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A: Positive analysis

A1: Natural output and output gap

This Appendix presents two basic results: it derives the elasticity of efficient output with respect to productivity
(Lemma 6), and it shows that in the sticky-price economy there is no first-order loss in aggregate productivity due
to misallocation (Lemma 7).

Lemma 7 and Equation (77) imply that the output gap ỹ can be interpreted equivalently as a deviation of total
output or of total labor supply from the efficient level:

ỹ = d log Y − d log Y nat = d logL− d logLnat (67)

Lemma 6. The change in efficient output after a productivity shock d logA is given by

ynat =
1 + ϕ

γ + ϕ
λT d logA (68)

Proof. The flex-price equilibrium allocation is efficient. Therefore it can be derived as the solution of the planning
problem

maxL,{Li,yi,{xij}}
C
(
{yi}Ni=1

)1−γ

1− γ
− L1+ϕ

1 + ϕ

s.t.
yi +

∑
j xij = AiFi ({xij}, Li) ∀i∑

i Li = L
(69)

The change in natural output is then given by

ynat =
d logC∗

d logAi
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where
C∗ ≡ C({y∗i }

N
i=1)

is aggregate output under the optimal allocation.

The optimization problem in (69) can be solved in two steps: first, we choose {Li, yi, {xij}} for given L; then we
choose the optimal L. Formally, solving problem (69) is equivalent to solving

C∗ (L;A)
1−γ

1− γ
= max{Li,yi,{xij}}

C ({yi})1−γ

1− γ

s.t.
yi +

∑
j xij = AiFi ({xij}, Li) ∀i∑

i Li = L
(70)

and
maxL

C∗(L;A)1−γ

1− γ
− L1+ϕ

1 + ϕ
(71)

The solution of (71) must satisfy

C∗(L;A)γLϕ =
∂C∗

∂L

Using the envelope theorem in problem (70) we have that

∂C∗

∂L
= C∗γνL(A)

where νL is the Lagrange multiplier associated to the constraint
∑
i Li = L. Moreover, from the first order condition

Lϕ = νL(A)

we have
d logL

d logAi
=

1

ϕ

d log νL
d logAi

Applying again the envelope theorem to problem (70) we have

d logC∗

d logAi
= C∗γ

(
νLL

ϕC∗
d log νL
d logAi

+
νiFi ({xij}, Li)

C∗

)
(72)

We now re-write the two elements on the right hand side of equation (72). First, we show that

C∗γ
νiFi ({xij}, Li)

C∗
= λi (73)
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where λi is the share of i’s sales in GDP; second, we show that

C∗γ
νLL

ϕC∗
d log νL
d logAi

=
1

ϕ
λi −

γ

ϕ

d logC∗

d logAi
(74)

Putting these two results together in turn implies that

d logC∗

d logAi
=

1 + ϕ

γ + ϕ
λi

which is the result that we set out to demonstrate.

We first prove (73). To do this, we show that in the competitive equilibrium C∗γνi is equal to the price of good i
relative to the CPI. It then follows from the definition of the sales share λi that

C∗γ
νiFi ({xij}, Li)

C∗
=
piFi ({xij}, Li)

PC∗
= λi

From the FOCs of problem (70) we have that Ci = Cγνi, and from consumer optimization in the competitive
equilibrium we have Cj

Ci
=

pj
pi
. Thus

Cj
Ci

=
νj
νi

=
pj
pi

Using the fact that C is homogeneous of degree one, and normalizing the CPI to 1 (
∑
j
pjyj
C = 1), we have

1 =

∑
Cjyj
Ci

=
C

Ci
=
C

pi
⇒ pi = Ci

The FOCs for (70) in turn imply that pi = Cγνi.

Let’s now derive equation (74). From the FOCs of (70) it holds that CγνL = CγνiAiFiL = piAiFiL = w ∀i, where
the last equality follows from firm optimization in the competitive equilibrium. Moreover, from the consumers’
budget constraint we have that w = C∗

L . Thus

C∗γ
νLL

ϕC∗
d log νL
d logAi

=
1

ϕ

(
d logw

d logAi
− γ d logC∗

d logAi

)
To conclude the proof we need to show that

d logw

d logAi
= λi
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Using again the consumers’ budget constraint we have

d logw

d logAi
=
∂ logC∗

∂ logAi
+

(
∂ logC∗

∂ logL
− 1

)
d logL

d logAi
= λi

The intuition for this result is simple. From Hulten’s theorem, under flexible prices the first-order change in
aggregate productivity is a weighted sum of sector-level productivity shocks, with weights given by sales shares λ:

d logAAGG = λT d logA (75)

In the efficient (flex-price) economy, the equilibrium change in labor supply can be derived from the optimal
consumption-leisure trade-off. It is equal to

d logLnat =
1− γ
γ + ϕ

λT d logA (76)

Finally, aggregate output can be derived as a function of aggregate labor supply and aggregate productivity:

Y = AAGGL (77)

Log-linearizing equation (77) we obtain

ynat = d logLnat + d logAAGG (78)

Equation (68) follows immediately from (75), (76) and (78).

Lemma 7. Around the undistorted steady-state, the first order change in aggregate productivity in the economy
with price rigidities is the same as in the economy with flexible prices.1

Proof. The flex-price allocation is efficient. This implies that productivity is maximized by optimally allocating
labor both within and across sectors. With sticky prices, instead, after a productivity shock the labor allocation
is distorted. This happens because the firms who cannot adjust their price absorb cost changes into their markup.
Formally, we can derive the efficient equilibrium as the solution of the problem

maxL,{Li,f ,yif ,{xijf},{µif}}
C
(
{yi}Ni=1

)1−γ

1− γ
− L1+ϕ

1 + ϕ

1There is a second order productivity loss due to incomplete price adjustment. See Section 4.2

4



s.t.

yi +
∑
j xij = Ai

[∫
(Fi ({xijf}, Lif ))

εi−1

εi df
] εi
εi−1

∀i
Fi({xijf},Lif )
Fi({xijg},Lig) =

(
µif
µjg

)−εi
∀i, f, g∑

if Lif = L

(79)

where µif is the markup of firm f in sector i. In the efficient equilibrium we have µ∗if = 1 ∀i, f . The sticky-price
allocation instead solves a modified version of (79), where the markups of non-adjusting firms are constrained to be
equal to their value in the sticky-price equilibrium. Applying the envelope theorem to problem (79) we find that,
around the efficient equilibrium, the first-order productivity loss induced by these markup distortions is zero.

A2: Sector-level inflation

Definitions I first introduce two definitions which will be useful in the proofs to follow.

Definition 1. The cost-based input-output matrix Ω̃ is an N×N matrix with element i, j given by the expenditure
share on input j in i’s cost:

ω̃ij =
pjxij
mciyi

Definition 2. The sector-level steady-state labor shares in marginal costs are encoded in the N × 1 vector α̃ with
components

α̃i =
wLi
mciyi

In a steady-state with optimal subsidies it holds that Ω = Ω̃ and α = α̃.

Proof of Propositions 1 and 2

The proofs of these two propositions rely on the same algebra, therefore I present them together.

Our objective is to derive the elasticities of sector-level prices with respect to productivity and the output gap. To
do this, we first solve for the change in marginal costs as a function of the change in prices, wages and productivity.
We will then solve for the endogenous response of prices and wages to productivity shocks and the output gap.

The change in marginal costs is given by:

d logmci = α̃id logw +
∑
j

ω̃ijd log pj − d logAi

We can then write the change in sectoral prices as function of the change in marginal costs using the Calvo
assumption:

d log pi = δid logmci (80)
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so that
d logmci = α̃id logw − d logAi +

∑
j

ω̃ijδjd logmcj

This allows to solve for the change in marginal cost as a function of the change in wages and productivity:

d logmc =
(
I − Ω̃∆

)−1

(α̃d logw − d logA) (81)

The change in consumer prices is

d logP = βT d log p = βT∆d logmc = βT∆
(
I − Ω̃∆

)−1

(α̃d logw − d logA) (82)

From the consumption-leisure trade-off we have

d logw = d logP + (ϕd logL+ γd log y) =

=
(
ϕd logL+ γỹ + γynat + d logP

)
=

=
(
(γ + ϕ) ỹ + λT d logA+ d logP

)
We can then use (82) to solve for the change in wages as a function of the output gap and productivity shocks. We
have:

d logw − d logP =

(
1− βT∆

(
I − Ω̃∆

)−1

α̃

)
d logw + βT∆

(
I − Ω̃∆

)−1

d logA =

= (γ + ϕ) ỹ + λT d logA

so that

d logw =

(γ + ϕ) ỹ + βT
[(
I − Ω̃

)−1

−∆
(
I − Ω̃∆

)−1
]
d logA

1− βT∆
(
I − Ω̃∆

)−1

α̃
(83)

Lemma 8 below shows that the denominator in (83) is always well defined.

To find marginal costs as function of the output gap and productivity shocks, we plug plug (83) into (81):

d logmc =
(γ + ϕ)

(
I − Ω̃∆

)−1

α̃

1− βT∆
(
I − Ω̃∆

)−1

α̃
ỹ+
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(
I − Ω̃∆

)−1

 α̃
[
λT − βT∆

(
I − Ω̃∆

)−1
]

1− βT∆
(
I − Ω̃∆

)−1

α̃
− I

 d logA

From the Calvo assumption (80), the price response is

π = (γ + ϕ)
∆
(
I − Ω̃∆

)−1

α̃

1− βT∆
(
I − Ω̃∆

)−1

α̃
ỹ+

∆
(
I − Ω̃∆

)−1

 α̃
[
λT − βT∆

(
I − Ω̃∆

)−1
]

1− βT∆
(
I − Ω̃∆

)−1

α̃
− I

 d logA (84)

The expressions for the elasticities B and V in Section 3.2 follow immediately from (84).

Lemma 8. 1− βT∆
(
I − Ω̃∆

)−1

α̃ > 0.

Proof. First note that, by definition of labor and input shares, it holds that α̃ = (I − Ω)1, where 1 is a N × 1

vector with all entries equal to 1. Thus we have that

βT
(
I − Ω̃

)−1

α̃ = βT
(
I − Ω̃

)−1

(I − Ω)1 =

βT1 =
∑
j

βj = 1

To prove Lemma 8 it is enough to show that

βT∆
(
I − Ω̃∆

)−1

α̃ < βT
(
I − Ω̃

)−1

α̃

A sufficient condition for this to hold is that

∆
(
I − Ω̃∆

)−1

ij
< (I − Ω)

−1
ij ∀i, j

Note that
∆
(
I − Ω̃∆

)−1

ij
= δi

(
I − Ω̃∆

)−1

ij
<
(
I − Ω̃∆

)−1

ij

therefore it is sufficient to prove that (
I − Ω̃∆

)−1

ij
< (I − Ω)

−1
ij ∀i, j
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We can do so using the relations (
I − Ω̃∆

)−1

= I + Ω̃∆ +
(

Ω̃∆
)2

+ ...(
I − Ω̃

)−1

= I + Ω̃ + Ω̃2 + ...

This yields (
I − Ω̃∆

)−1

ij
= I(i = j) + ωijδj +

∑
k

ωikωkjδjδk + ... <

I(i = j) + ωij +
∑
k

ωikωkj + ... =
(
I − Ω̃

)−1

ij

which proves our result.

