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Monitoring employee job performance is a fundamental task in personnel 

management. In particular, understanding how performance improves with 

experience—the “returns to experience”—is critical to decisions about hiring and 

turnover, investments in employee training, and others. Consider the choice 

between retaining a current employee or replacing that employee with a novice new 

hire; the optimal choice depends not simply on the current performance of the two 

individuals, but rather on each person’s expected future performance over time. 

However, isolating the causal effects of experience is complicated by imperfect and 

incomplete performance measures, and selection on performance through hiring 

and turnover decisions.  

Supervisor ratings of observed performance—a ubiquitous job performance 

measure—present a particular challenge when measuring returns to experience. For 

example, the relative subjectivity of supervisor ratings creates scope for leniency 

bias (Prendergast 1999), and supervisors’ leniency bias may itself depend on the 

employee’s years of experience. Subjective supervisor ratings are quite common in 

public-sector jobs where organizational objectives are diffuse and often difficult to 

quantify. We examine the case of classroom teachers, and the most common 

performance measure for public-school teachers: ratings by the school principal 

based on classroom observations. 

Teacher personnel management is central to education policy. Teacher 

salaries dwarf other public-school expenses, consuming three out of every five 

dollars, and teachers’ contributions to student academic and social development 

dwarf other contributions by schools.  

Understanding the causal effects of experience on teaching—as measured 

by observation ratings—can improve teacher policy in two ways. First, as an input 

to developing new policy options. Over the last two decades, scholars have 

produced an expansive literature on how to measure teacher performance at a given 

point in time. But there remains comparatively little evidence on how teaching 
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skills improve. Consequently, policymakers have struggled to develop policies or 

practices which consistently yield improvements in teaching effectiveness.1 

Second, as an input to implementing existing policies. Consider, for example, 

school systems where tenure and salary decisions are now linked to observation 

ratings. The optimal rules for granting tenure or setting salaries depend critically 

on expected performance over time, not just at a single point in time.  

Our empirical focus in this paper is estimating the returns to experience in 

teaching using classroom observation ratings. We define “returns to experience” as 

the causal effect of one additional year of teaching experience on teacher 

performance, estimating returns separately for the first year of experience, second 

year, third year, etc. We define experience broadly to include whatever professional 

experiences occur over the course of a teacher’s first year (or second year, etc.). 

Our primary objective is evaluating claims about returns to experience for (a) 

performance of the teaching practice inputs which the observation rubrics are 

designed to measure. But we also consider inferences about returns to experience 

on (b) broader output-based measures of teacher performance, like teachers’ value-

added contributions to student achievement scores. The extent to which experience 

affects (a) and (b) differently partly motivates our work, because input-based 

measures are much more common in schools than output-based measures. 

We use a difference-in-differences framework to make explicit the causal 

inference features of the returns-to-experience estimates. Our preferred estimates 

come from applying a diff-in-diff strategy proposed by de Chaisemartin and 

D’Haultfœuille (2020, 2022a). Briefly, the first difference is the observed change 

in a teacher’s observation rating, ��̅�𝑠𝑗𝑗𝑗𝑗 − �̅�𝑠𝑗𝑗,𝑗𝑗−1�, from year (𝑡𝑡 − 1) to 𝑡𝑡 when her 

experience changes from (𝑒𝑒 − 1) to 𝑒𝑒. The second difference is between early-

 
1 For reviews of the related research literature see Goe, Bell, and Little (2008), Kane, Kerr, and 
Pianta (2014), Jackson, Rockoff, and Staiger (2014), Garrett, Citkowicz, and Williams (2019), 
James and Wyckoff (2020), and Taylor (2023). 
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career (treated) teachers and veteran (comparison) teachers. These estimates are the 

solid lines in Figure 1 using data from Tennessee and the Washington, DC Public 

Schools (DCPS).  The identifying assumptions require: First, that, on average, 

veteran (comparison) teachers no longer experience returns to an additional year of 

experience. Second, that the process, explicit or implicit, that maps true 

performance to ratings does not depend on a teacher’s years of experience.  

We find that teacher job performance—as measured by classroom 

observation ratings—improves by roughly one standard deviation over the first ten 

years of a teaching career, as shown in Figure 1. One-third of the growth comes in 

just the first year. The improvements measured by observation ratings are 

somewhat larger in magnitude compared to improvements measured by teachers’ 

contributions to student achievement scores. In our sample, value-added improves 

by 0.10 student standard deviations over the first ten years, as shown in Figure 2. 

One teacher standard deviation in value-added is between 0.10-0.20 student 

standard deviations. Still, this pair of estimates of the returns to experience—one 

standard deviation in ratings and 0.10 in value-added—is consistent with prior 

cross-sectional estimates of the ratings-to-value-added relationship (Kane et al. 

2011, 2013, Araujo et al. 2016, Burgess et al. 2023). 

The paper goes on to evaluate several threats to the two identifying 

assumptions. Most threats are reasons why observation ratings might rise (or fall) 

over time even if a teacher’s true performance is unchanged. One simple example 

is when changes are made to the scoring rubric, as happened in DCPS in 2017. As 

we discuss in detail, changes to the rubric (or to rater training, or to rater-to-teacher 

matching rules) do not necessarily threaten causal inferences about returns to 

experience estimates. Veteran teachers—the diff-in-diff comparison group—

provide an estimate of the effect of such changes under the first assumption above, 

and that estimate is a reasonable counterfactual for early-career teachers under the 

second assumption above. We use similar reasoning, combined with empirical 
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evidence where available, to address other threats: rater leniency bias, raters using 

information from outside the observation, changes in incentives that distort teacher 

effort, manipulation behaviors by teachers which raise scores but not performance, 

the effect of job changes, and others. We find little evidence that these potential 

threats compromise a causal interpretation of our estimates. 

Our preferred estimation method is new to the literature on teacher returns 

to experience. Thus, we compare our estimates to estimates which use the 

conventional strategy. That strategy is also a difference-in-differences strategy 

using a two-way fixed effects estimator, and both strategies require the same two 

main identifying assumptions. However, the conventional two-way FE strategy 

requires additional assumptions.  

This is the first paper, to our knowledge, that studies the causal returns to 

experience reflected in supervisor ratings of observed performance. That 

contribution to the literature comes from combining explicit causal inference 

reasoning with panel data on performance ratings. Many prior papers have 

contributed causal estimates of the returns to experience using other measures of 

performance, for example, wages (e.g., Angrist 1990, Altonji and Williams 1992, 

Grogger 2009) or outputs like teacher value-added to student achievement scores 

(e.g., Rockoff 2004, Rivkin, Hanushek, and Kain 2005, Ost 2014).  

Our focus is teachers and there is already a large literature on the returns to 

experience in teaching (see Taylor 2023 for a review). Still, we contribute to that 

literature in three ways. First, our paper provides a thorough discussion of causal 

inference considerations—identification strategies, assumptions, and threats—and 

a new estimation strategy. Claims of having estimated “returns to experience” are 

causal claims, but the contemporary tools of causal inference are mostly implicit 

(or entirely absent) in prior papers. We make explicit the difference-in-differences 

nature of returns to experience estimates, which clarifies identifying assumptions 

and threats. We further highlight how the typical estimator is a two-way FE 
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estimator, which will be biased if the returns to experience change over time or the 

distribution of experience changes over time. Finally, we demonstrate a new 

estimation strategy for the returns to experience in teaching. That new strategy 

incorporates recent developments in difference-in-differences methods (for reviews 

see de Chaisemartin and D’Haultfœuille 2022b, Roth et al. 2022), and avoids the 

potential bias of the common two-way-FE strategy. 

Second, we contribute estimates of the returns to experience using a novel 

teacher performance measure: classroom observation ratings. Existing estimates of 

the returns to experience in teaching nearly all use value-added measures of 

performance. Our estimates of how observation ratings (inputs) change with 

experience complement estimates of how value-added scores (outputs) change, in 

part by contributing to efforts to understand the mechanisms behind teachers’ 

improvements in value added (Kraft and Papay 2014, Ost 2014, Atteberry, Loeb, 

and Wyckoff 2015). Two other papers also estimate returns to experience using 

observation ratings: Kraft, Papay, and Chi (2020) and work concurrent to ours by 

Laski and Papay (2020). Those two papers focus on understanding how the returns 

to experience vary across teachers, schools, etc. By contrast, our paper focuses on 

whether (or under what circumstances) the estimates should be interpreted as the 

causal effects of experience. 

Third, we explain and examine additional identifying assumptions and 

threats specific to the observation ratings case. These additional considerations are 

not relevant to the test-score value-added case. Our examination includes several 

novel empirical tests relevant to identification threats; tests which can be repeated 

in other settings.2  

A final, broader contribution of our paper is to current policy debates 

involving teacher classroom observations ratings. First, most of our empirical 

 
2 Some of the estimate in Kraft, Papay, and Chi (2020) and Laski and Papay (2020) are also relevant 
to identification threats, though neither paper discusses causal inference explicitly. 
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results are framed by causal inference threats. However, those same results are also 

relevant to broader concerns about measurement in classroom observations, and in 

some cases our tests provide new evidence. For example, rater leniency bias (Kraft 

and Gilmour 2017, Steinberg and Kraft 2017), the influence of the students in the 

classroom (Campbell and Ronfeldt 2018), unintended effects of teacher-rater 

pairings (Chi 2021), among other concerns (Cohen and Goldhaber 2016, Grissom 

and Bartanen 2019). Second, effective policy decisions depend on establishing a 

causal relationship between a (proposed) policy and a valued outcome. This paper 

provides an important foundation for policymakers and policy researchers who 

employ observed performance ratings to better understand teacher development 

policy.  

 

1. Data and setting  

Both DCPS and Tennessee maintain panel data on teachers, including 

ratings from classroom observations over several years. In DCPS, the panel begins 

with the start of its current evaluation system, IMPACT, in 2009-10, and we use 

data through 2018-19. Tennessee’s current evaluation system began in 2011-12, 

and our data run from that start date through 2018-19. In both cases the data include 

item-level ratings for several specific teaching tasks evaluated in a given 

observation visit. Teachers in tested grades and subjects can be linked to their 

students and achievement scores. Characteristics of the teachers and their students 

in our data are summarized in Table 1. 

1.1 Features common to both settings 

The DCPS and Tennessee settings share many features. In both locations, 

all teachers, regardless of experience level, are evaluated every school year by 

trained observers. The resulting observation ratings are a highly-weighted 

component, among a larger set of evaluation measures including value-added 
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scores which measure teacher contributions to student achievement.3 The larger 

evaluation systems are used to identify exemplary teachers, those in need of 

additional support or training, or individuals who will be dismissed. During most 

of the period we study, teachers in DCPS were observed five times per year. After 

a change in the rubric in 2017, teachers were observed up to three times per year 

depending on experience and performance. In Tennessee, the number of 

evaluations per year varies according to teachers’ prior performance and licensure 

status, but teachers are typically evaluated multiple times per year. The median 

novice teacher in Tennessee receives 2.5 formal observations and the median 

novice teacher in DCPS receives five formal observations.  

While the two systems use different observation rubrics, both rubrics assess 

similar tasks and teaching practices, and both rubrics have roots in Danielson’s 

Framework for Teaching (1997). Tennessee uses the TEAM (Tennessee Educator 

Acceleration Model) evaluation rubric.4 The TEAM rubric’s 19 items are divided 

into three categories of skills: instruction, planning, and environment. Each 

category is comprised of multiple items for teaching tasks. Ratings for each item 

range from 1-5 (5 = significantly above expectations, 1 = significantly below 

expectations). During most of the period of our analysis, DCPS used an observation 

rubric called the Teaching and Learning Framework (TLF). The TLF rubric has a 

1-4 rating scale (4 = highly effective, 1 = ineffective) for items measuring nine 

teaching tasks.5 In 2017, DCPS transitioned to the Essential Practices (EP) 

observation rubric, which covers similar skills to the TLF, but with more concise 

 
3 In DCPS classroom observations account for 75 percent of overall IMPACT scores for the more 
than 80 percent of teachers without a value-added score. For teacher with value added as part of 
their evaluation, observations account for between 30 and 40 percent depending on the year. In 
Tennessee, classroom observations are 50 and 85 percent of the overall TEAM score for teachers 
with and without value-added scores, respectively.  
4 Not all Tennessee districts use the TEAM rubric, but our analysis in this paper uses only data from 
the TEAM rubric. 
5  The first seven tasks align generally with the domain of instruction, while the final two align with 
the domains of classroom management and environment. 
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definitions for each related task and explicit alignment to the Common Core State 

Standards.  

One frequent, but potentially misleading, criticism of such classroom 

observation systems is that the scores produced have little variation, with most 

teachers scoring in one or two top categories (Kraft and Gilmour 2017, Weisberg 

et al. 2009). This criticism, and most policy discussions, focus on the final end-of-

year “summative” scores which end up in a teacher’s personnel file. These final 

scores lack variation in part because final scores are rounded off to integer values. 

In this paper we use observation scores that average across many item ratings 

(several items and several observations of a given item), and those scores vary 

meaningfully, with a relatively Gaussian density (as shown in Appendix Figure 

A1).  

1.2 Differences between the two settings  

While both evaluation systems share many features, there are a number of 

useful differences. First, both places use trained school administrators as raters 

(e.g., principals and assistant principals, or other instructional leaders). However, 

until a change in 2017, in DCPS teachers were also observed and rated by “master 

educators”—specialized observers external to the school with subject- and grade-

specific expertise. Two of each teacher’s annual observations were conducted by a 

master educator.  

