

(1) Say X = A2, Z a point and W a curve. Then if Z ∈W we have that

codimX(P) = 2 < 3 = codimX(Z) + codimX(W).

This is not a proper intersection. The only way that a proper intersection can happen
is if P = ∅.

(2) If now Z and W are both curves, then if Z = W

codimX(P) = 1 < 2,

hence Z and W meets properly if and only if they meet at finite many points.

Construction 2.0.5. Let X be a k-variety. Then, for j > 0 define

zj(X, •) := Z{W ↪→ X×∆• : W is integral closed codim j subscheme, W t X× F}.

Under pullback of faces, we get a simplicial abelian group and Bloch’s higher Chow groups
is defined to be the homotopy groups (or, alternatively, the homology of the alternating sum):

Hq(z
j(X, •)) := CHj(X, q).

The following is either a definition (if you have not seen it before) or a lemma:

Lemma 2.0.6. Let X be an equidimensional, reduced k-scheme. Then CHj(X) ∼= CHj(X, 0).
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Remark 2.0.7 (Functoriality). We remark on the functoriality of Bloch’s higher Chow groups.
First, we have the proper pushforward: if f : X→ Y is a proper morphism of relative dimension
d, then we have a pushforward map

zj+d(X, •) f∗−→ zj(Y, •)

obtained by pushing-forward cycles along f . If f is a flat morphism, then we can pullback
cycles

zj(Y, •) f∗

−→ zj(X, •).
The pullback functoriality defines Bloch’s higher Chow groups as a functor

zj(−; •) :
(

Varflat
)op

→ K(Z).

One of the principal results (via the moving lemma), due to Bloch-Levine, is that this functor
enhances to a functor out of smooth schemes but into the derived category, i.e., we have a
commutative square (

Smflat
k

)op

K(Z)

Smop
k D(Z).

zj(−;•)

zj(−;•)

2.1. The theorem of Nesterenko-Suslin and Totaro. As promised, our goal is to give a
cohomological interpretation of the Milnor K-groups of fields. The main result is the following:

Theorem 2.1.1 (Nesterenko-Suslin, Totaro). Let F be a field. Then there is a natural isomor-
phism

CHj(F, j) ∼= KM
j (F).

We will give an outline of the proof of Theorem 2.1.1, with the goal of acquainting ourselves
with the Bloch’s construction and some structural properties of Milnor K-theory. We follow the
proof given by Totaro in his thesis [Tot92]. Before we proceed, we explain some more shadow
of how Milnor K-theory behaves like a cohomology theory.

2.1.2. Step 0: cubical constructions. In algebraic topology, the simplicial formalism has been
adopted as the standard way to encode homotopy coherence (quasicategories, simplicial homol-
ogy etc.). However we note that the products of simplices are not simplices; this led to the
method of barycentric subdivision which often poses its own complications. To define a map
from Milnor K-theory to higher Chow groups, we first write a cubical model for the higher Chow
groups so that we can just define a map in degree one and spread the effects via products.

Construction 2.1.3 (Cubical higher Chow groups). By an n-cube �n we mean An thought
of as (P1 −{1})n; we coordinatize them by T1, · · · ,Tn. Each n-cube has 2n-divisors which are
called faces

�n−1 ∼= Dε
Ti ⊂ �

n;

where Dε
Ti

is the vanishing locus of Ti − ε where ε ∈ {0,∞}. Now let X be an equidimensional
k-scheme and j > 0 be fixed. We define, for each n:

zj�(X, n) := Z{Z ↪→ X×�n : W is integral closed codim j subscheme, W t X× F}/dj(X, n)

where dj(X, n) is the subgroup generated by degenerate cycles: these are cycles which
are pulled back from the projections πk : X × �n → X × �n−1 given by (x1, · · · , xn) 7→
(x1, · · · , x̂k, · · · , xn). We have a chain complex zj�(X, •) where the differentials are given by

d :=
∑

(−1)i((D∞Ti ·)− (D0
Ti ·)).

We have the following lemma which follows from simplicial vs cubical formalism.
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Lemma 2.1.4. We have a canonical isomorphism

Hn(zj�(X, •)) ∼= CHj(X, n).

