
LECTURE 0: THE ONE IN WHICH WE SET p TO BE ZERO

ELDEN ELMANTO

The goal of this class is to explain the constituent pieces of the following result due to the
instructor and Matthew Morrow.

Theorem 0.0.1 (E.-Morrow). Let k be a field and X a quasicompact, quasiseparated k-scheme.
Then there exists functorial complexes

Z(j)mot(X) ∈ D(Z) j > 0

such that

(Descent) The functor

X 7→ Z(j)mot(X),

defines a Nisnevich sheaf.
(Atiyah-Hirzebruch SS) There is a spectral sequence

(0.0.2) Ei,j2 = Hi−j(Z(−j)mot(X))⇒ K−i−j(X),

which is convergent whenever X has finite valuative dimension. It degenerates rationally.
From now on write

Hi
mot(X;Z(j)) := Hi(Z(j)mot(X)).

(étale comparison) if p is prime to the characteristic of k, then there is a natural isomorphism

Hi
mot(X;Z/p(j)) ∼= Hi

ét(X;Z/p(j)) i 6 j.

(p-adic comparison) if p is zero in k, then there is a cartesian square

(0.0.3)

Z/p(j)mot(X) Z/p(j)syn(X)

RΓcdh(X; Ωjlog)[−j] RΓeh(X; Ωjlog)[−j].

(Hodge comparison) If k is characteristic zero, then we have a cartesian square

(0.0.4)

Z(j)mot(X) RΓZar(X,
̂LΩ>j

(−)/k)

RΓcdh(X; zj(−, •)[−2j]) RΓcdh(X, ̂LΩ>j
(−)/k);

where zj(−, •) is the presheaf of Bloch’s cycle complex of codimension j and L̂Ω>j is
the j-th step of the Hodge filtration on the Hodge-completed derived de Rham complex.

(Weight zero) We have an equivalence

Z(0)mot(X) ' RΓcdh(X;Z).

(Cycles comparison) We have

H2j
mot(X;Z(j)) =


CHj(X) if X is smooth

Pic(X) j = 1

CHLW
0 (X) X is reduced, noetherian surface
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2 E. ELMANTO

where CHLW
0 (X) is Levine-Weibel’s zero cycles group.

(Projective bundles) There are natural classes c1(O(1)) ∈ H2
mot(PrX;Z(1)) which induces a natural isomor-

phism

Z(j)mot(X)⊕ · · · ⊕ Z(j − r)mot(X)[−2r]
π∗⊕···⊕π∗(−)∪c1(O(1))r−−−−−−−−−−−−−−−−→ Z(j)mot(PrX)

(Milnor K-theory) For any local k-algebra A, we have an isomorphism

KM
j (A) ∼= Hj

mot(Spec A;Z(j)).

(Weibel vanishing) If X has finite valuative dimension, then

Hi
mot(X;Z(j)) = 0 i > j + vdim(X).

(Blowup descent) Let X be noetherian and suppose that Z ↪→ X is closed immersion. Then we have a
pro-cartesian square:

Z(j)mot(X) {Z(j)mot(rZ)}

Z(j)mot(BlZ(X)) {Z(j)mot(rE)},

where E is the exceptional divisor of the blowup BlZ(X)→ X.

Theorem 0.0.1 is summarized by saying that there is a good theory of motivic cohomology
of singular schemes. It is a culmination of the body of work of many mathematicians includ-
ing Beilinson, Bloch, Cortiñas, Friedlander, Geisser, Haesemeyer, Kato, Levine, Lichtenbaum,
Milne, Rost, Suslin, Voevodsky, Weibel. I will outline a brief history, as I understood it:

(1) The first lucid account, to my knowledge, of motivic cohomology is written in [BMS87];
this is a followup to Beilinson’s notes [Bei87] where he laid out some expected properties
of motivic cohomology in the final section. It is a provocative paper which I highly
encourage everyone to read; it starts with a thought experiment: what if we knew
what topological K-theory was before singular cohomology? Before Beilinson’s papers
appeared, however, Lichtenbaum had made some conjectures on the étale versions of
the story [Lic84] in relation to zeta values at non-negative integers.

(2) Around the same time, Milne saw the logarithmic de Rham-Witt sheaves [Mil86] as
motivic objects via his investigation of the special values of zeta functions over finite
fields.