Second, the two systems have different incentives and consequences 

associated with teachers’ performance scores. While both DCPS and Tennessee 

might be considered high-stakes evaluation systems, DCPS’s has notably higher 

stakes. In DCPS, teachers with low performance (a final annual score below 

effective) are subject to involuntary dismissal. Prior work documents that these 

incentives influences teachers’ behavior at work and their decision about remaining 

at DCPS (Dee and Wyckoff 2015, Dee, James, and Wyckoff 2021). There are also 

rewards in DCPS for high performance. Teachers who demonstrate exceptional 
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performance (a final annual score of highly effective) are eligible for substantial 

bonuses and, if they continue to perform well, large base pay increases. In 

Tennessee, to earn tenure a teacher must receive a final composite score of “above 

expectations” or higher (roughly the top two-thirds of teachers) for two consecutive 

years, after working at least five years total. Tenure can be revoked based on 

evaluation scores but that is rare: a teacher must score “below expectations” or 

lower (roughly the bottom 5 percent of teachers) for two consecutive years, and this 

rule does not apply to teachers who were tenured before 2011-12. 

Finally, in addition to the specifics of their evaluation systems, DCPS and 

Tennessee differ from each other in size and many other characteristics. TEAM is 

used by nearly the entire state of Tennessee, and therefore includes teachers and 

schools across a range of settings and demographics. Each year the Tennessee data 

include roughly 84,000 teachers, of whom 5,500 are in their first-year teaching, 

with 450,000 students at 1,350 schools. DCPS, on the other hand is an urban 

majority-minority and low-income district, with approximately 3,500 teachers (290 

novice) at 125 schools serving 46,000 students each year.   

1.3 Additional data 

In addition to classroom observation ratings, we have access to other data 

for teachers and students. For DCPS and Tennessee teachers, we know when they 

entered teaching, their experience in teaching, and other demographic 

characteristics. We have information regarding the observation raters and timing of 

the observation visits. In both settings we have the usual information regarding each 

teacher’s students, for tested subjects and grades, including eligibility for free or 

reduced-price lunch, race and ethnicity, and standardized achievement scores.  

Additionally, DCPS began using student surveys in 2016-17 as teacher 

performance measures. This measure is adapted from the Tripod survey (Ferguson 

and Danielson 2015), which ask students’ questions about their teachers’ practice. 
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An example question: “When explaining new ideas or skills in class, my teacher 

tells us about common mistakes that students might make.”  

 

2. Returns to experience estimates 

2.1 Estimation methods 

We estimate the “returns to experience”—the improvement in performance 

caused by additional experience—using a difference-in-differences strategy. Our 

measure of performance, �̅�𝑠𝑗𝑗𝑗𝑗, is the classroom observation score for teacher 𝑗𝑗 in 

school year 𝑡𝑡. At the start of year 𝑡𝑡, teacher 𝑗𝑗 has 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 years of prior teaching 

experience. Using these inputs, we apply the diff-in-diff estimator proposed by de 

Chaisemartin and D’Haultfœuille (2020, 2022a). Later in Section 2.4 we compare 

this strategy to the more-common estimation approach in the literature. 

Let 𝛿𝛿𝑒𝑒 be the improvement in performance caused by gaining the 𝑒𝑒th year 

of teaching experience. Our estimate of 𝛿𝛿𝑒𝑒 is: 

 

𝛿𝛿𝑒𝑒 =
∑ 𝑁𝑁𝑒𝑒𝑗𝑗𝑗𝑗 𝛿𝛿𝑒𝑒𝑗𝑗
∑ 𝑁𝑁𝑒𝑒𝑗𝑗𝑗𝑗

 

𝛿𝛿𝑒𝑒𝑗𝑗 =
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𝑗𝑗:𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗,𝑡𝑡=𝑒𝑒,

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗,𝑡𝑡−1=𝑒𝑒−1 ⎦
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� 
(1) 

 

where 𝛿𝛿𝑒𝑒𝑗𝑗 is simply the 𝛿𝛿𝑒𝑒 effect for a specific school year 𝑡𝑡. The number of treated 

teachers is 𝑁𝑁𝑒𝑒𝑗𝑗 and comparison teachers is 𝑀𝑀𝑒𝑒𝑗𝑗. Because a teacher, 𝑗𝑗, may contribute 

to several 𝛿𝛿𝑒𝑒, our standard error estimates correct for clustering at the teacher level.6 

 
6 In practice, to facilitate standard error estimation, we estimate the many individual �̂�𝛿𝑒𝑒𝑗𝑗 terms 
simultaneously in one system of regressions, stacking together one regression for each �̂�𝛿𝑒𝑒𝑗𝑗. The 
stack includes one regression (synonymously, one layer) for each unique combination of 𝑒𝑒 and 𝑡𝑡, 
where 𝑒𝑒 ∈ {1,2, … , �̅�𝑒} and 𝑡𝑡 is a school year in our data. Each regression in the stack has the same 
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The treatment is gaining the 𝑒𝑒th year of experience. Thus, teacher 𝑗𝑗 is in the 

treated sample if she had 𝑒𝑒 years of experience at the start of school year 𝑡𝑡, but only 

(𝑒𝑒 − 1) years of experience at the start of school year (𝑡𝑡 − 1). Inside the brackets 

on the left is the average first-difference in observation score, �̅�𝑠𝑗𝑗𝑗𝑗, for the sample of 

treated teachers. That first-difference is the observed change in a teacher 𝑗𝑗’s score 

between year (𝑡𝑡 − 1) to 𝑡𝑡 when her experience changes from (𝑒𝑒 − 1) to 𝑒𝑒. Still, a 

given teacher’s scores may change over time for reasons unrelated to her own 

experience, which motivates the second difference between treated and comparison 

teachers. 

Our comparison sample is veteran teachers—teachers who have at least �̅�𝑒 

years of experience. One identifying assumption, which we formalize below, is that 

past �̅�𝑒 years of teaching experience, there are no longer any returns to experience 

for the average teacher. Inside the brackets on the right is the average first-

difference for the veteran comparison teachers. Any observed change from (𝑡𝑡 − 1) 

to 𝑡𝑡 among veterans is, by assumption, unrelated to experience and differenced out. 

Our main estimates set �̅�𝑒 = 9, but our estimates are robust to higher values of �̅�𝑒 as 

we show later. 

Each 𝛿𝛿𝑒𝑒𝑗𝑗 estimate uses data from just two school years: one treated year, 𝑡𝑡, 

and one pre year, (𝑡𝑡 − 1). A teacher’s performance in year 𝑡𝑡 is affected by her 𝑒𝑒th 

year of experience. A teacher’s performance in year (𝑡𝑡 + 1) is also affected by her 

𝑒𝑒th year of experience, but also affected by her (𝑒𝑒 + 1)th year of experience. Thus, 

we observe the marginal effect of the 𝑒𝑒th year of experience for one school year, 𝑡𝑡, 

after which the 𝑒𝑒th year is confounded with further experience gains. 

 
simple specification, Δ�̅�𝑠𝑗𝑗𝑗𝑗 = 𝛼𝛼 + 𝛿𝛿𝑇𝑇𝑗𝑗𝑗𝑗 + 𝜖𝜖𝑗𝑗𝑗𝑗, but the estimation sample is limited to only teacher-by-
year observations, 𝑗𝑗𝑡𝑡, where either (i) 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗,𝑗𝑗 = 𝑒𝑒 and 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗,𝑗𝑗−1 = 𝑒𝑒 − 1, or (ii) 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗,𝑗𝑗−1 ≥ �̅�𝑒. The 
indicator variable 𝐷𝐷𝑗𝑗𝑗𝑗 = 1 for group (i) and = 0 for group (ii). When stacked together, the 
specification becomes: Δ�̅�𝑠𝑗𝑗𝑗𝑗 = 𝛼𝛼𝑒𝑒𝑗𝑗 + 𝛿𝛿𝑒𝑒𝑗𝑗𝑇𝑇𝑗𝑗𝑗𝑗 + 𝜖𝜖𝑗𝑗𝑗𝑗. To obtain �̂�𝛿𝑒𝑒 we take the weighted average of �̂�𝛿𝑒𝑒𝑗𝑗 
terms as shown in Equation 1. This stacked approach allows us to correct for clusters (teachers) 
across regressions.   
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The outcome variable, �̅�𝑠𝑗𝑗𝑗𝑗, is teacher 𝑗𝑗’s classroom observation score for 

school year 𝑡𝑡.  More precisely, �̅�𝑠𝑗𝑗𝑗𝑗 is the average of several task-specific scores, 

�̅�𝑠𝑗𝑗𝑗𝑗 = 1
𝐾𝐾
∑ 𝑠𝑠𝑘𝑘𝑗𝑗𝑗𝑗𝐾𝐾
𝑘𝑘=1 . The Tennessee rubric includes 𝐾𝐾 = 19 items and DCPS 𝐾𝐾 = 9. 

Our focus on the average observation score is motivated by an empirical constraint: 

While the tasks being scored are distinct—for example “teacher content 

knowledge” and “managing student behavior”—in practice the scores across tasks 

are highly correlated. In our Tennessee data, the mean correlation between items is 

0.53 with a standard deviation of 0.05; in a factor analysis the first factor explains 

95 percent of the variation in item scores. This correlation of items is common in 

classroom observation rubric scores (e.g., Kane et al. 2011). The �̅�𝑠𝑗𝑗𝑗𝑗 scores are 

scaled in teacher standard deviation units, within jurisdiction (Tennessee or DC) by 

year cells.7 

2.2 Main results 

Teacher performance measured in classroom observations improves with 

experience. In Figure 1 the solid line plots our returns to experience estimates from 

the difference-in-differences strategy in Equation 1. Observation scores are scaled 

in standard deviation units, and, by construction, the zero line on the y-axis is the 

average score among veteran teachers, 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 ≥ �̅�𝑒 = 9. The vertical lines mark 

cluster-corrected 95 percent confidence intervals. 

Just one year of teaching experience improves performance by one-quarter 

to one-third of a standard deviation. Over the first ten years of a teaching career, 

performance in observations improves one standard deviation. The patterns in DC 

 
7 We begin with the item-by-observation-visit data recorded by observers in the original rubric units 
(integer scores 1-4 in DCPS and 1-5 in Tennessee). Separately for DCPS and Tennessee: (i) We 
standardize the item-by-visit ratings so that, by school year, each item is mean 0, standard deviation 
1. (ii) For each teacher 𝑗𝑗 by item by school year, we calculate the school-year average of the 
standardized item-by-visit ratings. We then re-standardize the item-average scores. (iii) For each 
teacher 𝑗𝑗 by school year, we average her item-average scores to create the overall average score, �̅�𝑠𝑗𝑗𝑗𝑗. 
Finally, we again standardize the overall average scores by year.  
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and Tennessee are quite similar. What are the educational or economic 

consequences of these gains? Improvements in teaching inputs contribute to 

outputs, including student learning which we can measure with teachers’ value 

added to student test scores. There is evidence that teachers’ test-score value-added 

contributions translate to better longer-run outcomes, including college going and 

labor market success (Chetty, Friedman, and Rockoff 2014). However, there are 

currently no estimates linking observation scores to longer-run student outcomes. 

The pattern in Figure 1, using classroom observation ratings, is similar to 

the pattern of returns to experience for teacher value added to student achievement 

scores. In Figure 2 the solid line plots estimates where the performance measure is 

a teacher’s value-added contribution to student test scores. We first obtain value-

added scores, �̂�𝜇𝑗𝑗𝑗𝑗, then apply the estimator in Equation 1 substituting �̂�𝜇𝑗𝑗𝑗𝑗 for �̅�𝑠𝑗𝑗𝑗𝑗.8 

In Figure 2, the y-axis, �̂�𝜇𝑗𝑗𝑗𝑗, is measured in student standard deviation units, and the 

sample is limited to teachers of grades 4-8 in math and English language arts. The 

pattern for Tennessee in Figure 2 matches estimates from several other places (see 

Taylor 2023 for a review). The DC estimates are much nosier but consistent with 

the typical pattern. In both cases teacher value-added improves by about 0.10 

student test-score standard deviations over the first ten years of teaching.9  

The improvements measured by observation ratings are somewhat larger in 

magnitude compared to improvements measured by value added. One teacher 

standard deviation in value-added is between 0.10-0.20 student test-score standard 

deviations. There are many potential explanations for the difference, given the 

variety of teacher skills and tasks not captured by observation scores or by test-

score value-added. Still, there are several existing cross-sectional estimates of the 

relationship between observation ratings and value-added (Kane et al. 2011, 2013, 

 
8 Appendix B provides details of our value-added estimation methods. 
9 Additionally, Appendix Figure A2 reports results using student survey measures of teacher 
performance, and again the pattern of returns to experience is quite similar. 
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Araujo et al. 2016, Burgess et al. 2023). In those estimates a one standard deviation 

increase in observation ratings predicts a 0.05-0.11 increase in value-added. Our 

pair of estimates of the returns to experience, Figures 1 and 2, are quite consistent 

with those prior cross-sectional estimates. 

2.3 Causal inference 

The difference-in-differences setup provides a familiar framework for 

evaluating causal claims about the estimates in Figure 1. Stated in general terms, 

the identifying assumption in this case is: Any change over time we observe in 

veteran (comparison) teachers’ scores is the same change we would see in early-

career (treated) teachers’ scores if there were no returns to experience. We can 

clarify the identifying assumption further with the help of a simple conceptual 

framework.  

2.3.1 Observation scores and true performance 

A teacher’s job involves many tasks—learning content, planning lessons, 

asking questions in class, responding to misbehavior, grading, communicating with 

parents, any many more. Each of those tasks produces some input to the production 

of student achievement or other goals of schooling. Let 𝜃𝜃𝑘𝑘 measure true 

performance of task 𝑘𝑘. Higher performance is synonymous with producing more or 

higher-quality task 𝑘𝑘 inputs. 

Classroom observation rubrics are designed to measure task performance, 

𝜃𝜃𝑘𝑘, at least for some subset of a teacher’s tasks. Rubrics are not designed to measure 

outcomes like student achievement. For example, observers are asked to score the 

nature and frequency of questions teachers ask students, but observers are not asked 

to assess whether these questions generated student learning. Observation scores 

are also sometimes described as measures of a teacher’s skills. But an observation 

score is a function of both skills and effort, thus we prefer describing those scores 

as measures of performance. 
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Still, classroom observations are an imperfect way to measure performance. 

