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A: Positive analysis

A1l: Natural output and output gap

This Appendix presents two basic results: it derives the elasticity of efficient output with respect to productivity
(Lemma @, and it shows that in the sticky-price economy there is no first-order loss in aggregate productivity due
to misallocation (Lemma .

Lemma [7| and Equation imply that the output gap ¢ can be interpreted equivalently as a deviation of total
output or of total labor supply from the efficient level:

y=dlogY —dlogY" = dlog L — dlog L™ (67)

Lemma 6. The change in efficient output after a productivity shock dlog A is given by
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Proof. The flex-price equilibrium allocation is efficient. Therefore it can be derived as the solution of the planning
problem
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The change in natural output is then given by
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where
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is aggregate output under the optimal allocation.

The optimization problem in can be solved in two steps: first, we choose {L;,y;,{x;;}} for given L; then we
choose the optimal L. Formally, solving problem is equivalent to solving
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The solution of must satisfy -

C*(L; ALY = ViA

Using the envelope theorem in problem we have that
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where v, is the Lagrange multiplier associated to the constraint ), L; = L. Moreover, from the first order condition
LY = vy, (A)

we have
dlogL  1dlogvyg

dlog4;  ¢dlogA;

Applying again the envelope theorem to problem we have

leg c* _ Y Z/LL dlog vy, + ViFi ({inj}, Lz) (72)
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We now re-write the two elements on the right hand side of equation . First, we show that
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where )\; is the share of i’s sales in GDP; second, we show that

v L dlogvy, 1 ~v dlog C*
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pC*dlog A; ¢ p dlog A; (74)

Putting these two results together in turn implies that

dlogC* 1+90)\,
dlog Ay v+ "

which is the result that we set out to demonstrate.

We first prove . To do this, we show that in the competitive equilibrium C*7v; is equal to the price of good 4
relative to the CPI. It then follows from the definition of the sales share \; that
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From the FOCs of problem we have that C; = C7y;, and from consumer optimization in the competitive
equilibrium we have % = %. Thus
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Using the fact that C' is homogeneous of degree one, and normalizing the CPI to 1 (> j % = 1), we have

7:9§pi:01'

1= chyj _ C
; i pi

Ci

The FOCs for in turn imply that p; = CVy;.

Let’s now derive equation . From the FOCs of it holds that C"vy, = C71; A; Fyr, = p; A; F;r, = w Vi, where
the last equality follows from firm optimization in the competitive equilibrium. Moreover, from the consumers’

budget constraint we have that w = %* Thus

wvil dlogyy 1 (dlogw dlog C*
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To conclude the proof we need to show that
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Using again the consumers’ budget constraint we have

dlogw  OlogC* dlog C* 7 dlogL
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The intuition for this result is simple. From Hulten’s theorem, under flexible prices the first-order change in

aggregate productivity is a weighted sum of sector-level productivity shocks, with weights given by sales shares A:

dlog Ayaq = ATdlog A (75)

In the efficient (flex-price) economy, the equilibrium change in labor supply can be derived from the optimal

consumption-leisure trade-off. It is equal to

1—
dlog L™ = = \Tqlog A (76)
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Finally, aggregate output can be derived as a function of aggregate labor supply and aggregate productivity:
Y = AsceL (77)
Log-linearizing equation we obtain
y"* = dlog L™ + dlog Aacq (78)

Equation follows immediately from , and .

Lemma 7. Around the undistorted steady-state, the first order change in aggregate productivity in the economy

with price rigidities is the same as in the economy with flexible pricesE

Proof. The flex-price allocation is efficient. This implies that productivity is maximized by optimally allocating
labor both within and across sectors. With sticky prices, instead, after a productivity shock the labor allocation
is distorted. This happens because the firms who cannot adjust their price absorb cost changes into their markup.

Formally, we can derive the efficient equilibrium as the solution of the problem
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IThere is a second order productivity loss due to incomplete price adjustment. See Section 4.2
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where fi;5 is the markup of firm f in sector i. In the efficient equilibrium we have i, = 1 Vi, f. The sticky-price
allocation instead solves a modified version of , where the markups of non-adjusting firms are constrained to be
equal to their value in the sticky-price equilibrium. Applying the envelope theorem to problem we find that,
around the efficient equilibrium, the first-order productivity loss induced by these markup distortions is zero. [

A2: Sector-level inflation

Definitions I first introduce two definitions which will be useful in the proofs to follow.

Definition 1. The cost-based input-output matrix Qis an N x N matrix with element 1, j given by the expenditure
share on input j in ¢’s cost:
~ DjZij
wij = ——
me;y;
Definition 2. The sector-level steady-state labor shares in marginal costs are encoded in the N x 1 vector & with

components

mc;y;

In a steady-state with optimal subsidies it holds that 2 = Q and o = a.

Proof of Propositions [I] and [2]
The proofs of these two propositions rely on the same algebra, therefore I present them together.

Our objective is to derive the elasticities of sector-level prices with respect to productivity and the output gap. To
do this, we first solve for the change in marginal costs as a function of the change in prices, wages and productivity.

We will then solve for the endogenous response of prices and wages to productivity shocks and the output gap.

The change in marginal costs is given by:

dlogme; = a;dlogw + Z@ijdlogpj —dlog A;
J

We can then write the change in sectoral prices as function of the change in marginal costs using the Calvo
assumption:
dlog p; = 6;dlog mc; (80)



so that
dlogme; = a;dlogw — dlog A; + Z(Dijéjdlog me;
J

This allows to solve for the change in marginal cost as a function of the change in wages and productivity:

SO |
dlogme = (I - QA) (adlogw — dlog A) (81)

The change in consumer prices is

~ —1
dlog P = fTdlogp = BT Adlog me = ATA (1 - QA) (@dlogw — dlog A) (82)

From the consumption-leisure trade-off we have
dlogw = dlog P + (pdlog L + vdlogy) =

= (apdlogL + 7 + vy + dlog P) =
= ((v+¢)y+A"dlog A+ dlog P)
We can then use to solve for the change in wages as a function of the output gap and productivity shocks. We
have: . .
dlogw — dlog P = (1 —47A (I - QA) a) dlogw + ATA (I - QA) dlog A =
=(y+¢)y+A"dlog A

so that

(v+o) g+ 6" {(I—ﬁ)l —A (1— f”m)l] dlog A
dlogw =

= (83)
1—5TA(I—§A) a

Lemma [8 below shows that the denominator in is always well defined.

To find marginal costs as function of the output gap and productivity shocks, we plug plug into (81)):

(v + ) (I—§A>_1a

1-4TA (I—QA)A&

dlogme = v+



(a {AT _BTA (1 - ﬁA)l}

(If§A>_ — 4 _I|dlog4
1-87A(1-04) &
From the Calvo assumption , the price response is
A(r-6a) a
T=(y+p) — -1 y+
1—BTA (I _ QA) &
. (a {AT —BTA (1 - m)l}
A (I - QA) 2 _7|dlogA (84)

1-4TA (I—QA) a

The expressions for the elasticities B and V in Section 3.2 follow immediately from .
~ -1

Lemma 8. 1 — gTA (I — QA) a > 0.

Proof. First note that, by definition of labor and input shares, it holds that & = (I — Q) 1, where 1 isa N x 1

vector with all entries equal to 1. Thus we have that
o\ -1 -1
ﬁT<I—Q> a:ﬁT(I—Q) (I-Q)1=

Br1=3% pi=1
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To prove Lemma [§]it is enough to show that
~ o\l -1
BTA(I—QA) a<5T<I—Q) a

A sufficient condition for this to hold is that

A(r-90a) -0 i
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Note that
A(1-6a) =0 (1-904) <(I—$~2A>i1
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therefore it is sufficient to prove that
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We can do so using the relations
~ \-1 ~ ~ N2
(1-0a) =1+0a+(0a) +..

(1-@)71=1+§+§2+...

This yields
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which proves our result. O

Corollary 1. As long as some sector uses an intermediate input with sticky prices, the pass-through of wages into

marginal costs is less than one:

3,5 such that w;;0; < w;j = (I — QA) e <1 (85)

As a result, sectoral price pass-throughs are smaller than the corresponding adjustment frequencies, and the aggregate

price pass-through 0, is less than the average price rigidity Eg(5):

A ((J —oA)! a) < diag(A)

3i,j such that w;;0; < wi; = (86)
O < ]EB((S)
A reduction in labor shares compensated by a uniform increase in input shares reduces 6y :
doy <0, dw;j = dwyi, Y3, k, 3j such that wi;0; < wi; = ddy, < 0 (87)

Proof. In our setup labor is the only factor of production. Therefore labor and input shares must sum to one:
a+Q1=1
so that (I — Q) " a = 1. The result
Ji, j such that w;;6; < w;; = (I — QA)_l a<l
follows immediately from the fact that each term in the geometric sum

(I-QA) ' a= (I + QA+ (QA) + ) a



has at least one component that is smaller than in the corresponding term of
I-Q)la=I+2+0%+.)a
It then follows that
bu =Y Bid: (1= QA) Fa] <3 B = Es(0)
Equation [87|is obtained by differentiating @D O

Corollary 2. It holds that Va = 0, and « is the only vector with this property.

Proof. We first show that Va = 0, that is, « belongs to ker(V).