Corollary 1. As long as some sector uses an intermediate input with sticky prices, the pass-through of wages into
marginal costs is less than one:

∃i, j such that ωijδj < ωij ⇒ (I − Ω∆)
−1
α < 1 (85)

As a result, sectoral price pass-throughs are smaller than the corresponding adjustment frequencies, and the aggregate
price pass-through δ̄w is less than the average price rigidity Eβ(δ):

∃i, j such that ωijδj < ωij ⇒

∆
(

(I − Ω∆)
−1
α
)
< diag(∆)

δw < Eβ(δ)
(86)

A reduction in labor shares compensated by a uniform increase in input shares reduces δ̄w :

dαi < 0, dωij = dωik ∀j, k, ∃j such that ωijδj < ωij ⇒ dδ̄w < 0 (87)

Proof. In our setup labor is the only factor of production. Therefore labor and input shares must sum to one:

α+ Ω1 = 1

so that (I − Ω)
−1
α = 1. The result

∃i, j such that ωijδj < ωij =⇒ (I − Ω∆)
−1
α < 1

follows immediately from the fact that each term in the geometric sum

(I − Ω∆)
−1
α =

(
I + Ω∆ + (Ω∆)

2
+ ...

)
α
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has at least one component that is smaller than in the corresponding term of

(I − Ω)
−1
α =

(
I + Ω + Ω2 + ...

)
α

It then follows that
δ̄w =

∑
i

βiδi

[
(I − Ω∆)

−1
α
]
i
<
∑
i

βiδi ≡ Eβ(δ)

Equation 87 is obtained by differentiating (9).

Corollary 2. It holds that Vα = 0, and α is the only vector with this property.

Proof. We first show that Vα = 0, that is, α belongs to ker(V).

Recall the expression for V:

V = ∆
(
I − Ω̃∆

)−1

 α̃
[
λT − βT∆

(
I − Ω̃∆

)−1
]

1− βT∆
(
I − Ω̃∆

)−1

α̃
− I


Thus we have

Vα =
(
I − Ω̃∆

)−1

α̃1− βT∆
(
I − Ω̃∆

)−1

α

1− βT∆
(
I − Ω̃∆

)−1

α̃
− α̃

 = 0

We then prove that α̃ is the only element of ker(V). Note that for every vector x 6= 0 such that Vx = 0 it must
hold that (

I − Ω̃∆
)−1

α̃

[
λT − βT∆

(
I − Ω̃∆

)−1
]
x

1− βT∆
(
I − Ω̃∆

)−1

α̃
=
(
I − Ω̃∆

)−1

x⇐⇒

α̃

[
λT − βT∆

(
I − Ω̃∆

)−1
]
x

1− βT∆
(
I − Ω̃∆

)−1

α̃
= x⇐⇒

α̃i

[
λT − βT∆

(
I − Ω̃∆

)−1
]
x

1− βT∆
(
I − Ω̃∆

)−1

α̃
= xi ∀i (88)
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where [
λT − βT∆

(
I − Ω̃∆

)−1
]
x

1− βT∆
(
I − Ω̃∆

)−1

α̃
∈ R 6= 0

otherwise we would have x = 0. From (88) we then have that

αi
αj

=
xi
xj
∀i, j

so that x is proportional to the vector of labor shares α.

A3: Output gap and aggregate inflation

Proof of Proposition 3:

The pricing equation (2) allows to infer markup changes from inflation rates and price adjustment probabilities:

− d logµ = (I −∆) ∆−1π (89)

Lemma 9 below then relates the output gap with sector-level markups:

(γ + ϕ) ỹ = −λT d logµ (90)

Together, Equations (90) and (89) yield the sales-weighted Phillips curve:

λT (I −∆) ∆−1π = −λT d logµ = (γ + ϕ) ỹ

Finally, Lemma 10 below implies that DC = λT (I −∆) ∆−1π is the only aggregate inflation statistic which yields
a Phillips curve with no endogenous cost-push term.

Lemma 9. The output gap is proportional to a notion of “aggregate” markup, which weights sector level markups
according to sales shares:

(γ + ϕ) ỹ = −λT d logµ (91)

Proof. From the consumers’ optimal labor supply decision we have:

(
logw − logwnat

)
−
(
logP − logPnat

)
= γ

(
logC − logCnat

)
+ ϕ

(
logL− logLnat

)
From the definition of output gap we have

ỹ = d logC − d logCnat
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while Lemma 7 implies that
logL− logLnat = d logC − d logCnat

Therefore we have
γ
(
logC − logCnat

)
+ ϕ

(
logL− logLnat

)
= (γ + ϕ) ỹ

so that (
logw − logwnat

)
−
(
logP − logPnat

)
= (γ + ϕ) ỹ (92)

We next need to compute the left hand side of (92), which corresponds to the change in real wages induced by
markup distortions. To solve for real wages as a function of sector-level markups we first consider how nominal
wages w impact marginal costs and prices. We have:

d logmci = α̃id logw +
∑
j

ω̃ijd log pj − d logAi

and
d log pi = d logmci + d logµi (93)

⇒ d logmc =
(
I − Ω̃

)−1 (
α̃d logw − d logA+ Ω̃d logµ

)
(94)

⇒ d logP = βT (d logmc+ d logµ) = d logw + λ̃T (d logµ− d logA)

It follows that
d logw − d logP = λ̃T (d logA− d logµ) (95)

In the natural outcome the productivity change is the same as in the economy with sticky prices, while markups
are constant (d logµ = 0). Therefore we have

(
logw − logwnat

)
−
(
logP − logPnat

)
= −λT d logµ (96)

Equations (92) and (96) together give the result.

Lemma 10. If ∆ 6= I then λT (I −∆) ∆−1 is the only vector ν that satisfies

νTV = 0

Proof. We need to prove that all the vectors x 6= 0 satisfying xTV = 0 are proportional to (I −∆) ∆−1λ. Proposition
3 implies that λT (I −∆) ∆−1V = 0.

Consider then all vectors x such that xTV = 0. Note that

xTV = 0⇐⇒

11



xT∆
(
I − Ω̃∆

)−1
[
α̃

[
λT − βT∆

(
I − Ω̃∆

)−1
]
−
(

1− βT∆
(
I − Ω̃∆

)−1

α̃

)
I

]
= 0

⇐⇒ x̃T
[
α̃

[
λT − βT∆

(
I − Ω̃∆

)−1
]
−
(

1− βT∆
(
I − Ω̃∆

)−1

α̃

)
I

]
= 0 (97)

where x̃T ≡ xT∆
(
I − Ω̃∆

)−1

.

To prove the Lemma we need to show that all vectors x̃ satisfying (97) are proportional to λT (I −∆)
(
I − Ω̃∆

)−1

.

From (97) we have the relation(
1− βT∆

(
I − Ω̃∆

)−1

α̃

)
x̃j = x̃T α̃

[
λT − βT∆

(
I − Ω̃∆

)−1
]
j

∀j (98)

The product x̃T α̃ is a scalar, and we must have x̃T α̃ 6= 0, otherwise we would get x̃T = 0 (while we imposed that
x̃ 6= 0). Therefore (98) implies the condition

x̃i
x̃j

=

[
λT − βT∆

(
I − Ω̃∆

)−1
]
i[

λT − βT∆
(
I − Ω̃∆

)−1
]
j

The ratio on the RHS is well defined, because[
λT − βT∆

(
I − Ω̃∆

)−1
]
j

>

[
λT − βT

(
I − Ω̃

)−1
]
j

= 0 ∀j

(see Lemma 8).

Thus, x̃T must be proportional to the vector

λT − βT∆
(
I − Ω̃∆

)−1

= βT
[
(I − Ω)

−1 −∆
(
I − Ω̃∆

)−1
]

=

= βT
[
(I − Ω)

−1
(I − Ω∆)−∆

]
(I − Ω∆)

−1
=

= βT (I − Ω)
−1

(I −∆) (I − Ω∆)
−1

= λT (I −∆) (I − Ω∆)
−1
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B: Optimal policy

B1: Welfare function

Lemma 11. The distortion in sectoral relative prices with respect to the flex-price outcome is given by

d log p− d logw = (I − Ω)
−1

(I −∆) ∆−1π (99)

Proof. From equation (94) we have

d logmc =
(
I − Ω̃

)−1 (
α̃d logw − d logA+ Ω̃d logµ

)
so that

d log p = d logw +
(
I − Ω̃

)−1

(d logµ− d logA)

Therefore for each sector i we have

(
d log pi − d log pnati

)
−
(
d logw − d logwnat

)
= (I − Ω)

−1
d logµ

We can then use the pricing equation (2) to substitute for markups as a function of inflation rates.

Proof of Proposition 4:

In what follows, I will use the second-order approximation

Z − Z∗

Z
' log

(
Z

Z∗

)
+

1

2
log

(
Z

Z∗

)2

I denote by

ẑ = log

(
Z

Z∗

)
I will prove below that, to the second-order, the log change in output with respect to the efficient equilibrium is
given by

ŷ = l̂ − d

where d is a second order term.
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Using this result we can approximate the utility function around the efficient outcome as

U − U∗

UcC
' ŷ +

1

2
ŷ2 +

1

2

UccC

Uc
ŷ2 +

UlL

UcC

(
l̂ +

1

2

UllN

Ul
l̂2
)

=

= ŷ +
1− γ

2
ŷ2 −

(
l̂ +

1 + ϕ

2
l̂2
)

=

= ŷ +
1− γ

2
ŷ2 −

(
ŷ + d+

1 + ϕ

2
ŷ2

)
=

= −γ + ϕ

2
ỹ2 − d

where the last equality follows from the fact that, to the second order, ŷ2 = ỹ2 and d2 = ŷd = 0.

I will now derive the approximation
ŷ = l̂ − d

and the explicit expression for the second order component d.

Lemma 7 proves that d log y = d logL to a first order. Therefore we have

ŷ = l̂︸︷︷︸
first order

− d︸︷︷︸
second order

+higher order terms

Intuitively, the second order term is a productivity loss induced by markup distortions. These markup distortions
endogenously arise from productivity shocks when prices are sticky, and have two effects. First, the relative price
of different firms within the same sector is distorted with respect to the efficient equilibrium, therefore sector-level
productivities are lower (i.e. more labor is required to produce one unit of sectoral output). I will denote the
productivity loss from within-sector price distortions by the vector a, with components

ai ≡ log

(
Yi

F ({xij}, Li)

)
− logAi

where
xij =

∫
xij(t)dt

Li =

∫
Li(t)dt

and Ai is the TFP of sector i. Second, sector-level markups are also distorted, so that the relative price indexes of
different sectors are different from the efficient equilibrium. Cross-sector price distortions result in lower aggregate
productivity.

I define sector-level markups as

14



µi =
pi
mci

where pi is the sectoral price index (note that the marginal cost is the same for all producers in sector i). I derive a
first-order approximation of the “within-sector” and the “cross-sector” component of the productivity loss, and then
compute the second order approximation around the efficient steady-state.

Note that aggregate productivity Y
L can be expressed as a function of real wages and labor shares. Denoting the

aggregate labor share by Λ = wL
GDP = wL

PY , by definition we can write aggregate output as

Y =
1

Λ

w

P
L

In log-deviations from steady-state we have:

Ŷ = ŵ − P̂ − Λ̂ + l̂ (100)

The first order change in real wages d logw − d logP is derived in the proof of Lemma 9 (see equation (96)).
Combining (96) with (100) we obtain the first-order approximation

d log Y − d logL = λ̃T (a− d logµ)− d log Λ (101)

We then need to compute d log Λ as function of the change in sectoral markups and productivities.

