
LECTURE 9: IN WHICH WE VISIT BOSTON IN THE 90’S

ELDEN ELMANTO

1. The Geisser-Levine theorem: a retrospective

The starting point is the following theorem of Faltings. We begin with V a complete discrete
valuation ring of mixed characteristics (0, p) with residue field κ a perfect field. Let F be its
field of fractions. We choose some embedding F ↪→ Cp into the p-adic complex numbers; let us

write G for the Galois group of F over F.

Theorem 1.0.1. [Fal88] Let X be a smooth proper F-scheme. Then there is a G-equivariant,
natural isomorphism

Hn
ét(XF;Zp)⊗Zp Cp ∼=

⊕
i+j=n

Hi(X; Ωj)⊗F Cp(−j) > 0.

Here we set Zp(j), j ∈ Z to be the usual Tate twist, where the first twist is given by:

Zp(1) := limµpn Zp(−1) := (limµpn)
∨
,

and R(j) := R ⊗Zp Zp(j). The above isomorphism is often called the “Hodge-Tate decomposi-
tion.” Faltings used the methods of his almost étale extensions and almost purity in order to
prove the above result. Nowadays it has been generalized by prismatic cohomology.

There is a precursor to this theorem of Faltings, namely the one of Bloch and Kato [BK86].
They essentially proved this result whenever X has good ordinary reduction, so let’s consider
the following set up:

(1.0.2)

Xκ X XF

Specκ Spec V Spec F,

i j

where X → Spec V is proper; we will soon base change everything to the closure and we use
notation like j : XF → X. The idea of Bloch and Kato is to study two different spectral
sequences

Ep,q2 = Hp
ét(Xκ; i

∗
Rqj∗Z/prZ)⇒ Hp+q

ét (XF;Z/prZ);

the “vanishing cycles” spectral sequence which interpolates between the vanishing cycles co-
homology on the special fiber to the generic fiber. The one thing to note is that the stalks
of

i∗Rqj∗Z/prZ
at a point y ∈ Xκ is given by

Hq
ét(O

sh
X,y[ 1

p ],Z/prZ)

where Osh
X,y is the strict henselization of y in X; so this is a mixed-characteristic local ring. The

second one is the slope spectral sequence which we have already seen

(1.0.3) Ep,q1 = Hp(Xκ; WΩq)⇒ Hp+q
crys(Xκ/W(κ)).

One way to understand Theorem 1.0.1 is that there is a certain filtration on Hn
ét(XF;Qp) which

appropriately splits after tensoring with enough scalars; this is actually what happens with the
situation in characteristic zero. At that time, the vanishing cycles spectral sequence looks as
good as any for a candidate filtration. One reason to like the vanshing cycles spectral sequence,
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2 E. ELMANTO

however, is that the E2 page clearly interpolates between the special and the generic fiber as
the étale cohomology groups that appear in the stalks are those of Osh

X,y[ 1
p ]. We are not doing

anything illegal like taking the mod-p étale cohomology of a mod-p scheme, but at the same
time there’s still a little bit of characteristic p in this picture.

Bloch-Kato began producing filtrations on the sheaves i∗Rqj∗Z/prZ(q) ∼= i∗Rqj∗µ
⊗j
pr ; these

are étale cohomology groups in degree j with exactly a power of j; these are of the form:

· · ·U2i∗Rqj∗µ
⊗j
pr ⊂ U1i∗Rqj∗µ

⊗j
pr ⊂ U0i∗Rqj∗µ

⊗j
pr

This filtration stops at a finite stage and is inspired by the following on the level of Milnor
K-theory:

Remark 1.0.4. Let F be a discrete valued field with value group V and residue field κ with
uniformizer π; we set UF := V×, the units in the valuation ring (so that these are exactly
elements of valuation zero. Then we have the sequence of groups

· · · 6 UmF 6 · · · 6 U1
F 6 U0

F = F×;

such that x ∈ UmF if and only if it is of the form 1+aπm, where a ∈ V. Noting that F× = K1(F),
This generalizes to the higher Milnor K-groups into a filtration:

· · · 6 UmKj(F) 6 · · · 6 U1Kj(F) 6 U0Kj(F) = Kj(F)

where UmKj(F) is the subgroup generated by symbols {a1, · · · , am} where at least one of the
ai’s is an element of UmF. By graded commutativity, we may assume that am is exactly the
element which is in UmF. A basic calculation in this theory is the following:

Proposition 1.0.5. The sum ∂ ⊕ sπ : Kj(F)/n→ Kj−1(κ)⊕Kj(κ) gives an exact sequence

0→ U1Kj(F)→ Kj(F)
∂⊕sπ−−−→ Kj−1(κ)⊕Kj(κ).