An observation score, 𝑠𝑠𝑘𝑘, is inevitably some combination of true performance, 𝜃𝜃𝑘𝑘, 

and other factors unrelated to performance, 𝜈𝜈𝑘𝑘. For exposition we assume: 

𝑠𝑠𝑘𝑘 = 𝑔𝑔(𝜃𝜃𝑘𝑘, 𝜈𝜈𝑘𝑘) = 𝜃𝜃𝑘𝑘 + 𝜈𝜈𝑘𝑘 (2) 

Those other factors, 𝜈𝜈𝑘𝑘, include much more than just classical measurement error. 

Even as the number of observations grows, features of the evaluation process will 

create some difference between 𝐸𝐸[𝑠𝑠𝑘𝑘] and 𝐸𝐸[𝜃𝜃𝑘𝑘]. First, 𝜈𝜈𝑘𝑘 includes explicit features 

of the evaluation process, for example, the rubric itself, how evaluators are trained, 

how evaluators are assigned to teachers, incentives attached to scores. Such explicit 

features are (mostly) controllable by those designing and implementing the 

evaluation. But 𝜈𝜈𝑘𝑘 also includes less-explicit less-controllable features, for 

example, the behaviors teachers or evaluators choose in response to the explicit 

features. 

2.3.2 Identifying assumptions 

Interpreting Figure 1 as the returns to experience—the causal effect of 

teaching experience on true task performance—requires two identifying 

assumptions. Assumption 1: Factors which contribute to observation scores but are 

unrelated to performance, 𝜈𝜈𝑘𝑘 in Equation 2, do not depend on teaching experience. 

Specifically, 𝐸𝐸�𝜈𝜈𝑘𝑘𝑗𝑗𝑗𝑗|𝑘𝑘, 𝑡𝑡, 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� = 𝐸𝐸�𝜈𝜈𝑘𝑘𝑗𝑗𝑗𝑗|𝑘𝑘, 𝑡𝑡�. This assumption requires that if an 

early-career and a veteran teacher both have the same true task performance, 𝜃𝜃𝑘𝑘, 

they will have the same observation score, 𝑠𝑠𝑘𝑘. Assumption 2: True performance is 

not changing over time, on average, in the comparison group of teachers. 

Specifically, 𝐸𝐸�𝜃𝜃𝑘𝑘𝑗𝑗𝑗𝑗 − 𝜃𝜃𝑘𝑘𝑗𝑗(𝑗𝑗−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 ≥ �̅�𝑒� = 0.  

The importance of a comparison group is shown by stating the assumption 

that would replace Assumption 2 in the absence of a comparison group. Assumption 

3: The 𝜈𝜈𝑘𝑘 factors do not change over time. Specifically, 𝐸𝐸�𝜈𝜈𝑘𝑘𝑗𝑗𝑗𝑗|𝑘𝑘, 𝑡𝑡, 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� =

𝐸𝐸�𝜈𝜈𝑘𝑘𝑗𝑗𝑗𝑗|𝑘𝑘�. If we used only early-career teachers’ data, we could not separate the 
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returns to experience from changes in 𝜈𝜈𝑘𝑘 over time, because 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 and 𝑡𝑡 are 

colinear within teacher. In Section 3 we discuss several different substantive threats 

to these identifying assumptions, but some of the quite-plausible threats are known 

changes in 𝜈𝜈𝑘𝑘 over time. 

These are the assumptions required for claims about performance of the 

teaching tasks which classroom observations are designed to measure. We might 

also be interested in claims about other aspects of teacher performance, like 

teachers’ value-added to student achievement scores. Imagine a production process 

for student achievement; some of the inputs will be the teaching tasks described in 

an observation rubric. However, to make any inference from observation scores to 

value-added would require a much better understanding of that production process 

than currently exists.10 Later we provide some new empirical evidence relevant to 

that broader inference.  

2.4 Alternative estimation methods 

Our estimation methods, described in Section 2.1, are new to the literature 

on returns to experience in teaching. Here we compare our estimation strategy to 

the conventional estimation strategy—the strategy which, to date, has been most 

common in that literature (see Taylor 2023 for a review).11 The conventional 

strategy is also a difference-in-differences strategy, but using a two-way fixed 

effects estimator, though it is not often described in those terms. Both strategies 

 
10 The literature does include many estimates of the correlation between observation scores and 
teacher value-added, which is typically much less than 0.50. In our data that correlation is 0.38 for 
Tennessee and 0.30 for DCPS. Appendix Table A1 reports on these estimates in detail. However, 
0.38 and 0.30 are likely to underestimate the true correlation. First, there is the common attenuation 
because of measurement error. Second, the simple mean �̅�𝑠𝑗𝑗𝑗𝑗 gives equal weight to each task 𝑘𝑘, but 
it seems unlikely the elasticity of value-added, 𝜇𝜇, with respect to 𝜃𝜃𝑘𝑘 is equal for all 𝑘𝑘. If we knew 
the production function for student achievement, we would likely choose un-equal weights. 
11 Though the conventional strategy is common, in nearly all prior papers the performance measure 
is teachers’ value-added contributions to student test scores. 
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require the same core set of identifying assumptions, but the conventional strategy 

requires additional assumptions about effect heterogeneity.  

In the conventional approach, estimates of the returns to experience come 

from a least-squares regression. The basic specification is: 

�̅�𝑠𝑗𝑗𝑗𝑗 = ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� + 𝜆𝜆𝑗𝑗 + 𝜋𝜋𝑗𝑗 + 𝜀𝜀𝑗𝑗𝑗𝑗 (3) 

where the outcome is a measure of teacher performance, �̅�𝑠𝑗𝑗𝑗𝑗 in our case.  

Selective attrition is a fundamental threat to any returns-to-experience 

estimate. Attrition from teaching is likely negatively correlated with performance. 

In response to that threat nearly all estimation strategies focus on variation within 

individual teachers over time. Our main strategy uses only within-teacher variation 

by first differences. The conventional approach uses teacher fixed effects (e.g., 

Rockoff 2004). 

However, for a given teacher, years of experience, 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗, is colinear with 

school year, 𝑡𝑡, unless she takes a leave of absence. Specification 3 includes both 

teacher fixed effects, 𝜆𝜆𝑗𝑗, and school year fixed effects, 𝜋𝜋𝑗𝑗, and thus requires some 

restriction on ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� to avoid the age-period-cohort problem. The typical 

restriction is to assume no returns to experience after some number of years, �̅�𝑒. 

Then ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� is a series of indicator variables for years of experience up to �̅�𝑒: 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� = �𝛽𝛽𝑒𝑒 × 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑒𝑒�
�̅�𝑒−1

𝑒𝑒=0

 

and 𝛿𝛿𝑒𝑒 = 𝛽𝛽𝑒𝑒 − 𝛽𝛽𝑒𝑒−1. 

(4) 

The omitted category is veterans, 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 ≥ �̅�𝑒�.12 This restriction maps to 

identifying Assumption 2, as stated earlier. That required assumption is well known 

 
12 It is more common in the literature to make the first year of teaching, 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 = 0, the omitted 
category in ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗�. We prefer to omit veterans in part to make the comparison with our main 
estimates easier. Nevertheless, the choice of omitted category does not change the estimates of 
interest obtained from fitting the two-way FE specification in Equations 3 and 4. If we reproduced 
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in the literature on returns to experience in teaching; the assumption is sometimes 

stated explicitly (e.g., Rockoff 2004) and sometimes criticized (e.g., Papay and 

Kraft 2015).13  

This conventional estimation strategy uses a two-way fixed effects 

estimator. Notice in Specification 3 the characteristic group and period fixed 

effects, 𝜆𝜆𝑗𝑗 and 𝜋𝜋𝑗𝑗, and a series of treatment indicators, ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗�. A recent, growing 

literature clarifies several properties of two-way FE estimators; in particular, how 

those estimators can produce biased estimates when treatment effects are 

heterogeneous (for reviews see de Chaisemartin and D’Haultfœuille 2022b, Roth 

et al. 2022).  

Three types of heterogeneity can create bias in two-way FE estimates. The 

first two types, and the resulting bias, are now regularly discussed in papers using 

difference-in-differences methods. The third type is specific to settings with 

multiple treatments, including the returns to experience estimates which produce 

𝛿𝛿𝑒𝑒 for several 𝑒𝑒.  

The first source of potential bias would arise if the effects of the 𝑒𝑒th year of 

experience, 𝛿𝛿𝑒𝑒, differ across cohorts of teachers. In other words, variation over time 

in 𝛿𝛿𝑒𝑒, given the link between cohort, time, and experience.14 Why might 𝛿𝛿𝑒𝑒 change 

 
the dashed line in Figure 1 from scratch, but instead with the omitted category 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 = 0, the only 
thing that would change is the y-intercept value. All of the slopes between points would remain 
exactly as they are in Figure 1. . 
13 There are alternative specifications of ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� in the literature: (i) Specifying ℎ as cubic in 
𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 , or other higher-order polynomial, though often still with 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗  top-coded at some point 
(e.g., Rockoff 2004). (ii) Dividing 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗  into bins, e.g., 1–2, 3–4, 5–9, 10–14, 15–24, and 25+ (e.g., 
Harris and Sass 2011). (iii) Using the non-standard age-experience progressions, e.g., leaves of 
absence, to estimate Specification 1 without restrictions on ℎ (e.g., Wiswall 2013). 
14 This potential bias arises in part through the implicit weights in the two-way FE estimator (de 
Chaisemartin and D’Haultfœuille 2022b). When estimating �̂�𝛿𝑒𝑒, the weight given to �̂�𝛿𝑒𝑒𝑗𝑗 is increasing 
in 𝑁𝑁𝑒𝑒𝑗𝑗, 𝑀𝑀𝑒𝑒𝑗𝑗, and 𝑣𝑣𝑣𝑣𝑟𝑟�𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑒𝑒��. By contrast, our preferred estimates only weight by 𝑁𝑁𝑒𝑒𝑗𝑗. In 
our current setting, 𝑁𝑁𝑒𝑒𝑗𝑗 and 𝑀𝑀𝑒𝑒𝑗𝑗 will likely covary over time. However, 𝑣𝑣𝑣𝑣𝑟𝑟�𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑒𝑒�� will 
be constant across cohorts given the specification of ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗�.  
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over time? First, selection into (or out of) teaching may change over time. For 

example, schools may get better (or worse) over time at selecting hires on potential 

job performance (e.g., Jacob et al. 2014), or self-selection by (prospective) teachers 

may change in response to compensation for potential performance inside or 

outside schools (e.g., Nagler et al. 2020, Leaver et al. 2021). Second, the nature of 

treatment itself may change over time. For example, if schools devote more 

resources to mentoring for early-career teachers (e.g., Rockoff 2008, Kraft et al. 

2018). 

The second source of potential bias would, theoretically, arise if the effects 

of the 𝑒𝑒th year of experience increase (or decrease) over time within a cohort of 

teachers.15 However, in practice, this second bias is not a concern in the 

conventional returns to experience estimates. In Specification 3, with ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� in 

4, treated teachers (early-career teachers) are not part of the comparison group until 

they are beyond �̅�𝑒 (until they become veteran teachers).16  

The third source of potential bias arises when there are multiple treatments, 

as detailed in de Chaisemartin and D’Haultfœuille (2022a). In the current setting, 

first, the estimate for the 𝑒𝑒th year, 𝛿𝛿𝑒𝑒, can be biased if the effects in other years, 

𝛿𝛿(−𝑒𝑒) ∈ {… , 𝛿𝛿𝑒𝑒−2, 𝛿𝛿𝑒𝑒−1, 𝛿𝛿𝑒𝑒+1, 𝛿𝛿𝑒𝑒+2, … }, differ across cohorts. Second, 𝛿𝛿𝑒𝑒 can be 

biased if the distribution of teacher experience is changing over time; in other 

words, if the probability of the other treatments is changing over time. Even if all 

 
15 Conceptually, experience gained in the 𝑒𝑒th year of teaching can affect performance in year (𝑒𝑒 +
1), (𝑒𝑒 + 2), (𝑒𝑒 + 3), and on into the future. Empirically, however, the effects of the 𝑒𝑒th year on 
(𝑒𝑒 + 2) performance cannot be separately identified from the effects of the (𝑒𝑒 + 1)th year on (𝑒𝑒 +
2) performance.  
16 The specification of ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� is analogous to the common event study specification, which is 
not subject to this second source of potential bias. In other words, the conventional strategy only 
uses treated-teacher data from years 𝑒𝑒 and (𝑒𝑒 − 1) to estimate the effect of the 𝑒𝑒th year of 
experience. 
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the 𝛿𝛿𝑒𝑒 are not changing over cohorts, this second bias threat remains.17 The 

distribution of experience may be fairly constant for an entire state, like Tennessee, 

but could change over time for a district, like DCPS, with changes in hiring and 

retention strategies. 

Do these potential biases affect our estimates? The dashed line in Figure 1 

shows our estimates from the common two-way FE strategy, alongside our 

preferred strategy. In Tennessee the two lines are nearly identical, suggesting little 

change from cohort to cohort in the returns to experience. Estimated growth over 

ten years is just 2 percent of a standard deviation smaller with the two-way FE 

approach compared to our preferred estimates. By contrast, there is some difference 

for DCPS, suggesting the two-way FE strategy underestimates the steepness of 

returns to experience. Over ten years the accumulated difference is about 17 percent 

of a standard deviation. Estimated growth in any one year, (𝑒𝑒 − 1) to 𝑒𝑒, differs by 

2 percent of a standard deviation on average. Up through the fifth or sixth year, the 

year-to-year estimated changes are nearly identical. 