The consumers’ budget constraint is
PC = wL+ Π− T

where Π are aggregate profits and T is a lump-sum tax used to finance input subsidies. Dividing both sides by PC
we find

1 = Λ +
Π− T
PY

= Λ + λT
(

1− 1

µ

)
where µ is the vector of sector-level markups defined above. Therefore we have

d log Λ = − 1

Λ

(∑
i

dλi

(
1− 1

µi

)
+
∑
i

λi
d logµi
µi

)

Using (101) we find that, around the efficient steady state (where µi = 1 ∀i)

d log Y − d logL = λ̃Ta︸︷︷︸
within sector

+

(
λT

Λ
− λ̃T

)
d logµ︸ ︷︷ ︸

cross-sector

(102)
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As λT

Λ − λ̃
T = 0 around µ = 1, the first-order productivity loss from cross-sector misallocation is zero. To compute

the second-order loss we need to take the second derivative of the cross-sector component in equation (102) .

Note that, since the first order effect on both cross-sector misallocation and sector-level productivities is zero, the
second-order terms in (d logA) (d logµ) are also going to be zero. Therefore we only need to derive the cross-sector
component with respect to sector-level markups. We have:

D2

((
λT

Λ
− λ̃T

)
d logµ

)
=

=
1

Λ

−(∑
i

λi
d logµi
µi

)2

+ 2
∑
i

dλi
d logµi
µi

+
∑
i

λi
µi

(d logµi)
2

−∑
i

dλ̃id logµi =

= −1

2

∑
i

∑
j

d̃2
ijd logµid logµj (103)

where
d̃2
ij =

∑
h

∑
k

βhβkσhk

[
(I − Ω)

−1
hi − (I − Ω)

−1
ki

] [
(I − Ω)

−1
hj − (I − Ω)

−1
kj

]
+

+
∑
t

λt
∑
h

∑
k

ωthωtkθ
t
hk

[
(I − Ω)

−1
hi − (I − Ω)

−1
ki

] [
(I − Ω)

−1
hj − (I − Ω)

−1
kj

]
+

+
∑
t

λtαt
∑
h

ωthθ
t
hL (I − Ω)

−1
hi (I − Ω)

−1
hj =

= ΦC

(
(I − Ω)

−1
(i) , (I − Ω)

−1
(j)

)
+
∑
t

λtΦt

(
(I − Ω)

−1
(i) , (I − Ω)

−1
(j)

)
(104)

To derive the welfare loss as a function of sector-level inflation rates we need to solve for the endogenous change in
sector-level markups due to price rigidities. The mapping between the two is given by equation (2):

d logµ = − (I −∆) d logmc = − (I −∆) ∆−1π

Therefore we can re-write (103) as

d2 log Y − d2 logL = λ̃Ta− 1

2
πTD2π

with
d2
ij =

1− δi
δi

1− δj
δj

d̃2
ij

It remains to compute the “within-sector” component λTa.
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Index by t the different varieties of product i and note that, given the CES assumption, sectoral output can be
written as

Yi = AiF ({xij}, Li)
p−εii∫
p−εiit dt

(105)

where
xij =

∫
xij(t)dt

Li =

∫
Li(t)dt

as above. Using the definition of a we have

ai = log

(
p−εii∫
p−εiit dt

)
A first order approximation of ai is given by

dai = εi

[∫
p−εiit d log pitdt∫

p−εiit dt
−
∫
p1−εi
it d log pitdt∫
p1−εi
it dt

]
(106)

Given the Calvo assumption, around the efficient steady state we have that∫
p−εiit d log pitdt∫

p−εiit dt
=

∫
p1−εi
it d log pitdt∫
p1−εi
it dt

= δd logmci

so that dai = 0.

Let’s now compute the second-order loss by deriving (106) a second time with respect to {d log pit}. We find2

d2ai = εi

[∫
(log pit − log pi)

2
dt−

(∫
(log pit − log pi) dt

)2
]

=

= εi
1− δi
δi

π2
i

We can thus express the second-order welfare loss from within-sector misallocation as

1

2
πD1π

where

d1
ij =

0 if i 6= j

λiεi
1−δi
δi

if i = j

2This is the same as in the traditional NK model ( Gali (2008) Ch.4)
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B2: Policy target, past markups

Proof of Proposition 6:

We look for weights φ such that

φTπ = φT (Bỹ + Vd logA) > 0⇐⇒ ỹ > ỹ∗ (107)

I will first construct a vector φ that satisfies the condition

φT (Bỹ + Vd logA) = 0⇐⇒ ỹ = ỹ∗ (108)

and then argue that this vector also satisfies (107).

Note that, as long as φTB 6= 0, we have

φT (Bỹ + Vd logA) = 0⇐⇒ ỹ = −φ
TVd logA

φTB

while the optimal output gap is

ỹ∗ = − B
TDVd logA

γ + ϕ+ BTDB

Thus (108) is satisfied for all realizations of d logA if and only if φ is such that

φTVd logA

φTB
=
BTDVd logA

γ + ϕ+ BTDB
∀d logA

In turn, this is true if and only if

φT
[
I − BBTD

γ + ϕ+ BTDB

]
V = 0 (109)

that is, if and only if φ is a left eigenvector of the matrix
[
I − BBT∆Ξ∆

γ+ϕ+BT∆Ξ∆B

]
V, relative to the eigenvalue 0.

We already proved in Lemma 9 that λT (I −∆) ∆−1 is a left eigenvector of the matrix V relative to the eigenvalue
0 (and it is the only such eigenvector). Therefore, as long as

[
I − BBTD

γ+ϕ+BTDB

]
is invertible,

φT = λT (I −∆) ∆−1

[
I − BBTD

γ + ϕ+ BTDB

]−1

is the (unique) desired eigenvector of the matrix
[
I − BBTD

γ+ϕ+BTDB

]
V.

The matrix
[
I − BBTD

γ+ϕ+BTDB

]
is indeed invertible: it is immediate to see that BBTD

γ+ϕ+BTDB has only one non-zero

eigenvalue, BTDB
γ+ϕ+BTDB < 1, and B is the unique corresponding eigenvector.
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Next, to satisfy condition (107) we need
φT (Bỹ + Vd logA)

to be increasing in the output gap ỹ, which is true if and only if φTB > 0. To prove this we use the fact that
B is an eigenvector of BBTD

γ+ϕ+BTDB relative to the eigenvalue BTDB
γ+ϕ+BTDB . Therefore it is also an eigenvector of[

I − BBTD
γ+ϕ+BTDB

]−1

, relative to the eigenvalue γ+ϕ+BTDB
γ+ϕ > 1. Thus we have

φTB = λT (I −∆) ∆−1

[
I − BBTD

γ + ϕ+ BTDB

]−1

B =

= γ + ϕ+ BTDB > 0

Finally, to obtain the formulation in (27) we observe that

[
I − BBTD

γ + ϕ+ BTDB

]−1

= I +
BBTD

γ + ϕ+ BTDB
+

(
BBTD

γ + ϕ+ BTDB

)2

+ ...

and (
BBTD

γ + ϕ+ BTDB

)n
=

(
BTDB

γ + ϕ+ BTDB

)n−1 BBTD
γ + ϕ+ BTDB

so that [
I − BBTD

γ + ϕ+ BTDB

]−1

= I +
BBTD
γ + ϕ

Moreover, we have that
λT (I −∆) ∆−1B

γ + ϕ
=
λT (I −∆) (I − Ω∆)

−1
α

1− βT∆ (I − Ω∆)
−1
α

= 1

so that

λT (I −∆) ∆−1

[
I − BBTD

γ + ϕ+ BTDB

]−1

= λT (I −∆) ∆−1 + BTD

Lemma 12 characterizes inflation, welfare and the optimal policy when pre-set prices at the sector-level are not equal
to desired prices. This is captured by a deviation of initial markups µ−1 from their optimal level µ−1 = 1. This
result is useful to understand the evolution of inflation in the dynamic version of the model, derived in Appendix
D2.

Lemma 12. Denote the log-deviation of initial sector-level markups by the vector d logµ−1. The elasticity of
sectoral prices with respect to µ−1 is given by the matrix V. The optimal monetary policy implements the output
gap

ỹ∗ = −B
TDVd logµ−1

γ + ϕ+ BTDB
(110)
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Proof. Sectoral inflation rates are given by

πi = δi (d logmci − d logµi−1)

The mapping between sector-level inflation and current period markups is not affected by the presence of past
markups, and is still given by (89). We proceed as in the proof of Propositions 2 and 1 to derive

π = ∆ (I − Ω∆)
−1

(αd logw − d logµ−1)

and

d logw =
γ + ϕ

1− βT (I − Ω∆)
−1
α

(ỹ − ỹ−1)− βT∆ (I − Ω∆)
−1

1− βT (I − Ω∆)
−1
α
d logµ−1

We solve for sectoral inflation rates as a function of ỹ,ỹ−1 and d logµ−1 following the same steps as in the proof of
Propositions 2 and 1

Welfare is the same function of the output gap and sectoral inflation rates as in (18). This is because welfare
depends on sector-level markups and on the variance of firm-level prices within sectors, and the mapping between
both of these variables and sectoral inflation rates does not change in the presence of past markups. The optimal
output gap follows from the first order conditions.

C: Dynamics - Proofs

Proof of Proposition 8

This lemma characterizes the evolution of sectoral inflation rates and markups as a function of initial markups
(which are a state variable), productivity shocks and monetary policy.