Now, U1Kj(F) is “coherent” in nature in that it is killed by a coprime integer. This gives
the following result

Proposition 1.0.6. If n is coprime to the characteristics of κ, then we have an isomorphism

∂ ⊕ sπ : Kj(F)/n
∼=−→ Kj−1(κ)⊕Kj(κ).

In other words, we can describe the mod-n Milnor K-groups of the fraction field using sums
of those coming from the residue.

Bloch and Kato was trying to relate the filtration in Remark 1.0.4 to the vanishing cycles
sheaves. To do so, they attempted to construct a map (for r = 1) of Zariski sheaves on Xκ

(1.0.7) i∗Rqj∗µ
⊗j
p → ΩjXκ ⊕ Ωj−1

Xκ
.

Assume, for accuracy and simplicity that X is V itself (or any mixed characteristic dvr), then
concretely we want to construct a map:

Hj
ét(V[ 1

p ];µ⊗jp ) = Hj
ét(F;µ⊗jp )→ Ωjκ ⊕ Ωj−1

κ .

It is actually enough to construct:

Hj
ét(V[ 1

p ];µ⊗jp ) = Hj
ét(F;µ⊗jp )→ KM

j (κ)/p⊕KM
j−1(κ)/p

as I will explain next.

Definition 1.0.8. Let X be a regular Fp-scheme. We consider a map of sheaves on XZar

dlog : G⊗jm,X →WrΩ
j
X

given by
f1 ⊗ · · · ⊗ fj 7→ dlog[f1] ∧ · · · ∧ dlog[fj ].

The logarithmic Hodge-Witt sheaves of Deligne-Milne-Illusie is the Zariski-sheafification
of the image of the above map and is written as

WrΩ
j
log,X.



LECTURE 9: IN WHICH WE VISIT BOSTON IN THE 90’S 3

Remark 1.0.9. There’s a slight “cheat” of notation above. The element dlog[f ] means the
following: if R is a Fp-algebra, then we have the element [f ] ∈W(R) given by the (multiplicative)

Teichmüller section R→W(R). Then we can take a well-defined element d[f ]
[f ] ∈ Ω̂jW(R); we then

push it further to the de Rham-Witt form via the canonical saturation map Ω̂jW(R) →WΩjR.

Here is a claim:

Lemma 1.0.10. For any regular local Fp-algebra R the following equality holds in WrΩ
j
R

dlog[f ] ∧ dlog[1− f ] = 0 f ∈ R×.

Proof. We compute directly (in Ω̂∗W(R))

dlog[f ] ∧ dlog[1− f ] = 1
[f ][1−f ]d[f ] ∧ d[1− f ]

= 1
[f ][1−f ]d[f ] ∧ d[f ]

= 0.

�

So let us make the following definition:

Definition 1.0.11. If R is a ring, its naive Milnor K-theory is defined in the usual way as

KM′

∗ (R) := Tens∗ZR×/(f ⊗ 1− f, f 6= 0, 1).

Remark 1.0.12 (Naive versus improved Milnor K-theory). Gabber, Kerz

In any event, we have a map for any regular Fp-algebra R,

KM′

j (R)→WrΩ
j
log,R.

On the other hand, returning to the original problem at hand, we have a map

KM
j (F)→ Hj

ét(F;µ⊗jp );

and if it was an isomorphism then we will be on our way to defining the map to logarithmic
forms! This then became the infamous Bloch-Kato conjecture

Theorem 1.0.13 (Bloch-Kato conjecture, Rost-Voevodsky). If p is coprime to the character-
istic of F, then the induced map

KM
∗ (F)/pr → H∗ét(F;µ⊗∗pr )

is a graded ring isomorphism.

In fact Bloch and Kato verified this result whenever F is a complete, discretely valued field
of mixed characteristic and this was enough to prove their version of Faltings’ theorem.

1.1. More on the Bloch-Kato conjecture. The above discussion concern only the situation
prime to the characteristic, exactly not what this class is about. Yet the ingredients involved are
very much close to things we have talked about so far. We see a generalization of the statement
of Theorem 1.0.13 which simultaneously 1) lets us consider schemes instead of just fields, 2) lets

us vary the weights (thinking of KM
j (F) as Hj

mot(F;Z(j))) and 3) a version in characteristic p.