(3) Spencer Bloch and Kazuya Kato were investigating analogs of the de Rham comparison
theorem in the p-adic context; they proposed their famous conjecture in [BK86] and
proved some cases of this conjecture.

(4) Spencer Bloch later defined his cycle complexes as a candidate in [Blo86] and the
construction of its relationship with algebraic K-theory was sketched in a preprint
with Stephen Lichtenbaum. Later, Friedlander and Suslin [FS02] globalized the Bloch-
Lichtenbaum construction to smooth schemes over a field;

(5) Marc Levine revisited Bloch’s complexes [Lev94] and gave a different method for glob-
alizing the Bloch-Lichtenbaum spectral sequence [Lev01]. The first complete account,
to the instructor’s knowledge, of the motivic spectral sequence is Levine’s machinery of
homotopy coniveau tower [Lev06, Lev08].

(6) Around the same time a young mathematician Vladimir Voevodsky had the vision
to reproduce the motivic spectral sequence using his newly-minted theory of motivic
homotopy theory [Voe02]. He broke down the construction of the motivic spectral
sequence into a series of conjectures internal to stable motivic homotopy theory. The
required conjectures were solved by Levine in [Lev08].

(7) Thomas Geisser and Marc Levine wrote the massively influential [GL00], describing
fully p-adic motivic cohomology for smooth schemes in characteristic p > 0; we will
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discuss much of this result from a modern viewpoint. One interpretation of this result
is to relate Bloch’s cycle complexes with its étale counterpart, at the prime p.

(8) Away from the prime, the counterpart to the above result is Rost-Voevodsky’s famous
theorem which resolves the Bloch-Kato, Beilinson-Lichtenbaum conjectures [Voe11,
Voe03] using the machinery of motivic homotopy theory. The influence of Suslin’s lec-
tures in Luminy regarding motivic homology cannot be underestimated in this whole
program.

(9) In a related but different thread, the work of Cortiñas, Haesemeyer, Weibel and their
collaborators studied K-theory in characteristic zero using differential methods, viewing
them as motivic objects in characteristic zero [CnHSW08, CnHW08, CnHWW10].

Most of this class will concern the mod-p aspect of the theory, but the characteristic zero
part will serve as inspiration. So what makes the above theory “motivic”? More generally what
does it mean for something to be “motivic.” It is one of those things where I don’t really know
what it is, but I know it when I see it. Part of my goal in this class is to impart the idea
of motives as a “mathematical lifestyle” and not so much a concrete object that one can (or
even should) define. Visually, something motivic has two gradings: a cohomological piece and
a weight. Perhaps the most familiar instantiation of this the following result:

Theorem 0.0.5. Let X be a smooth, projective C-variety, then there is a natural isomorphism

Hn
sing(Xan;C) ∼=

⊕
p+q=n

Hp(X; ΩqX/C).

Theorem 0.0.5 holds more generally for the so-called Kähler manifolds, which are complex-
analytic manifolds equipped with a certain special closed form: the point is that CPN is such
a manifold and the Kähler structure is inherited by any submanifold and hence any smooth
projective variety has an underlying complex manifold which is also Kähler.

One of the main points of the motivic lifestyle is the presence of weights which in Theo-
rem 0.0.5 come in the form of number q appearing above in the wedge powers of the differential
forms. Of course when q = 0, we are looking at O, the structure sheaf of X and when q = dim(X)
then we are looking at ωX, the canonical sheaf on X. It is entirely not obvious that these are sum-
mands of complexified singular cohomology. In fact, the above theorem is extremely surprising,
given that the left-hand-side is of topological nature, while the right-hand-side is of algebraic
nature. In fact, we have the following “conservativity” style result which is immediate:

Corollary 0.0.6. Let f : X → Y which is a morphism of smooth, projective C-varieties
which induces an isomorphism on singular cohomology of the underlying analytic space with C-
coefficients, then there is an isomorphism on the level of the cohomology groups Hp(−; Ωq−/C).

Our first order of business in this class is to actually prove Theorem 0.0.5 using methods
of characteristic p > 0 algebraic geometry. This is another aspect of the motivic lifestyle: one
should be able to freely move along characteristics and import ideas, techniques and even actual
proofs from one to another. It will also serve to introduce some of the main characters involved
in the proof of Theorem 0.0.1.