The differences in DCPS estimates are largely explained by changes in the 

distribution of teacher experience in DCPS over time. Appendix Figure A3 shows 

that the distribution of experience shifted away from early-career teachers over time 

but became more stable from 2014-15 on.18 If we restrict out analysis to this more-

stable more-recent period, the standard and alternative approaches are quite similar, 

 
17 Briefly, first, when estimating 𝛿𝛿𝑒𝑒𝑗𝑗 for a given 𝑒𝑒, two-way FE uses observations from both veterans 
and early-career teachers (as long as 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 ≠ {𝑒𝑒, 𝑒𝑒 − 1}) to estimate the year effects, 𝜋𝜋𝑗𝑗. But the 
estimation of 𝜋𝜋𝑗𝑗 must account for the fact that there are other treatments occurring—specifically, 
the early-career teachers are also gaining 𝛿𝛿(−𝑒𝑒)𝑗𝑗. The two-way FE estimator uses the pooled estimate 
�̂�𝛿(−𝑒𝑒) instead of the 𝑡𝑡-specific estimate �̂�𝛿(−𝑒𝑒)𝑗𝑗. Second, accounting for other treatments also requires 
knowing the probability of those other treatments in the sample at time 𝑡𝑡. In the current setting, the 
probability of other treatments is the proportion of teachers at each 𝑒𝑒 ∈ {0,1, … , �̅�𝑒}—the distribution 
of teacher experience. The two-way FE estimator uses the pooled estimate of the probability instead 
of the 𝑡𝑡-specific estimate. 
18 Our DCPS data begin in 2009-10 and thus the early years coincide with the slow labor recovery 
following the recession. We do not see the same pattern in Tennessee where the experience 
distribution has been stable over the years we study. 
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as shown in Appendix Figure A4. The observable changes in the distribution of 

experience in DCPS may also be correlated with changes in the returns to 

experience among DCPS teachers.  

The two strategies also yield similar estimates when the performance 

measure is a teacher’s value-added contribution to student test scores, as shown in 

Figure 2. The value-added returns-to-experience estimates are much noisier, given 

the much smaller samples. For Tennessee, estimated growth over ten years is one-

quarter of a standard deviation smaller with the two-way FE approach compared to 

our preferred estimates. Estimates are more similar for DCPS. However, in both 

settings, we cannot reject the null hypothesis of no difference between the two 

strategies.19 

 

3. Alternative explanations and threats to causal inference 

 Observation ratings may improve (or decline) over time for reasons 

unrelated to a teacher’s gains from experience. In this section we describe several 

alternative explanations for changing ratings, and whether an alternative 

explanation threatens a causal “returns to experience” interpretation of Figure 1. 

We focus specifically on interpreting changes in observation ratings as the causal 

effect of experience on performance of the tasks which the rubric is designed to 

measure.  

3.1 General evidence 

Before taking up specific alternative explanations, we begin with some 

general evidence relevant to the plausibility of identifying Assumptions 1 and 2. 

First, consider Assumption 1 which requires: factors which contribute to 

observation scores but are unrelated to performance, 𝜈𝜈𝑗𝑗𝑗𝑗, do not depend on teacher 

experience. We cannot test this assumption directly. However, if Assumption 1 is 

 
19 Appendix B provides details of our value-added estimation methods. 



22 
 

true, we would predict that 𝑐𝑐𝑐𝑐𝑣𝑣�𝜈𝜈𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗� should not depend on experience, and thus 

𝑐𝑐𝑐𝑐𝑣𝑣��̅�𝑠𝑗𝑗𝑗𝑗, �̂�𝜇𝑗𝑗𝑗𝑗� should also not depend on experience.20 Here �̂�𝜇𝑗𝑗𝑗𝑗 is the teacher’s 

value-added contribution to student achievement test scores. We can test this 

prediction which is relevant to judging Assumption 1. 

Why might 𝑐𝑐𝑐𝑐𝑣𝑣�𝜈𝜈𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗� depend on experience? Raters may give greater 

scrutiny to early-career teachers, perhaps with the specific goal of increasing the 

correlation between observation scores and value added. Alternatively, raters may 

be more lenient with early-career teachers, reducing 𝑐𝑐𝑐𝑐𝑣𝑣�𝜈𝜈𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗�. We discuss other 

possibilities in Section 3.2, 3.3, and beyond. However, Assumption 1 could be 

violated without affecting 𝑐𝑐𝑐𝑐𝑣𝑣�𝜈𝜈𝑗𝑗𝑗𝑗, �̂�𝜇𝑗𝑗𝑗𝑗�. For example, raters might simply add 1 

point to all scores for early-career teachers, which, barring any ceiling effects, 

would not affect the correlation between observation scores and value added 

conditional on experience. 

Figure 3 provides information on the 𝑐𝑐𝑐𝑐𝑣𝑣��̅�𝑠𝑗𝑗𝑗𝑗, �̂�𝜇𝑗𝑗𝑗𝑗�, whether that 

relationship depends on teacher experience, and thus a test of the prediction 

outlined above. The x-axis is years of prior experience. The y-axis is the predicted 

increase in value added, �̂�𝜇𝑗𝑗𝑗𝑗, if a teacher’s observation score, �̅�𝑠𝑗𝑗𝑗𝑗, increases by one 

standard deviation.21 As shown in Figure 3, the estimated relationship between 

 
20 Using Equation 2 we can write:  

𝑐𝑐𝑐𝑐𝑣𝑣��̅�𝑠𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� = 𝑐𝑐𝑐𝑐𝑣𝑣�𝜃𝜃𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� + 𝑐𝑐𝑐𝑐𝑣𝑣�𝜈𝜈𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗�. 
Assume quite plausibly that 𝑐𝑐𝑐𝑐𝑣𝑣�𝜃𝜃𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� = 𝑐𝑐𝑐𝑐𝑣𝑣�𝜃𝜃𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗�. In plain language, this 
assumption requires that the education production process—which turns teaching input tasks, 𝜃𝜃𝑗𝑗𝑗𝑗, 
into a teacher’s value-added contributions, �̂�𝜇𝑗𝑗𝑗𝑗—does not depend on experience. Under this 
assumption, the prediction that 𝑐𝑐𝑐𝑐𝑣𝑣�𝜈𝜈𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� = 𝑐𝑐𝑐𝑐𝑣𝑣�𝜈𝜈𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗� implies the further prediction 
that 𝑐𝑐𝑐𝑐𝑣𝑣��̅�𝑠𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� = 𝑐𝑐𝑐𝑐𝑣𝑣��̅�𝑠𝑗𝑗𝑗𝑗 , �̂�𝜇𝑗𝑗𝑗𝑗�. 
21 The estimation details for Figure 3 are summarized in its note and described in Appendix B. The 
solid line uses only within-teacher over-time variation (by including teacher FE in the estimation), 
and the dashed line uses both within- and between-teacher variation (by omitting teacher FE). To 
get a sense of the correlation between observation scores and value added, multiply the y-axis by 
about five for Tennessee and three for DCPS. Additionally, Appendix Table A1 provides 
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observation scores and value added is largely unrelated to experience. There is no 

clear trend over experience, and we cannot reject the null hypothesis that each point 

estimate is equal to the average of the series it belongs to, though the DCPS 

estimates are quite noisy. The one exception is the earliest years in Tennessee using 

only within-teacher variation (solid line series). Those estimates suggest the 

𝑐𝑐𝑐𝑐𝑣𝑣��̅�𝑠𝑗𝑗𝑗𝑗, �̂�𝜇𝑗𝑗𝑗𝑗� may be higher in a teacher’s first year of employment. Some of the 

specific threats described below could be a mechanism behind the first-year 

correlation.22 In summary, the lack of a relationship between 𝑐𝑐𝑐𝑐𝑣𝑣��̅�𝑠𝑗𝑗𝑗𝑗, �̂�𝜇𝑗𝑗𝑗𝑗� and 

experience in Figure 3 is consistent with Assumption 1, through the prediction 

outlined above. 

We can also partially test identifying Assumption 2. That assumption 

requires that, on average, true performance, 𝜃𝜃𝑘𝑘, is not changing over time among 

the comparison group of veteran teachers, i.e., 𝐸𝐸�𝜃𝜃𝑘𝑘𝑗𝑗𝑗𝑗 − 𝜃𝜃𝑘𝑘𝑗𝑗(𝑗𝑗−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 ≥ �̅�𝑒� = 0. 

Our main estimates in Figure 1 set �̅�𝑒 = 9 to define the veteran group. If Assumption 

2 holds, then our estimates for returns at 𝑒𝑒 = 0-8 should be robust to setting �̅�𝑒 above 

9.  

Our returns to experience estimates are quite robust to changes in �̅�𝑒. The 

solid line in Figure 4 simply repeats the solid line in Figure 1 for convenient 

comparison, with �̅�𝑒 = 9. The two dashed lines show estimates where �̅�𝑒 = 14 and 

�̅�𝑒 = 19. The three lines have different intercepts; the intercept in this case is the 

average performance among veteran teachers with 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 ≥ �̅�𝑒. Still, the slopes of 

 
complementary evidence. That table reports the average relationship between observation scores 
and value added, but that average relationship does not change when we control for experience. 
22 An alternative explanation is the following: We assumed that the production process which turns 
teaching tasks, 𝜃𝜃𝑗𝑗𝑘𝑘, into value added output, �̂�𝜇𝑗𝑗𝑗𝑗, does not depend on experience. Even if the 
production process is constant, the way in which a teacher chooses to optimize that production 
process may depend on experience. For example, perhaps as early-career teachers gain experience 
they shift more effort to tasks which are not measured by the observation rubric, or more subtly shift 
effort across tasks in a way not well captured by the simple average of ratings, �̅�𝑠𝑗𝑗𝑗𝑗. 
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the lines are quite similar across estimates over the range of 0-9 years of prior 

experience. For example, in Tennessee, the slope between (𝑒𝑒 − 1) = 0 and 𝑒𝑒 = 1 

is 0.346 standard deviations in the estimates with �̅�𝑒 = 9 (solid line) and 0.352 when 

�̅�𝑒 = 14 (long-dash line), a difference of 0.006. Indeed, that same difference in slope 

estimates is 0.006-0.007 for all of the pairwise (𝑒𝑒 − 1) to 𝑒𝑒 slopes. The 

accumulated difference over the first ten years is 0.05. Those slopes are the returns 

to experience we want to estimate, and those estimated changes are robust to the 

choice of �̅�𝑒.23 

Additionally, while we cannot observe Δ𝜃𝜃 = 𝐸𝐸�𝜃𝜃𝑘𝑘𝑗𝑗𝑗𝑗 − 𝜃𝜃𝑘𝑘𝑗𝑗(𝑗𝑗−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 ≥

�̅�𝑒� directly, we can observe Δ�̅�𝑠 = 𝐸𝐸��̅�𝑠𝑘𝑘𝑗𝑗𝑗𝑗 − �̅�𝑠𝑘𝑘𝑗𝑗(𝑗𝑗−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 ≥ �̅�𝑒�. Among veteran 

teachers, the mean first-difference in observation scores is 0.004 standard 

deviations (st.err. 0.002) in Tennessee and -0.073 standard deviations (st.err. 0.006) 

in DCPS.24 Under what conditions would Δ�̅�𝑠 ≅ 0 but Δ𝜃𝜃 ≠ 0? Only in the knife-

edge case where any change in true performance, 𝜃𝜃𝑘𝑘, is just offset by a change in 

the 𝜈𝜈𝑘𝑘 component of scores. 

 

 
23 Figure 4 suggests there may be continued returns to experience beyond a teacher’s first decade 
(beyond 𝑒𝑒 = 9). For example, in Tennessee, the average observation score at 11 years of prior 
experience is statistically significantly greater than at 9 years but less than at 14 or 19 years. In 
DCPS the estimates are much nosier. Such continued returns would, strictly speaking, violate 
Assumption 1. However, first, the continued returns would generate downward bias in our estimates, 
leading us to understate the returns to experience. Second, the magnitude of bias is empirically 
small, for example, 0.346 versus 0.352. The bias is small for two reasons: (i) The gains after the first 
decade are quite small in relative terms. Teacher scores improve more than 1 full standard deviation 
in the first decade, but only another 10% of a standard deviation the next five years. (ii) Observations 
with 𝑒𝑒 = 10-14 are a small share of all observations with 𝑒𝑒 > 9. 
24 In DCPS, compositional differences in the teaching force over time (Dee and Wyckoff 2015, Dee 
et al. 2021, James and Wyckoff 2020) could make it appear, with our preferred within-year 
standardization process, as if experienced teachers were declining over time as the average 
performance of incoming teachers improves. However, relying on alternative standardization 
approaches, including standardizing relative to veteran teachers within year and standardizing scores 
across years, do not change the slopes shown in Figure 1. Differences in point estimates across 
standardization approaches never exceed 0.037, with an average difference in point estimates across 
approaches and levels of experiences of 0.005. In rubric units, the average first difference for veteran 
teachers is also quite small, at -0.014 (st.err. 0.003). 
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3.2 The evaluation system 

Changes in observation ratings over time may be caused by changes to the 

evaluation system’s tools and procedures. Key features of an evaluation system 

include the scoring rubric, the training provided to raters, and the rules for assigning 

teachers to raters.25 Even if a teacher’s performance, 𝜃𝜃𝑘𝑘, remains constant, the 

rating assigned to that performance, 𝑠𝑠𝑘𝑘, may go up or down if the system’s 

processes change. In other words, the evaluation system’s tools and procedures are 

key features of 𝜈𝜈𝑘𝑘 in Equation 2 where 𝑠𝑠𝑘𝑘 = 𝜃𝜃𝑘𝑘 + 𝜈𝜈𝑘𝑘. (The incentives or 

consequences attached to performance measures are also a key feature of an 

evaluation system, and we discuss those incentives below.) 