Definition 1.1.1 (Lichtenbaum-Milne). The étale motivic complexes on Smk are étale
sheaves Z(j)et such that we have equivalences of étale sheaves

Z(j)et/pr '

{
µ⊗jpr

1
p ∈ k

WrΩ
j
log[−j] p = 0.

Let X ∈ Smk and let λ : Xét → XZar be the usual morphism of sites. Then
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Theorem 1.1.2 (Beilinson-Lichtenbaum-Milne conjecture, Rost-Voevodsky and Geisser-Levine).
There is a canonical map of Z(j)mot

X → Rλ∗Z(j)et such that for all primes p and for all r > 1,
the induced map on mod pr reduction factors through an equivalence

Z/pr(j)mot
X → τ6jRλ∗Z/pr(j)et.

1.2. Statement of the Geisser-Levine theorem. There are many ways to state the Geisser-
Levine theorem. In a general and usable form we have:

Theorem 1.2.1 (Geisser-Levine). Let O be a regular, local Fp-algebra, then for all r > 1 and
i, j > 0:

(1.2.2) Hi
mot(O;Z/pr(j)) =


0 i 6= j

Ωjlog,O i = j

.

1.3. Overview of the proof. We are always free to work with mod-p coefficients, as opposed to
mod-pr via usual Bockstein argument. The starting point of the Geisser-Levine theorem is the
following algebraic result, due to Bloch-Kato and also Gabber (in an unpublished manuscript).

Theorem 1.3.1 (Bloch-Kato-Gabber). Let F be a field of charateristic p > 0, then the dlog
symbol map:

KM
j (F)/p→ ΩjF,log

is an isomorphism.

Because of the Nesterenko-Suslin-Totaro isomorphism and the fact that for a field F, we have
H>j

mot(F;Z(j)) = 0 (for purely higher Chow group reasons), we have that

Hj
mot(F;Z/p(j)) ∼= Hj

mot(F;Z(j))/p ∼= KM
j (F)/p ∼= ΩjF,log.

The key point is then to kill groups

H<j(F;Z/p(j))

for any field F. We note that these groups are almost never zero when F is not characteristic
p > 0;

Remark 1.3.2 (Weight one). Let X be a smooth F scheme. One of the things that we can
compute “by hand” as done in [MVW06, Lecture 4] is weight one motivic cohomology. We
have that

(1.3.3) Z(1)mot
X ' O×X [−1].

This is independent of characteristics. But if p is invertible then the Kummer sequence (which
is not available in characteristic p > 0 étale locally) and Hilbert theorme 90 (which states that
étale and Zariski cohomology of Gm-agrees up to degree 6 1) gives us

H0
mot(X;Z/p(1)) = µp(X).

the global p-th roots of unity on X.

We will very soon see that Remark 1.3.2 is the basic phenomenon that underlies the difference
between motives at p and away from p. In particular, what is going on in characteristic p > 0
with mod-p coefficients is a kind of discreteness statement which is, at first glance, surprising
but is also pervasive throughout the subject. To formulate this discreteness correctly, we work
in the context of stable motivic homotopy theory.
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1.4. A rapid primer to stable motivic homotopy theory. There are, by now, many good
expository notes on the subject. However, most do not delve into the actual content of the theory
and what the formalism is all about; we hope to rapidly run through it now. Throughout, all
schemes are quasicompact and quasiseparated.

Definition 1.4.1. Let B be a scheme.

(1) A Nisnevich square is a pullback square of schemes

U×X V V

U X.

p

j

where p is étale, j is open and p induces an isomorphism p : p−1((X r U)red) →
(X r U)red.

(2) A functor: E : Smop
B → Spt is said to be an A1-invariant Nisnevich sheaf if it

converts all Nisnevich squares in SmB to cartesian squares and the projection map

X× A1 → X induces an equivalence E(X)
'−→ E(X× A1).

(3) For a presheaf E, set

ΩP1E(X) := fib(E(X× P1)
∞∗−−→ E(X));

which defines a functor ΩP1E : Smop
B → Spt. Since ∞∗ is split by P1 ×X→ X, we have

a direct sum decomposition

E(X× P1) ' E(X)⊕ ΩP1E(X).

(4) Let {E(•)} be a Z-graded collection of presheaves of spectra, then a P1-bundle datum
at level j is a map

E(j)→ ΩP1E(j + 1).