1. The Frölicher/Hodge-to-de Rham spectral sequence

Let us proceed towards the proof of Theorem 0.0.5. In the next class I will give a universal
property of the de Rham complex, but for now feel free to think about it as in differential
geometry.

Construction 1.0.1. Let f : X→ S be a smooth morphism1 then we have a chain complex of
OX-modules:

Ω•X/S = [0→ OX
d−→ Ω1

X/S → Ω2
X/S → · · ·Ω

q
X/S →],

1What follows can be defined more generally, but are usually pathological; what one needs to do instead is
to animate, a technique which we will find invaluable in the course of our adventure.
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called the relative de Rham complex. We have a descending filtration

· · · → Ω>j
X/S → · · ·Ω

>2
X/S → Ω>1

X/S → Ω•X/S,

where Ω>j
X/S is the stupid truncation:

[0→ 0→ ΩjX/S → Ωj+1
X/S → · · · ],

here ΩjX/S is placed in cohomological degree j so that the associated graded

cofiber(Ω>j+1
X/S → Ω>j

X/S) ' ΩjX/S[−j];

ironically this stupid truncation turns out to be a good idea. By the formalism of descent we
have a filtered object in the derived category of Z

Fil>jHdg(X/S) := RΓ(X; Ω>j
X/S)→ RΓ(X; Ω•X/S);

this filtration is called the Hodge filtration. Its associated gradeds are

cofiber(Fil>j+1
Hdg (X/S)→ Fil>jHdg(X/S)) ' RΓ(X,ΩjX/S)[−j].

We then have a spectral sequence

Ei,j1 = Hj(X,ΩiX/S)⇒ Hp+q
dR (X/S) := Hi+j(RΓ(X; Ω•X/S)).

I remark that I have not messed up the grading of the spectral sequence this time. Here’s
one result that we want to prove:

Theorem 1.0.2. [DI87, Corollaire 2.7] Let K be a field of characteristic zero and X a smooth
proper K-scheme, then the Hodge-to-de Rham spectral sequence for Ω•X/Q degenerates at the

E1-page. Consequently, there is a decreasing filtration

· · ·Fil>j+1
Hdg Hn

dR(X/S) ⊂ Fil>jHdgHn
dR(X/S) ⊂ Fil>j−1

Hdg Hn
dR(X/S) ⊂ · · ·Hn

dR(X/S),

whose graded pieces are given by Hn−j(X; Ωj).

To begin the proof, we note that by the technique of spreading out we have the following
cartesian diagram

Y Ỹ X X

s Spec W2(κ) S Spec K;

pX

in which:

(1) the morphism pX is smooth and proper;
(2) S is smooth over Z;
(3) there is a d such that the dimension of the fibers at any point of X is bounded above

by d;
(4) s → S is a closed immersion and s = Specκ where κ is a perfect field of dimension

p > d;
(5) the map Spec W2(κ)→ S is determined by the universal property of s→ S.

Remark 1.0.3. We briefly sketch the idea of spreading out. We let K be a field of characteristic
zero. Then we can write

K =
⋃
α∈I

Aα,

where each Aα is a subalgebra of K, each of which is finite type over Z. Now for a large enough
value of α, we can find a smooth proper Aα-scheme Xα → Spec Aα for which we have the
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cartesian square

(1.0.4)

Xα X

Spec Aα Spec K.

Intuitively, we are allowed to do this because of the algebraic nature of X: it is defined by finitely
many polynomial equations and thus only finitely many scalars in K are used to define X and
thus we can choose Aα. This is the framework of descent (though of a different flavor from
what you might be used to). To imagine that smoothness properties can be maintained recall
that being smooth can be described using the Jacobian criterion [Stacks, Tag 01V9]. Properness
is a bit trickier; projectivity seems more believable as we can imagine descending the closed
immersion X ↪→ PN. What one then needs to prove is a version of Chow’s lemma [Stacks, Tag
01ZZ].

To proceed further we want to, at the cost of enlarging Aα, assume that it is furthermore
smooth over Z. We invoke the fact that for any morphism f : T→ S locally of finite presentation,
being smooth is an open condition on T [Stacks, Tag 01V9]. Since any finite type Q-scheme is
generically smooth, we can spread this smoothness on an open of Aα and conclude that there
exists an element f ∈ Aα for which Aα[f−1] is smooth over Z. At this point we have a smooth
proper scheme X over A := Aα[f−1] whose base change to K is exactly X.