The most straightforward example of a change in 𝜈𝜈𝑘𝑘 is a change in the 

scoring rubric. In 2017 DCPS switched from the Teaching and Learning 

Framework (TLF) rubric to an entirely new Essential Practices (EP) rubric. The 

new EP rubric did not measure exactly the same set of tasks, 𝑘𝑘, as the old TLF 

rubric. Changes in other settings might be smaller, like word choices, even if the 

tasks scored remain the same. Still, large or small rubric changes would not 

necessarily threaten our identifying assumptions, as long as the rubric changes 

affect early-career (treatment) and veteran (comparison) teachers equally. 

The DCPS changes allow us to compare estimates from different rubrics. In 

Figure 5 the short dash line shows estimates of returns to experience using only 

ratings generated by the TLF, while the long dash blue line uses only EP ratings. 

Both dashed lines are limited to scores from school administrators. For both rubrics 

the average first-year teacher’s rating is much lower than the average veteran’s 

rating, but that starting gap is smaller with the EP rubric. Using TLF rubric data 

suggests the average teacher improves by 1.3 standard deviations over the first ten 

 
25 Our language and examples in this discussion mainly imply the evaluation systems designed or 
used by schools, districts, or states. The features and reasoning also apply to scores collected by 
researchers or for other purposes. 
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years, compared to 1.2 standard deviations using the EP rubric. Though the 

differences are not statistically significant. The differences suggest a potential 

threat to Assumption 1—that 𝜈𝜈𝑘𝑘 does not depend on experience—at the time of the 

change in rubrics in DCPS. However, the difference between the dashed (TLF) and 

long-dashed (EP) estimates could be a compositional change. Starting in 2011, and 

thus concurrent with our data, DCPS became more selective in both hiring and 

retention decisions, with selection strategies based explicitly on performance 

measure (Dee and Wyckoff 2015, Jacob et al. 2018). There were noticeably fewer 

early-career teachers by 2017 (Appendix Figure A3). Thus, in Figure 5, the higher 

scores with the EP rubric may reflect true higher performance because of selection.  

Choosing raters is also a key evaluation design decision, and a decision 

which itself may change over time. Figure 5 also compares estimates by rater type 

for DCPS. The solid red line uses only ratings from the master educator raters, who 

specialize in rating and are external to the school, while the dashed red line uses 

only ratings from school administrators. Both lines are limited to scores generated 

by the TLF rubric, and there is no composition concern since each teacher was rated 

by both a school administrator and master educator each year. The slopes of the 

two TLF lines are quite similar, especially over the first five years of a teacher’s 

career. Using master educator ratings suggests improvement of over 1.6 standard 

deviations over the ten years, compared to 1.3 using principal ratings. Though again 

the differences are not statistically significant. Figure 5 does obscure one important 

difference between master educator scores and school administrator scores: School 

administrators give higher average scores on the 1-4 scale; in other words, the 𝜈𝜈𝑘𝑘 

component in Equation 2 does depend on rater type. However, the difference in 

scores between the rater types is the same for all teachers regardless of experience; 

thus, the rater type difference in 𝜈𝜈𝑘𝑘 does not violate Assumption 1. 

In general, changes to the evaluation system are changes to the 𝜈𝜈𝑘𝑘 

component in Equation 2. Interpreting Figure 1 as the causal returns to experience 
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does not require that 𝜈𝜈𝑘𝑘 remain unchanged over time. The only restriction on 𝜈𝜈𝑘𝑘 is 

that 𝜈𝜈𝑘𝑘 not depend on experience. This applies to obvious changes in 𝜈𝜈𝑘𝑘, like the 

rubric or types of evaluators, and to changes which are more difficult (for the 

researcher) to observe. Thus, while the tests in Figure 5 address some threats, they 

do not rule out all threats from changes in the evaluation system. One potentially 

difficult to observe change is changes to the training of raters. Imagine that system 

administrators determine, at a given point in time, that raters need to be re-trained 

on some aspect of scoring. That re-training might be in fact be motivated by 

administrators’ belief that scores, 𝑠𝑠𝑘𝑘, are not reflecting performance, 𝜃𝜃𝑘𝑘, as they 

should. A second example is a change to the rules for assigning teachers to raters. 

Chi (2020), among others, has documented teacher-rater match effects on 

observation scores; for example, when a teacher and rater share a gender or race, 

the teacher’s scores are higher. Imagine the evaluation system administrators 

decide, at some point, to make gender or race an explicit factor in the rules for 

making assignments.  

3.3 Behavior of the raters 

Changes in ratings over time may reflect changes in the behavior of the 

raters. Raters have some discretion within any evaluation system’s designed 

procedures. Rubric-based classroom observation ratings fall somewhere in between 

the theoretical poles of truly objective evaluation and purely subjective evaluation. 

Moreover, raters may also take actions which violate the designed procedures they 

were trained to follow. The behavior of raters, whether intended or unintended in 

the system design, is part of the 𝜈𝜈𝑘𝑘 component in Equation 2. 

One behavior that is frequently cited, given rater discretion, is leniency 

bias—the tendency for raters to give scores which are higher than warranted. 

Histograms of observation ratings (Appendix Figure A1) are consistent with 

systematic leniency bias in both Tennessee and DCPS, although such bias is less 

evident for ratings assigned by the master educators in DCPS. The skew in the 
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ratings distribution could also accurately reflect teacher performance using a rubric 

with ceiling effects. Leniency bias is often cited as a concern in classroom 

observation scores by both researchers and in public debate (Kraft and Gilmour 

2017, New York Times 2013), but leniency bias is common in many occupations 

beyond teaching (Prendergast 1999). 

However, leniency bias does not necessarily threaten our interpretation of 

Figure 1 as the causal returns to experience. To violate Assumption 1—𝜈𝜈𝑘𝑘 does not 

depend on experience—rater leniency would need to be correlated with teacher 

experience. For example, imagine that raters are less lenient with a first-year 

teacher compared to their rating of the same teacher in her second year; then Figure 

1 would over-state the returns to the first year of teaching. Such a change in leniency 

might be a mechanism behind the decline in Figure 3 after the first year, for teachers 

in Tennessee. However, if it is not correlated with experience, leniency bias will be 

differenced out in the same way as rubric changes or other evaluation system 

features. 

Another potential mechanism is that raters may use information learned 

outside an official observation visit. Consider the case of a teacher rated by her 

school principal. A few brief classroom observations are a small fraction of the 

interactions a teacher and principal will have in a school year; the principal likely 

learns much about the teacher’s performance outside of official observations. Ho 

and Kane (2013) show evidence that a teacher’s own principal scores a video of her 

classroom differently than a principal from another school in the district scores the 

same video, perhaps because the teacher’s own principal begins the scoring with a 

prior on the teacher’s performance. Additionally, because the rubric covers only 

some teaching tasks, 𝑘𝑘, a principal may raise (or lower) observation scores to reflect 

the principal’s beliefs about the teacher’s performance of tasks not covered by the 

rubric. A principal using outside information is a potentially rational behavior if the 

observation ratings are used for personnel decisions and the principal cares much 
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less about observation scores than she cares about student outcomes and teacher 

value-added to those outcomes. 

This outside information explanation may threaten Assumption 1—𝜈𝜈𝑘𝑘 does 

not depend on experience—but only if raters both have and use different outside 

information depending on a teacher’s years of experience. The number of years a 

teacher-principal pair has worked together likely will be correlated with the 

teacher’s years of experience, but it does not need to be strongly correlated if school 

principals switch schools frequently. A high correlation would suggest principal 

raters might have different outside information on early-career and veteran 

teachers. Empirically the correlation between years-worked-together and 

experience is 0.17 in the DCPS data and 0.15 in the Tennessee data. 

One test relevant to this outside-information question is the event study of 

ratings in Figure 6. Event time is relative to a change in the school principal, with 

year zero the new principal’s first year, and we allow the time series to differ for 

early-career and veteran teachers as shown by the two plotted lines. If principals 

learn about a teacher’s performance outside of formal classroom observations, we 

might expect observation scores to rise or fall. However, scores do not change on 

average as a principal and teacher work together longer. This pattern holds for both 

early-career and veteran teachers. In Tennessee there is some evidence that 

principals give slightly lower scores in their first year in a new school (about 5 

percent of a standard deviation lower). 

Figure 6 alone cannot exclude the threat. While Figure 6 suggests principals 

do not use outside information, that interpretation assumes the information 

principals have is increasing year over year. Perhaps principals get to know teachers 

very well in just one year, and then information increases very little after the first 

year. The outside information gained in year one could affect observation scores in 

future years, but we would not see change over time in Figure 6. We emphasize 

these points as a reminder that the empirical tests in this section are intended to be 
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informative, about both causal inference considerations and policy debates, but 

these tests are not dispositive.26  

3.4 Incentives and distortion of effort 

Changes in ratings may reflect changes in the incentives attached to those 

ratings. Those incentives might be explicitly linked to observation ratings, like 

monetary bonuses or the threat of dismissal, or less-explicit career concerns 

incentives. Still, a change in incentives alone does not threaten inferences about 

true performance, 𝜃𝜃𝑘𝑘, for tasks covered by the rubric. A new or stronger incentive 

attached to task 𝑘𝑘’s score, 𝑠𝑠𝑘𝑘, can induce a teacher to raise her performance of that 

task, 𝜃𝜃𝑘𝑘, through more effort for task 𝑘𝑘 or investing in skills for task 𝑘𝑘. Thus, 

inferences about true performance, 𝜃𝜃𝑘𝑘 , of tasks covered by the rubric are not 

necessarily threatened by a change in incentives attached to ratings, 𝑠𝑠𝑘𝑘.  

However, an increase in effort for tasks covered by the rubric, 𝑘𝑘, may come 

at the expense of teacher performance in other tasks not covered, −𝑘𝑘. This 

asymmetry between scored tasks and un-unscored tasks suggests scope for the well-

known multitask distortion problem (Holmstrom and Milgrom 1991). Given that 

potential distortion, a change in incentives attached to rubric ratings can threaten 

inferences about teacher performance beyond the scope of what is covered by the 

rubric. Recall that the rubric tasks are inputs to the broader education production 

responsibilities of teachers, including improving student math achievement, social 

skills, earnings as an adult, etc.  

 
26 On additional note on rater behavior. As described in Section 2.1, the item level observation scores 
for specific tasks 𝑠𝑠𝑘𝑘 are strongly correlated, in these data and most teacher observation data. This 
fact is sometimes interpreted as evidence that raters do not actually differentiate between tasks, 𝑘𝑘, 
but instead score teachers on some single general dimension of teaching performance. This seems 
unlikely given that the item level correlations are not equal to one. A more plausible explanation is 
that the rubrics define tasks where true performance is in fact strongly correlated. Whatever the 
explanation, this issue is not central to our analysis in this paper which focuses on the average score. 
This issue does limit our ability to make conclusions about how experience may affect tasks 
differentially. 
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Still, using ratings and incentives to shift teacher effort away from some 

tasks and toward other tasks will not necessarily lead to distortion. There is (quasi-

)experimental evidence that rubric-based classroom observations can improve 

teachers’ contributions to student test scores, even when teachers are not evaluated 

based on those test scores (Taylor and Tyler 2012, Burgess, Rawal, and Taylor 

2021, Briole and Maurin in-press). In DCPS specifically, teacher performance 

improves more when the teacher spends more of the year anticipating an 

unannounced rater visit (Phipps 2018, Phipps and Wiseman 2021). 

While incentives do not necessarily threaten our causal interpretation of 

Figure 1 as the returns to experience, changes in incentives may be a mechanism 

behind the improvements seen in Figure 1. The simplest example is tenure rules. In 

Tennessee, teachers can earn tenure after five years, but tenure requires sufficiently 

high observation ratings in years four and five.27 Thus, teachers have somewhat 

more incentive to focus effort on the rubric-measured tasks in years four and five 

compared to years one, two, and three, which might contribute to the pattern in 

Figure 1. Still, it seems unlikely a teacher concerned about tenure would wait until 

year four to pay attention to the rubric, and the slope from years three to four in 

Figure 1 is not obviously a departure from the trend suggested by the other year-to-

year slopes.  

Unlike Tennessee, the evaluation incentives in DCPS were not explicitly a 

function of years of experience but could have been correlated with experience. 

DCPS teachers are dismissed if rated “Minimally Effective” (the second-lowest 

rating) in two consecutive years or if they fail to exceed a “Developing” rating (the 

third-lowest rating) within three consecutive years. Before fall 2012, teachers could 

receive permanent salary increases after two consecutive years of being rated 

 
27 More precisely, tenure requires being rated “4. Effective” or “5. Highly Effective” on the 1-5 
integer scale. While only one input to that overall final rating, classroom observation scores get a 
weight of 50-85 percent for the teachers. 
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“Highly Effective” (the top rating). Figure 7 shows the proportion of teachers in 

each rating category by years of experience, suggesting the incentives are not 

strongly correlated with experience.28  

3.5 Manipulation of ratings 

Observation ratings may reflect changes in teachers’ actions unrelated to 

their job performance. Teachers, like professionals in any other occupation, may 

adopt behaviors or actions which do raise their ratings, 𝑠𝑠𝑘𝑘, but do not raise their 

true job performance, 𝜃𝜃𝑘𝑘. In the literature on job performance evaluation these 

actions are known as manipulation.29 This manipulation of observation ratings 

might occur, for example, because classroom observations are infrequent and brief; 

thus, a teacher could prepare a special lesson or even rehearse the lesson with his 

students in advance of the rater’s visit. By contrast, if the evaluation process or 

incentives prompted a teacher to improve her lessons on all (or many of) the days 

the rater would not be present, that would be an improvement in performance and 

not manipulation.  