Denote by ∆̂ the diagonal matrix with elements

δ̂i ≡
δi (1− ρ(1− δi))
1− ρδi (1− δi)

The first step is to solve for the growth rate of sector-level markups, remembering that it is given by the log-difference
between the growth rates of prices and marginal costs:

− (logµt − logµt−1) = logmct = logmct−1 − πt =

= α (logwt − logwt−1)− (I − Ω)πt − (logAt − logAt−1)
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Using the pricing equation (57) we can rewrite this as

− (logµt − logµt−1) = − (I − Ω) ∆̂
(
I − ∆̂

)−1

(−logµt) + α (logwt − logwt−1) +

−
[
(logAt − logAt−1) + (I − Ω)

[
ρEπt+1 + ∆̂

(
I − ∆̂

)−1

d logµDt

]]
⇒

((
I − ∆̂

)
∆̂−1 + (I − Ω)

)
∆̂
(
I − ∆̂

)−1

(−logµt) =

= (−logµt−1) + α (logwt − logwt−1) +

−
[
(logAt − logAt−1) + (I − Ω)

[
ρEπt+1 + ∆̂

(
I − ∆̂

)−1

d logµDt

]]
(111)

Denote by

xt ≡ −∆̂
(
I − ∆̂

)−1

logµt

xDt ≡ ∆̂
(
I − ∆̂

)−1

d logµDt

We can then re-write equation (111) as(
∆̂−1 − Ω

)
xt =

(
I − ∆̂

)
∆̂−1xt−1+

+α (logwt − logwt−1)−
[
(logAt − logAt−1) + (I − Ω)

[
ρEπt+1 + xDt

]]
⇒

xt = ∆̂
(
I − Ω∆̂

)−1 [(
I − ∆̂

)
∆̂−1xt−1 + α (logwt − logwt−1)

−
[
(logAt − logAt−1) + (I − Ω)

[
ρEπt+1 + xDt

]]]
From the consumers’ labor-leisure trade-off, wages evolve according to

logwt − logwt−1 = (γ + ϕ) (ỹt − ỹt−1) + λT (logAt − logAt−1) +

+ βT
(
xt + xDt + ρE (πt+1)

)
(112)

so that
logwt − logwt−1 =

γ + ϕ

1− βT ∆̂
(
I − Ω∆̂

)−1

α
(ỹt − ỹt−1) +

+
λT − βT ∆̂

(
I − Ω∆̂

)−1

1− βT ∆̂
(
I − Ω∆̂

)−1

α

[
(logAt − logAt−1) + (I − Ω)

[
ρEπt+1 + xDt

]]
+
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+
βT ∆̂

(
I − Ω∆̂

)−1

1− βT ∆̂
(
I − Ω∆̂

)−1

α

(
I − ∆̂

)
∆̂−1xt−1 (113)

Combining (112) and (113) we obtain

xt = B̂ (ỹt − ỹt−1) + V̂
[
(logAt − logAt−1) + (I − Ω)

[
ρEπt+1 + xDt

]]
+Mxt−1 (114)

Lemma 13 below proves that the matrix M is invertible. Denoting by zt ≡ xt−1, equations (57) and (114) can
then be combined to obtain the following system of difference equations in πt and zt:(

ρEπt+1

zt+1

)
=

(
M−1 −I

I −M−1 I

)(
πt

zt

)
+

+

 −M−1
(
B̂ (ỹt − ỹt−1) + V̂ (logAt − logAt−1)

)
− xDt

M−1
(
B̂ (ỹt − ỹt−1) + V̂ (logAt − logAt−1)

)  (115)

Finally, it is useful to re-write (115) substituting out for the past output gap, using Lemma 9:(
ρEπt+1

zt+1

)
=

(
M−1 −Z

I −M−1 Z

)(
πt

zt

)
+

+

 −M−1
(
B̂ỹt + V̂ (logAt − logAt−1)

)
− xDt

M−1
(
B̂ỹt + V̂ (logAt − logAt−1)

)  (116)

where
Z ≡M−1V̂

(
I − ∆̂

)
∆̂−1

To obtain the system in (59) just use the definition

zt ≡ −∆̂
(
I − ∆̂

)−1

logµt−1

Lemma 13. As long as no sector has fully flexible prices (δi < 1 ∀i), the matrixM is invertible. Moreover, all of
its eigenvalues have modulus (weakly) smaller than one.

Proof. It holds that

M =

(
I +

BβT

γ + ϕ

)
∆ (I − Ω∆)

−1
(I −∆) ∆−1

The matrix
(
I + BβT

γ+ϕ

)
has eigenvalues 1 (and all vectors orthogonal to β are corresponding eigenvectors) and

1
1−βT∆(I−Ω∆)−1α

> 0 , with corresponding eigenvector B
γ+ϕ . Therefore it is invertible. The matrix ∆ (I − Ω∆)

−1
(I −∆) ∆−1
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is invertible because we assumed that no sector has fully rigid or fully flexible prices. ThusM is invertible.

To prove that all eigenvalues are (weakly) smaller than one in modulus, note thatM1 = 1:

M1 =

(
I +

BβT

γ + ϕ

)
∆ (I − Ω∆)

−1 (
∆−1 − Ω− (I − Ω)

)
(I − Ω)

−1
α =

=

(
I +

BβT

γ + ϕ

)
∆ (I − Ω∆)

−1
(

(I − Ω∆) ∆−1 (I − Ω)
−1 − I

)
α =

=

(
I +

BβT

γ + ϕ

)(
(I − Ω)

−1 −∆ (I − Ω∆)
−1
)
α =

= 1−∆ (I − Ω∆)
−1
α+

B
γ + ϕ

(
1− βT∆ (I − Ω∆)

−1
α
)

= 1

In additionM has all positive elements, because both
(
I + BβT

γ+ϕ

)
and

∆ (I − Ω∆)
−1

(I −∆) ∆−1

have positive elements. These two properties imply that all of its eigenvalues must be smaller than one in modulus.

Proof of Lemma 3

We want to prove that there is a unique path of inflation rates and markups which remains bounded and where the
output gap is zero in every period. We start from the system(

Eπt+1

zt+1

)
=

(
1
ρM

−1 − 1
ρZ

I −M−1 Z

)(
πt

zt

)
+

(
− 1
ρM

−1V̂ (logAt − logAt−1)− 1
ρx

D
t

M−1V̂ (logAt − logAt−1)

)
(117)

which corresponds to the system (116) with the additional condition that ỹt ≡ 0. We show that the matrix

A =

(
1
ρM

−1 − 1
ρZ

I −M−1 Z

)

has N eigenvectors greater than 1, and N smaller than 1.

This is enough to guarantee that the system has a unique bounded solution for any given past markups zt and
productivity/markup shocks logAt − logAt+1 and xDt . That is, given an initial condition for zt, imposing that
|limt→∞π

∗
it| < ∞ ∀i and |limt→∞z

∗
it| < ∞ ∀i pins down a unique initial value for π∗t . We will first prove that

having N eigenvectors greater than 1, and N smaller than 1 is sufficient to guarantee a unique solution. Then we
will demonstrate that this condition is satisfied.

23



Given our assumption about the productivity process, we have that

Elimt→∞

(
π∗t

z∗t

)
= limt→∞At

(
π∗0

z0

)
+

+limt→∞

∑
s≤t

ηsAt−s
( − 1

ρM
−1V̂ (logA0 − logA−1)− 1

ρx
D
0

M−1V̂ (logA0 − logA−1)

)

In turn, we can decompose the as a linear combination of the eigenvectors of A, {w1, ..., w2N}:(
− 1
ρM

−1V̂ (logA0 − logA−1)− 1
ρx

D
0

M−1V̂ (logA0 − logA−1)

)
= a1w1 + ...+ a2Nw2N

Denote by {ν1, ..., ν2N} the eigenvalues corresponding to {w1, ..., w2N}. We then have

limt→∞

∑
s≤t

ηsAt−s
( − 1

ρM
−1V̂ (logA0 − logA−1)− 1

ρx
D
0

M−1V̂ (logA0 − logA−1)

)
=

= C + limt→∞At
∑
i/νi>1

νi
νi − η

aiwi

where
C <

∑
i/νi<1

aiwi
1− νi

<∞

To have a unique bounded solution we need the condition

limt→∞At
(
π∗0

z0

)
= −limt→∞At

∑
i/νi>1

νi
νi − η

aiwi (118)

to yield a unique solution π∗0 . Let’s write

(
π∗0

z0

)
in components with respect to {w1, ..., w2N}:

(
π∗0

z0

)
=

2N∑
i=1

xiwi

For condition (118) to be satisfied we need thatxi = − νi
νi−ηai ∀i/νi > 1∑

i/νi<1 xiwi,N+1:2N = z0 +
∑
i/νi>1

νi
νi−ηaiwi,N+1:2N

(119)
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The second line in (119) is a system of N equations, with unknowns the coefficients xi for i such that νi < 1. The
system has a unique solution if and only if there are exactly N eigenvalues νi < 1, while the remaining N are greater
or equal than 1.

Let’s then prove that this condition is satisfied. Note that (for xDt ≡ 0) the two equations in (117) yield the optimal
reset price equation

ρEπt+1 = πt − zt+1

It is convenient to substitute this to the first equation and use it together with the second to look for the eigenvectors

of the matrix A. Assume that

(
π

z

)
is an eigenvector relative to the eigenvalue ν. From the optimal reset price

equation we find
νz = (1− ρν)π

The second equation in (117) yields
νz =

(
I −M−1

)
π + Zz

For ν = 0 these conditions are satisfied for π = 0 and z =M−1B̂.

For ν = 1
ρ the conditions are satisfied for z = 0 and π =

 1

...

1

.

Otherwise we can merge the two equations above and substitute out for νz, to obtain:

ρνπ =M−1π − 1− ρν
ν
Zπ (120)

It holds that all eigenvectors ofM except

 1

...

1

 are orthogonal to λT (I −∆) ∆−1. Therefore if πis an eigenvector

ofM, with corresponding eigenvalue ξ 6= 0, then Zπ = π. Thus equation (120) becomes

ρν2 − ρν + 1

ν
π =

1

ξ
π

Now we need to have π 6= 0 (otherwise we would also have z = 0, which cannot be an eigenvector). Therefore it
must hold that

ρν2 − ρν + 1

ν
=

1

ξ
(121)

Lemma 13 shows that all eigenvalues ξ of M have modulus in (0, 1). Therefore equation (121) has two solutions,
ν+ and ν−, with 0 < ν− < 1 and ν+ > 1. Thus we have N − 1 couples of solutions (one smaller than 1 and one
greater than 1), plus 0 and 1

ρ . It follows that the matrix A has N eigenvalues greater than 1 and N smaller than 1

in absolute value, as we wanted to show.
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It remains to prove that the interest rate rule

it = rnt + βTEπzgt+1︸ ︷︷ ︸
nominal rate under zero output gap

+ ζỹt

with ζ > 0 implements zero output gap in every period.

Under this rule the system becomes ρEπt+1

zt+1

Eỹt+1

 =

 M−1 −Z −M−1B̂
I −M−1 Z M−1B̂

0 0 ζ + 1


 πt

zt

ỹt

+

+

 −M
−1V̂

M−1V̂
0

 (logAt − logAt−1) +

 −I0
0

xDt

Note that the solution to the previous system is still a solution of the new system. To prove that there are no
additional solutions we will show that the matrix

Ã ≡

 M−1 −Z −M−1B̂
I −M−1 Z M−1B̂

0 0 ζ + 1


has the same eigenvalues and eigenvectors as A above, plus the eigenvalue ν = ζ + 1, with associated eigenvector π

z

ỹ

 such that

π =

(
I +

1− ρν + ρν2

ν
V
)−1

B̂

z =
1− ρν
ν

π

ỹ = (1− ρν)
λT (I −∆) ∆−1

γ + ϕ
π

This would imply that for ζ > 0 the new system has a unique bounded solution, equal to the solution of the original
system.

Let’s then study the eigenvalues and eigenvectors of Ã. Denote the eigenvalues by ν, and the first N components
of the corresponding eigenvector by π. From the first two rows and the definition of eigenvector we derive the
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conditions
z =

1− ρν
ν

π

ỹ = (1− ρν)
λT (I −∆) ∆−1

γ + ϕ
π(

I − 1− ρν + ρν2

ν
G
)
π = B̂λ

T (I −∆) ∆−1

γ + ϕ

(
I − 1− ρν + ρν2

ν
G
)
π

The last condition implies (
I − 1− ρν + ρν2

ν
G
)
π = B̂

From the last row of Ã we derive the relation

(1 + ζ − ν) (1− ρν)
λT (I −∆) ∆−1

γ + ϕ
π = 0

which we know is satisfied by the eigenvalues/eigenvectors of A. In addition, it is also satisfied for ν = 1 + ζ and

π =
(
I − 1−ρν+ρν2

ν G
)−1

B̂. This proves the result.