Recall the expression for V:

V=a(1-04) ' a[ATﬂTAOQA)_]

|
1—6TA(I—§A) &

Thus we have L
_ AT _
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We then prove that @ is the only element of ker(V). Note that for every vector x # 0 such that Vz = 0 it must
hold that _ -
T T an)
L NTeATA(1-0a) e o
(I—QA) a= —— :(I—QA) T <=
1—BTA (I — QA) &
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where
{AT —8TA (I — §A>_1] x

1—ﬂTA(I—§~2A)71& cRro

otherwise we would have z = 0. From we then have that

«; T
o= B
Qi Lj
so that x is proportional to the vector of labor shares «. O

A3: Output gap and aggregate inflation

Proof of Proposition

The pricing equation allows to infer markup changes from inflation rates and price adjustment probabilities:
—dlogp=(I—-A)A ' (89)
Lemma [J] below then relates the output gap with sector-level markups:
(v+¢)§=—ATdlogu (90)
Together, Equations and yield the sales-weighted Phillips curve:

NI =A)A 7 e = =Ndlogu = (v + ) §

Finally, Lemma [10| below implies that DC' = AT (I — A) A~!7 is the only aggregate inflation statistic which yields

a Phillips curve with no endogenous cost-push term.

Lemma 9. The output gap is proportional to a notion of “aggregate” markup, which weights sector level markups

according to sales shares:
(y+¢) 5 =—A"dlog (91)

Proof. From the consumers’ optimal labor supply decision we have:
(log w — log w”“t) - (log P —log P"“t) =7 (log C —log C’"“t) + (log L —log L”“t)
From the definition of output gap we have
§ = dlog C — dlog C"™*
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while Lemma [7] implies that
log L — log L™ = dlog C' — dlog C™*

Therefore we have
7 (log C —log C™*) + ¢ (log L —log L) = (y + ¢) §
so that

(logw — logw"**) — (log P — log P"*) = (v + ¢) § (92)

We next need to compute the left hand side of , which corresponds to the change in real wages induced by
markup distortions. To solve for real wages as a function of sector-level markups we first consider how nominal

wages w impact marginal costs and prices. We have:

dlogme; = a;dlogw + Z@ijdlogpj —dlog A;
J

and

dlog p; = dlogmc; + dlog p; (93)
N —1 ~
= dlogme = (179) (&dlogwfdlogAJerlogu) (94)
ﬁdlogP:ﬂT(dlongdelogp):dlogw+5\T(dlogu7dlogA)

It follows that
dlogw — dlog P = AT (dlog A — dlog 1) (95)

In the natural outcome the productivity change is the same as in the economy with sticky prices, while markups

are constant (dlogu = 0). Therefore we have
(logw — logw"**) — (log P — log P"*") = ~\dlog (96)

Equations and together give the result. O

Lemma 10. If A # I then AT (I — A) A~! is the only vector v that satisfies
vy =0

Proof. We need to prove that all the vectors z # 0 satisfying 27V = 0 are proportional to (I — A) A~'\. Proposition
implies that AT (I — A)A~1V =o0.

Consider then all vectors z such that 2TV = 0. Note that
2TV =0

11



«TA (1 - f”m)f1 [a

[/\T ~BTA (1 - ﬁA)l] - (1 —BTA (1 - f“m)f1 a) 1} -0 (97)

— 7T {&

~ -1
where 27 = 2T A (I — QA) .
~ -1
To prove the Lemma we need to show that all vectors ¥ satisfying are proportional to AT (I — A) (I — QA)

From @ we have the relation
(98)

(1-5% (I-ﬁA)l&) B =1

The product #7@ is a scalar, and we must have 7@ # 0, otherwise we would get #7 = 0 (while we imposed that

A

J

T {AT —BTA (1 - QA)I}

Z #0). Therefore implies the condition

1

[AT _BTA (1 - ﬁA)l] |

The ratio on the RHS is well defined, because

[AT —BTA (I—ﬁA)l] > [AT g7 (1—@)1 — 0V

J

(see Lemma [8)).

Thus, #7 must be proportional to the vector

AT — gTA (I - ﬁA)fl = g7 [(1 —o)t oA (1 - fm)l]

-y [(I —) NI —QA) - A] (I-QA) " =

=BTI-Q " U-A)I-A) ' =XT (I -A)IT-0A)"
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B: Optimal policy

B1: Welfare function

Lemma 11. The distortion in sectoral relative prices with respect to the flex-price outcome is given by

dlogp —dlogw = (I —Q)" " (I-A)A ' (99)

Proof. From equation we have

dlog me = (1 . Q)_l (adlogw —dlog A+ ﬁdlog,u)

so that B
dlogp = dlogw + (I— Q) (dlogp — dlog A)

Therefore for each sector ¢ we have
(dlogpi - dlogp?at) - (dlogw —dlog w"“t) ={U- Q)fl dlog i

We can then use the pricing equation to substitute for markups as a function of inflation rates. 0

Proof of Proposition [

In what follows, I will use the second-order approximation

Z_Z*Nl E_,_}] £2
7z %\ ) T8\ -

v (7)
z =log 7

I will prove below that, to the second-order, the log change in output with respect to the efficient equilibrium is

I denote by

given by
g=1-d

where d is a second order term.

13



Using this result we can approximate the utility function around the efficient outcome as

U-U* 1o, 1UCoo UL (;, 1UNpY _
v.e YTV Ty Y Toe 20, -
o l=y ., P
vt (+ 2
R . 1+¢ .
— g+ —P— (gd+—L7) =
2 2
Y+ P o
— 1Py
5V

where the last equality follows from the fact that, to the second order, % = 4% and d? = §d = 0.
I will now derive the approximation

g=1—d
and the explicit expression for the second order component d.

Lemma [7] proves that dlogy = dlog L to a first order. Therefore we have

9= l - d +higher order terms
—~ ~~

first order  second order

Intuitively, the second order term is a productivity loss induced by markup distortions. These markup distortions
endogenously arise from productivity shocks when prices are sticky, and have two effects. First, the relative price
of different firms within the same sector is distorted with respect to the efficient equilibrium, therefore sector-level
productivities are lower (i.e. more labor is required to produce one unit of sectoral output). I will denote the

productivity loss from within-sector price distortions by the vector a, with components

Y;

o =08 (e gy )~ o

where

Tij = /xij(t)dt

L:/L@ﬁ

and A; is the TFP of sector 7. Second, sector-level markups are also distorted, so that the relative price indexes of
different sectors are different from the efficient equilibrium. Cross-sector price distortions result in lower aggregate

productivity.

I define sector-level markups as

14



i
mc;

i =

where p; is the sectoral price index (note that the marginal cost is the same for all producers in sector 7). I derive a
first-order approximation of the “within-sector” and the “cross-sector” component of the productivity loss, and then

compute the second order approximation around the efficient steady-state.

Note that aggregate productivity % can be expressed as a function of real wages and labor shares. Denoting the

aggregate labor share by A = G“’—DLP = g—f,, by definition we can write aggregate output as

1w
Y=—=L
AP
In log-deviations from steady-state we have:
Y=w—-P—-A+I (100)

The first order change in real wages dlogw — dlog P is derived in the proof of Lemma |§| (see equation )
Combining with (100)) we obtain the first-order approximation

dlogY —dlog L = AT (a — dlog p) — dlog A (101)

We then need to compute dlog A as function of the change in sectoral markups and productivities.

The consumers’ budget constraint is
PC=wL+1-T

where II are aggregate profits and 7' is a lump-sum tax used to finance input subsidies. Dividing both sides by PC

we find o7 )
l=A+——=A4+XT(1-=
Y i ( /J
where p is the vector of sector-level markups defined above. Therefore we have

1 1 dlog p;
dlogA = —— dX; (1—)—|— A

(2

Using (101)) we find that, around the efficient steady state (where y; = 1 Vi)

T

- A .
T T
dlogY —dlogL = Ma +<)\ >d10gu (102)

within sector

cross-sector

15



As % — AT =0 around =1, the first-order productivity loss from cross-sector misallocation is zero. To compute

the second-order loss we need to take the second derivative of the cross-sector component in equation (102]) .

Note that, since the first order effect on both cross-sector misallocation and sector-level productivities is zero, the
second-order terms in (dlog A) (dlog ) are also going to be zero. Therefore we only need to derive the cross-sector

component with respect to sector-level markups. We have:

2 AT
D T—)\ dlogu | =

2
log 1; log pu; i N
_ <Z/\id i ta ) +23 oy o8 +Z%(dlogui)2 ~ 3 dNdlog i =

=)=

i @

1 ~
= —§Zdejdloguidlog,uj (103)
i g

where

=2 BubBron [(I — Q) — (- Q)’;ﬂ [(I — Q) — (- Q)’Zﬂ *
h k
YA wmenth (- Q) = (1= )] [0 - @) - - o) |+
t h k

+ Z Atorg Zwthafm (- Q)f;l (- Q);jl =
1 h

-1 -1 -1 -1
— dc ((1 —) (- Q)(j)) +3 A ((1 —Q) (- Q)(j)) (104)
t
To derive the welfare loss as a function of sector-level inflation rates we need to solve for the endogenous change in
sector-level markups due to price rigidities. The mapping between the two is given by equation :

dlogpu = — (I —A)dlogme=— (I —A)A™'x

Therefore we can re-write (103)) as
2 2 5T L 7
d*logY —d“logL =X a— 3™ Dom

with
1—-0;1—9; +

2
5 0 4

2 _

It remains to compute the “within-sector” component A”a.
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Index by ¢ the different varieties of product ¢ and note that, given the CES assumption, sectoral output can be

written as

pi
Yi = Ail" ({245}, Li) Tp-cdt (105)
it

where

Tij = /.’Eij(t)dt

M:/L@ﬁ

as above. Using the definition of a we have

a; = log (pl:ﬁ>
Jpy St

A first order approximation of a; is given by

dai = €;

{fpﬁﬁdlogpudt<_kfp;qung#dt] (106)

[y cidt [ pi; “iat

Given the Calvo assumption, around the efficient steady state we have that

[ pi dlog pidt _ fp};“dlogpitdt
Sy dt fpzlt_eidt

= ddlog mc;

so that da; = 0.