Manipulation plausibly threatens our casual returns-to-experience 

interpretation of Figure 1. In our framework, teacher manipulation results from the 

evaluation system’s procedures and incentives, and is part of the 𝜈𝜈𝑘𝑘 component in 

Equation 2. A teacher’s awareness of how to manipulate likely grows as he gains 

experience with the evaluation system. That suggests a plausible correlation 

between potential for manipulation and general teaching experience, which 

threatens Assumption 1 that 𝜈𝜈𝑘𝑘 is invariant to experience. However, that correlation 

might be weakened if more-experienced teachers share their manipulation 

 
28 Also studying DCPS, Adnot (2016) reports evidence that teachers facing the two-consecutive-
years-minimally-effective dismissal threat shift effort across tasks within the rubric toward tasks 
which are more likely raise their scores. This is a sort of distortion within measured tasks but 
suggests that teachers are aware of this margin. 
29 Empirical examples of manipulation by teachers include cheating on student tests (Jacob and 
Levitt 2003) and intentionally excluding low-scoring students from high-stakes tests (Jacob 2005, 
Cullen and Reback 2006, Figlio 2006, Figlio and Getzler 2006). 
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strategies with newly-hired teachers. If the manipulation component of observation 

scores is unrelated to general experience, then manipulation will be differenced out 

in Figure 1. 

The decline in correlation after year one in Tennessee in Figure 3 may be 

explained by increasing manipulation over the first few years of a teacher’s career. 

However, we cannot rule out other mechanisms, such as, for example, raters 

becoming more lenient as a teacher moves from the first to the second year. And 

there are other limitations to the test in Figure 3, as discussed above. On the other 

hand, while underpowered, the evidence from DCPS in Figure 3 does not indicate 

a decline in the relationship between classroom observation scores and student 

achievement over experience. In addition, the relatively stable correlation between 

classroom observation ratings and student survey scores across levels of teaching 

experience in DCPS (Appendix Figure A5) provide evidence against the presence 

of manipulation, unless teachers were similarly able to manipulate scores on both 

measures across levels of experience. 

Dee and Wyckoff (2015) examine whether DCPS school administers 

manipulate observation scores, 𝑠𝑠𝑘𝑘, in the face of increased incentives. Consider the 

teachers who received their first Minimally Effective rating in 2010-11, and thus 

were under a significant threat of dismissal during 2011-12. Observation ratings 

did improve in 2011-12 for these teachers, on average. However, master educators 

also scored these teachers as having improved, and the increase in observation 

scores was similar across both types of raters. Additionally, these teachers under 

dismissal threat also improved on their test-score value added. Taken together, 

these results suggest that the dismissal threat did not improve observation ratings 

through manipulation alone.  

3.6 Changes in job assignments 

Changes in a teacher’s ratings may reflect changes in her job assignment. A 

teacher’s observation ratings, 𝑠𝑠𝑘𝑘, might decline (or improve) after a job change for 
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either of two reasons: First, the teacher’s actual performance, 𝜃𝜃𝑘𝑘, could decline (or 

improve) because of the job change. Using teacher value-added to student test 

score, Ost (2014) provides evidence that teaching skills and experience are not fully 

transferable across grade levels. Switching from 3rd to 5th grade, for example, likely 

requires some adjusting of questioning techniques, or shifting effort to new lesson 

plans at the expense of in-class performance. 

Let 𝑣𝑣 and 𝑣𝑣′ be two different job assignments; 𝜃𝜃𝑘𝑘𝑗𝑗𝑗𝑗𝑘𝑘 is the actual 

performance of teacher 𝑗𝑗 in task 𝑘𝑘 during school year 𝑡𝑡 with job assignment 𝑣𝑣. We 

can write: 

𝐸𝐸�𝜃𝜃𝑘𝑘𝑗𝑗𝑗𝑗 − 𝜃𝜃𝑘𝑘𝑗𝑗(𝑗𝑗−1)� = 𝐸𝐸�𝜃𝜃𝑘𝑘𝑗𝑗𝑗𝑗𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑗𝑗(𝑗𝑗−1)𝑘𝑘��������������
Δ𝑡𝑡

+ 𝑒𝑒 𝐸𝐸�𝜃𝜃𝑘𝑘𝑗𝑗(𝑗𝑗−1)𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑗𝑗(𝑗𝑗−1)𝑘𝑘′������������������
Δ𝑎𝑎

 (5) 

where 𝑒𝑒 is the probability of switching from job 𝑣𝑣′ to 𝑣𝑣. 

The intuitive notion of “returns to experience” implies that the job is 

constant and experience increases, which matches Δ𝑗𝑗 in Expression 5. If identifying 

Assumption 2 holds—no returns to additional experience for veterans—then Figure 

1 reports estimates of (Δ𝑗𝑗 + 𝑒𝑒Δ𝑘𝑘). Assuming further that job changes reduce 

performance, Δ𝑘𝑘 < 0, then Figure 1 underestimates the intuitive Δ𝑗𝑗. Alternatively, 

some researchers or policymakers may be interested (Δ𝑗𝑗 + 𝑒𝑒Δ𝑘𝑘), which we could 

describe as the “returns to experience including job changes typical of early-career 

teachers.” 

Job changes do threaten identifying Assumption 2, which requires that 

𝐸𝐸�𝜃𝜃𝑘𝑘𝑗𝑗𝑗𝑗 − 𝜃𝜃𝑘𝑘𝑗𝑗(𝑗𝑗−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 ≥ �̅�𝑒� = 0 in our comparison group of veteran teachers. A 

veteran’s performance might change because of a job change, Δ𝑘𝑘 ≠ 0 , even if her 

performance would not have otherwise changed, Δ𝑗𝑗 = 0. If job changes do reduce 

veteran (comparison) teacher performance, Δ𝑘𝑘 < 0, then the estimates in Figure 1 

overstate the intuitive Δ𝑗𝑗 for novices. This bias is positive, and the bias described 
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in the prior paragraph is negative, but the two would only cancel each other out 

under the assumption that 𝑒𝑒 and Δ𝑘𝑘 do not depend on experience.30 

The second reason scores might change is that the 𝜈𝜈𝑘𝑘 component in 

Equation 2 might differ across jobs. For example, typically the same rubric is used 

for all teachers, leaving any adaptation to grade-level or subject circumstances up 

to the rater or training process. More subtly, 𝜈𝜈𝑘𝑘 might depend on the students in the 

classroom (Campbell and Ronfeldt 2018). Students are themselves an important 

feature of a teacher’s job assignment, and a feature which can change even if grade 

level or subject do not. The threat to identification parallels other features of 𝜈𝜈𝑘𝑘 

discussed above. As long as job-specific differences in 𝜈𝜈𝑘𝑘 are unrelated to 

experience, this second reason is not a serious threat to identification. A job-specific 

difference might be, for example, if raters are more lenient with novices after a job 

change than they are with veterans. 

In Figure 8 we test the robustness of Figure 1 to changes in the students a 

teacher is assigned. Using data from Tennessee and DCPS, we plot returns-to-

experience estimates with and without controls for students prior-year test scores.31 

Accounting for changes in students assigned does not affect our estimates. The 

similarity of all the estimates in Figures 1 and 8 is partly because they all use only 

within-teacher variation. The 𝜈𝜈𝑘𝑘 component might well depend on the students in 

the classroom (Campbell and Ronfeldt 2018), but most of the variation in students 

assigned is between teachers or schools, not within teachers over time. 

 

 

 
30 This assumption is sufficient but not strictly necessary. We only require that the product 𝑒𝑒Δ𝑘𝑘  not 
depend on experience, which should be a weaker assumption.  
31 The estimation for Figure 8 is identical to our preferred strategy used in Figure 1 with two 
exceptions. First, we limit the sample to teacher-by-year, 𝑗𝑗𝑡𝑡, observations where we have prior-year 
test scores for students assigned to the teacher, grades 4-8 math and language classes. Second, for 
the dashed line, the outcome variable is the residual from a regression of observation score, �̅�𝑠𝑗𝑗𝑗𝑗, on 
the average prior-year test score for students assigned to the teacher. 
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3.7 Performance improvements among veteran teachers 

The true performance of veteran (comparison group) teachers may change 

over time—violating Assumption 2—even if there are no returns to experience for 

veterans. For example, veterans may increase their effort in response to incentives. 

How would interpretation change if Assumption 2 was violated in this way, but 

Assumption 1 held? If the veteran gains were only among veterans, then the 

estimates in Figure 1 would likely understate the true returns to experience for 

early-career teachers. The veterans’ improvements would be subtracted off any 

improvements for early-career teachers.32 

3.8 Turnover 

One final consideration in interpreting Figure 1 is turnover or attrition from 

our estimation sample. The estimates in Figure 1 use only within-teacher variation 

in observation scores. This feature addresses a first-order potential bias: average 

observation ratings might rise with experience, even if each individual teacher’s 

scores remain constant, if lower-rated teachers are more likely to leave teaching (or 

at least leave the district or state).  

Still, even using only within-teacher variation, Figure 1 is still partly 

determined by turnover. In Figure 1 the slope between year one and year two is an 

average of 𝑁𝑁1,2 different individual teacher slopes, where 𝑁𝑁1,2 is the sample of 

individuals who are observed in year one and year two (and perhaps future years). 

Similarly, the slope between year four and year five uses only the 𝑁𝑁4,5 sample. 

However, these are not the same samples: 𝑁𝑁4,5 ≠ 𝑁𝑁1,2. First, for any given cohort 

of novice hires, attrition from the profession over time will make 𝑁𝑁4,5 ⊂ 𝑁𝑁1,2. 

Second, experienced teachers who transfer into the system from elsewhere may 

 
32 This subtraction might be desirable in specific cases. Imagine, for example, that veterans 
improved because of some new training, and that training was given to all teachers, early-career and 
veteran. If, roughly, the effect of the training was similar for all teachers, then the subtraction makes 
the Figure 1 estimates returns to experience controlling for any general training effects. 
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contribute to 𝑁𝑁4,5 even if they do not contribute to 𝑁𝑁1,2. The slope from year one to 

year two in Figure 1 might be different if we could estimate it with the 𝑁𝑁4,5 sample. 

Empirically, however, our Figure 1 estimates are not strongly influenced by 

this second-order composition concern. Figure 9 shows our returns-to-experience 

estimates using subsamples defined by when the teacher leaves teaching in 

Tennessee or DCPS. The changes from year one to two, two to three, etc. are quite 

similar across samples. The exception is that the trajectory appears to change in a 

teacher’s final year before leaving teaching in Tennessee or DCPS. 

 

4. Conclusion  

The typical estimates of returns to experience, applied to observation 

ratings, can reasonably be interpreted as the causal effect of additional experience 

on teachers’ job performance—specifically, performance of the input tasks covered 

by the rubric. The estimates are difference-in-differences estimates, where veteran 

teachers are the comparison group. Veterans provide a plausible counterfactual 

estimate for several often-stated threats, including for example, leniency bias from 

raters, manipulation by teachers, changes in the evaluation system, and changes in 

teachers’ job assignments. Our estimates are robust to changes in the rubric, 

different rater types, and controlling for student baseline achievement, among other 

things. Still, these tests are not dispositive; there are reasons to remain cautious 

about a causal interpretation. We find, in one setting, a weakening correlation 

between teacher observation scores and student test scores in the very first years of 

teaching. That weakening is consistent with some threats to the identifying 

assumptions, but it would also be consistent with changes in optimal teaching 

strategies as experience increases.  

Our analyses should be interpreted carefully. First, we focus on the 

performance of the input tasks covered by classroom observation rubrics. Stronger 

assumptions are required when using observation ratings to make inferences about 
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teacher performance measured by contributions to student outcomes. Second, 

taking differences in scores over time addresses many concerns. But several of 

those concerns would remain when making claims based on score levels at a single 

point in time. Third, the various tests in Section 3 are intended to be informative 

about potential threats to casual interpretation, but those tests are not dispositive. 

Partly because some test results have competing interpretations, as with Figure 6, 

and partly because we have data from specific settings. We hope future work in 

other settings will repeat these tests and add new ones. 

A final note of caution is that our estimates using data from Tennessee and 

DCPS may differ from estimates in other settings employing teacher observations. 

Our identification strategy—using differences in scores over time and between 

early career and veteran teachers—can be applied to other settings. However, the 

implementation of observations in other settings may open those systems to 

violations of the identifying assumptions explained and explored here.  

Our own prediction is that our results will generalize well to other settings. 

The Tennessee and DCPS settings are quite similar to other settings on many design 

features: the detail and content of the observation rubric, the frequency and duration 

of observation visits, the use of school principals as observers, and others 

(Steinberg and Donaldson 2016, Kraft and Gilmour 2017). Though other features 

differ: the formal incentives attached to teachers’ observation ratings, DCPS’s use 

of master educators as raters, and others. Comparisons of the actual data produced 

by different systems—including variation in scores and reliability—are scarce and 

quite limited.33 In general, teacher observation ratings have moderate to low 

reliability (Kane and Staiger 2012, Ho and Kane 2013, Taylor 2023), but there is 

 
33 The best exception is Kraft and Gilmour (2017), who find that scores from Tennessee may have 
less variation than other settings. However, the comparison is limited to the percent of teachers who 
score at or above expectations on the end-of-year “summative” ratings. Another exception is 
Weisberg et al. (2009) where the data proceed current designs, and indeed helped to spur those 
designs. 
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no evidence that Tennessee and DCPS systems produce scores which are more (or 

less) reliable than other systems.34 Tennessee and DCPS were early adopters of the 

redesigned teacher evaluation systems of the last decade, and our estimates may be 

more relevant to well established systems. The DCPS system provided strong and 

atypical financial incentives, which may have motivated teachers to improve their 

skills more quickly. 

In general, other settings may have their own new sources of error and bias 

in observation scores—the 𝜈𝜈𝑘𝑘 component—when those scores are used to measure 

teacher performance. But estimates of the returns to experience will be robust to 

those sources of error and bias under Assumption 1, that 𝜈𝜈𝑘𝑘 does not vary with 

teacher experience. One example from our study illustrates this point. It is plausible 

that the DCPS master educators might produce more reliable scores than school 

principals, but our estimates of the returns to experience were similar for both types 

of raters. 