Remark 2.1.5. The picture for the cubical situation is (here we see an element of z1
�(X, 2):)
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The upshot of the working with cubical versions of higher Chow groups is the following:

Construction 2.1.6 (Products). We have the exterior product on higher Chow groups

CHj(X, n)× CHk(Y,m)→ CHj+k(X×Y, n+m);

defined via the isomorphism:

(X×�n)× (Y ×�m) ∼= (X×Y ×�n+m)

and pullbacks of cycles. This is the advantage of the cubical approach: we do not have to
do barycentric subdivision. Now, by the functoriality explained in Remark 2.0.7 we have the
diagonal pullback whenever X = Y:

CHj+k(X×X, n+m)
∆!

−→ CHj+k(X, n+m);

thus a product

∪ : CHj(X, n)× CHk(X,m)→ CHj+k(X×X, n+m).

Remark 2.1.7. Because we have used the functoriality of Remark 2.0.7 there is no a priori
reason why the multiplication above can be enhanced to the structure of a strict cdga on the
cycle complex. In fact one cannot because of the presence of Steenrod operations, constructed
first by Voevodsky, on these higher Chow groups. It is only ever appropriate to think of z∗(X, •)
as a E∞-Z-algebra!

2.1.8. Step 1: constructing the map KM
∗ (F) → CH∗(F; ∗). We now make a map one way; in

degree one we need to produce a map

c1 : F× → CH1(F, 1).

Remark 2.1.9. Let us unpack two cases of the cycle complex:

(1) An element of z1
�(F, 1) is a linear combination of reduced points in P1 r {1} such that

it meets {0} and {∞} in codimension 1; but this exactly means that it does not meet
these two points at all. Therefore, we conclude that a linear combination of closed
points of P1 r {0, 1,∞}.

(2) An element of z1
�(F, 2) is a linear combination of codimension 1, integral closed sub-

scheme of A2 ∼= (P1 r {1})×2. There are two conditions that these curves are subject
to: 1) it must meet the four faces of at codimension one, which means that they
must meet a points and it must meet the four codimension two points (the points
(0, 0), (0,∞), (∞, 0), (∞,∞)) at codimension one which means that they do not meet
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these points at all. We also remind the reader of what is allowed and what is not via
picture:
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Construction 2.1.10. We construct a map

c1 : F× → z1
�(F, 1)

by:

c1(a) =

{
0 if a = 1

[a] otherwise.

There is no a priori reason why [a] + [b] = [ab], of course. This relation has to happen only
after equivalence:

Lemma 2.1.11. We have the following relations in CH1(F, 1):

[a] + [b] = [ab] a, b, ab 6= 0, 1;

[a] + [1/a] = 0 a 6= 0, 1.

Proof. For a, b 6= 0, 1, we consider the curve C(a, b) defined by the vanishing of the rational
function

f(x) = ax−ab
x−ab

It is an element of z1
�(F, 2): clearly it meets the four faces only at points and it has the following

intersection points whenever ab 6= 1:

(0, 1), (∞, a), (b, 0), (ab,∞)

and if ab = 1, it intersects at

(∞, a), (1/a, 0).
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The first verifies

[a] + [b]− [ab] = 0

and the second verifies

[a] + [1/a] = 0.

�

At this point we get a map

KM
1 (F) = F× → CH1(F, 1).

To promote the map into a ring map

KM
∗ (F)→ CH∗(F, ∗)

we need only verify the Steinberg relation

Lemma 2.1.12. The following relation holds in the ring CH∗(F, ∗):
c1(a)c1(1− a) a 6= 0, 1.

Proof. The product c1(a)c1(1− a) lies in z2
�(F, 2); to prove that it is zero we need to produce

an element of z2
�(F, 3). The latter group is generated by curves in the cube (P1 r {1})×3 which

meets all six plans at curves and does not meet the vertices at all. Take the curve C(a) given
by

f(x) = (1− x, a−x1−x ).

It only intersects the codimension one faces at the hyperplane T3 = 0, where it hits the point

(a, 1− a, 0).

Therefore we do have the desired equality. �

Therefore we get a map

cj : KM
j (F)→ CHj(F, j).

2.1.13. Step 2: constructing the map CH∗(F; ∗) → KM
∗ (F). We now want to construct a map

backwards

CH∗(F, ∗)→ KM
∗ (F).