(5) A homotopy invariant motivic cohomology theory is the data of a Z-graded
presheaves of spectra {E(•)}, P1-bundle datum at each level j for j ∈ Z such that:
(a) E(j) is an A1-invariant Nisnevich sheaf;
(b) each P1-bundle datum is an equivalence.

Example 1.4.2. Let 1
p ∈ OB. Then set

E(j) := RΓét(−;µ⊗jpr )[2j].

Standard facts from étale cohomology theory tells us that E(j) is an A1-invariant Nisnevich
sheaf. The theory of chern classes in étale cohomology produces, for each line bundle L on X,
a first Chern class class c1(L) ∈ H2

ét(X;µpr ). From this we can produce the P1-bundle datum
at all levels; the fact that the map

Hi
ét(X;µ⊗jpr )⊕Hi−2

ét (X;µ⊗j−1
pr )

π∗⊕π∗∪c1(L)−−−−−−−−−→ Hi
ét(P1 ×X;µ⊗jpr )

is an equivalence (the projective bundle formula) tells us that we have a homotopy invariant
motivic cohomology theory prescribed by E(•) := RΓét(−;µ⊗•pr ). We denote this as Hétµpr

Example 1.4.3. If B is a regular base scheme, then K-theory is A1-invariant. It is always a
Nisnevich sheaf and satisfies the P1-bundle formula via the decomposition

K(P1
X) ' K(X){O} ⊕K(X){O− O(1)}.

Therefore we set

KGL(j) := K,

in this situation. Note that weights are irrelevant here. We denote this as KGL
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Example 1.4.4. Let B be the spectrum of a field. Set

E(j) := Z(j)mot[2j];

results of Bloch and Levine says that E(j) forms a homotopy invariant motivic cohomology the-
ory where the bonding maps are given essentially by (1.3.3) which unpacks to the isomorphism:
Pic(X) ∼= H2

mot(X;Z(1)). We denote this by HZ.

Remark 1.4.5 (The ∞-category SH(B)). We can package everything into an ∞-category,
but this maneuver only starts becoming really useful when we speak of symmetric monoidal
structures. In particular, homotopy invariant motivic cohomology theories are objects of a
symmetric monoidal stable ∞-category SH(B) called motivic spectra. It comes equipped
with a symmetric monoidal functor

MB(−) : SmB → SH(B)

assigning to X ∈ SmB its relative B-motive; often we suppress B when the context is clear.
The unit motive over B is defined to be M of B itself:

M(B) := SB

Sometimes we insist on pointing X; say x ↪→ X is a B-point of X, then we set

M(X, x) := cofib(SB = M(x)→ M(X)).

The ∞-category SH(B) modifies the essential image of M(−) in a certain way because we
insist on A1-invariance, Nisnevich descent and the projective bundle formula; for a standard
example:

M(P1, 1) ' M(Gm, 1)[2].

More importantly, the ∞-category SH(B) is characterized by a precise universal property as
the place where the motive M(P1, 1) becomes invertible; this is what imposing the projective
bundle formula effectively does. Hence it makes sense to speak of M(P1, 1)⊗−q for any q ∈ Z.

In any event we set:
Sp,q := M(Gm, 1)⊗q[p− q] p, q ∈ Z.

If E = {E(•)} is an A1-invariant motivic cohomology theory then we get

[M(X),Sp,q ⊗ E]SH(B) ' πq−p(E(q)(X)).

We also write
Ep,q(X) := [M(X),Sp,q ⊗ E]SH(B).

For the most part SH(B) is merely a bookkeeping device and we try as much as possible to
give concrete formulations of the various statements involved.

Remark 1.4.6 (Extensions). A scheme is essentially smooth over B if it can be written as a
cofiltered limit of smooth B-schemes with affine transition maps; for example field extensions are
smooth over the base. Another class of examples we will soon see also include (semi)localizations
of smooth schemes at points. Any functor E : Smop

B → Spt can be extended to essentially smooth
schemes by left Kan extension and we will implicitly always do this when we speak of values
on essentially smooth schemes.

Remark 1.4.7 (Homotopy sheaves). Given an A1-invariant motivic cohomology theory E, we
can consider the following Nisnevich sheaf on SmB

πi(E)−j := aNis

(
U 7→ [M(U)[i],Sj,j ⊗ E] ' [M(U)[i],E(j)[−j]]

)
.