Let’s now compute the second-order loss by deriving (106)) a second time with respect to {dlogp;;}. We ﬁndﬂ

2
d’a; = ¢; [/ (log pir — logpi)2 dt — (/ (log pit — log p;) dt) 1 =

1-6
5,

:Ei

We can thus express the second-order welfare loss from within-sector misallocation as

1
—7mDim
2

where

0 ifi#j
1_61, > y — -

Aigi=5t ifi=

2This is the same as in the traditional NK model ( Gali (2008) Ch.4)

1
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B2: Policy target, past markups

Proof of Proposition [G;

We look for weights ¢ such that
¢t = o7 (By+ Vdlog A) >0 <=3 > 7" (107)
I will first construct a vector ¢ that satisfies the condition
¢ (By +VdlogA) =0 <= j =7 (108)
and then argue that this vector also satisfies .

Note that, as long as ¢* B # 0, we have

_ ¢TVdlog A

¢T (By + Vdlog A) =0 <=3 = OB

while the optimal output gap is
. BTDVdlog A
 y+¢+BTDB

Thus (108) is satisfied for all realizations of dlog A if and only if ¢ is such that

~%

¢"Vdlog A BTDVdlog A

= Vdlog A
oTB ++o+BTDB 8
In turn, this is true if and only if
BBTD
T yp__ PEE |y,
10) {I fy—l—cp—f—BTDB}v 0 (109)

that is, if and only if ¢ is a left eigenvector of the matrix [I — wff;%} V, relative to the eigenvalue 0.

We already proved in Lemma |§| that AT (I — A) A~ is a left eigenvector of the matrix V relative to the eigenvalue

0 (and it is the only such eigenvector). Therefore, as long as [I - 'H—ff%} is invertible,
-1
BBTD
T T -1
=AM I-MNA" |- ——m————

¢ ( ) [ Y+e+ BTDB]
is the (unique) desired eigenvector of the matrix [I - %} V.
The matrix [I - “ﬁ%} is indeed invertible: it is immediate to see that ﬁ% has only one non-zero

T

eigenvalue, ,ﬁ% < 1, and B is the unique corresponding eigenvector.

18



Next, to satisfy condition (107]) we need
¢ (By + Vdlog A)

to be increasing in the output gap 7, which is true if and only if ¢7B > 0. To prove this we use the fact that

. . BBTD . . BTDB o - .
B is an elgenvec‘ior of STo1BTDE relative to the eigenvalue ST TBTDE" Therefore it is also an eigenvector of
1 - Hﬁ% , relative to the eigenvalue W > 1. Thus we have
. . BE'™D 17
B=XN{IT-MNAT |- ———+— B =
¢ ( ) { v+ ¢+ BTDB }

=y+¢o+B"DB>0

Finally, to obtain the formulation in we observe that

,__ BB™D 170 BB'D BE'D "
y+o+BTDB| 4+ ¢+ BTDB v+ ¢+ BTDB
and L
BBTD " BTDB " BBTD
Y+¢+BTDB)  \y+¢+BTDB v+ ¢+ BTDB
so that )
{ ;. BBE™D ] - BB™D
Y+e¢+BTDB| Y+

Moreover, we have that
NI —A)ATB N (T-A)(I-QA) '«

=1
Y+ 1—BTA(I-QA) ' a
so that )
BBTD B
Tr-MA |- ——— — =X (I-A)A! D
A ) [ 7+90+BTDB} A ) +5

Lemmal[I2) characterizes inflation, welfare and the optimal policy when pre-set prices at the sector-level are not equal
to desired prices. This is captured by a deviation of initial markups p_q from their optimal level y_; = 1. This
result is useful to understand the evolution of inflation in the dynamic version of the model, derived in Appendix
D2.

Lemma 12. Denote the log-deviation of initial sector-level markups by the vector dlogu—_y1. The elasticity of
sectoral prices with respect to p_1 is given by the matriz V. The optimal monetary policy implements the output

gap

~%

_ BTDVdlogpu_,

v+ ¢+ BTDB (110)
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Proof. Sectoral inflation rates are given by
m; = 0; (dlogme; — dlog ;1)

The mapping between sector-level inflation and current period markups is not affected by the presence of past
markups, and is still given by (89). We proceed as in the proof of Propositions [2] and [[] to derive

T=AI—-QA) " (adlogw — dlog i_1)
and

_ pTAg—an)T!
1-8T(I-QA) " a

Tte
1-8T(I-QA) " a

dlogw = (J—79-1) dlog pi—1

We solve for sectoral inflation rates as a function of 4,51 and dlog p_; following the same steps as in the proof of
Propositions 2] and []

Welfare is the same function of the output gap and sectoral inflation rates as in . This is because welfare
depends on sector-level markups and on the variance of firm-level prices within sectors, and the mapping between
both of these variables and sectoral inflation rates does not change in the presence of past markups. The optimal

output gap follows from the first order conditions. O

C: Dynamics - Proofs

Proof of Proposition [§]

This lemma characterizes the evolution of sectoral inflation rates and markups as a function of initial markups

(which are a state variable), productivity shocks and monetary policy.

Denote by A the diagonal matrix with elements

5 _ 8i(l—p(1=6)

T 1= b (1-6)

The first step is to solve for the growth rate of sector-level markups, remembering that it is given by the log-difference

between the growth rates of prices and marginal costs:
— (logpy — logui—1) = logmey = logmey—1 — T =

= a (logwy — logwi_1) — (I — Q) m — (logAr — logAi_1)
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Using the pricing equation we can rewrite this as
. -1
— (logps — logui—1) = — (I — Q) A (I - A) (=logus) + a (logwy — logw—1) +
) -1
- [(logAt —logAi_1) + (I — Q) {pEth +A (I - A) dlog u?” -
N\ . N1
((1 - A) At (1 - Q)) A (1 - A) (—logus) =
= (—logui—1) + a (logw; — logws—1) +

- {(logAt —logA,_1) + (I - Q) [pIEm+1 +A (I - A) " dlog u?” (111)

Denote by

We can then re-write equation as
(A_l - Q) Ty = (I — A) A_lxt_l—i—
+a (logws — logws—1) — [(logAt —logAi—1)+ (I —-9Q) [p]E7rt+1 + xtD]] =
= A (I — QA)71 [(I — A) A2 1+« (logwy — logwy_1)
— [(logAy — logAs—1) + (I — Q) [pEmp1 + 21]]]
From the consumers’ labor-leisure trade-off, wages evolve according to
logw, — logwy—1 = (v + @) (Gt — FJi—1) + AT (logAy — logA—1) +

+ BT (e + @ + pE (me11)) (112)

so that
Y+

1—8TA (I—QA)_la

(Z:/t - gt—l) +

— [(logAs — logAi—1) + (I — Q) [pEmey1 + 2] ] +
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8TA (I - QA) o

+ - — (I - A) A=ray (113)
1—BTA (I—QA) a
Combining and (113)) we obtain
2o = B (§ — Gi—1) + V [(logAs — logAi—1) + (I — Q) [pEmys1 + 2P]] + May_y (114)

Lemma below proves that the matrix M is invertible. Denoting by z; = x;_1, equations and (114]) can
then be combined to obtain the following system of difference equations in m; and z;:

pEﬂ—tJrl - Mil —I Tt +
Zt+1 I— M71 1 Zt

-M! (B (G — Je—1) + V (logA; — lOgAtq)) — P

+ NSO . (115)
M (B = Gi1) + Y (log Ay — logAy 1))
Finally, it is useful to re-write (115 substituting out for the past output gap, using Lemma E
pEﬂ't+1 - M_1 —-Z Tt +
Zt4+1 I— M71 zZ Zt
M1 (Bgt +V (logA, — lO.gAt—l)) —zp
+ (116)

M1 (Bﬂt +V (logAy — logAt_1)>

where

Z=MV(1-A)A"
To obtain the system in just use the definition
) -1
ze = —A (I — A) logpi—1

Lemma 13. As long as no sector has fully flexible prices (0; < 1 Vi), the matriz M is invertible. Moreover, all of

its eigenvalues have modulus (weakly) smaller than one.

Proof. Tt holds that
BT
Tt

M:(I+ )A(I—QA)_l(I—A)Al

The matrix (I + ﬁ) has eigenvalues 1 (and all vectors orthogonal to 8 are corresponding eigenvectors) and

vt
m > 0, with corresponding eigenvector %. Therefore it is invertible. The matrix A (I — QA) ™" (I — A) A~}
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is invertible because we assumed that no sector has fully rigid or fully flexible prices. Thus M is invertible.

To prove that all eigenvalues are (weakly) smaller than one in modulus, note that M1 = 1:

B,BT —1 -1 _ o _ _ _1a_
7+¢)A(1_QA) (AP —Q-(I-0)I-9) 'a=

Ml:([—i—

- (1+7851>A(1—QA)1 ((I—QA)A—l (I—Q)*l—f)a:

- (1+ ffl) (T-o"-a@g-0a)")a

_ B _
=1-A(I-QA)? = (1-8TA (T -9A) ta) =1
(=908 ot (1-67A 0 - 08) " a)

In addition M has all positive elements, because both (I + %) and
AT —-QA) T (I-A)A™!

have positive elements. These two properties imply that all of its eigenvalues must be smaller than one in modulus.
O
Proof of Lemma [3

We want to prove that there is a unique path of inflation rates and markups which remains bounded and where the

output gap is zero in every period. We start from the system

Eme \ _ [ oM7Y =2 T\ —%M—1V(Al0gAt —logAi—1) — sof (a17)
2t41 I—M-1 zZ 2 M=V (logA; — logAs_1)

which corresponds to the system (116) with the additional condition that §; = 0. We show that the matrix

1ag—1 1
A= EM _EZ
I—- M1 Z
has N eigenvectors greater than 1, and N smaller than 1.