Assume that F is an algebraically closed field; then a cycle of zj�(F, j) can be described as a
coordinate (a1, · · · , aj) such that no coordinate is actually 0, 1 or ∞. We can then send this
to an element {a1, · · · , aj} in Milnor K-theory, which is well-defined once we check that the
boundary of any curve gets sent to zero; of course we also send the element zero to the element
{1}. From this point of view, it is easy to see that both composites are the identity and we are
done. Let us expand this into an extended remark:

Remark 2.1.14 (Algebraically closed field). So assume that F is an algebraically closed field.
For simplicitly, we think of an element in z1(F, 2) as a curve in (P1 r {1})×2 the latter having
coordinates T1,T2; we normalize if necessary and think of it as a finite morphism C → (P1 r
{1})×2 from C a smooth F-curve. We remark that by [Ful98, Example 1.2.3], the intersection
values are not changed. Anyway, we think of the above map as two rational functions f, g ∈
F(C)×. The properness of interesection conditions translate into:

(1) neither f nor g are constant at 0 or ∞;
(2) if w ∈ C such that f(w) = 0 or ∞, then g(w) 6∈ {0,∞} and vice versa.

With this in mind, the intersection of C with, say, D0
T2
· C = [(f(w), 0)]νw(g). Unpacking

everything and assuming that each C only intersects each of the divisors once we are asking:

(−1) ([(∞, g(w1))]vw1
(f)− [(0, g(w2))]vw2

(f)) + (([f(w3),∞)]vw3
(g)− [(f(w4), 0)]vw4

(g)) = 0.

But this is just Weil reciprocity written additively! To make sense of this we need to discuss
symbols in Milnor K-theory.
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2.1.15. Symbols. A Steinberg symbol on a field F consists of an abelian group A, written
multiplicatively, and a bilinear map

c : F× ⊗Z F× → A

such that c(r, 1 − r) = 1. We can succinctly say that a Steinberg symbol is just an abelian
group homomorphism

KM
2 (F)→ A.

Example 2.1.16. Let m be an integer prime to the characteristic of F. Then Kummer theory
provides an short exact sequence on the small étale site of F

1→ µm → Gm → Gm → 1.

This furnishes a connecting homomorphism

F× → H1
ét(F;µm).

We have a map

F× ⊗Z F× → H1
ét(F;µm)⊗Z H1

ét(F;µm)
∪−→ H2

ét(F;µ⊗2
m ).

A result of Tate (see []) proves that the above map is a Steinberg symbol known as the Galois
symbol.

A higher symbol or, simply, a symbol is an abelian group homomorphism KM
∗ (F) → A.

The example 2.1.16 above can be promoted to a symbol

KM
∗ (F)→ H∗ét(F;µ⊗∗m ).

For us, the next symbol is most important. To define it we require some preliminaries about
basic field theory:

(1) let K be a field equipped with a discrete valuation ν : K× → Z; its associated discrete
valuation ring is O := ν−1(Z>0);

(2) a uniformizer or a local parameter is an element π such that ν(π) = 1 and we choose
one;

(3) having done so any element x ∈ K× can be uniquely written as uπi for i ∈ Z;
(4) the residue field of O is given by O/π =: κ; if x ∈ A we write x to be the reduction

modulo π

Therefore, the gropups KM
n (K) are generated by two flavors of elements: the first are elements

of the form {π, u2, · · · , un} or elements which are purely {u1, · · · , un} which are units in O. The
next proposition creates a symbol known as the Tame symbol or the residue map but it
should be thought of as a connecting homomorphism:

Proposition 2.1.17 (Milnor, Serre). Let n > 1, there exists a unique map of abelian groups

∂M : KM
n (K)→ KM

n−1(κ).

such that:

∂M({π, u2, · · · , un}) = {u2, · · ·un},
and

∂M({u1, u2, · · · , un}) = 0.

Furthermore, fixing π, we have a specialization map

sM
π : KM

n (K)→ KM
n (κ)

such that

sπ({πi1u1, · · · , πinun}) = {u1, · · · , un}.
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Remark 2.1.18. In the literature, the tame symbol is commonly referred to as the map above
for n = 2; it takes the form

∂M : KM
2 (K)→ κ×

and is given by

∂M({u1, u2}) = (−1)ν(u1)ν(u2) u1
ν(a2)

u2
ν(u1) .

On the other hand when n = 1, the map

∂M : K× → Z
is just the discrete valuation of K.

The proof of this result is kind of standard; see for example [GS17, Proposition 7.1.4]; let us
instead package it into a remark which I learned from Fabien Morel [Mor12, Remark 3.18].