Now we note that X is of dimension d. We can find a large enough prime number p > d
such that Spec A has a point of residue characteristic p. We note that since A is finite type
over Z, such a point has a residue field which is a finite field of characteristic p. Now we invoke
something small about the Witt vectors: the map W2(k) → k is a nilpotent immersion; we
then have the following lifting problem:

Spec A Specκ

SpecZ Spec W2(κ),

which we can solve by the infinitesimal lifting criterion [Stacks, Tag 02H6].

We now invoke the following result:

Lemma 1.0.5. Let S be an affine, noetherian, integral scheme and f : X → S be a smooth,
proper morphism. For any cartesian square:

X′ X

S′ S,

g′

f ′ f

g

(1) up to possibly shrinking S, the sheaves Rif ′∗Ω
j
X′/S′ are locally free of constant rank hji;

(2) up to possibly shrinking S, the sheaves Rnf∗Ω∗X′/S′ are locally free of constant rank hn.

Proof. Let us sketch a proof of Lemma 1.0.5. First, using that f is proper, the pushforward
of a coherent sheaf remains coherent [Stacks, Tag 02O3] [Gro61, Théorème 3.1.2]; the only
hypothesis needed here is that S is locally noetherian (not even affine). This proves that

Rif∗Ω
j
X/S is coherent. Using the relative version of the Hodge-to-de Rham spectral sequence,

Rnf∗Ω
•
X/S is also coherent.

Next, I claim that, if we are willing to shrink S further, we can assume that Rif ′∗Ω
j
X/S and

Rnf∗Ω
•
X/S are locally free of finite type. Indeed, since S = Spec A is an integral scheme, we have

a generic point η = Spec K. The restriction Rif∗Ω
j
X/S|η is a finite dimensional vector space
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over K hence is a free module. Write K = colim A[ 1
s ], we note that we can pick an s for which

Rif∗Ω
j
X/S|Spec A[

1
s ]

is free: choose a surjection A⊕N → Rif∗Ω
j
X/S → 0 which exists by the first

paragraph, it is an isomorphism after base change to K because we are just looking at vector
spaces over K. Then, by part (4) by [Stacks, Tag 05LI], it is an isomorphism at some finite
stage. The same argument works for Rnf∗Ω

•
X/S.

So shrink S appropriately. Now let us use a base change result: we have a canonical compar-
ison map:

Lg∗Rf∗Ω
j
X/S → Rf ′∗Lg

′∗ΩjX/S
The correct generality for base change is when the square above is tor-independent and the
morphism f : X→ S is quasicompact and quasiseparated [Stacks, Tag 08IB]. But this concretely
gives us

g∗Rif∗Ω
j
X/S ' Rif ′∗Ω

j
X′/S′

using that: (1) Lg∗ ' g∗ we are applying it to a locally free sheaf (by the hard work of the

previous paragraph!) and (2) g′∗ΩjX/S ' ΩjX′/S′ by [Stacks, Tag 00RV]. The same argument

also works for the de Rham complex. This finishes the proof.
�

So we shrink S further as dictated by Lemma 1.0.5. Therefore we are reduced to the following
claim:

Theorem 1.0.6. Let κ be a perfect field of characteristic p > 0 and X a smooth proper k-
scheme, then the Hodge-to-de Rham spectral sequence for Ω•X/κ degenerates at the E1-page.

Indeed, let us write hji (resp. hn) to be the dimension of the K-vector space Hj(X; Ωi) (resp.
Hn

dR(X/K)). It then suffices (and is necessary) to prove that∑
i+j=n

hji = hn.

But Theorem 1.0.6 and Lemma 1.0.5 (apply it to the de Rham complex and the Ωj over X)
gives us the equality ∑

i+j=n

dimκ Hj(Y; ΩiY/κ) = dimκ Hn
dR(Y/κ),

which implies the desired equality by Lemma 1.0.5.

Remark 1.0.7. A theorem of Grauert’s states that if f : X → S is a proper morphism, S is
reduced and locally noetherian and F is a coherent sheaf on X which is OS-flat and the function

s 7→ hj(Xs;Fs)

is locally constant, then the pushforward Rjf∗F is locally free (see, for example, Vakil’s notes
Theorem 28.1.5 or see [Gro63, Proposition 7.8.4]). We can certainly use this theorem to prove
Lemma 1.0.5 without having to further shrink S.
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[Gro63] , Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II,
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