This is enough to guarantee that the system has a unique bounded solution for any given past markups z; and
productivity /markup shocks logA; — logA;+; and xP. That is, given an initial condition for z;, imposing that
[limi—oomly| < 0o Vi and |limy—eozl;| < oo Vi pins down a unique initial value for 7;. We will first prove that
having N eigenvectors greater than 1, and N smaller than 1 is sufficient to guarantee a unique solution. Then we

will demonstrate that this condition is satisfied.
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Given our assumption about the productivity process, we have that

Ellmt_ﬂx, ( Tri ) = limt_)oo/lt < 7o ) +
2 20

EERVESSy B D
+llmt_)oo Z n‘gAt_s pM v (AIOQA(J logA,l) pr
M=V (logAg — logA_+)

s<t

In turn, we can decompose the as a linear combination of the eigenvectors of A, {wy, ..., wan}:

1 g —17) 1,.D
_;M y (Along —logA_y) — R Gyt ot dan e
M_1V (long — lOgA,l)

Denote by {v1, ..., van} the eigenvalues corresponding to {wy, ..., wan}. We then have

e () (P Sttt

M=V (logAg — logA_1)

s<t
. t v
=C+limi_s A : a; w;
ijvi>1 Vi
where
a;W;
C< <
Z 1-vy
i/vi<1
To have a unique bounded solution we need the condition
w5 v;
limi oo Al |70 ) = —limisooA” Y ——a;w; (118)
20 . Vi —m
ifvi>1

,n_*
0 ) in components with respect to {ws, ..., wan}:

to yield a unique solution 7. Let’s write (
20

" 2N
o
= zaw
i=1

20

For condition ((118) to be satisfied we need that

Yi_q, Vi/v; > 1
/ (119)

vi—n "

— Vi P
Zi/,,i<1 TiW; N+1:2N = 20 + Ei/ui>1 win ;Wi N+1:2N

Tr; = —
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The second line in ((119)) is a system of N equations, with unknowns the coefficients x; for ¢ such that v; < 1. The
system has a unique solution if and only if there are exactly N eigenvalues v; < 1, while the remaining N are greater

or equal than 1.
Let’s then prove that this condition is satisfied. Note that (for 2 = 0) the two equations in (117) yield the optimal
reset price equation

PET 1 = T — Zi41

It is convenient to substitute this to the first equation and use it together with the second to look for the eigenvectors

s
of the matrix A. Assume that (
z

> is an eigenvector relative to the eigenvalue v. From the optimal reset price

equation we find

vz=(1—pv)m

The second equation in (117)) yields
vz = (I—/\/l_l)w—i—Zz

For v = 0 these conditions are satisfied for 7 = 0 and 2 = M~1B.
1
For v = % the conditions are satisfied for 2 = 0 and 7™ =

1

Otherwise we can merge the two equations above and substitute out for vz, to obtain:

1_
vt = M"tr — P zr (120)
1
It holds that all eigenvectors of M except | ... | areorthogonal to AT (I — A) A~!. Therefore if 7is an eigenvector
1

of M, with corresponding eigenvalue £ # 0, then Z7 = w. Thus equation (120) becomes

pv? —pv 41 1
Lt il

= -7
v §
Now we need to have m # 0 (otherwise we would also have z = 0, which cannot be an eigenvector). Therefore it

must hold that
pv? —pv+1 1

v £
Lemma 13| shows that all eigenvalues & of M have modulus in (0,1). Therefore equation (121 has two solutions,

vt and v, with 0 < v~ < 1 and v* > 1. Thus we have N — 1 couples of solutions (one smaller than 1 and one

(121)

greater than 1), plus 0 and %. It follows that the matrix .4 has N eigenvalues greater than 1 and N smaller than 1

in absolute value, as we wanted to show.
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It remains to prove that the interest rate rule
. T ~
= + Eﬂt+1 + (Y
nominal rate under zero output gap

with ¢ > 0 implements zero output gap in every period.

Under this rule the system becomes

PET 1 M1 -Z -MB e
Zt41 I— Mt Z M_lé 2t +
Egt+1 0 C + ]- gt
~MY —I
+ M= f/' (logA; —logAy—1) + 0 x?
0

Note that the solution to the previous system is still a solution of the new system. To prove that there are no

additional solutions we will show that the matrix

M=t —Z —MTB
A= 1-M"' 2 M'B
0 0 ¢+1

has the same eigenvalues and eigenvectors as A above, plus the eigenvalue v = { + 1, with associated eigenvector

T
z such that
Yy
1— 2 N7
r= <1+ i v)
v
_1—pv
v
- AT (I —A)AT!
I Al D
v+

This would imply that for ¢ > 0 the new system has a unique bounded solution, equal to the solution of the original

system.

Let’s then study the eigenvalues and eigenvectors of A. Denote the eigenvalues by v, and the first N components

of the corresponding eigenvector by 7. From the first two rows and the definition of eigenvector we derive the
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conditions

1—pv
= 0
v

. MN(T—A)AT?Y
g=1-py) ———————n

( ) popr

_ 2 AT (T _ -1 _ 2
(I—l pv + pv g)ﬂ':[)’)\ (I-A)A (I—l pv + pv g)ﬂ
v v+ v

The last condition implies
1— pv+ pv? 5
[——————— G |)7m=B
v
From the last row of A we derive the relation

AT (I — A) A
Y+

1+¢—v)(1—pv) m=0

which we know is satisfied by the eigenvalues/eigenvectors of A. In addition, it is also satisfied for v = 1 + ¢ and
-1 .

T = (I — %g) B. This proves the result.

Proof of Proposition [J]

Within each period, the cross-sector misallocation loss is the same function of sector-level markups derived in
Section 4. It can be written as

a:tTDgxt

where now Ds is defined as

Dy = (1-A) A7 DA (1-A)
and the elements of Dy are derived in equation (104)) (see the proof of Proposition .

The within-sector productivity loss is given by

N 2
> e V (logpif: — logpi)* df — (/ (logpifi — logpit)df) ]
1=1

as derived in Proposition [4]

The following lemma shows how the discounted sum of within-sector losses in the present and future periods can

be written as a function of sectoral inflation rates.

Lemma 14. It holds that

N 2
>0 <Z Ai€i [/ (logpigits — logputs)” df — (/ (logpifi+s — logpit+s) df) ]) =

s>0 =1
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= Z Pl DTt
s>0
where D1 is a diagonal matriz with elements
1-4;

diis = Ni€i——
1 3,

Proof. To prove the lemma it is enough to show that

) )
T R
ZPS l/ (logpifi+s — logpirss)* df — (/ (logpift+s — logpits) df) ] =73 ZP Thots
i

s>0 s>0
Given the Calvo assumption, in each sector 4 the fraction §; of firms who adjust prices set

1-6;
logpire — logpi = (1 — &;) (logp;, — logpit—1) = —5 it

For the remaining fraction (1 — ;) of non-adjusting firms we have
logpist — logpir = (—0:) (logpiy — logpir—1) + (logpige—1 — logpir—1) = (logpifi—1 — logpi—1) — Tt

Define 2
Dy = / (lngift+s - lngv:t+s)2 df — (/ (lOQPift+s - lOQPz‘t+s) df)

Around a steady-state where logp; s — logp;y = 0 Vf, we have

1-9;
4 T + Ditl)

Dit:(l—éi)<

It follows that

*52' T—S5
;pmwzsjpsl& 2 (- =

T>S

N : gz(sz Zpsﬂ-?s

S

Proof of Proposition

The central bank solves the problem

min{'guﬂ'uzt+1}§io Z pt [(7 + 50) gtz + 7TtT’D17T + Zg-1D22t+l]
t
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o [ B ) Moz A ~ M By, +V (log Ay — logAr—1))
Z¢41 (I — ./\/l_l) Z 2 MY (By; +V (logA; — logAi_1))
In the absence of commitment, we can re-write this as

v (logAy — logAi—1, 2) = Miny, , 2. (V+ @) 7+ 7rtTD17r + th_HDgzt_s_l + pE[v (logAi11 — logAy, ze41)]

st Emepr ) _ M,;l —% ™o\ L —MTA (Bys +V (logAs — logAi—1))
o Zer1 (I-Mm1Y) zZ 2 MY (By, +V (logA; — logA;_1))

The first order conditions are

2(v+ @) G + 2BTM Doz + pBT M TR V! (log Ay 1 — logAy; z441)] = 0
2D 7y + 2 (I — ./\/l_lT) Dozir1 +p (I — M_lT) E[v] (logAs11 — logAs; 2:41)] =0

The envelope theorem yields
vl (logAy — logAy_1;2¢) = 22T Dozy1 + pZTE [0, (logAr1 — logA; ze41))] (122)
Rearranging the first order conditions and noting that
BTz =BT (I-M'T)
we find the optimality condition

[v] (logAt+1 — logAy; 241)]

- E
(v + @) Je + BT’DNTt + BTD22t+1 = —pBT 5

We can further use the first order conditions, together with equation , to compute
BTUIZ (logAy — logAi_q;2¢) = —2BTDym,
so that the optimality condition becomes
(v + @) Gt + B Dy + B Dazyy1 = pB D1 Emyyq