Remark 2.1.19 (Morel). SpecO is a Sierpinski space, having a closed point a Specκ and an
open point Spec F. If this was in manifold theory, we would then have a map

V(Nκ) r {0} → Spec F,

acting as a tubular neighborhood; here V(Nκ)r {0} is just the punctured vector bundle over κ
associated to the normal sheaf of the embedding Specκ ↪→ SpecO. If we can evaluate Milnor
K-theory on V(Nκ) r {0}, then we would get a natural map

KM
∗ (F)→ “KM

∗ (V(Nκ) r {0}).”
Now, V(Nκ)r {0} is isomorphic to Gm, and one can make this isomorphism after choosing the
uniformizer π; so we can ask ourselves that KM

∗ of Gm-should be. We set

“KM
∗ (V(Nκ) r {0})” := KM

∗ (κ)[ξ]/(ξ2 − [−1]ξ) |ξ| = 1.

The relation ξ2 = [−1]ξ can be explained via A1-homotopy theory: the reduced diagonal map
Gm → Gm ∧ Gm is A1-homotopic to the map “x 7→ −1 ∧ x”. This is pictorially similar to
decomposing the diagonal divisor in the ruled surface P1 × P1 to the divisor P1 × 1 + 1× P1.

2.1.20. Back to Step 2. To deal with the case that F is not algebraically closed. We will need
to use some structure in the Milnor K-groups.

Construction 2.1.21. We have a morphism

Specκ(p)→ (P1
F r {0, 1,∞})j ;

classifying an element of zj�(F, j) and giving elements x1, · · ·xj ∈ κ(p) r {0, 1} as the image of
T1, · · ·Tj ; we think of the above map as a framing. The field extension κ(p)/F is finite since
the point is closed and thus there is the norm map (see A)

Nκ(p)/F : KM
j (κ(p))→ KM

j (F).

We set

sj : CHj(F, j)→ KM
j (F) sj(Specκ(p)→ (P1

F r {0, 1,∞})j) = Nκ(p)/F{x1, · · · , xj}.

We now sketch a proof of the following result, extending Remark 2.1.14:

Lemma 2.1.22. Any generator of zj�(F; j + 1) has boundary that maps to zero in KM
n (F).

Proof. A generator is an irreducible, reduced curve C ⊂ Aj+1
F which means that codimension

one faces at points and none of the codimension two faces. We can reinterpret this datum as a
map C→ (P1 r {1})j+1, whence j + 1 rational functions

gi ∈ k(C) i = 1, · · · , j + 1

such that

(1) no gj is identically 0 or ∞ and
(2) if w ∈ C is such that gi(w) = 0 or ∞, then gk(w) 6∈ {0,∞} for k 6= i.

In terms of rational functions, the boundary of C is then obtained by �
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2.1.23. Step 3: computing composites.

Lemma 2.1.24. Any element in CHj(F, j) is equivalent to a sum∑
ni[pi],

where each pi is an F-rational point of AjF.

Appendix A. The Norm map

A good reference form norms in Milnor K-theory is [GS17, Section 7.3], but let us given an
informal discussion. Recall that the field norm of a finite extension L/K is the map

NL/K : L→ K

given as follows: if α ∈ L, then α· : K → K is a K-linear transformation and NL/K(α) ∈ K is
the determinant of this transformation. Alternatively, if Eα(x) is the minimal polynomial of α,
written as Eα(x) = xd − ad−1x

d−1 + · · · (−1)da0 ∈ K[x], then NL/K(α) = a0. The norm map is
multiplicative in that it defines a morphism of multiplicative groups

NL/K : L× → K×

and further satisfies

NL/K = NM/K ◦NL/M

for intermediate extensions L/M/K. Furthermore, it has the following base change property:
if F0/K is any field extension of F, then L⊗K F0 has finitely many maximal ideals {κ(m)} and
we have the following commutative diagram

L×
⊕

m κ(m)×

K× F×0 .

NL/K
∑

m dmNκ(m)/F0

where

dm =
[L:F]insep

[κ(m):F0]insep
.

We can package all of this into an algebraic structure which is, nowadays, prevalent throughout
all of mathematics. If C is a category (even ∞-category) with finite limits, then we can form
the (2,1)-category Corr(C) whose objects are objects in C and whose morphisms are given by
spans:

Z

X Y.

Composition is given by the formation of pullbacks in the obvious way and the (2,1)-category
structure let us elegantly speak of invertible morphisms between the resulting pullbacks. The
point

For example, we can let FieldsF be the category of finite field extensions of F, we then have
a functor

Corr(FieldsF)→ AbGp,

which sends a span

K← L→ M 7→ K×
NL/K−−−→ L× → M×.
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Appendix B. Reciprocity laws
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