Finally, we see two ways for our work to benefit teacher policy. First, a 

better understanding of how experience causes improvements in teaching provides 

a necessary foundation for several questions relevant to policy design. For example, 

does early-career development depend on formal training, either in teacher 

certification programs or professional development for new teachers? Or does 

early-career development come though learning by doing? Do teachers improve 

differentially across the various tasks of teaching, like managing student behavior, 

planning, or instruction? Is some minimal level of expertise in certain tasks a 

prerequisite for the development of other tasks? Answering these questions could 

provide useful insights to school managers and policymakers developing policies 

 
34 Additionally, the causes of observation scores (un)reliability are not well understood. For 
example, Ho and Kane (2013) find that a teacher’s own principal (direct supervisor) produces a 
more reliable observation score for her than does a principal from another school. Burgess et al. 
(2023) find that peer observers who received very little training produce scores as reliable as found 
in research using highly trained researchers as observers. 
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and practices intended to help teachers develop new skills. However, without 

credible evidence that measured performance improvements reflect true 

performance improvements, the resulting policy insights disappear.  

Second, a better understanding of how experience causes improvements in 

teaching is a critical input to implementing existing policies. For example, many 

states and districts now use classroom observation ratings to inform tenure 

decisions. Optimizing performance-based tenure decisions requires understanding 

how teacher performance improves with experience. That improvement trajectory 

is relevant to deciding when to make tenure decisions. And that same improvement 

trajectory is also relevant to understanding the key cost of denying tenure: a 

dismissed teacher will be replaced by a novice new hire. In the first year, the novice 

new hire will likely under-preform the dismissed teacher she replaces, but the costs 

and benefits accrue over an entire career not just one year. Similarly, how teacher 

performance changes over time is relevant to designing teacher compensation, 

including bonuses or salary increases linked to observation ratings. 

Whether and how teachers learn new skills is central to education policy 

decisions about selecting and investing in teachers. Our focus in this paper is 

estimating the returns to experience—improvements in performance caused by 

teaching experience. But that focus is motivated by the underlying teacher policy 

decisions and debates. We provide evidence that the gains in classroom observation 

ratings, for Tennessee and Washington DC teachers, do reflect stronger teaching 

performance resulting from early career teaching experience. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 1—Returns to experience measured in classroom observation ratings 
 

Note: The solid line reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The dashed 
line reports estimates using the conventional two-way fixed effects approach described in Section 2.4. The vertical 
lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome 
variable is teacher 𝑗𝑗’s classroom observation score, �̅�𝑠𝑗𝑗𝑗𝑗, which is an average of several item-level ratings recorded 
during a given school year 𝑡𝑡. Observation scores are standardized (mean 0, st.dev. 1) by school year using the 
distribution of all teachers in the jurisdiction, Tennessee or DCPS respectively. The solid line estimates are the 
difference between two means: (a) The average first-difference, ��̅�𝑠𝑗𝑗𝑗𝑗 − �̅�𝑠𝑗𝑗,𝑗𝑗−1�, among “treated” teachers—those with 
𝑒𝑒 years of prior experience (x-axis) in school year 𝑡𝑡, and 𝑒𝑒 − 1 years in school year 𝑡𝑡 − 1. (b) The average first-
difference, ��̅�𝑠𝑗𝑗𝑗𝑗 − �̅�𝑠𝑗𝑗,𝑗𝑗−1�, among “comparison” teachers—those with ≥ 9 years of prior experience in both year 𝑡𝑡 and 
𝑡𝑡 − 1. The (a) minus (b) second-difference is calculated separately for each unique combination of 𝑒𝑒 and 𝑡𝑡 in the data. 
Then the plotted points are the weighted average across 𝑡𝑡 for a given 𝑒𝑒, where the weights are the number of “treated” 
teachers. For the dashed line estimates we fit a single two-way fixed effects regression, with teacher 𝑗𝑗 and school year 
𝑡𝑡 fixed effects. The specification includes indicators for years of prior experience 0 through 8 individually, with ≥ 9 
years the omitted category, but no other controls. The plotted points are the coefficients on the experience indicators. 
The sample size for the dashed line in Tennessee is 375,072 teacher-by-year observations for 81,847 unique teachers; 



48 
 

and similarly 349,920 and 66,156 for solid line Tennessee, 33,484 and 7,268 for dashed line DCPS, and 33,040 and 
7,201 for solid line DCPS.  
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 2—Returns to experience measured in value-added contributions to student achievement 
 

Note: The solid line reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The dashed 
line reports estimates using the conventional two-way fixed effects approach described in Section 2.4. The vertical 
lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome 
variable is student 𝑖𝑖’s test score, 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 , in subject 𝑠𝑠 and school year 𝑡𝑡. Test scores are standardized (mean 0, s.d. 1) 
within each grade-by-subject-by-year cell using the distribution for all students in the jurisdiction, Tennessee or DCPS 
respectively. For the dashed line estimates we fit a single two-way fixed effects regression, with teacher 𝑗𝑗 and school 
year 𝑡𝑡 fixed effects. The specification includes indicators for years of prior experience 0 through 8 individually, with 
≥ 9 years the omitted category. Additional controls are a quadratic in prior-year test score, where the parameters are 
allowed to differ across grade-by-subject-by-year cells, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�. The plotted points are the coefficients on the 
experience indicators. For the solid line estimates, we begin by estimating teacher contributions to student test scores, 
�̂�𝜇𝑗𝑗𝑗𝑗. We fit a regression of student scores 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗  on the same prior score controls, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�, and teacher fixed effects; 
and then obtain the residuals 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 − 𝑏𝑏��𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�. Our estimate �̂�𝜇𝑗𝑗𝑗𝑗 is the average residual for teacher 𝑗𝑗 in year 𝑡𝑡. The 
dashed line estimates are the difference between two means: (a) The average first-difference, ��̂�𝜇𝑗𝑗𝑗𝑗 − �̂�𝜇𝑗𝑗,𝑗𝑗−1�, among 
“treated” teachers—those with 𝑒𝑒 years of prior experience (x-axis) in school year 𝑡𝑡, and 𝑒𝑒 − 1 years in school year 
𝑡𝑡 − 1. (b) The average first-difference, ��̂�𝜇𝑗𝑗𝑗𝑗 − �̂�𝜇𝑗𝑗,𝑗𝑗−1�, among “comparison” teachers—those with ≥ 9 years of prior 
experience in both year 𝑡𝑡 and 𝑡𝑡 − 1. The (a) minus (b) second-difference is calculated separately for each unique 
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combination of 𝑒𝑒 and 𝑡𝑡 in the data. Then the plotted points are the weighted average across 𝑡𝑡 for a given 𝑒𝑒, where the 
weights are the number of “treated” teachers. The sample size for the dashed line in Tennessee is 4,222,939 student-
by-subject-by-year observations and 92,403 teacher-by-year observations for 34,395 unique teachers; and similarly 
71,474 and 20,954 for solid line Tennessee, 247,005, 5,413 and 2,268 for dashed line DCPS, and 4,249 and 1,280 for 
solid line DCPS. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 3—Predicting student test scores with teacher observation scores  
by years of teacher experience 

 
Note: The solid and dashed lines each report estimates from a separate linear regression. The vertical lines mark the 
95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome variable is 
student 𝑖𝑖’s test score, 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 , in subject 𝑠𝑠 (maths or English language arts pooled) and school year 𝑡𝑡. Test scores are 
standardized (mean 0, s.d. 1) within each grade-by-subject-by-year cell using the distribution for all students in the 
jurisdiction, Tennessee or DCPS respectively. In both cases the specification includes (a) indicators for years of prior 
experience 0 through 8 individually, with ≥ 9 years the omitted category; (b) classroom observation score, �̅�𝑠𝑗𝑗𝑗𝑗; and 
(c) the interactions of (a) and (b). Each plotted point is sum of the coefficient on the (a)*(b) interaction for 𝑒𝑒 years of 
prior experience (x-axis) plus the main-effect coefficient on (b). Additional controls are a quadratic in prior-year test 
score, where the parameters are allowed to differ across grade-by-subject-by-year cells, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�. The solid line 
specification includes year and teacher fixed effects. The dashed line includes only year fixed effects, omitting the 
teacher fixed effects. The sample size the same for the two lines; in Tennessee 4,222,939 student-by-subject-by-year 
observations and 92,403 teacher-by-year observations for 34,395 unique teachers, and similarly in DCPS 252,400, 
5,429, and 2,274. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 4—Estimates by definition of comparison group 
 

Note: Each of the three lines reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The 
vertical lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). The solid line is 
identical to the solid line in Figure 1. For the two dashed lines, the details of estimation are identical to the solid with 
one exception. For the solid line, the comparison group is teachers with ≥ 9 years of experience, �̅�𝑒 = 9. The two 
dashed lines show �̅�𝑒 = 14 and �̅�𝑒 = 19 respectively. The sample size the same for all three lines; in Tennessee 375,072 
teacher-by-year observations for 81,847 unique teachers, and similarly in DCPS 33,484 and 7,267. 
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Figure 5—Estimates using different rubrics and rater types (DCPS)  
 
Note: Each of the three lines reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The 
vertical lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). The details of 
estimation are identical to the solid line in Figure 1 with the following exceptions. First, the estimation sample is 
limited by the type of rater: external “Master Educators” for the solid line, and school administrators for the dashed 
and long dashed lines. Second, the estimation sample is limited by the rubric used: TLF from 2010-2016 and EP from 
2017-2019. The sample size for the solid line is 18,715 teacher-by-year observations for 5,118 unique teachers; and 
similarly 21,080 and 5,380 for dashed line, and 10,190 and 3,726 for the long dash line. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 6—Event study of a change in school principal 
 

Note: All estimates are from a single linear regression. The vertical lines mark the 95 percent confidence intervals 
which are corrected for clustering (teacher). The dependent variable is teacher 𝑗𝑗’s classroom observation score, �̅�𝑠𝑗𝑗𝑗𝑗, 
which is an average of several item-level scores recorded during a given school year 𝑡𝑡. Observation scores are 
standardized (mean 0, st.dev. 1) by school year using the distribution of all teachers in the jurisdiction, Tennessee or 
DCPS respectively. The specification includes (a) indicators for year relative to a change in school principal; (b) an 
indicator = 1 if teacher 𝑗𝑗 has ≤ 4 years of prior experience, and = 0 if teacher 𝑗𝑗 has ≥ 9 years; and the interaction of 
(a) and (b). The new principal’s first year, x-axis = 0, is omitted for both groups defined by (b). The specification also 
includes indicators for years of prior experience, with ≥ 9 years omitted, plus teacher and year fixed effects. If a 
teacher experiences two (or more) principal changes, we stack the data to include each teacher-by-event-study case in 
the data. DCPS observation scores in Panel B represent administrator-assigned scores only, but can include multiple 
administrators (i.e., principals and assistant principals) within a given teacher-year. The sample size for the solid line 
in Tennessee is 72,850 teacher-by-year observations for 29,193 unique teachers; and similarly 136,443 and 32,244 for 
dashed line Tennessee, 6,927 and 2,511 for solid line DCPS, and 9,597 and 2,406 for dashed line DCPS.  
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Figure 7—Incidence of consequential performance ratings (DCPS) 
 

Note: Each plotted series reports the percentage of teachers scoring at the relevant consequential rating level. In DCPS, 
teachers who receive their first Minimally Effective rating must improve the following year or risk dismissal. 
Beginning in 2012-13, teachers who have earned a second consecutive Developing rating are likewise subject to 
dismissal if they fail to improve. Through spring 2012, Highly Effective teachers were conversely eligible for large 
financial rewards. The share of teachers facing each performance incentive are estimated only within the respective 
years in which the incentive was in place. The sample for the solid line includes 35,672 teachers-by-year and 9,455 
unique teachers; and similarly for the dashed line 22,344 and 6,936, and for the long dashed line 10,004 and 4,755. 
.  
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 8—Estimates controlling for student baseline test scores 
 

Note: Both the solid and dashed lines report estimates using our preferred diff-in-diff strategy described in Section 
2.1. Both use the same identical sample of teacher-by-year observations. The vertical lines mark the 95 percent 
confidence intervals which are corrected for clustering (teacher). For the solid line “teachers with baseline test scores” 
estimates, the details of estimation are identical to the solid line in Figure 1 except that we restrict the estimation 
sample. The solid line sample includes only teacher-by-year observations where we have both an average observation 
rating, �̅�𝑠𝑗𝑗𝑗𝑗, and baseline test scores, 𝐴𝐴𝑖𝑖(𝑗𝑗−1), for the students 𝑖𝑖 assigned to teacher 𝑗𝑗 in year 𝑡𝑡. For the dashed line 
“controlling for baseline test scores” estimates, the details of estimation are identical to the solid line except that we 
first residualize the outcome, �̅�𝑠𝑗𝑗𝑗𝑗, using the mean baseline test score, 𝐴𝐴𝑖𝑖(𝑗𝑗−1), among teacher 𝑗𝑗’s students. The sample 
size the same for the two lines; in Tennessee 3,076,946 student-by-subject-by-year observations and 65,750 teacher-
by-year observations for 25,017 unique teachers, and similarly in DCPS 250,377, 5,369 and 2,258. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 9—Estimates by year of exit 
 
Note: All lines report estimates using our preferred diff-in-diff strategy described in Section 2.1. The vertical lines 
mark the 95 percent confidence intervals which are corrected for clustering (teacher). For each line in the figure, the 
details of estimation are identical to the solid line in Figure 1 except for the estimation sample. The sample for each 
of the four solid lines is defined by how many years the teacher taught in the jurisdiction (Tennessee or DC). Each 
teacher is observed for exactly 2, 3, 4, or 5 consecutive years and then not observed in the data subsequently. The 
dashed line includes teachers observed for 6 or more consecutive years. The sample size the same for the two series; 
in Tennessee 27,853 teacher-by-year observations for 6,613 unique teachers, and similarly in DCPS 31,785 and 8,931. 
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Table 1—Characteristics of the two samples 
    