These are called the homotopy sheaves of E; they act like cohomology sheaves in usual
algebraic geometry in that there is a descent spectral sequence for any X ∈ SmB:

Hp
Nis(X;πq(E)j)⇒ Eq−p,j(X).

We should think of homotopy sheaves as a Z-graded object

πi(E)∗
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where, when i = 0, extracts the “(j, j)” part of the cohomology theory. So, for example, for
any field L, Nesterenko-Suslin and Totaro’s theorem says that

[M(L),Σ∗,∗HZ] ∼= π0(HZ)−∗(L) ∼= KM
∗ (L).

In this situation, so over a field base, we can then define Milnor K-theory of schemes via

π0(HZ)−j(X) =: KM
j (X).

1.5. Further structure I: the homotopy t-structure. In basic algebraic topology and ho-
mological algebra, t-structures allow us to speak of homotopy groups and discrete objects.
Roughly speaking (see [Lur17, Section 1.2.1] for details), we have two subcategories C>0 and
C60, the first of which is stable under [1], the second of which is stable under [−1], such that
there are no maps from C>0 to C60[−1]. Any object in C decomposes into a cofiber sequence

X>0 → X→ X6−1

where X>0 ∈ C>0 and X6−1 ∈ C6−1. The key point, a result due to Beilinson, Berstein, Deligne
and Gabber, is that C>0 ∩ C60 =: C♥ is an abelian category; these objects in the heart which
is one way we can speak of objects being discrete. The embedding C♥ ↪→ C lets us think of
discrete objects as objects in C.

Example 1.5.1. There is the standard t-structure in D(Λ) whose heart is given by Λ-
modules; D(Λ)>0 (D(Λ)60) is given by those objects whose cohomology are strictly concen-
trated in non-positive degrees (in non-negative degrees). On Spt, the standard t-structure
has, as heart, abelian groups; Spt>0 (Spt60) is given by spectra whose homotopy groups lie in
non-negative (non-positive) degrees. We call objects in Spt>0 and D(Λ)>0 as connective.

The construction of a t-structure on SH(k) is non-obvious and there is actual geometric
content in doing this. For now, let us summarize it:

Theorem 1.5.2 (Morel). Let k be a perfect field, then there is a t-structure on SH(k) such
that:

(1) E ∈ SH(k)>0 if and only if πi(E)∗(L) = 0 for all i < 0 and for all finitely generated
field extensions L;

(2) E ∈ SH(k)60 if and only if πi(E)∗(L) = 0 for all i > 0 and for all finitely generated
field extensions L.

In particular, π0(E)∗ defines canonically objects in SH(k) such that

[M(X),Sp,q ⊗ π0(E)∗] ∼= Hp−q
Zar (X, π0(E)−q).

Remark 1.5.3 (Unramified sheaves). The phenomena that underlies the above theorem is one
of unramifiedness: we say that for any field L and any discrete valuation v on L, we have
maps ∂v : KM

j (L) → KM
j−1(κ). Now if X = Spec R is a smooth, affine k-scheme, we can define

the unramified Milnor K-theory

KM
j (R) :=

⋂
v

(
KM
j (k(X))

∂v−→ KM
j−1(κ)

)
.

There many other such examples like unramified étale cohomology. We note that the structure
sheaf O, as a Nisnevich sheaf of abelian groups, is unramified on normal, noetherian domains
by algebraic Hartog’s theorem.

Definition 1.5.4. An A1-invariant homotopy module is an object of SH(k)♥.

1.6. Morel’s theorem. We give a discussion of Theorem 1.5.2 emphasizing on the geometry
involved. Fix a perfect field k, and an A1-invariant Nisnevich sheaf:

E : Smop
k → Spt,

which we implicitly extend to essentially smooth schemes. One reason why imposing the A1-
invariance condition is nontrivial is because of the following observation:
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Lemma 1.6.1. Let X ∈ Smk and let OX,x be the local ring of X at a closed point x ∈ X. Then
the map

πjE(OX,x)→ πjE(Frac(OX,x))

is injective for all j ∈ ∗.

In fact, we only need the above lemma for Henselian local rings, which are stalks for the
Nisnevich topology. Lemma 1.6.1 reduces many questions about A1-invariant Nisnevich sheaves
to questions about fields. To prove this result, one uses the following lemma due to Gabber
[CTHK97] and its enhancement to finite fields by [HK20].