Finally, noting that
Zt41 = T — pIE7rH1 (123)

the optimality condition becomes
(v +¢) g +B" Dz =0 (124)
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To obtain the expression for the optimal output gap in we subtitute for z;11 in (124)) using the pricing equation
Zit41 = T + pEmi1
together with equation and the equality

M=T+V(-Q)

Proof of Proposition 10

D: Complements to the quantitative analysis

D1: Welfare loss from business cycles
Main results

The results for the main calibration are plotted in the left panel of Figure[5| The right panel reports results for an
alternative calibration without input-output linkages. The bars correspond to the percentage of per-period GDP
that consumers would be willing to forego in exchange of switching from a sticky-price economy to the eflicient
equilibrium, for a given monetary policy rule. Bars of different colors represent different rules. Each set of bars
corresponds to a different assumption about the correlation of sectoral shocks, keeping the variance of aggregate
productivity constant across calibrations. In the first set the covariance matrix is calibrated from the data, while

in the second set there are only idiosyncratic shocks, and in the third there are only aggregate shocks.
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Figure 5: Welfare loss from business cycles

DC index and optimal policy target

Section [6.2) in the main text argues that targeting the output gap almost replicates the optimal policy. We reach
a similar conclusion when comparing the behavior over time of the “divine coincidence” index DC' -our inflation
proxy for the output gap- and the optimal policy target, plotted in Figure[6 The two series move closely together,
which means that the optimal target almost coincides with the output gap. The target however is often a few basis

points lower than DC, suggesting that the optimal policy should be slightly more expansionary than output gap
targeting.

Analytical expressions for the welfare loss under various policy rules

Below I report expressions for the expected welfare loss under different policy rules, as a function of the network

primitives (captured by B,V and D) and of the covariance matrix of sectoral shocks (¥). I further decompose the
loss into deviations from zero output gap and misallocation.

Optimal policy
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Figure 6: Time series of the DC inflation index and the optimal policy target

The weights on sectoral inflation rates are normalized so that the value of the "divine coincidence" index is equal
to the output gap, as in Proposition [3| (note that the weights do not sum to one).
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The total welfare loss is

1 . BTDVEVTDB
2|2 VPV R - o)

0,J

The loss from non-zero output gap is:

BTDYYVIDB
(y+ ¢ + BTDB)”

%(74-¢)

The gain in allocative efficiency from non-zero output gap is:

BTDVSV'DB 1 .p . B'DVEVTDES
(v+¢+BTDB) 2 (v + ¢ + BTDB)?

The net misallocation loss is:

BTDYYVIDB 1 BTDYSVIDB

1
— VIDY) % — +=-BTD
2 ;( )” 7 (y+¢+BTDB) 2 (’Y-I-QO-I-BTDB)Z

Loss under zero consumer inflation relative to the optimal policy

The total loss is:
1 BTpysVvIDB

2(y+ ¢+ BTDB)

BTDY
p'B

v+ ¢+ B'DB

1 T
2| @y V7

PN VRC]

The loss from non-zero output gap is:

Brysvta

) = ey

N =
—

The loss from misallocation is:

gV B'DY

T
TR

1 - 1
52 (VTDV), % + | 5B7DB

(2]

Loss under zero output gap relative to the optimal policy
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The total loss is:
1 BTpysVIDB

2(y+ ¢+ BTDB)

The total loss from misallocation is:

1
9 Z (VTDV) ij Eij
l,j

Within- versus cross-sector misallocation

Section[5.1]shows that the welfare loss from misallocation has two components, coming from relative price distortions
within and across sectors. Figure [7] compares the relative magnitude of these components. The three sets of bars in
the figure correspond to different policy rules (optimal policy, output gap targeting and consumer price targeting).
Within each group, the bar on the left-hand-side is based on our preferred calibration, which assumes higher
substitutability between varieties from the same sector than across goods from different sectors. Unsurprisingly,
the within-sector loss dominates in this calibration. The bar on the right-hand-side of each group instead is based
on an alternative calibration, which assumes the same elasticity of substitution within and across sectors. In this

case we find that the largest contribution to the welfare loss comes from cross-sector misallocation.
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Figure 7: Main calibration: ¢ =8, 0 = 0.9, ; = 0.5, # = 0.001; uniform elasticities: e =0 =60y =0 =2

D2: Phillips curve and monetary non-neutrality over time
Slope of the Phillips curve

Section[6.3.1]in the main text shows that the Phillips curve flattened because of changes in the input-output structure
and in the composition of the consumption basket. To isolate these two components and evaluate their relative
importance we can use the results in Section [6.3.1] The role of consumption and input shares is fully captured by
the pass-through of nominal wages into consumer prices, d,,. This pass-through in turn can be decomposed into a

term related with consumption shares, and a term related with the input-output structure:

bw= BT AUI-QA)'a
~—~ | S —
consumption input-output

The evolution of the two components is represented by the dashed red and green lines in Figure [I The red
line represents the slope implied by a calibration where the input-output matrix is fixed at its 1947 value, and

consumption shares evolve as observed in the data. The green line plots the slope of the Phillips curve implied by
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an alternative calibration where consumption shares remain constant at their 1947 value, while the input-output
matrix changes over time as observed in the data. The shift of consumption from manufacturing towards services
contributed to the decline after 1980. Service sectors have more rigid prices, therefore a shift towards these sectors
increases average price stickiness and flattens the Phillips curve. Pre-1980, however, all of the decline can be

attributed to the evolution of the production structure.

This last effect is driven by a uniform increase in intermediate input purchases, and not by a shift towards rigid
sectors. The light blue line depicts the slope implied by a calibration where consumption shares remain constant,

and input shares increase uniformly in all sectorsﬂ The light blue line tracks the green one closely.

More formally, ¢, is an average of sector-level pass-throughs of monetary shocks, with weights given by consump-
tion shares. Thus we can split the overall change in d,, into the change in sector-level pass-through for constant
consumption shares, and the change in consumption shares for constant pass-through. Sector-level pass-throughs
only depend on the production structure, and not on consumption shares. Therefore we obtain the following

decomposition:

2017 z1047 _ Bioar + Baoir
Oy =0, = B — (PT2017 — PTigar) +

PTiga7 + PToi7

+ (52To17 - ﬂﬂ;u) 5

where I used the notation
PT=A(I-QA) '«

I find that 79% of the overall decline in §,, can be attributed to changes in the input-output structure, while the

remaining effect comes from changes in the composition of the consumption basket.

I further break down the effect of changes in consumption and input-output shares into their sector-level components.

Figure [77] provides a graphical representation.

3The change in input shares is calibrated to replicate the change in the aggregate value added to output ratio observed in the data.
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Figure 8: Upper panel: change in consumption shares and average wage pass-through.
Lower panel: change in pass-through and average consumption shares.

The grey bars in the two plots respectively represent the average pass-through %(PTI'71947 + PT; 2017) and the
average consumption share %(ﬁi,lgu + Bi2017) for each sector. The bars in color represent changes in sectoral
consumption shares ﬁZT 2017 —63: 1947 and pass-through PT; 2017 — PT; 1947. From the left plot we see that consumption
shifted away from manufacturing (which has high pass-through) towards services (which has lower pass-through).
The right plot shows that the pass-through fell in all sectors, and more so in sectors with high consumption share
(such as construction, manufacturing and government). Both channels lead to a flatter Phillips curve, although
quantitatively the drop in sectoral pass-through (due to larger intermediate input flows) accounts for most of the

effect.

Monetary non-neutrality

Figure[9|reports the impact response of inflation to a 1% real rate shock implied by the model, for each year between
1947 and 2017.
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Figure 9: Impact response of consumer inflation to a 1% real rate shock

Mirroring the slope of the Phillips curve, monetary non-neutrality has increased over time (the same output change
triggers a smaller inflation response). Most of the effect can be attributed to the increase in intermediate input

flows.

E: Phillips curve regressions

E1: The “divine coincidence” index (time series)

I construct a time series for the “divine coincidence” index DC' starting in 1984. This requires to aggregate sector-
level price series based on the respective sales shares and adjustment frequencies. We compute sales shares from
the BEA input-output data, and rely on the price adjustment data collected by Pasten, Schoenle and Weber. The

main source for sector-level price series is PPI data from the BLS.

In the BLS dataset the sample period varies across sectors: most manufacturing series are available from the mid-

1980s, while most service series are available from 2006 onwards. Out of the 405 sectors in the BEA classification,
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172 have an incomplete price series in the BLS dataset, and 67 are missing. Information about the incomplete
and missing series (sector names and weights in the DC' index) is reported in Appendix F2 in this Supplemental
Material.

To extend the incomplete price series further back in time we use sector-level data underlying the PCE, which is
available from 1960. We run Lasso regressions of each incomplete PPI series on disaggregated (338 sectors) PCE
components for the period in which both are available. Summary statistics for the Lasso regressions are reported in
Appendix F2 in this Supplemental Material. We also use PCE components to make up for 40 missing series, using
the concordance table between NAICS sectors and PCE series provided by the BEA.

Figure |10| compares the weights assigned to different sectors by the divine coincidence index DC and the PCE (the
main indicator used by central banks), at an aggregated 21-sector level. Sectoral weights at a more disaggregated
level are reported in Appendix F2 in this Supplemental Material.
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Figure 10: DC and PCE weights (The bars are ordered so that sectoral weights in DC are increasing. Those with
red borders correspond to the PCE)

We see from the figure that wages have the highest weight (of 18%) in DC, while they are not part of the PCE. The
divine coincidence index also assigns high weight to professional services, durable goods, and IT and administrative
services. These sectors have a large input share in production and adjust prices infrequently. By contrast the PCE
places the highest weight on healthcare, housing and non-durable goods. These sectors capture a large share of
consumer expenditures, but are not important as inputs in production. Therefore their relative consumption share
is much larger than their relative sales share, which is why they have a smaller weight in the divine coincidence
index relative to the PCE.

