1 Definitions

(25 points)
Exercise 1.1. Give precise definitions of the following

1. the dual of a vector space (5 points)
2. the dual of a linear map (5 points)
3. an exact sequence of vector spaces (5 points)
4. the eigenvector of a linear map (5 points)

5 . the dimension of a vector space (5 points)

2 Computations

For these computations, you do not have to justify your answer. (5 points each) (20 points)
Exercise 2.1. Find the eigenvalues of the linear map

$$
M=\left[\begin{array}{ccccc}
1 & 114 & 51 & 25 & 11 \\
0 & 2 & 141 & 11 & 12 \\
0 & 0 & 3 & 5 & 1 \\
0 & 0 & 0 & 4 & 13 \\
0 & 0 & 0 & 0 & 5
\end{array}\right]
$$

Exercise 2.2. Compute the eigenvalues of

$$
M=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

over the complex numbers
Exercise 2.3. Consider the linear map

$$
M=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]
$$

compute its kernel
Exercise 2.4. Consider \mathbb{C} as an \mathbb{R}-vector space and consider complex conjugation:

$$
a+i b \mapsto a-i b,
$$

as a linear map. Write down the matrix corresponding to this linear transformation of \mathbb{R}-vector spaces.

3 True or False

True or false. Explain in one line. (3 points +2 for explanation) (20 points)
Exercise 3.1. 1. If $\lambda \in k \backslash\{0\}$, then the generalized eigenspace of λ is non-zero if and only if the eigenspace of λ is non-zero.
2. If V is an n-dimensional vector space, then the generalized eigenspace of λ is always n-dimensional.
3. Let $f: V \rightarrow W$ be a linear map between finite dimensional vector space. Then the dimension of $\operatorname{Im}(f)$ and $\operatorname{Im}\left(f^{\vee}\right)$ are equal.
4. Every linear map over a finite field always has a nonzero eigenvector.

4 Problems

(35 points)
Exercise 4.1. (15 points) Let k be a field and let V be a finite dimensional vector space with subspaces $U, W \subset V$. Prove that the sequence

$$
0 \rightarrow U \cap W \rightarrow U \oplus W \xrightarrow{(u, w) \mapsto u-w} U+W \rightarrow 0
$$

is always exact.
Exercise 4.2. Let V be a vector space over a field k and suppose that $f^{n}=0$ and $\operatorname{dim} \operatorname{ker}(f)=1$.

1. Let $V_{k}:=\operatorname{ker}\left(f^{k}\right)$. Prove that there is a flag

$$
\{0\} \subset V_{1} \subset V_{2} \subset \cdots \subset V_{n}=V
$$

(5 points)
2. Prove that $\operatorname{dim} V_{k}=k$ for $k=0,1, \cdots, n$. (Hint: prove first that $\operatorname{dim} V_{k+1} \leqslant \operatorname{dim} V_{k}+1$; also note that the statement is true for $k=1$ by assumption) (10 points)
3. Conclude that we have a short exact sequence

$$
0 \rightarrow \operatorname{ker}(f) \rightarrow V_{k} \xrightarrow{f} V_{k-1} \rightarrow 0,
$$

for $k=1, \cdots, n$. (5 points)
4. Prove that there is a basis for V such that the matrix of f has 1 's above the diagonal and zero everywhere else. (5 points)