Proof of Proposition 9

Within each period, the cross-sector misallocation loss is the same function of sector-level markups derived in
Section 4. It can be written as

xTt D2xt

where now D2 is defined as
D2 =

(
I − ∆̂

)
∆̂−1D̃2∆̂−1

(
I − ∆̂

)
and the elements of D̃2 are derived in equation (104) (see the proof of Proposition 4).

The within-sector productivity loss is given by

N∑
i=1

λiεi

[∫
(logpift − logpit)2

df −
(∫

(logpift − logpit) df
)2
]

as derived in Proposition 4.

The following lemma shows how the discounted sum of within-sector losses in the present and future periods can
be written as a function of sectoral inflation rates.

Lemma 14. It holds that

∑
s≥0

ρs

(
N∑
i=1

λiεi

[∫
(logpift+s − logpit+s)2

df −
(∫

(logpift+s − logpit+s) df
)2
])

=
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=
∑
s≥0

ρsπTt+sD1πt+s

where D1 is a diagonal matrix with elements

d1ii = λiεi
1− δ̂i
δ̂i

Proof. To prove the lemma it is enough to show that

∑
s≥0

ρs

[∫
(logpift+s − logpit+s)2

df −
(∫

(logpift+s − logpit+s) df
)2
]

=
1− δ̂i
δ̂i

∑
s≥0

ρsπ2
it+s

Given the Calvo assumption, in each sector i the fraction δi of firms who adjust prices set

logpift − logpit = (1− δi) (logp∗it − logpit−1) =
1− δi
δi

πit

For the remaining fraction (1− δi) of non-adjusting firms we have

logpift − logpit = (−δi) (logp∗it − logpit−1) + (logpift−1 − logpit−1) = (logpift−1 − logpit−1)− πit

Define

Dit ≡
∫

(logpift+s − logpit+s)2
df −

(∫
(logpift+s − logpit+s) df

)2

Around a steady-state where logpift − logpit = 0 ∀f , we have

Dit = (1− δi)
(

1− δi
δi

π2
it +Dit−1

)
It follows that ∑

s

ρsDit+s =
∑
s

ρs
1− δi
δi

π2
is

∑
τ≥s

(ρ (1− δi))τ−s
 =

=
1− δ̂i
δ̂i

∑
s

ρsπ2
is

Proof of Proposition 10

The central bank solves the problem

min{ỹt,πt,zt+1}∞t=0

∑
t

ρt
[
(γ + ϕ) ỹ2

t + πTt D1π + zTt+1D2zt+1

]
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s.t.

(
Eπt+1

zt+1

)
=

(
M−1

ρ −Zρ(
I −M−1

)
Z

)(
πt

zt

)
+

(
−M

−1

ρ (Byt + V (logAt − logAt−1))

M−1 (Byt + V (logAt − logAt−1))

)
In the absence of commitment, we can re-write this as

v (logAt − logAt−1, zt) = minyt,πt,zt+1
(γ + ϕ) ỹ2 + πTt D1π + zTt+1D2zt+1 + ρE [v (logAt+1 − logAt, zt+1)]

s.t.

(
Eπt+1

zt+1

)
=

(
M−1

ρ −Zρ(
I −M−1

)
Z

)(
πt

zt

)
+

(
−M

−1

ρ (Byt + V (logAt − logAt−1))

M−1 (Byt + V (logAt − logAt−1))

)
The first order conditions are

2 (γ + ϕ) ỹt + 2BTM−1TD2zt+1 + ρBTM−1TE [v′z (logAt+1 − logAt; zt+1)] = 0

2D1πt + 2
(
I −M−1T

)
D2zt+1 + ρ

(
I −M−1T

)
E [v′z (logAt+1 − logAt; zt+1)] = 0

The envelope theorem yields

v′z (logAt − logAt−1; zt) = 2ZTD2zt+1 + ρZTE [v′z (logAt+1 − logAt; zt+1)] (122)

Rearranging the first order conditions and noting that

BTZ = BT
(
I −M−1T

)
we find the optimality condition

(γ + ϕ) ỹt + BTD1πt + BTD2zt+1 = −ρBT E [v′z (logAt+1 − logAt; zt+1)]

2

We can further use the first order conditions, together with equation (122), to compute

BT v′z (logAt − logAt−1; zt) = −2BTD1πt

so that the optimality condition becomes

(γ + ϕ) ỹt + BTD1πt + BTD2zt+1 = ρBTD1Eπt+1

Finally, noting that
zt+1 = πt − ρEπt+1 (123)

the optimality condition becomes
(γ + ϕ) ỹ∗t + BTDz∗t+1 = 0 (124)
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To obtain the expression for the optimal output gap in (64) we subtitute for zt+1 in (124) using the pricing equation

zit+1 = πit + ρEπt+1

together with equation (60) and the equality

M = I + V (I − Ω)

Proof of Proposition 10

D: Complements to the quantitative analysis

D1: Welfare loss from business cycles

Main results

The results for the main calibration are plotted in the left panel of Figure 5. The right panel reports results for an
alternative calibration without input-output linkages. The bars correspond to the percentage of per-period GDP
that consumers would be willing to forego in exchange of switching from a sticky-price economy to the efficient
equilibrium, for a given monetary policy rule. Bars of different colors represent different rules. Each set of bars
corresponds to a different assumption about the correlation of sectoral shocks, keeping the variance of aggregate
productivity constant across calibrations. In the first set the covariance matrix is calibrated from the data, while
in the second set there are only idiosyncratic shocks, and in the third there are only aggregate shocks.
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Figure 5: Welfare loss from business cycles

DC index and optimal policy target

Section 6.2 in the main text argues that targeting the output gap almost replicates the optimal policy. We reach
a similar conclusion when comparing the behavior over time of the “divine coincidence” index DC -our inflation
proxy for the output gap- and the optimal policy target, plotted in Figure 6. The two series move closely together,
which means that the optimal target almost coincides with the output gap. The target however is often a few basis
points lower than DC, suggesting that the optimal policy should be slightly more expansionary than output gap
targeting.

Analytical expressions for the welfare loss under various policy rules

Below I report expressions for the expected welfare loss under different policy rules, as a function of the network
primitives (captured by B,V and D) and of the covariance matrix of sectoral shocks (Σ). I further decompose the
loss into deviations from zero output gap and misallocation.

Optimal policy
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Figure 6: Time series of the DC inflation index and the optimal policy target

The weights on sectoral inflation rates are normalized so that the value of the "divine coincidence" index is equal
to the output gap, as in Proposition 3 (note that the weights do not sum to one).
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The total welfare loss is
1

2

∑
i,j

(
VTDV

)
ij

Σij −
BTDVΣVTDB

(γ + ϕ+ BTDB)


The loss from non-zero output gap is:

1

2
(γ + ϕ)

BTDVΣVTDB
(γ + ϕ+ BTDB)

2

The gain in allocative efficiency from non-zero output gap is:

BTDVΣVTDB
(γ + ϕ+ BTDB)

− 1

2
BTDB B

TDVΣVTDB
(γ + ϕ+ BTDB)

2

The net misallocation loss is:

1

2

∑
i,j

(
VT DV

)
ij

Σij −
BTDVΣVTDB

(γ + ϕ+ BTDB)
+

1

2
BTDB B

TDVΣVTDB
(γ + ϕ+ BTDB)

2

Loss under zero consumer inflation relative to the optimal policy

The total loss is:
1

2

BTDVΣVTDB
(γ + ϕ+ BTDB)

+

+
1

2

[
γ + ϕ+ BTDB

(βTB)
2 βTV − 2

BTDV
βTB

]
ΣVTβ

The loss from non-zero output gap is:

1

2
(γ + ϕ)

βTVΣVTβ
(βTB)

2

The loss from misallocation is:

1

2

∑
i,j

(
VT DV

)
ij

Σij +

[
1

2
BTDB βTV

(βTB)
2 −
BTDV
βTB

]
ΣVTβ

Loss under zero output gap relative to the optimal policy

33



The total loss is:
1

2

BTDVΣVTDB
(γ + ϕ+ BTDB)

The total loss from misallocation is:
1

2

∑
i,j

(
VTDV

)
ij

Σij

Within- versus cross-sector misallocation

Section 5.1 shows that the welfare loss from misallocation has two components, coming from relative price distortions
within and across sectors. Figure 7 compares the relative magnitude of these components. The three sets of bars in
the figure correspond to different policy rules (optimal policy, output gap targeting and consumer price targeting).
Within each group, the bar on the left-hand-side is based on our preferred calibration, which assumes higher
substitutability between varieties from the same sector than across goods from different sectors. Unsurprisingly,
the within-sector loss dominates in this calibration. The bar on the right-hand-side of each group instead is based
on an alternative calibration, which assumes the same elasticity of substitution within and across sectors. In this
case we find that the largest contribution to the welfare loss comes from cross-sector misallocation.
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Figure 7: Main calibration: ε = 8, σ = 0.9, θL = 0.5, θ = 0.001; uniform elasticities: ε = σ = θL = θ = 2

D2: Phillips curve and monetary non-neutrality over time

Slope of the Phillips curve

Section 6.3.1 in the main text shows that the Phillips curve flattened because of changes in the input-output structure
and in the composition of the consumption basket. To isolate these two components and evaluate their relative
importance we can use the results in Section 6.3.1. The role of consumption and input shares is fully captured by
the pass-through of nominal wages into consumer prices, δ̄w. This pass-through in turn can be decomposed into a
term related with consumption shares, and a term related with the input-output structure:

δ̄w = βT︸︷︷︸
consumption

∆ (I − Ω∆)
−1
α︸ ︷︷ ︸

input-output

The evolution of the two components is represented by the dashed red and green lines in Figure 1. The red
line represents the slope implied by a calibration where the input-output matrix is fixed at its 1947 value, and
consumption shares evolve as observed in the data. The green line plots the slope of the Phillips curve implied by
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an alternative calibration where consumption shares remain constant at their 1947 value, while the input-output
matrix changes over time as observed in the data. The shift of consumption from manufacturing towards services
contributed to the decline after 1980. Service sectors have more rigid prices, therefore a shift towards these sectors
increases average price stickiness and flattens the Phillips curve. Pre-1980, however, all of the decline can be
attributed to the evolution of the production structure.

This last effect is driven by a uniform increase in intermediate input purchases, and not by a shift towards rigid
sectors. The light blue line depicts the slope implied by a calibration where consumption shares remain constant,
and input shares increase uniformly in all sectors.3 The light blue line tracks the green one closely.

More formally, δ̄w is an average of sector-level pass-throughs of monetary shocks, with weights given by consump-
tion shares. Thus we can split the overall change in δ̄w into the change in sector-level pass-through for constant
consumption shares, and the change in consumption shares for constant pass-through. Sector-level pass-throughs
only depend on the production structure, and not on consumption shares. Therefore we obtain the following
decomposition:

δ̄2017
w − δ̄1947

w =
βT1947 + βT2017

2
(PT2017 − PT1947) +

+
(
βT2017 − βT1947

) PT1947 + PT2017

2

where I used the notation
PT ≡ ∆ (I − Ω∆)

−1
α

I find that 79% of the overall decline in δ̄w can be attributed to changes in the input-output structure, while the
remaining effect comes from changes in the composition of the consumption basket.

I further break down the effect of changes in consumption and input-output shares into their sector-level components.
Figure ?? provides a graphical representation.