Figure [T]] plots DC against CPI, PCE and their core versions, and against the PPI.
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Figure 11: Comparison of DC against consumer and producer prices (1965-2018)

Here the weights on sectoral inflation rates are normalized to sum to one for all inflation indexes.

E2: Summary statistics
Sectoral weights

Table [5| reports the weights of the top-15 sectors in DC in percentage of the total (at the disaggregated 405 sector

level).
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Industry name Weight (SW) Weight (Domar) Weight (PCE)

Labor 18.3221 27.8648 0
Insurance agencies, bro- | 9.23917 1.39786 0
kerages, and related activ-

ities

Management of compa- | 3.887 1.68309 0

nies and enterprises

Architectural, engineer- | 2.51957 0.812411 0

ing, and related services

Insurance carriers, except | 2.13001 1.04094 2.5369
direct life

Warehousing and storage | 2.12367 0.344483 0.0019132
Accounting, tax prepara- | 2.05855 0.53267 0.17815

tion, bookkeeping, and
payroll services

Other real estate 2.05001 2.87134 0.057851
Legal services 1.87954 0.893466 1.0623
Advertising, public rela- | 1.68975 0.415808 0.017779
tions, and related services

Hospitals 1.65114 1.17451 9.6864
Employment services 1.63912 0.913483 0.012342
Management consulting | 1.63082 0.569068 0
services

Wired telecommunica- | 1.44281 0.78146 2.0335
tions carriers

All other miscellaneous | 1.31821 0.312412 0
professional, scientific,

and technical services

Table 5: Weights of top-15 series in DC (in %)

Missing and incomplete series

Tables (6) and report details of the missing and incomplete series in the PPI dataset. Table presents

summary statistics from the Lasso regressions used to extend the incomplete series back in time.
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Weight in SW Added?
Oilseed farming 4.00 0
Funds, trusts, and other financial | 2.02 1
vehicles
Management of companies and en- | 0.29 0
terprises
Sound recording industries 0.22 1
Elementary and secondary schools | 0.20 1
Monetary authorities and deposi- | 0.18 1
tory credit intermediation
State and local government hospi- | 0.13 0
tals and health services
State and local government passen- | 0.12 0
ger transit
Other educational services 0.12 1
Motion picture and video industries | 0.12 1
Transit and ground passenger | 0.10 1
transportation
Limited-service restaurants 0.10 1
Federal general government (nonde- | 0.09 0
fense)
Full-service restaurants 0.08 1
Promoters of performing arts and | 0.07 1

sports and agents for public figures

Table 6: Weights of top-15 missing series in DC (in %)
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Weight in SW Initial date
Employment services 0.85 19940901
Management consulting services 0.55 20060901
Insurance agencies, brokerages, and | 0.47 20030301
related activities
Architectural, engineering, and re- | 0.45 19970301
lated services
Automotive equipment rental and | 0.45 19920301
leasing
Custom computer programming | 0.41 20060901
services
Specialized design services 0.37 19970301
Nursing and community care facili- | 0.36 20040301
ties
Services to buildings and dwellings | 0.36 19950301
Environmental and other technical | 0.36 20060901
consulting services
Wireless telecommunications carri- | 0.31 19930901
ers (except satellite)
Office administrative services 0.27 19940901
Satellite, telecommunications re- | 0.23 19930901
sellers, and all other telecommuni-
cations
Other computer related services, in- | 0.22 20060901
cluding facilities management
Internet publishing and broadcast- | 0.21 20100301
ing and Web search portals

Table 7: Weights of top-15 incomplete series in DC (in %)

Mean Max Min
88 127 19

Table 8: Number of series in Lasso approximation

Proxy for inflation expectations

Our preferred regression specification controls for inflation expectations. We construct a proxy for the expectations
of each of the inflation indexes which are used as left hand side variables, based on the statistical properties of the
inflation series (see Stock and Watson (2007)). Inflation changes 7y — ;1 are well approximated by an IMA(1,1)
model. We estimate the parameters of the model for each inflation index, and use it to construct a prediction for
future inflation changes, E [r;41 — 7). Inflation expectations are then given by Emy1 = m; + E [mp41 — 7). Figure

plots the actual inflation series against the expectations series constructed based on the IMA(1,1) model.
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Scatterplots

We report scatterplots of inflation and output gaps for the different inflation and gap measures used in the regres-

and

sions. Figures report scatterplots in levels, while Figures , and report scatterplots

for inflation changes versus gap levels.
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Figure 18: Inflation changes and unemployment rate

E3: Regressions over the full sample period

This section contains robustness checks for the regressions presented in Section [7.2] It shows results for different

measures of the output gap on the right hand side, and for different specifications.

Tables El and ?7? below present results for a plain specification without lags or expectations, as in equation ((125]).
The right hand side variables are the CBO output gap and the unemployment rate respectively.

T = ¢+ Ky + Uy (125)
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SW CPI core CPI PCE core PCE
gap 3.144**  0.2791**  0.1728**  0.1837** 0.1162**
(0.5538)  (0.0618) (0.055)  (0.0532) (0.0482)
intercept | 2.0189**  3.0193**  2.9661**  2.4878** 2.4325**
(0.0522) (0.1271)  (0.1131) (0.1095) (0.0992)
R-squared 0.1905 0.1297 0.0673 0.08 0.0407
Table 9: CBO output gap
DC CPI  core CPI PCE core PCE
gap -3.084** -0.1405* 0.0028 -0.036 0.0545
(0.6645)  (0.0759)  (0.0661)  (0.0644) (0.057)
intercept 1.9621** 2.8021** 2.7595** 2.2996** 2.2514**
(0.0505)  (0.1259)  (0.1096)  (0.1067)  (0.0945)
R-squared 0.1359 0.0244 0 0.0023 0.0066

Table 10: Regression results for the unemployment rate
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Tables 7?7, 77 and ?7? present result for a specification that includes the proxy for the endogenous component of the

residual constructed in Section The new regression equation is:

T = c+ K +uf + v

where u{ is the endogenous component of the residual constructed in Section m and v; is the exogenous
component.
DC CPI  core CPI PCE core PCE
cost-push 0.5627** 2.5545%* 0.4886  2.3948** 1.1224**
(0.2345) (0.565)  (0.4768)  (0.4745)  (0.4102)
gap | -3.7586**  -0.1906**  -0.2175** -0.0783 -0.0886

(0.6872)  (0.0758) (0.064)  (0.0637)  (0.0551)
intercept | 2.0842**  3.2239**  2.8550**  2.6509** 2.397**
(0.058)  (0.1398) (0.118)  (0.1174)  (0.1015)
R-squared 0.3317 0.2782 0.142 0.2558 0.1275

Table 11: Regression results for the CBO unemployment gap , with CP shock

DC CPI  core CPI PCE core PCE

cost-push | 0.6059**  2.5472** 0.6387  2.4715** 1.2896**
(0.2604) (0.5964) (0.5145) (0.4983) (0.4333)

gap | 2.4282**  0.1363** 0.1176** 0.0369 0.0225

(0.6496)  (0.0682)  (0.0588)  (0.057)  (0.0495)
intercept | 2.0936**  3.2425**  2.8535**  2.6467**  2.3802**
(0.0633)  (0.145)  (0.1251)  (0.1212)  (0.1054)
R-squared 0.2458  0.2635 0.0852  0.2484 0.1086

Table 12: Regression results for the CBO output gap , with CP shock

DC CPI  core CPI PCE core PCE
cost-push 0.6321**  2.8683** 0.8598*  2.6413** 1.3999**
(0.2357)  (0.5706)  (0.4905)  (0.4722)  (0.4102)
gap | -3.6783** -0.0954 -0.1038 0.006 0.0063
(0.731) (0.0811) (0.0697) (0.0671) (0.0583)
intercept 2.0911** 3.1954** 2.8214** 2.6213** 2.3637**
(0.0594) (0.1439) (0.1237) (0.1191) (0.1034)
R-squared 0.309 0.2462 0.0706 0.2456 0.1071

Table 13: Regression results for the unemployment rate , with CP shock
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Tables and below present results for the baseline specification augmented with oil price inflation, as
in equation ([126). The gap measures are given by the CBO unemployment gap, the CBO output gap and the

unemployment rate respectively.