Lemma 1.6.2 (Gabber’s presentation lemma). Let X be an affine, smooth connected scheme
over a field k of dimension d, Z a closed subscheme of X and t1, · · · , tj a finite set of closed
points of X. Then, possibly after shrinking X around t1, · · · , tj, we can find a nonempty open
V ⊂ Ad−1 and a map

ϕ = (ψ, v) : U→ V × A1

such that

(1) ϕ is étale;
(2) ϕ|Z : Z→ V × A1

V is a closed immersions;
(3) ψ|Z : Z→ V is finite;
(4) ϕ−1(ϕ(Z)) = Z.

Remark 1.6.3. Lemma 1.6.2 is an all-purpose result which has had applications in many areas
of mathematics. The way that one thinks about it is as follows: first we are actually mostly
interested in the semilocalization at around the points t1, · · · , tj . The closed subscheme Z
should be thought of as “bad” or a loci to avoid. The map ϕ : X→ A1 ×V is a refined version
of noether’s normalization theorem and is really constructed from that procedure and ψ being
finite around Z tells us that both ϕ and ψ are kind of a “simultaenous” noether normalization.
In practice what one extracts is (1.6.5) which is crucial for all applications.

For any essentially smooth scheme X and Z ↪→ X a closed subscheme, possibly not smooth.
We set EZ(X) to be the fiber of the map

E(X)→ E(X r Z).

This is just a formal expression but should be thought of as “E with supports in Z.”

Lemma 1.6.4. Let k be a field. Assume that E : EssSmop
k → Spt be a finitary Nisnevich sheaf

satisfying the following condition: for any V ∈ Smk with a closed subscheme W ↪→ V, then the
diagram

EP1
W

(P1
V) EA1

W
(A1

V)

EW(V)

j∗

∞∗ π∗

commutes. Then for any j ∈ Z and any R which is the local ring of a closed point x in a smooth
k-scheme X, the map

πj(E(R))→ πj(E(F))

is injective.

Proof. Let s ∈ πj(E(R)) which is assumed to vanish when restricted to F. By possibly shrinking
X, we may assume that s is defined on X and vanishes away from Z ↪→ X which is a closed
subscheme of positive codimension. By definition of EZ(X) and the vanishing assumption, we
have that s lifts to an element s̃ ∈ πj(EZ(X)). To prove the result, it suffices to produce an
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open neighborhood U containing x and a closed subscheme Z′ with Z ∩U ⊂ Z′ ∩U such that s̃
vanishes on πi(EZ′∩U(U)); because then we have a commutative diagram

πj(EZ(X)) πj(E(X)) πj(E(X r Z))

πj(EZ∩U(U)) πj(E(U)) πj(E((X r Z′) ∩U)).

and the vanishing of s̃ in πj(EZ∩U(U)) implies that s itself vanishes in U; taking colimits we
get that s vanishes on R.

Lemma 1.6.2 produces a Nisnevich square (after possibly shrinking U)

(1.6.5)

U r Z U

A1
V r (ϕ(Z)) A1

V;

ϕ=(v,ψ)

Set Z′ := ψ−1(ψ(Z)). By Nisnevich excision, we have that πi(EZ∩U(U)) ∼= πi(EA1
V∩ϕ(Z∩U)(A

1
V)).

In this case, we have a commutative diagram

πi(EZ(U)) πi(EZ′(U))

πi(Eϕ(Z)(A
1
V)) πi(EA1

ψ(F)
(A1

V));

∼=

The point of the isomorphism on the left, which comes from Nisnevich excision, is that to finish
the proof we need only show that the bottom map is zero. The map of interest is the top
horizontal map of the following commutative diagram.

Eϕ(Z)(A
1
V) EA1

ψ(Z)
(A1

V)

Eψ(Z)(V)

Eϕ(Z)(P
1
V) EP1

ψ(Z)
(P1

V)

'

The triangle commutes because of the hypothesis. However, the bottom composite is zero since,
ϕ(Z) does not meet the ∞-section of P1

V and thus the top map is zero as desired.
�

Proof of Lemma 1.6.1. We need only verify the condition of Lemma 1.6.4, but then the upward
sloping map in the diagram is an isomorphism so commutativity is trivial. �

The context for Lemma 1.6.1 is the Gersten resolution. We will need a version of this later
so let us give a quick sketch. Given E an A1-invariant Nisnevich sheaf, we can construct a
decreasing filtration (functorial on X only a priori for flat morphisms)

Fil>jconE(X)→ E(X),

in the following way: first we set for any closed, integral subscheme (not necessarily smooth)
Z ⊂ X, its E-cohomology with supports