3The change in input shares is calibrated to replicate the change in the aggregate value added to output ratio observed in the data.
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Figure 8: Upper panel: change in consumption shares and average wage pass-through.
Lower panel: change in pass-through and average consumption shares.

The grey bars in the two plots respectively represent the average pass-through 1
2 (PTi,1947 + PTi,2017) and the

average consumption share 1
2 (βi,1947 + βi,2017) for each sector. The bars in color represent changes in sectoral

consumption shares βTi,2017−βTi,1947 and pass-through PTi,2017−PTi,1947. From the left plot we see that consumption
shifted away from manufacturing (which has high pass-through) towards services (which has lower pass-through).
The right plot shows that the pass-through fell in all sectors, and more so in sectors with high consumption share
(such as construction, manufacturing and government). Both channels lead to a flatter Phillips curve, although
quantitatively the drop in sectoral pass-through (due to larger intermediate input flows) accounts for most of the
effect.

Monetary non-neutrality

Figure 9 reports the impact response of inflation to a 1% real rate shock implied by the model, for each year between
1947 and 2017.
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Figure 9: Impact response of consumer inflation to a 1% real rate shock

Mirroring the slope of the Phillips curve, monetary non-neutrality has increased over time (the same output change
triggers a smaller inflation response). Most of the effect can be attributed to the increase in intermediate input
flows.

E: Phillips curve regressions

E1: The “divine coincidence” index (time series)

I construct a time series for the “divine coincidence” index DC starting in 1984. This requires to aggregate sector-
level price series based on the respective sales shares and adjustment frequencies. We compute sales shares from
the BEA input-output data, and rely on the price adjustment data collected by Pasten, Schoenle and Weber. The
main source for sector-level price series is PPI data from the BLS.

In the BLS dataset the sample period varies across sectors: most manufacturing series are available from the mid-
1980s, while most service series are available from 2006 onwards. Out of the 405 sectors in the BEA classification,

38



172 have an incomplete price series in the BLS dataset, and 67 are missing. Information about the incomplete
and missing series (sector names and weights in the DC index) is reported in Appendix F2 in this Supplemental
Material.

To extend the incomplete price series further back in time we use sector-level data underlying the PCE, which is
available from 1960. We run Lasso regressions of each incomplete PPI series on disaggregated (338 sectors) PCE
components for the period in which both are available. Summary statistics for the Lasso regressions are reported in
Appendix F2 in this Supplemental Material. We also use PCE components to make up for 40 missing series, using
the concordance table between NAICS sectors and PCE series provided by the BEA.

Figure 10 compares the weights assigned to different sectors by the divine coincidence index DC and the PCE (the
main indicator used by central banks), at an aggregated 21-sector level. Sectoral weights at a more disaggregated
level are reported in Appendix F2 in this Supplemental Material.

Figure 10: DC and PCE weights (The bars are ordered so that sectoral weights in DC are increasing. Those with
red borders correspond to the PCE)

We see from the figure that wages have the highest weight (of 18%) in DC, while they are not part of the PCE. The
divine coincidence index also assigns high weight to professional services, durable goods, and IT and administrative
services. These sectors have a large input share in production and adjust prices infrequently. By contrast the PCE
places the highest weight on healthcare, housing and non-durable goods. These sectors capture a large share of
consumer expenditures, but are not important as inputs in production. Therefore their relative consumption share
is much larger than their relative sales share, which is why they have a smaller weight in the divine coincidence
index relative to the PCE.

Figure 11 plots DC against CPI, PCE and their core versions, and against the PPI.
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Figure 11: Comparison of DC against consumer and producer prices (1965-2018)

Here the weights on sectoral inflation rates are normalized to sum to one for all inflation indexes.

E2: Summary statistics

Sectoral weights

Table 5 reports the weights of the top-15 sectors in DC in percentage of the total (at the disaggregated 405 sector
level).

40



Industry name Weight (SW) Weight (Domar) Weight (PCE)
Labor 18.3221 27.8648 0
Insurance agencies, bro-
kerages, and related activ-
ities

9.23917 1.39786 0

Management of compa-
nies and enterprises

3.887 1.68309 0

Architectural, engineer-
ing, and related services

2.51957 0.812411 0

Insurance carriers, except
direct life

2.13001 1.04094 2.5369

Warehousing and storage 2.12367 0.344483 0.0019132
Accounting, tax prepara-
tion, bookkeeping, and
payroll services

2.05855 0.53267 0.17815

Other real estate 2.05001 2.87134 0.057851
Legal services 1.87954 0.893466 1.0623
Advertising, public rela-
tions, and related services

1.68975 0.415808 0.017779

Hospitals 1.65114 1.17451 9.6864
Employment services 1.63912 0.913483 0.012342
Management consulting
services

1.63082 0.569068 0

Wired telecommunica-
tions carriers

1.44281 0.78146 2.0335

All other miscellaneous
professional, scientific,
and technical services

1.31821 0.312412 0

Table 5: Weights of top-15 series in DC (in %)

Missing and incomplete series

Tables (6) and (7) report details of the missing and incomplete series in the PPI dataset. Table (8) presents
summary statistics from the Lasso regressions used to extend the incomplete series back in time.
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Weight in SW Added?
Oilseed farming 4.00 0
Funds, trusts, and other financial
vehicles

2.02 1

Management of companies and en-
terprises

0.29 0

Sound recording industries 0.22 1
Elementary and secondary schools 0.20 1
Monetary authorities and deposi-
tory credit intermediation

0.18 1

State and local government hospi-
tals and health services

0.13 0

State and local government passen-
ger transit

0.12 0

Other educational services 0.12 1
Motion picture and video industries 0.12 1
Transit and ground passenger
transportation

0.10 1

Limited-service restaurants 0.10 1
Federal general government (nonde-
fense)

0.09 0

Full-service restaurants 0.08 1
Promoters of performing arts and
sports and agents for public figures

0.07 1

Table 6: Weights of top-15 missing series in DC (in %)
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Weight in SW Initial date
Employment services 0.85 19940901
Management consulting services 0.55 20060901
Insurance agencies, brokerages, and
related activities

0.47 20030301

Architectural, engineering, and re-
lated services

0.45 19970301

Automotive equipment rental and
leasing

0.45 19920301

Custom computer programming
services

0.41 20060901

Specialized design services 0.37 19970301
Nursing and community care facili-
ties

0.36 20040301

Services to buildings and dwellings 0.36 19950301
Environmental and other technical
consulting services

0.36 20060901

Wireless telecommunications carri-
ers (except satellite)

0.31 19930901

Office administrative services 0.27 19940901
Satellite, telecommunications re-
sellers, and all other telecommuni-
cations

0.23 19930901

Other computer related services, in-
cluding facilities management

0.22 20060901

Internet publishing and broadcast-
ing and Web search portals

0.21 20100301

Table 7: Weights of top-15 incomplete series in DC (in %)

Mean Max Min
88 127 19

Table 8: Number of series in Lasso approximation

Proxy for inflation expectations

Our preferred regression specification controls for inflation expectations. We construct a proxy for the expectations
of each of the inflation indexes which are used as left hand side variables, based on the statistical properties of the
inflation series (see Stock and Watson (2007)). Inflation changes πt − πt−1 are well approximated by an IMA(1,1)
model. We estimate the parameters of the model for each inflation index, and use it to construct a prediction for
future inflation changes, E [πt+1 − πt]. Inflation expectations are then given by Eπt+1 = πt + E [πt+1 − πt]. Figure
12 plots the actual inflation series against the expectations series constructed based on the IMA(1,1) model.
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Figure 12: Actual and forecasted inflation44



Scatterplots

We report scatterplots of inflation and output gaps for the different inflation and gap measures used in the regres-
sions. Figures (??), (??) and (??) report scatterplots in levels, while Figures (??), (??) and (??) report scatterplots
for inflation changes versus gap levels.

Figure 13: Inflation and unemployment gap
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Figure 14: Inflation and output gap
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Figure 15: Inflation and unemployment rate
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Figure 16: Inflation changes and unemployment gap
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Figure 17: Inflation changes and output gap
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Figure 18: Inflation changes and unemployment rate

E3: Regressions over the full sample period

This section contains robustness checks for the regressions presented in Section 7.2. It shows results for different
measures of the output gap on the right hand side, and for different specifications.

Tables 9 and ?? below present results for a plain specification without lags or expectations, as in equation (125).
The right hand side variables are the CBO output gap and the unemployment rate respectively.

πt = c+ κỹt + ut (125)
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SW CPI core CPI PCE core PCE
gap 3.144∗∗ 0.2791∗∗ 0.1728∗∗ 0.1837∗∗ 0.1162∗∗

(0.5538) (0.0618) (0.055) (0.0532) (0.0482)
intercept 2.0189∗∗ 3.0193∗∗ 2.9661∗∗ 2.4878∗∗ 2.4325∗∗

(0.0522) (0.1271) (0.1131) (0.1095) (0.0992)
R-squared 0.1905 0.1297 0.0673 0.08 0.0407

Table 9: CBO output gap

DC CPI core CPI PCE core PCE
gap -3.084∗∗ -0.1405∗ 0.0028 -0.036 0.0545

(0.6645) (0.0759) (0.0661) (0.0644) (0.057)
intercept 1.9621∗∗ 2.8021∗∗ 2.7595∗∗ 2.2996∗∗ 2.2514∗∗

(0.0505) (0.1259) (0.1096) (0.1067) (0.0945)
R-squared 0.1359 0.0244 0 0.0023 0.0066

Table 10: Regression results for the unemployment rate
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Tables ??, ?? and ?? present result for a specification that includes the proxy for the endogenous component of the
residual constructed in Section 6.4.2. The new regression equation is:

πt = c+ κỹt + uCt + vt

where uCt is the endogenous component of the residual constructed in Section 6.4.2, and vt is the exogenous
component.

DC CPI core CPI PCE core PCE
cost-push 0.5627∗∗ 2.5545∗∗ 0.4886 2.3948∗∗ 1.1224∗∗

(0.2345) (0.565) (0.4768) (0.4745) (0.4102)
gap -3.7586∗∗ -0.1906∗∗ -0.2175∗∗ -0.0783 -0.0886

(0.6872) (0.0758) (0.064) (0.0637) (0.0551)
intercept 2.0842∗∗ 3.2239∗∗ 2.8559∗∗ 2.6509∗∗ 2.397∗∗

(0.058) (0.1398) (0.118) (0.1174) (0.1015)
R-squared 0.3317 0.2782 0.142 0.2558 0.1275

Table 11: Regression results for the CBO unemployment gap , with CP shock

DC CPI core CPI PCE core PCE
cost-push 0.6059∗∗ 2.5472∗∗ 0.6387 2.4715∗∗ 1.2896∗∗

(0.2604) (0.5964) (0.5145) (0.4983) (0.4333)
gap 2.4282∗∗ 0.1363∗∗ 0.1176∗∗ 0.0369 0.0225

(0.6496) (0.0682) (0.0588) (0.057) (0.0495)
intercept 2.0936∗∗ 3.2425∗∗ 2.8535∗∗ 2.6467∗∗ 2.3802∗∗

(0.0633) (0.145) (0.1251) (0.1212) (0.1054)
R-squared 0.2458 0.2635 0.0852 0.2484 0.1086

Table 12: Regression results for the CBO output gap , with CP shock

DC CPI core CPI PCE core PCE
cost-push 0.6321∗∗ 2.8683∗∗ 0.8598∗ 2.6413∗∗ 1.3999∗∗

(0.2357) (0.5706) (0.4905) (0.4722) (0.4102)
gap -3.6783∗∗ -0.0954 -0.1038 0.006 0.0063

(0.731) (0.0811) (0.0697) (0.0671) (0.0583)
intercept 2.0911∗∗ 3.1954∗∗ 2.8214∗∗ 2.6213∗∗ 2.3637∗∗

(0.0594) (0.1439) (0.1237) (0.1191) (0.1034)
R-squared 0.309 0.2462 0.0706 0.2456 0.1071

Table 13: Regression results for the unemployment rate , with CP shock
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Tables 14, 15 and 16 below present results for the baseline specification augmented with oil price inflation, as
in equation (126). The gap measures are given by the CBO unemployment gap, the CBO output gap and the
unemployment rate respectively.