T = ¢+ Ky + Toq + Uy (126)

SW CPI core CPI PCE core PCE
gap | -3.6385**  -0.2198**  -0.2038**  -0.1194** -0.1066*
(0.6294) (0.0655) (0.0643) (0.0584) (0.0573)
intercept 1.9532** 2.7286** 2.9576** 2.266** 2.3883**
(0.0483) (0.1099) (0.1078) (0.0979) (0.0961)

oil prices | 0.0032**  0.0185**  -0.0058*  0.0138** -0.0017
(0.0013) (0.003)  (0.0029)  (0.0027)  (0.0026)
R-squared 0.2488 0.2959 0.0829 0.2049 0.0257

Table 14: Regression results for the CBO unemployment gap , with oil prices

SW CPI core CPI PCE core PCE
gap 2.8985** 0.2137** 0.1961** 0.1351** 0.1243**
(0.5562) (0.0562) (0.0553) (0.0501) (0.0492)
intercept | 1.9843**  2.8179** 3.038**  2.3383** 2.4576**
(0.0536) (0.1184) (0.1164) (0.1055) (0.1036)

oil prices | 0.0031**  0.0179** -0.0064**  0.0133** -0.0022
(0.0014)  (0.003)  (0.0029)  (0.0027)  (0.0026)
R-squared 0.2199 0.3108 0.0985 0.2221 0.0458

Table 15: Regression results for the CBO output gap , with oil prices

SW CPI  core CPI PCE core PCE
gap | -2.7813** -0.0591 -0.0158 0.0259 0.0524
(0.6655) (0.0684) (0.067) (0.0596) (0.0582)
intercept 1.9278** 2.601** 2.8056** 2.1465** 2.2564**
(0.0516) (0.116) (0.1136) (0.101) (0.0987)

oil prices | 0.0033**  0.0196**  -0.0045 0.0149** -0.0005
(0.0014)  (0.0031)  (0.0031)  (0.0027)  (0.0027)
R-squared 0.1707 0.2418 0.0155 0.1816 0.0069

Table 16: Regression results for the unemployment rate , with oil prices
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Tables and [28] present results for a specification with inflation expectations, using the CBO unemployment
gap, the CBO output gap and the unemployment rate as right hand side variables:

e = ¢+ KGt + pEme1 + € (127)

DC CPI core CPI PCE core PCE
gap | -1.1054** -0.1613** -0.0344 -0.062 0.0047
(0.3275) (0.0809) (0.052)  (0.0487) (0.0368)
inflation expecations | 0.8287**  0.4846**  0.5446*" 0.6364** 0.6406**
(0.0383) (0.1557)  (0.0559)  (0.0621) (0.045)
intercept | 0.3484**  1.3851**  1.3193** 0.5522** 0.8388**
(0.0789) (0.5021)  (0.1818) (0.196) (0.1228)
R-squared 0.8234 0.159 0.4425 0.4635 0.6072

Table 17: Regression results for the CBO unemployment gap , with expectations

DC CPI core CPI PCE core PCE
gap | 1.0861** 0.1881** 0.0412 0.0881** 0.0084
(0.2714)  (0.0678)  (0.0449) (0.0417) (0.032)
inflation expecations | 0.8297**  0.4412**  0.5398*"  0.6231** 0.6365**
(0.0368) (0.1515)  (0.0561) (0.0617) (0.0455)
intercept | 0.3668**  1.6124**  1.3548** (0.6459** 0.8614**
(0.0772)  (0.4987)  (0.1892) (0.2005) (0.1291)
R-squared 0.8288 0.1808 0.4442 0.4744 0.6073

Table 18: Regression results for the CBO output gap , with expectations

DC CPI core CPI PCE core PCE
gap | -0.9404** -0.0049 0.0781 -0.0505 0.0757**
(0.3185)  (0.0788)  (0.0499) (0.0477) (0.0355)
inflation expecations | 0.8468"* 0.6312**  0.5668** 0.6549** 0.6432**
(0.0372)  (0.1518)  (0.0537) (0.0608) (0.0434)
intercept | 0.3108**  0.8344*  1.1705** 0.4941** 0.7757**
(0.0762) (0.4879)  (0.1711) (0.1851) (0.1155)
R-squared 0.8202 0.1344 0.4507 0.4616 0.6198

Table 19: Regression results for the unemployment rate , with expectations
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Finally, Tables and [22| present results for the specification in equation (128]) with inflation changes on the left
hand side (instead of inflation levels). We present results for our three usual gap measures (CBO unemployment

gap, CBO output gap and unemployment rate). All of them are in levels.

Ty — T¢—1 =c+ngjt+ut (128)
SW CPI  core CPI PCE core PCE
gap | -0.6945** -0.0287  -0.0212* -0.0169 -0.0105
(0.3258)  (0.0404) (0.0119)  (0.0296) (0.0123)
intercept 0.0182 0.008 -0.003 -0.0006 -0.0078
(0.0244)  (0.0661) (0.0195)  (0.0485) (0.0201)
R-squared 0.0323 0.0037 0.0227 0.0024 0.0054

Table 20: Regression results for the CBO unemployment gap (inflation changes)

SW CPI  core CPI PCE core PCE

gap | 0.7805** 0.0472 0.02* 0.0299 0.0103
(0.2768)  (0.0345)  (0.0102) (0.0254)  (0.0106)

intercept 0.0365 0.0422 0.0046 0.022 -0.0035
(0.0262)  (0.0713) (0.0211)  (0.0524) (0.0218)

R-squared 0.0552 0.0136 0.0273 0.0101 0.007

Table 21: Regression results for the CBO output gap (inflation changes)

SW CPI core CPI PCE  core PCE

gap | -0.7464** -0.0317  -0.0238** -0.0199 -0.0133
(0.3264)  (0.0405) (0.0119)  (0.0297) (0.0123)

intercept 0.0212 0.0113 -0.0002 0.0024 -0.0052
(0.0247)  (0.0668) (0.0197) (0.049) (0.0203)

R-squared 0.037 0.0045 0.0284 0.0033 0.0085

Table 22: Regression results for the unemployment rate (inflation changes)
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E4: Full sample period - more detail

Residual plots

Figures , and report residual plots for the baseline specification in Section
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Figure 19

Other regression specifications

The tables below present results for a regression specification that includes for inflation lags:

4
T = Cc+ Kyt + Z’Ysﬂ-tfs + uy

s=1

Each table is based on a different measure of the output gap (CBO unemployment gap, CBO output gap or

unemployment rate).
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Residuals
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Figure 20
SW CPI  core CPI PCE  core PCE
gap | -1.3803** -0.0696 -0.0232 -0.0285 -0.0069
(0.4361)  (0.0444) (0.027)  (0.0339)  (0.0235)
intercept 0.6573** 0.7961** 0.367** 0.515** 0.2801**
(0.1085)  (0.1717)  (0.1109) (0.128)  (0.0928)
lag 1 0.7443** 0.9835** 0.9983** 1.0655** 1.068**
(0.0858)  (0.0869)  (0.0867)  (0.0867)  (0.0866)
lag 2 0.1224  -0.2051* -0.0391  -0.3083** -0.2537**
(0.1064)  (0.1218)  (0.1225)  (0.1265)  (0.1264)
lag 3 -0.1573 -0.0051 -0.068 0.0912 0.1143
(0.1065)  (0.1219)  (0.1225)  (0.1265)  (0.1264)
lag 4 -0.0356 -0.0469 -0.0138 -0.0624 -0.0438
(0.0799)  (0.0843)  (0.0848)  (0.0848)  (0.0849)
R-squared 0.6954 0.705 0.8465 0.7436 0.8396

Table 23: Regression results for the CBO unemployment gap , with lags
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Residuals
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Figure 21
SW CPI  core CPI PCE core PCE
gap 1.3534** 0.0931** 0.0359 0.0524* 0.0212
(0.3627)  (0.0378)  (0.0231)  (0.0293)  (0.0203)
intercept | 0.6586** 0.8709** 0.4035** 0.5697** 0.3093**
(0.1043)  (0.1717)  (0.1122)  (0.1294)  (0.0947)
lag 1 0.7359** 0.9662** 0.9875** 1.0502** 1.0595**
(0.0845)  (0.0861)  (0.0866)  (0.0864)  (0.0867)
lag 2 0.1261 -0.2035* -0.0362  -0.3064** -0.2521**
(0.105)  (0.1202)  (0.1217)  (0.1253)  (0.1259)
lag 3 -0.1512 -0.006 -0.066 0.0883 0.1131
(0.1051)  (0.1203)  (0.1217)  (0.1253)  (0.1259)
lag 4 -0.0237 -0.0367 -0.012 -0.0522 -0.0397
(0.0789)  (0.0833)  (0.0842)  (0.0843)  (0.0847)
R-squared 0.7035 0.7126 0.8484 0.7484 0.8408

| Plot of residuals vs. fitted values

5 Plot of residuals vs. fitted values

Table 24: Regression results for the CBO output gap , with lags



SW CPI  core CPI PCE core PCE
gap | -1.0051** -0.0248 0.0067 0.0035 0.0172
(0.4293)  (0.0433)  (0.0263)  (0.0334)  (0.0232)
intercept 0.6012**  0.7115**  0.3251** 0.4737** 0.2612**
(0.1071) (0.1648) (0.105) (0.1232) (0.0887)
lag 1 0.773** 1.002** 1.0058** 1.0747** 1.068**
(0.0861) (0.0867) (0.0865) (0.0864) (0.0863)

lag 2 0.1231  -0.2067* -0.04 -0.3094**  -0.2536™*
(0.1081)  (0.1228)  (0.1228)  (0.1268)  (0.1262)

lag 3 -0.1607  -0.0036  -0.0688 0.0937 0.1147
(0.1082)  (0.1228)  (0.1228)  (0.1268)  (0.1262)

lag 4 -0.0373  -0.0461  -0.0127  -0.0655 -0.0445
(0.0812)  (0.085) (0.085)  (0.0851)  (0.0848)