EZ(X) := fiber(E(X)→ E(X r Z)).
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Let S
j
X be the poset of closed immersions of codimension > j; morphisms are determined by

inclusions of closed subschemes: i : Z ⊂ Z′. For any such immersion, we have an open immersion
of smooth schemes j : X r Z′ → X r Z; whence we can contemplate the following diagram of
exact triangles

(1.6.6)

EZ(X) E(X) E(X r Z)

EZ′(X) E(X) E(X r Z′)

E(XrZ)∩Z′(X r Z) 0 E(XrZ)∩Z′(X r Z)[1],

i∗ j∗

with the observation that the fiber of the map E(X r Z) → E(X r Z′) is the exactly the
cohomology with supports at (X r Z) ∩ Z′. We set

Fil>jconE(X) := colim
Z∈SjX

EZ(X),

whence (assuming that X is irreducible) we get a filtered object in C:

· · · → Fil>jconE(X)→ · · ·Fil>1
conE(X)→ Fil>0

conE(X) = E(X)

We write, following usual conventions, X(j) for the codimension j points of X, i.e., points x ∈ X
whose closure {x} defines a codimension j integral subscheme. We also extend E to essentially
smooth k-schemes via filtered colimits in the usual manner. With these conventions, the graded
pieces of the convieau filtration is given, by considerations of the diagram (1.6.6), as

(1.6.7) grjconE(X) := cofiber
(

Fil>j+1
con E(X)→ Fil>jconE(X)

)
'
⊕
x∈X(j)

Ex(X),

where Ex(X) is defined as

Ex(X) := colim
x∈U

E{x}(U),

where the colimit is taken through all opens in X containing the point x ∈ U; so far this is
just a formal expression of local cohomology. The usual yoga of spectral sequences, elaborated,
gives us maps of the form:

grjconE(X)→ Fil>j+1
con E(X)[1]→ grj+1

con E(X)[1],

which are differentials in the following complex:

Definition 1.6.8. A coniveau complex for E(X) is one of the form⊕
x∈X(0)

πi(Ex(X))→ · · · →
⊕
x∈X(j)

πi−j(Ex(X))→
⊕

x∈X(j+1)

πi−j−1(Ex(X)) · · · .

A coniveau presheaf is a presheaf of complexes on the small Zariski site of X given by

Xop
Zar → K(Z)

U 7→

 ⊕
x∈U(0)

πi(Ex(U))→ · · · →
⊕
x∈U(j)

πi−j(Ex(U))→
⊕

x∈X(j+1)

πi−j−1(Ex(U)) · · ·

 .

Each term in the complex is equivalent to the direct sum of Nisnevich sheaves of abelian groups⊕
x∈X(j)

ix∗πi−j(Ex(X));
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Each term of the coniveau presheaf is a Nisnevich sheaf of abelian groups which are, in fact,
flasque (most easily seen by its description as a sum of skyscraper sheaves).

To get a better handle on the groups π∗(Ex(U)) we can demand something like a “purity
isomorphism.” So assume that E is actually an A1-invariant motivic cohomology theory: so we
that we have a graded structure {E(n)}. For the discussion above, we can plug in E for E(n) at a
particular weight. In the generality stated below, the following result is due to Morel-Voevodsky
[].

Theorem 1.6.9. Let (X,Z) be a smooth pair (Z ↪→ X is a closed immersion and both are
smooth k-schemes) of pure codimension j. Then there exists a collection of equivalences

α(X,Z) : EZ(n− j)(X)[−2j]
'−→ E(n)(Z),

which are compatible under base change along étale morphisms.

With this result, the complex of Definition 1.6.8 simplies into⊕
x∈X(j)

πi−j(E(n)x(X)) ∼=
⊕
x∈X(j)

πi+j(E(n− j)(κ(x)));

whence we have a complex (assuming X is irreducible for even greater simplicity)
(1.6.10)

πi(E(n)(k(X)))→ · · · →
⊕
x∈X(j)

πi−j(E(n− j)(κ(x)))→
⊕

x∈X(j+1)

πi−j−1(E(n− j− 1)(κ(x))) · · · .

In this case, we call the complex (1.6.10), the Gersten complex; as a presheaf we denote it
by

C∗E(n),i : Xop
Zar → K(Z).

Let πZar
i (E(n)) be the Zariski sheaf associated to U 7→ πi(E(n))(U). Now we can augment

C∗E(•),i by the map

πZar
i (E(n))→ C∗E(n),i;

we have seen that locally on X we have a local injection for any local ring of X at a closed point
x ∈ X:

πi(E(n))(O) ↪→ C0
E(n),i(O) = πi(E(n))(Frac(O)).