πt = c+ κỹt + πoil + ut (126)

SW CPI core CPI PCE core PCE
gap -3.6385∗∗ -0.2198∗∗ -0.2038∗∗ -0.1194∗∗ -0.1066∗

(0.6294) (0.0655) (0.0643) (0.0584) (0.0573)
intercept 1.9532∗∗ 2.7286∗∗ 2.9576∗∗ 2.266∗∗ 2.3883∗∗

(0.0483) (0.1099) (0.1078) (0.0979) (0.0961)
oil prices 0.0032∗∗ 0.0185∗∗ -0.0058∗ 0.0138∗∗ -0.0017

(0.0013) (0.003) (0.0029) (0.0027) (0.0026)
R-squared 0.2488 0.2959 0.0829 0.2049 0.0257

Table 14: Regression results for the CBO unemployment gap , with oil prices

SW CPI core CPI PCE core PCE
gap 2.8985∗∗ 0.2137∗∗ 0.1961∗∗ 0.1351∗∗ 0.1243∗∗

(0.5562) (0.0562) (0.0553) (0.0501) (0.0492)
intercept 1.9843∗∗ 2.8179∗∗ 3.038∗∗ 2.3383∗∗ 2.4576∗∗

(0.0536) (0.1184) (0.1164) (0.1055) (0.1036)
oil prices 0.0031∗∗ 0.0179∗∗ -0.0064∗∗ 0.0133∗∗ -0.0022

(0.0014) (0.003) (0.0029) (0.0027) (0.0026)
R-squared 0.2199 0.3108 0.0985 0.2221 0.0458

Table 15: Regression results for the CBO output gap , with oil prices

SW CPI core CPI PCE core PCE
gap -2.7813∗∗ -0.0591 -0.0158 0.0259 0.0524

(0.6655) (0.0684) (0.067) (0.0596) (0.0582)
intercept 1.9278∗∗ 2.601∗∗ 2.8056∗∗ 2.1465∗∗ 2.2564∗∗

(0.0516) (0.116) (0.1136) (0.101) (0.0987)
oil prices 0.0033∗∗ 0.0196∗∗ -0.0045 0.0149∗∗ -0.0005

(0.0014) (0.0031) (0.0031) (0.0027) (0.0027)
R-squared 0.1707 0.2418 0.0155 0.1816 0.0069

Table 16: Regression results for the unemployment rate , with oil prices
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Tables IV , 27 and 28 present results for a specification with inflation expectations, using the CBO unemployment
gap, the CBO output gap and the unemployment rate as right hand side variables:

πt = c+ κỹt + ρEπt+1 + εt (127)

DC CPI core CPI PCE core PCE
gap -1.1054∗∗ -0.1613∗∗ -0.0344 -0.062 0.0047

(0.3275) (0.0809) (0.052) (0.0487) (0.0368)
inflation expecations 0.8287∗∗ 0.4846∗∗ 0.5446∗∗ 0.6364∗∗ 0.6406∗∗

(0.0383) (0.1557) (0.0559) (0.0621) (0.045)
intercept 0.3484∗∗ 1.3851∗∗ 1.3193∗∗ 0.5522∗∗ 0.8388∗∗

(0.0789) (0.5021) (0.1818) (0.196) (0.1228)
R-squared 0.8234 0.159 0.4425 0.4635 0.6072

Table 17: Regression results for the CBO unemployment gap , with expectations

DC CPI core CPI PCE core PCE
gap 1.0861∗∗ 0.1881∗∗ 0.0412 0.0881∗∗ 0.0084

(0.2714) (0.0678) (0.0449) (0.0417) (0.032)
inflation expecations 0.8297∗∗ 0.4412∗∗ 0.5398∗∗ 0.6231∗∗ 0.6365∗∗

(0.0368) (0.1515) (0.0561) (0.0617) (0.0455)
intercept 0.3668∗∗ 1.6124∗∗ 1.3548∗∗ 0.6459∗∗ 0.8614∗∗

(0.0772) (0.4987) (0.1892) (0.2005) (0.1291)
R-squared 0.8288 0.1808 0.4442 0.4744 0.6073

Table 18: Regression results for the CBO output gap , with expectations

DC CPI core CPI PCE core PCE
gap -0.9404∗∗ -0.0049 0.0781 -0.0505 0.0757∗∗

(0.3185) (0.0788) (0.0499) (0.0477) (0.0355)
inflation expecations 0.8468∗∗ 0.6312∗∗ 0.5668∗∗ 0.6549∗∗ 0.6432∗∗

(0.0372) (0.1518) (0.0537) (0.0608) (0.0434)
intercept 0.3108∗∗ 0.8344∗ 1.1705∗∗ 0.4941∗∗ 0.7757∗∗

(0.0762) (0.4879) (0.1711) (0.1851) (0.1155)
R-squared 0.8202 0.1344 0.4507 0.4616 0.6198

Table 19: Regression results for the unemployment rate , with expectations
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Finally, Tables 20, 21 and 22 present results for the specification in equation (128) with inflation changes on the left
hand side (instead of inflation levels). We present results for our three usual gap measures (CBO unemployment
gap, CBO output gap and unemployment rate). All of them are in levels.

πt − πt−1 = c+ κỹt + ut (128)

SW CPI core CPI PCE core PCE
gap -0.6945∗∗ -0.0287 -0.0212∗ -0.0169 -0.0105

(0.3258) (0.0404) (0.0119) (0.0296) (0.0123)
intercept 0.0182 0.008 -0.003 -0.0006 -0.0078

(0.0244) (0.0661) (0.0195) (0.0485) (0.0201)
R-squared 0.0323 0.0037 0.0227 0.0024 0.0054

Table 20: Regression results for the CBO unemployment gap (inflation changes)

SW CPI core CPI PCE core PCE
gap 0.7805∗∗ 0.0472 0.02∗ 0.0299 0.0103

(0.2768) (0.0345) (0.0102) (0.0254) (0.0106)
intercept 0.0365 0.0422 0.0046 0.022 -0.0035

(0.0262) (0.0713) (0.0211) (0.0524) (0.0218)
R-squared 0.0552 0.0136 0.0273 0.0101 0.007

Table 21: Regression results for the CBO output gap (inflation changes)

SW CPI core CPI PCE core PCE
gap -0.7464∗∗ -0.0317 -0.0238∗∗ -0.0199 -0.0133

(0.3264) (0.0405) (0.0119) (0.0297) (0.0123)
intercept 0.0212 0.0113 -0.0002 0.0024 -0.0052

(0.0247) (0.0668) (0.0197) (0.049) (0.0203)
R-squared 0.037 0.0045 0.0284 0.0033 0.0085

Table 22: Regression results for the unemployment rate (inflation changes)
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E4: Full sample period - more detail

Residual plots

Figures (19), (20) and (21) report residual plots for the baseline specification (29) in Section 7.2:

Figure 19

Other regression specifications

The tables below present results for a regression specification that includes for inflation lags:

πt = c+ κỹt +

4∑
s=1

γsπt−s + ut

Each table is based on a different measure of the output gap (CBO unemployment gap, CBO output gap or
unemployment rate).
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Figure 20

SW CPI core CPI PCE core PCE
gap -1.3803∗∗ -0.0696 -0.0232 -0.0285 -0.0069

(0.4361) (0.0444) (0.027) (0.0339) (0.0235)
intercept 0.6573∗∗ 0.7961∗∗ 0.367∗∗ 0.515∗∗ 0.2801∗∗

(0.1085) (0.1717) (0.1109) (0.128) (0.0928)
lag 1 0.7443∗∗ 0.9835∗∗ 0.9983∗∗ 1.0655∗∗ 1.068∗∗

(0.0858) (0.0869) (0.0867) (0.0867) (0.0866)
lag 2 0.1224 -0.2051∗ -0.0391 -0.3083∗∗ -0.2537∗∗

(0.1064) (0.1218) (0.1225) (0.1265) (0.1264)
lag 3 -0.1573 -0.0051 -0.068 0.0912 0.1143

(0.1065) (0.1219) (0.1225) (0.1265) (0.1264)
lag 4 -0.0356 -0.0469 -0.0138 -0.0624 -0.0438

(0.0799) (0.0843) (0.0848) (0.0848) (0.0849)
R-squared 0.6954 0.705 0.8465 0.7436 0.8396

Table 23: Regression results for the CBO unemployment gap , with lags
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Figure 21

SW CPI core CPI PCE core PCE
gap 1.3534∗∗ 0.0931∗∗ 0.0359 0.0524∗ 0.0212

(0.3627) (0.0378) (0.0231) (0.0293) (0.0203)
intercept 0.6586∗∗ 0.8709∗∗ 0.4035∗∗ 0.5697∗∗ 0.3093∗∗

(0.1043) (0.1717) (0.1122) (0.1294) (0.0947)
lag 1 0.7359∗∗ 0.9662∗∗ 0.9875∗∗ 1.0502∗∗ 1.0595∗∗

(0.0845) (0.0861) (0.0866) (0.0864) (0.0867)
lag 2 0.1261 -0.2035∗ -0.0362 -0.3064∗∗ -0.2521∗∗

(0.105) (0.1202) (0.1217) (0.1253) (0.1259)
lag 3 -0.1512 -0.006 -0.066 0.0883 0.1131

(0.1051) (0.1203) (0.1217) (0.1253) (0.1259)
lag 4 -0.0237 -0.0367 -0.012 -0.0522 -0.0397

(0.0789) (0.0833) (0.0842) (0.0843) (0.0847)
R-squared 0.7035 0.7126 0.8484 0.7484 0.8408

Table 24: Regression results for the CBO output gap , with lags
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SW CPI core CPI PCE core PCE
gap -1.0051∗∗ -0.0248 0.0067 0.0035 0.0172

(0.4293) (0.0433) (0.0263) (0.0334) (0.0232)
intercept 0.6012∗∗ 0.7115∗∗ 0.3251∗∗ 0.4737∗∗ 0.2612∗∗

(0.1071) (0.1648) (0.105) (0.1232) (0.0887)
lag 1 0.773∗∗ 1.002∗∗ 1.0058∗∗ 1.0747∗∗ 1.068∗∗

(0.0861) (0.0867) (0.0865) (0.0864) (0.0863)
lag 2 0.1231 -0.2067∗ -0.04 -0.3094∗∗ -0.2536∗∗

(0.1081) (0.1228) (0.1228) (0.1268) (0.1262)
lag 3 -0.1607 -0.0036 -0.0688 0.0937 0.1147