R-squared 0.6854 0.7003 0.8457 0.7423 0.8402

Table 25: Regression results for the unemployment rate , with lags

59



The tables below present results for a regression specification that includes for inflation lags and inflation expecta-

tions:
4

T = ¢+ Kgs + pEm1 + Z’YSﬂ-tfs + €
s=1

SW CPI core CPI PCE core PCE
gap | -1.1389**  -0.0488 -0.0081 -0.016 0.0073
(0.3111) (0.049)  (0.0274)  (0.0327) (0.022)
inflation expecations | 1.0886** 0.0987  0.1086** 0.215** 0.1927**
(0.0952) (0.0984)  (0.0378)  (0.0591) (0.04)
intercept | 0.3695** 0.5385*  0.2741**  0.2951** 0.1857**
(0.0812)  (0.3089)  (0.1166)  (0.1355)  (0.0876)
lagl | -0.3659**  0.9746**  0.8858**  0.9401**  0.8238**
(0.1147)  (0.0873)  (0.0936) (0.09) (0.0948)
lag2 | 0.2617** -0.2079* -0.0063  -0.2927** -0.1762
(0.0767)  (0.1219)  (0.1199)  (0.1212)  (0.1181)
lag3 | -0.2055** -0.0078 -0.0721 0.0827 0.0875
(0.0759)  (0.1219)  (0.1194)  (0.1212)  (0.1171)
lagd 0.0353  -0.0509 -0.0068 -0.1163 -0.0043
(0.0572)  (0.0844)  (0.0826)  (0.0825) (0.079)
R-squared 0.8469 0.7072 0.8506 0.7688 0.8645

Table 26: Regression results for the CBO unemployment gap , with expectations
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SW CPI core CPI PCE core PCE

gap | 1.0634**  0.0822* 0.0226 0.0383 0.0076
(0.2599)  (0.0416)  (0.0236)  (0.0284) (0.0191)

inflation expecations | 1.0744** 0.0618  0.1033**  0.2066** 0.1884**
(0.0944)  (0.0967)  (0.0378)  (0.0591) (0.0401)

intercept | 0.3678** 0.7088**  0.3114"*  0.3494** 0.2103**
(0.0787)  (0.3064)  (0.1187)  (0.1382) (0.09)

lagl | -0.3551** 0.961**  0.8831*"  0.9324** 0.824**
(0.1132)  (0.0866)  (0.0933)  (0.0896) (0.0948)

lag2 | 0.2629** -0.2053* -0.0057 -0.2917** -0.1771
(0.0758)  (0.1205)  (0.1195)  (0.1205) (0.118)

lag3 | -0.2004** -0.0078 -0.0709 0.0806 0.0872
(0.0751)  (0.1206) (0.119)  (0.1205) (0.1171)

lag4 0.0436  -0.0404 -0.0068 -0.1063 -0.0034
(0.0566)  (0.0837)  (0.0823)  (0.0824) (0.0791)

R-squared 0.8503 0.7135 0.8515 0.7715 0.8646

Table 27: Regression results for the CBO output gap , with expectations

SW CPI core CPI PCE core PCE

gap | -1.0106** 0.0026 0.0214 -0.0048 0.0303
(0.303) (0.047)  (0.0265) (0.032) (0.0216)

inflation expecations 1.1128** 0.1424 0.1163** 0.2187** 0.198**
(0.0958)  (0.0976)  (0.0376) (0.059) (0.0396)

intercept 0.3354** 0.3572  0.2385**  (0.2744** 0.1753**
(0.079)  (0.2931)  (0.1091) (0.1283)  (0.083)

lagl | -0.3745** 0.9843**  0.8803**  (0.9422** 0.8131**
(0.1159)  (0.0871)  (0.0936) (0.0901) (0.0945)

lag2 | 0.2653** -0.2102* -0.0047  -0.293** -0.1736
(0.0773)  (0.1223)  (0.1196) (0.1213) (0.1173)

lag3 | -0.2082** -0.0076 -0.0724 0.0835 0.0867
(0.0765) (0.1224)  (0.1191)  (0.1213)  (0.1163)

lag4 0.0359  -0.0535 -0.0056 -0.118 -0.0042
(0.0576)  (0.0848)  (0.0824) (0.0826) (0.0785)

R-squared 0.8445 0.705 0.8513 0.7684 0.8664

Table 28: Regression results for the unemployment rate , with expectations
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The tables below present results for a regression specification that includes the time series of “endogenous” cost-push

shocks constructed in Section [6.4.2] as a control:

7Tt:C+I€’gt+CPt+€t

DC CPI core CPI PCE core PCE

cost-push 0.5627** 2.5545** 0.4886  2.3948** 1.1224**
(0.2345) (0.565) (0.4768) (0.4745) (0.4102)

gap | -3.7586**  -0.1906**  -0.2175** -0.0783 -0.0886
(0.6872) (0.0758) (0.064) (0.0637) (0.0551)

intercept 2.0842** 3.2239** 2.8559** 2.6509** 2.397**
(0.058) (0.1398) (0.118) (0.1174) (0.1015)

R-squared 0.3317 0.2782 0.142 0.2558 0.1275

Table 29: Regression results for the CBO unemployment gap , with CP shock

DC CPI  core CPI PCE core PCE

cost-push | 0.6059**  2.5472** 0.6387  2.4715** 1.2896**
(0.2604) (0.5964) (0.5145) (0.4983) (0.4333)

gap | 2.4282**  0.1363** 0.1176** 0.0369 0.0225
(0.6496) (0.0682) (0.0588) (0.057) (0.0495)

intercept | 2.0936**  3.2425** 2.8535**  2.6467** 2.3802**
(0.0633) (0.145) (0.1251) (0.1212) (0.1054)

R-squared 0.2458 0.2635 0.0852 0.2484 0.1086

Table 30: Regression results for the CBO output gap , with CP shock

DC CPI  core CPI PCE core PCE

cost-push 0.6321**  2.8683** 0.8598*  2.6413** 1.3999**
(0.2357) (0.5706) (0.4905) (0.4722) (0.4102)

gap | -3.6783** -0.0954 -0.1038 0.006 0.0063
(0.731) (0.0811) (0.0697) (0.0671) (0.0583)

intercept 2.0911**  3.1954** 2.8214**  2.6213** 2.3637**
(0.0594) (0.1439) (0.1237) (0.1191) (0.1034)

R-squared 0.309 0.2462 0.0706 0.2456 0.1071

Table 31: Regression results for the unemployment rate , with CP shock
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The tables below present results for a regression specification that includes both the time series of “endogenous”

cost-push shocks constructed in Section and oil price inflation:

7Tt:C+Hgt+CPt+7Tfil+€t

SW CPI core CPI PCE core PCE

cost-push 0.2874 1.1895** 0.99*  1.4128** 1.3585**
(0.265) (0.5943) (0.5409) (0.5123) (0.4707)

gap | -3.8932**  -0.2211**  -0.2062**  -0.1003* -0.0833
(0.6795) (0.0698) (0.0635) (0.0602) (0.0553)

intercept 2.0185** 2.8983** 2.9754** 2.4167** 2.4533**
(0.065) (0.1458) (0.1327) (0.1257) (0.1155)

oil prices 0.0034** 0.0167** -0.0062* 0.012** -0.0029
(0.0016) (0.0036) (0.0033) (0.0031) (0.0028)

R-squared 0.3581 0.399 0.1692 0.3472 0.1358

Table 32: Regression results for the CBO unemployment gap (CP shock and oil prices)

SW CPI core CPI PCE core PCE

cost-push 0.3912 1.294** 1.1824**  1.5569** 1.5453**
(0.291) (0.6217) (0.5707) (0.5302) (0.4871)

gap | 2.4623**  0.1454** 0.1137* 0.0436 0.0207
(0.6454) (0.0632) (0.058) (0.0539) (0.0495)

intercept 2.0396** 2.9277** 2.99** 2.417** 2.4444**
(0.0713) (0.1522) (0.1397) (0.1298) (0.1193)

oil prices 0.0027 0.016** -0.0069** 0.0116** -0.0033
(0.0017) (0.0036) (0.0033) (0.0031) (0.0028)

R-squared 0.2632 0.3741 0.1199 0.3346 0.1192

Table 33: Regression results for the CBO output gap (CP shock and oil prices)

SW CPI core CPI PCE core PCE

cost-push 0.3818  1.5809** 1.4042**  1.7135** 1.6665**
(0.2666) (0.6055) (0.5539) (0.5115) (0.4689)

gap | -3.7784** -0.119 -0.0938 -0.011 0.0112
(0.724) (0.0753) (0.0689) (0.0636) (0.0583)

intercept 2.0301** 2.8814** 2.9542** 2.3951** 2.4287**
(0.0667) (0.1515) (0.1386) (0.128) (0.1173)

oil prices 0.0031* 0.0161** -0.0068** 0.0116** -0.0033
(0.0016) (0.0037) (0.0034) (0.0031) (0.0029)

R-squared 0.3318 0.3584 0.1041 0.3308 0.1181

Table 34: Regression results for the unemployment rate (CP shock and oil prices)
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E5: Rolling regressions

The figures below provide additional detail for the rolling regressions introduced in Section[7.3] They plot estimated

coefficients for each 20-year window (with confidence intervals), and average R-squareds over the sample. The years

on the x-axis correspond to the middle of the estimation window.

We report results for our preferred specification with inflation expectations, as in equation (129). Appendix F6 in

this Supplemental Material reports results for alternative specifications and alternative measures of the gap on the

right hand side.

Ty = kY + pEmi1 + €
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E6: Rolling regressions - more detail

The figures below plot rolling regression coefficients and R-squareds for the baseline specification
Tt = Ky + €

using different measures of the output gap on the right hand side (CBO unemployment gap, CBO output gap and

unemployment rate).
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CBO output gap
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Average R-squareds

0.3 T T
[ Dle
B CPI
025 - [ lcore CPI |
I PCE
[ core PCE

0.2

0.15

01

0.05

The figures below plot rolling regression coefficients and R-squareds for a regression of output gap levels on inflation

changes:
Ty — Ti—1 = KYt + €

using different measures of the output gap on the right hand side (CBO unemployment gap, CBO output gap and

unemployment rate).
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