 Tennessee DCPS 
 (1) (2) 

(A) Students 
At or above proficiency on NAEP   
   Math, grade 4 0.39 0.31 
   Math, grade 8 0.30 0.18 
   Reading, grade 4 0.34 0.27 
   Reading, grade 8 0.32 0.20 
Race/ethnicity   
   Black 0.22 0.64 
   Hispanic 0.09 0.18 
   White 0.64 0.13 
   Other or multiple race or ethnicity 0.05 0.04 
Urbanicity   
   City 0.34 1.00 
   Suburb 0.25 0.00 
   Town 0.14 0.00 
   Rural 0.27 0.00 
Share of school-age population in poverty 0.22 0.28 
English language learner 0.04 0.10 
Special Education 0.13 0.17 

    
(B) Teachers 

Observation score (original units) 3.94 3.17 
 (0.57) (0.47) 

   Observation score, administrators 3.94 3.22 
 (0.57) (0.49) 

   Observation score, master educators   3.02 
  (0.53) 

In student test score sample 0.23 0.15 
Female 0.79 0.74 
Race/ethnicity    
   Black 0.06 0.51 
   Hispanic 0.00 0.05 
   White 0.86 0.32 
   Other or multiple race or ethnicity 0.08 0.04 
Graduate degree 0.55 0.69 
Years of experience   
   Mean 11.83 10.86 
   Standard deviation (9.61) (8.25) 
   Categorical   
      1st year teaching 0.06 0.07 
      2nd 0.06 0.07 
      3rd 0.06 0.07 
      4th 0.05 0.06 
      5th 0.05 0.06 
      6th 0.05 0.05 
      7th 0.04 0.05 
      8th 0.04 0.04 
      9th  0.04 0.04 
     10th or more 0.55 0.48 
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Note: Panel A: National Assessment of Educational Progress (NAEP) scores are the simple mean of NAEP tests which 
occurred during the years in our analysis sample. Descriptive statistics for students are form the from National Center 
for Education Statistics’ Common Core of Data. The exception is the “in poverty” statistic which comes from US 
Census Bureau Small Area Income and Poverty Estimates. Panel B: Authors calculations using administrative data. 
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Appendix A. Additional figures and tables 
 
 

Panel A. Tennessee, all scores Panel B. DCPS, all scores 

  
Panel C. DCPS, master-educator scores Panel D. DCPS, administrator scores 

  
 

Appendix Figure A1—Distribution of observation scores  
 

Note: Histograms of teacher-by-year observations. The x-axis is a teacher’s annual observation score, which is an 
average of scores for different items or tasks, in the original rubric-scale units. Data are from the Tennessee TEAM 
rubric 2011-12 through 2018-19, and DCPS TLF rubric 2009-10 through 2015-16. The sample size for Tennessee in 
Panel A is 375,072 teacher-by-year observations; and similarly for DCPS 35,672 in Panel B, 34,898 in Panel C, and 
21,086 in Panel D. 
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Appendix Figure A2—Returns to experience measured in scores from student surveys (DCPS) 
 

Note: The dashed line reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The dashed 
line reports estimates using the conventional two-way fixed effects approach described in Section 2.4. The vertical 
lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). The details of estimation 
are identical to Figure 1 except that the outcome variable in this figure is based on student survey responses to the 
Tripod survey. The dependent variable is the teacher 𝑗𝑗’s Student Surveys of Practice (SSoP) score for school year 𝑡𝑡. 
SSoP scores are standardized (mean 0, s.d. 1) by school year using the distribution for all teachers in DCPS. The 
survey was administered to all DCPS students in grade 3 and above from 2016-17 to 2018-19. The sample size for the 
solid line is 4,406 teacher-by-year observations for 1,687 unique teachers, and similarly 4,312 and 1,640 for the dashed 
line.  
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Appendix Figure A3—Distribution of teacher experience over time 
 

Note: Each line measures the proportion of teachers (y-axis) in a given school year (x-axis) who are in their 𝑒𝑒th year 
of teaching. The estimation sample is the same as Figure 1. The estimation sample for Tennessee includes 375,072 
teacher-by-year observations for 81,847 unique teachers, and similarly for DCPS 35,672 and 9,455. 
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Panel A. School years 2013-14 to 2015-16, TLF rubric 

 
 

Panel B. School years 2016-17 to 2018-19, EP rubric 

 
 

Appendix Figure A4—Estimates when the distribution of experience is relatively stable (DCPS) 
 

Note: The solid line reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The dashed 
line reports estimates using the conventional two-way fixed effects approach described in Section 2.4. The vertical 
lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). The details of estimation 
are identical to Figure 1 except that the estimation samples here are each a subset of Figure 1’s estimation sample. 
Panel A uses only data from 2013-14 to 2015-16, and panel B only 2016-17 to 2018-19. Starting in 2016-17 DCPS 
switched from the TLF rubric to the new EP rubric. The sample size for the solid line in panel A is 24,125 teacher-
by-year observations for 7,726 unique teachers; and similarly 21,558 and 5,452 for dashed line in panel A, 11,547 and 
5,083 for solid line in panel B, and 10,116 and 3,689  for dashed line panel B. 
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Appendix Figure A5—Predicting student survey scores with teacher observation scores  
by years of teacher experience (DCPS) 

 
Note: The solid and dashed lines each report estimates from a separate linear regression. The vertical lines mark the 
95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome variable is 
teacher 𝑗𝑗’s Student Surveys of Practice (SSoP) score for school year 𝑡𝑡. SSoP scores are standardized (mean 0, s.d. 1) 
by school year using the distribution for all teachers in DCPS. In both cases the specification includes (a) indicators 
for years of prior experience 1 through 8 individually, with ≥ 9 years the omitted category; (b) classroom observation 
score, �̅�𝑠𝑗𝑗𝑗𝑗; and (c) the interactions of (a) and (b). Each plotted point is sum of the coefficient on the (a)*(b) interaction 
for 𝑒𝑒 years of experience (x-axis) plus the main-effect coefficient on (b). The solid line specification includes year and 
teacher fixed effects. The dashed line includes only year fixed effects, omitting the teacher fixed effects. The sample 
size for both lines is 5,362 teacher-by-year observations for 2,643 unique teachers. 
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Appendix Table A1—Predicting student test scores  

with teacher observation scores  
      
 (1) (2) (3) (4) 

(A) Tennessee 
Observation score (st.dev.) 0.166 0.081 0.009 0.005 

 (0.003) (0.001) (0.002) (0.002) 
(B) DCPS 

Observation score (st.dev.) 0.196 0.098 0.029 0.025 
 (0.012) (0.006) (0.007) (0.008) 
      

Student prior test score controls  √ √ √ 
Teacher experience controls    √ 
Teacher fixed effects   √ √ 
               

 
Note: Each column within panels reports results of a separate least-squares regression. Standard errors in parentheses 
are corrected for clustering (teacher). The dependent variable is student 𝑖𝑖’s test score, 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 , in subject 𝑠𝑠 (maths or 
English language arts pooled) and school year 𝑡𝑡. Test scores are standardized (mean 0, s.d. 1) within each grade-by-
subject-by-year cell using the distribution for all students in the jurisdiction, Tennessee or DCPS respectively. The 
key independent variable is teacher 𝑗𝑗’s classroom observation score, �̅�𝑠𝑗𝑗𝑗𝑗, which is an average of several item-level 
scores recorded during a given school year 𝑡𝑡. Observation scores are standardized (mean 0, st.dev. 1) by school year 
using the distribution of all teachers in the jurisdiction, Tennessee or DCPS respectively. The “student prior test score 
controls” are a quadratic in prior-year test score, where the parameters are allowed to differ across grade-by-subject-
by-year cells, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�. The “teacher experience controls” are a set of indicators for years of experience 1 through 
9 individually, with ≥ 10 years the omitted category. The sample size is the same across columns; in Tennessee 
4,222,939 student-by-subject-by-year observations and 92,403 teacher-by-year observations for 34,395 unique 
teachers, and similarly in DCPS 252,400, 5,429, and 2,274. 
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Appendix B: Details of Estimates Involving Teachers’ Value-Added 

Contributions to Student Test scores 

B.1 Estimates for Figure 2 Solid Line 

The solid line in Figure 2 plots returns-to-experience estimates where the 

performance measure is a teacher’s value-added contributions to student test scores. 

We first obtain value-added scores, �̂�𝜇𝑗𝑗𝑗𝑗, following the procedure described in the 

next two paragraphs, then we apply the estimator in Equation 1 substituting �̂�𝜇𝑗𝑗𝑗𝑗 for 

�̅�𝑠𝑗𝑗𝑗𝑗. In Figure 2, the y-axis, �̂�𝜇𝑗𝑗𝑗𝑗, is measured in student standard deviation units, and 

the sample is limited to teachers of grades 4-8 in math and English language arts. 

To estimate �̂�𝜇𝑗𝑗𝑗𝑗 we first fit the following regression specification, separately 

for Tennessee and DCPS data:  

𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 = 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)� + 𝜆𝜆𝑗𝑗 + 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 (B.1) 

where 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 is the end of year 𝑡𝑡 test score for student 𝑖𝑖 in subject 𝑠𝑠 taught by teacher 

𝑗𝑗. Test scores are in student standard deviation units (mean 0, s.d. 1 within 

jurisdiction-by-year-by-subject-by-grade cells, where jurisdiction is either the state 

of Tennessee or the DCPS district). The function 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)� is a flexible function 

of student 𝑖𝑖’s prior year test score in subject 𝑠𝑠, specifically, a quadratic in 𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1) 

where the parameters are free to differ across grade-by-school-year cells. Finally, 

the 𝜆𝜆𝑗𝑗 term represents teacher fixed effects.1 

After fitting Specification B.1, we calculate the modified residuals: 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗∗ =

𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 − 𝑏𝑏��𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)� or equivalently 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗∗ = �̂�𝜆𝑗𝑗 + 𝑢𝑢�𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗. Then our estimate of value 

added, �̂�𝜇𝑗𝑗𝑗𝑗, is the average residual, 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗∗ , averaging over all students 𝑖𝑖 assigned to 

 
1 Years 2015-16 and 2016-17 are excluded for Tennessee because students were not tested in 2015-
16. In Tennessee if the student had two or more teachers in a given subject and year, we include one 
observation per teacher and weight each observation by the proportion of responsibility allocated 
by the state to the teacher. Three quarters of students had one teacher in a given subject. If the 
student’s prior year test score is missing, we replace it with zero and include an indicator for missing 
in the function 𝑏𝑏. 
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teacher 𝑗𝑗 in year 𝑡𝑡, and averaging over subjects 𝑠𝑠 (math and reading) if the teacher 

taught both. This average residual, �̂�𝜇𝑗𝑗𝑗𝑗, version of a “value added measure” is the 

same average residual as in step one of the Chetty, Friedman, and Rockoff (2014) 

or Kane and Staiger (2008) approaches. In the current application we do not 

“shrink” the estimates because �̂�𝜇𝑗𝑗𝑗𝑗 is the outcome in our analysis. 

B.2 Estimates for Figure 2 Dashed Line 

The dashed line in Figure 2 plots returns-to-experience estimates where the 

outcome is also teacher value added, but the estimation methods follow the 

conventional strategy instead of our preferred strategy. That conventional strategy 

is described in the next paragraph. 

 For these estimates we fit a version of the regression specification in 

Equation 3, but a specification fit with student-level data: 

𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 = ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� + 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)� + 𝜆𝜆𝑗𝑗 + 𝜋𝜋𝑗𝑗 + 𝑣𝑣𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 (B.2) 

where the function ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� is specified just as it is for the classroom observation 

outcomes. We repeat Equation 4 here for convenience: 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� = �𝛽𝛽𝑒𝑒 × 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑒𝑒�
�̅�𝑒−1

𝑒𝑒=0

 

and 𝛿𝛿𝑒𝑒 = 𝛽𝛽𝑒𝑒 − 𝛽𝛽𝑒𝑒−1. 

(4) 

with the omitted category is veterans, 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 ≥ �̅�𝑒�. All other details of estimation 

for B.2 are the same as for fitting B.1. We continue to estimate standard errors using 

a cluster (teacher) correction.  

B.3 Estimates for Figure 3  

Figure 3 shows the relationship between observation ratings and test-score 

value added, and how that relationship changes with teacher experience. The x-axis 

is years of prior experience. The y-axis is the predicted increase in value added if 

we increase the teacher’s observation score by one standard deviation.  
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To obtain the estimates in Figure 3 we fit the regression specification in 

Equation B.2, except that the function ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� is replaced with: 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗, �̅�𝑠𝑗𝑗𝑗𝑗� = 𝛼𝛼�̅�𝑒�̅�𝑠𝑗𝑗𝑗𝑗 + �𝛽𝛽𝑒𝑒𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑒𝑒�
�̅�𝑒−1

𝑒𝑒=0

+ 𝛼𝛼𝑒𝑒�𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑒𝑒� × �̅�𝑠𝑗𝑗𝑗𝑗� 

(B.3) 

which interacts experience and observation ratings on the right-hand side. Figure 3 

plots (𝛼𝛼�𝑒𝑒 + 𝛼𝛼��̅�𝑒) for each level of experience, 𝑒𝑒. The solid line in Figure 3 uses only 

within-teacher over-time variation, by including teacher fixed effects just as in 

Specification B.2. The dashed line in Figure 3 uses both within- and between-

teacher variation by omitting the teacher fixed effects from the regression 

specification. As throughout the paper, we estimate standard errors using a cluster 

(teacher) correction. 
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