(0.1082) (0.1228) (0.1228) (0.1268) (0.1262)
lag 4 -0.0373 -0.0461 -0.0127 -0.0655 -0.0445

(0.0812) (0.085) (0.085) (0.0851) (0.0848)
R-squared 0.6854 0.7003 0.8457 0.7423 0.8402

Table 25: Regression results for the unemployment rate , with lags
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The tables below present results for a regression specification that includes for inflation lags and inflation expecta-
tions:

πt = c+ κỹt + ρEπt+1 +

4∑
s=1

γsπt−s + εt

SW CPI core CPI PCE core PCE
gap -1.1389∗∗ -0.0488 -0.0081 -0.016 0.0073

(0.3111) (0.049) (0.0274) (0.0327) (0.022)
inflation expecations 1.0886∗∗ 0.0987 0.1086∗∗ 0.215∗∗ 0.1927∗∗

(0.0952) (0.0984) (0.0378) (0.0591) (0.04)
intercept 0.3695∗∗ 0.5385∗ 0.2741∗∗ 0.2951∗∗ 0.1857∗∗

(0.0812) (0.3089) (0.1166) (0.1355) (0.0876)
lag1 -0.3659∗∗ 0.9746∗∗ 0.8858∗∗ 0.9401∗∗ 0.8238∗∗

(0.1147) (0.0873) (0.0936) (0.09) (0.0948)
lag2 0.2617∗∗ -0.2079∗ -0.0063 -0.2927∗∗ -0.1762

(0.0767) (0.1219) (0.1199) (0.1212) (0.1181)
lag3 -0.2055∗∗ -0.0078 -0.0721 0.0827 0.0875

(0.0759) (0.1219) (0.1194) (0.1212) (0.1171)
lag4 0.0353 -0.0509 -0.0068 -0.1163 -0.0043

(0.0572) (0.0844) (0.0826) (0.0825) (0.079)
R-squared 0.8469 0.7072 0.8506 0.7688 0.8645

Table 26: Regression results for the CBO unemployment gap , with expectations
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SW CPI core CPI PCE core PCE
gap 1.0634∗∗ 0.0822∗ 0.0226 0.0383 0.0076

(0.2599) (0.0416) (0.0236) (0.0284) (0.0191)
inflation expecations 1.0744∗∗ 0.0618 0.1033∗∗ 0.2066∗∗ 0.1884∗∗

(0.0944) (0.0967) (0.0378) (0.0591) (0.0401)
intercept 0.3678∗∗ 0.7088∗∗ 0.3114∗∗ 0.3494∗∗ 0.2103∗∗

(0.0787) (0.3064) (0.1187) (0.1382) (0.09)
lag1 -0.3551∗∗ 0.961∗∗ 0.8831∗∗ 0.9324∗∗ 0.824∗∗

(0.1132) (0.0866) (0.0933) (0.0896) (0.0948)
lag2 0.2629∗∗ -0.2053∗ -0.0057 -0.2917∗∗ -0.1771

(0.0758) (0.1205) (0.1195) (0.1205) (0.118)
lag3 -0.2004∗∗ -0.0078 -0.0709 0.0806 0.0872

(0.0751) (0.1206) (0.119) (0.1205) (0.1171)
lag4 0.0436 -0.0404 -0.0068 -0.1063 -0.0034

(0.0566) (0.0837) (0.0823) (0.0824) (0.0791)
R-squared 0.8503 0.7135 0.8515 0.7715 0.8646

Table 27: Regression results for the CBO output gap , with expectations

SW CPI core CPI PCE core PCE
gap -1.0106∗∗ 0.0026 0.0214 -0.0048 0.0303

(0.303) (0.047) (0.0265) (0.032) (0.0216)
inflation expecations 1.1128∗∗ 0.1424 0.1163∗∗ 0.2187∗∗ 0.198∗∗

(0.0958) (0.0976) (0.0376) (0.059) (0.0396)
intercept 0.3354∗∗ 0.3572 0.2385∗∗ 0.2744∗∗ 0.1753∗∗

(0.079) (0.2931) (0.1091) (0.1283) (0.083)
lag1 -0.3745∗∗ 0.9843∗∗ 0.8803∗∗ 0.9422∗∗ 0.8131∗∗

(0.1159) (0.0871) (0.0936) (0.0901) (0.0945)
lag2 0.2653∗∗ -0.2102∗ -0.0047 -0.293∗∗ -0.1736

(0.0773) (0.1223) (0.1196) (0.1213) (0.1173)
lag3 -0.2082∗∗ -0.0076 -0.0724 0.0835 0.0867

(0.0765) (0.1224) (0.1191) (0.1213) (0.1163)
lag4 0.0359 -0.0535 -0.0056 -0.118 -0.0042

(0.0576) (0.0848) (0.0824) (0.0826) (0.0785)
R-squared 0.8445 0.705 0.8513 0.7684 0.8664

Table 28: Regression results for the unemployment rate , with expectations
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The tables below present results for a regression specification that includes the time series of “endogenous” cost-push
shocks constructed in Section 6.4.2 as a control:

πt = c+ κỹt + CPt + εt

DC CPI core CPI PCE core PCE
cost-push 0.5627∗∗ 2.5545∗∗ 0.4886 2.3948∗∗ 1.1224∗∗

(0.2345) (0.565) (0.4768) (0.4745) (0.4102)
gap -3.7586∗∗ -0.1906∗∗ -0.2175∗∗ -0.0783 -0.0886

(0.6872) (0.0758) (0.064) (0.0637) (0.0551)
intercept 2.0842∗∗ 3.2239∗∗ 2.8559∗∗ 2.6509∗∗ 2.397∗∗

(0.058) (0.1398) (0.118) (0.1174) (0.1015)
R-squared 0.3317 0.2782 0.142 0.2558 0.1275

Table 29: Regression results for the CBO unemployment gap , with CP shock

DC CPI core CPI PCE core PCE
cost-push 0.6059∗∗ 2.5472∗∗ 0.6387 2.4715∗∗ 1.2896∗∗

(0.2604) (0.5964) (0.5145) (0.4983) (0.4333)
gap 2.4282∗∗ 0.1363∗∗ 0.1176∗∗ 0.0369 0.0225

(0.6496) (0.0682) (0.0588) (0.057) (0.0495)
intercept 2.0936∗∗ 3.2425∗∗ 2.8535∗∗ 2.6467∗∗ 2.3802∗∗

(0.0633) (0.145) (0.1251) (0.1212) (0.1054)
R-squared 0.2458 0.2635 0.0852 0.2484 0.1086

Table 30: Regression results for the CBO output gap , with CP shock

DC CPI core CPI PCE core PCE
cost-push 0.6321∗∗ 2.8683∗∗ 0.8598∗ 2.6413∗∗ 1.3999∗∗

(0.2357) (0.5706) (0.4905) (0.4722) (0.4102)
gap -3.6783∗∗ -0.0954 -0.1038 0.006 0.0063

(0.731) (0.0811) (0.0697) (0.0671) (0.0583)
intercept 2.0911∗∗ 3.1954∗∗ 2.8214∗∗ 2.6213∗∗ 2.3637∗∗

(0.0594) (0.1439) (0.1237) (0.1191) (0.1034)
R-squared 0.309 0.2462 0.0706 0.2456 0.1071

Table 31: Regression results for the unemployment rate , with CP shock
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The tables below present results for a regression specification that includes both the time series of “endogenous”
cost-push shocks constructed in Section 6.4.2 and oil price inflation:

πt = c+ κỹt + CPt + πoilt + εt

SW CPI core CPI PCE core PCE
cost-push 0.2874 1.1895∗∗ 0.99∗ 1.4128∗∗ 1.3585∗∗

(0.265) (0.5943) (0.5409) (0.5123) (0.4707)
gap -3.8932∗∗ -0.2211∗∗ -0.2062∗∗ -0.1003∗ -0.0833

(0.6795) (0.0698) (0.0635) (0.0602) (0.0553)
intercept 2.0185∗∗ 2.8983∗∗ 2.9754∗∗ 2.4167∗∗ 2.4533∗∗

(0.065) (0.1458) (0.1327) (0.1257) (0.1155)
oil prices 0.0034∗∗ 0.0167∗∗ -0.0062∗ 0.012∗∗ -0.0029

(0.0016) (0.0036) (0.0033) (0.0031) (0.0028)
R-squared 0.3581 0.399 0.1692 0.3472 0.1358

Table 32: Regression results for the CBO unemployment gap (CP shock and oil prices)

SW CPI core CPI PCE core PCE
cost-push 0.3912 1.294∗∗ 1.1824∗∗ 1.5569∗∗ 1.5453∗∗

(0.291) (0.6217) (0.5707) (0.5302) (0.4871)
gap 2.4623∗∗ 0.1454∗∗ 0.1137∗ 0.0436 0.0207

(0.6454) (0.0632) (0.058) (0.0539) (0.0495)
intercept 2.0396∗∗ 2.9277∗∗ 2.99∗∗ 2.417∗∗ 2.4444∗∗

(0.0713) (0.1522) (0.1397) (0.1298) (0.1193)
oil prices 0.0027 0.016∗∗ -0.0069∗∗ 0.0116∗∗ -0.0033

(0.0017) (0.0036) (0.0033) (0.0031) (0.0028)
R-squared 0.2632 0.3741 0.1199 0.3346 0.1192

Table 33: Regression results for the CBO output gap (CP shock and oil prices)

SW CPI core CPI PCE core PCE
cost-push 0.3818 1.5809∗∗ 1.4042∗∗ 1.7135∗∗ 1.6665∗∗

(0.2666) (0.6055) (0.5539) (0.5115) (0.4689)
gap -3.7784∗∗ -0.119 -0.0938 -0.011 0.0112

(0.724) (0.0753) (0.0689) (0.0636) (0.0583)
intercept 2.0301∗∗ 2.8814∗∗ 2.9542∗∗ 2.3951∗∗ 2.4287∗∗

(0.0667) (0.1515) (0.1386) (0.128) (0.1173)
oil prices 0.0031∗ 0.0161∗∗ -0.0068∗∗ 0.0116∗∗ -0.0033

(0.0016) (0.0037) (0.0034) (0.0031) (0.0029)
R-squared 0.3318 0.3584 0.1041 0.3308 0.1181

Table 34: Regression results for the unemployment rate (CP shock and oil prices)
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E5: Rolling regressions

The figures below provide additional detail for the rolling regressions introduced in Section 7.3. They plot estimated
coefficients for each 20-year window (with confidence intervals), and average R-squareds over the sample. The years
on the x-axis correspond to the middle of the estimation window.

We report results for our preferred specification with inflation expectations, as in equation (129). Appendix F6 in
this Supplemental Material reports results for alternative specifications and alternative measures of the gap on the
right hand side.

πt = κỹt + ρEπt+1 + εt (129)
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E6: Rolling regressions - more detail

The figures below plot rolling regression coefficients and R-squareds for the baseline specification

πt = κỹt + εt

using different measures of the output gap on the right hand side (CBO unemployment gap, CBO output gap and
unemployment rate).
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The figures below plot rolling regression coefficients and R-squareds for a regression of output gap levels on inflation
changes:

πt − πt−1 = κỹt + εt

using different measures of the output gap on the right hand side (CBO unemployment gap, CBO output gap and
unemployment rate).
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