Lemma 1.6.1 actually leads to:

Theorem 1.6.11 (Gersten exactness). For any A1-invariant motivic cohomology theory {E(•)}
and any n and i, the complex C∗E(n),i is exact and is a resolution of the sheaf πi(E(n)). In

particular Hj
Zar(X;πi(E(n))) is the cohomology of the complex:

[
⊕

x∈X(j+1)

πi−j+1(E(n−j+1)(κ(x))→
⊕
x∈X(j)

πi−j(E(n−j)(κ(x))→
⊕

x∈X(j−1)

πi−j−1(E(n−j−1)(κ(x))].

Example 1.6.12. The Gersten complex associated to algebraic K-theory (which has a purity
structure by Quillen’s devissage theorem) looks like:

U 7→

 ⊕
x∈U(0)

Ki(k(U))→ · · · →
⊕
x∈U(j)

Ki−j(κ(x)))→
⊕

x∈U(j+1)

Ki−j−1(κ(x)) · · ·

 .

The “tail end” of the global sections of the complex is most interesting (we are in the special
case of K-theory here): ⊕

x∈X(j+1)

κ(x)× →
⊕
x∈X(j)

Z ∼=
(
Zj(X)

)
.

This reproves Quillen’s theorem:

Hj
Zar(X; Kj) ∼= CHj(X).
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Sketch proof of Theorem 1.5.2. Let SHS1

(k) be the stable ∞-category of A1-invariant Nis-
nevich sheaves. By standard formalism in sheaf theory, there is a t-structure on ShvNis(Smk; Spt)
whose non-negative (non-positive) parts is described as those sheaves of Spectra with vanishing
negative (positive) homotopy sheaves. The way that this goes should be thought of like this:
we can just take ShvNis(Smk; Spt)>0 ⊂ ShvNis(Smk; Spt) and formally create a t-structure out
of this [Lur17, Proposition 1.4.4.11], but this procedure is abstract and we don’t necessarily
know what the nonpositive part looks like. The computation of the negative part then boils
down to a computation of the nonpositive part of the standard t-structure for spectra: this is
the idea that any spectrum E which receives no nontrivial map from a connective spectrum are
exactly those whose homotopy groups are concentrated in negative degrees.

Now, there is a functor LA1 : ShvNis(Smk; Spt)→ SHS1

(k) which enforces A1-invariance. In
order to induce a t-structure with a similar description, we need to prove that A1-localization
preserves connectivity; this is Morel’s stable connectivity theorem [Mor05, Theorem 6.1.8]. To
prove this result, let E be a connective Nisnevich sheaf of spectra, then one first proves that for
a 0-dimensional scheme X in Smk that

πjLA1E(X) = 0 j < 0.

This uses an explicit model for LA1 and the fact that X is Krull dimension zero [Mor05, Corollary
4.3.3]. Lemma 1.6.1 then tells us that LA1E induces injections on stalks on homotopy sheaves
and thus the required vanishing follows.

An argument with P1-loops is required to go from SHS1

(k) to SH(k), which we will skip.
�

1.7. Reformulating the Geisser-Levine theorem. Now, as stated in Remark 1.4.7, Milnor
K-theory of fields are naturally found as values of a certain A1-invariant homotopy module,
namely the one associated to HZ. We have a map HZ→ π0(HZ)∗. The following is a key point
of the Geisser-Levine theorem.

Theorem 1.7.1. Let k be a perfect field of characteristic p > 0, then HZ/p → π0(HZ/p)∗ is
an equivalence in SH(k).

Remark 1.7.2. Theorems 1.7.1 and 1.2.1 are equivalent.

1.8. Further structure II: effective motivic spectra and slice filtrations. Now we dis-
cuss the mechanism by which we can prove Theorem 1.7.1.

Definition 1.8.1. Let B be a base scheme. The ∞-category of effective motivic spectra is
the full stable subcategory, closed under all colimits, spanned by M(X) for any X ∈ SmB.

Remark 1.8.2. Effective motivic spectra is the correct analog, in this world, for what it means
for a spectrum to be connective. Roughly speaking it says that E can be built, via colimits,
just using schemes and not expressions like M(P1, 1)⊗<0. Be warned, however, that to check
that a spectrum is connective one only has to prove that π<0E = 0.
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