
 

 

NEW TECHNOLOGY AND TEACHER PRODUCTIVITY 

 

Eric S. Taylor† 

Harvard University 

 

January 2018 

 

I study the effects of a labor-replacing computer technology on the productivity of 

classroom teachers. In a series of field-experiments, teachers were provided 

computer-aided instruction (CAI) software for use in their classrooms; CAI 

provides individualized tutoring and practice to students one-on-one with the 

computer acting as the teacher. In mathematics, CAI reduces by one-quarter the 

variance of teacher productivity, as measured by student test score gains. The 

reduction comes both from improvements for otherwise low-performing teachers, 

but also losses among high-performers. The change in productivity partly reflects 

changes in teachers’ decisions about how to allocate class time and teachers’ 

effort.  

 

JEL No. I2, J2, M5, O33 

 

  

                                                 
† eric_taylor@harvard.edu, Gutman Library 469, 6 Appian Way, Cambridge, MA 02138, 617-496-

1232. I thank Eric Bettinger, Marianne Bitler, Nick Bloom, Larry Cuban, Tom Dee, David 

Deming, Caroline Hoxby, Brian Jacob, Ed Lazear, Susanna Loeb, John Papay, Sean Reardon, 

Jonah Rockoff, Doug Staiger, and seminar participants at UC Berkeley, University of Chicago, 

Harvard University, UC Irvine, Stanford University, and University of Virginia for helpful 

discussions and comments. I also thank Lisa Barrow, Lisa Pithers, and Cecilia Rouse for sharing 

data from the ICL experiment, the Institute for Education Sciences for providing access to data 

from the other experiments, and the original research teams who carried out the experiments and 

collected the data. Financial support was provided by the Institute of Education Sciences, U.S. 

Department of Education, through Grant R305B090016 to Stanford University; and by the 

National Academy of Education/Spencer Dissertation Fellowship Program.  

mailto:eric_taylor@harvard.edu


 

1 

 

Computers in the workplace have, broadly speaking, improved labor 

productivity.1 The productivity effects of computers arise, in part, because 

workers’ jobs change: computers replace humans in performing some tasks, 

freeing workers’ skills and time to shift to new or different tasks; and computers 

enhance human skills in other tasks, further encouraging reallocation of labor 

(Autor, Katz, and Krueger 1998; Autor, Levy, and Murnane 2003; Acemoglu and 

Autor 2011). In this study I measure the effects of a labor-replacing computer 

technology on the productivity of classroom teachers. My focus on one 

occupation—and a setting where both workers and their job responsibilities 

remain fixed—provides an opportunity to examine the heterogeneity of effects on 

individual productivity. 

Whether and how computers affect teacher productivity is immediately 

relevant to both ongoing education policy debates about teaching quality and the 

day-to-day management of a large workforce. K-12 schools employ one out of ten 

college-educated American workers as teachers,2 and a consistent empirical 

literature documents substantial between-teacher variation in job performance.3 In 

recent years, these differences in teacher productivity have become the center of 

political and managerial efforts to improve public schools. Little is known about 

what causes these differences, and most interventions have focused either on 

changing the stock of teacher skills—through selection or training—or on 

                                                 
1 See for example Jorgenson, Ho, and Stiroh (2005), Oliner, Sichel, and Stiroh (2007), and 

Syverson (2011). 
2 Author’s calculations from Current Population Survey 1990-2010. 
3 Much of the literature focuses on teacher contributions to academic skills, measured by test 

scores. In a typical result, students assigned to a teacher at the 75th percentile of the job 

performance distribution will score between 0.07-0.15 standard deviations higher on achievement 

tests than their peers assigned to the average teacher (Jackson, Rockoff, and Staiger 2014). Other 

work documents variation in teachers’ effects on non-test-score outcomes (Jackson 2014), and 

teacher’ observed classroom practices (Kane, McCaffrey, Miller, and Staiger 2013). Recent 

evidence suggests that variability in performance contributes to students’ long-run social and 

economic success (Chetty, Friedman, and Rockoff 2014b). 
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changing teacher effort—through incentives and evaluation.4 Computer 

technology is both a potential contributor to observed performance differences 

and a potential intervention to improve performance, but, to date, it has received 

little attention in the empirical literature on teachers and teaching.5 

 Two features of most classroom teaching jobs are important to predicting 

the effects of computers on individual productivity, and these features make 

heterogeneous effects more likely. First, the job of a teacher involves multiple 

tasks—lecturing, discipline, one-on-one tutoring, communicating with parents, 

grading, etc.—each requiring different skills to perform.6 The productivity effects 

of a new computer which replaces (complements) one skill will depend on the 

distribution of that particular skill among the teachers. The effects of a labor-

replacing technology will further depend on how the teacher’s effort and time, 

newly freed-up by the computer, are reallocated across the tasks which remain the 

responsibility of the teacher herself. Second, teachers have substantial autonomy 

in deciding how to allocate their own time and effort, and the time and effort of 

their students, across different tasks. In other words, individual teachers make 

meaningful educational production decisions in their own classrooms. Differences 

in these choices likely explain some of the baseline variability in teacher 

productivity, even conditional on teacher skills. And, when a new labor-replacing 

computer becomes available, teachers themselves will partly decide how effort 

and time are reallocated. These two features are not unique to teaching, however, 

                                                 
4 For examples from the literature on teacher selection see Staiger and Rockoff (2010), and 

Rothstein (2012). For training see Taylor and Tyler (2012). For incentives and evaluation see 

Barlevy and Neal (2012) and Rockoff, Staiger, Kane and Taylor (2012). 
5 There is some theoretical work on this topic. Acemoglu, Laibson, and List (2014) show how 

technology could permit productivity-enhancing specialization in teacher job design. Lakdawalla 

(2006) and Gilpin and Kaganovich (2011) consider how economy-wide technological change 

affects selection of people into and out of the teacher labor market by changing the relative skill 

demands in other sectors. Barrow, Markman, and Rouse (2008, 2009) discuss how technology 

could increase the quantity of instructional time. 
6 By “skills” I mean teachers’ current capabilities whether innate, or acquired by training or 

experience, or both. 
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and so the analysis in this paper should have applicability in other occupations 

(see for example Atkin et al. 2017). The theoretical framework in Appendix B 

describes, in greater detail, the salient features of a teacher’s job, the teacher’s 

educational production problem generally, and the introduction of a new 

technology.7 

 In this paper I analyze data from a series of randomized field experiments 

in which teachers were provided computer-aided instruction (CAI) software for 

use in their classrooms. I first estimate the treatment effect on the variance of 

teacher productivity, as measured by contributions to student test score growth. I 

then examine whether the software affected individual teachers’ productivity 

differentially, and examine the extent to which the software changed teachers’ 

work effort and decisions about how to allocate time across job tasks.  

 Computer-aided instruction software effectively replaces teacher labor. It 

is designed to deliver personalized instruction and practice to students one-on-

one, with each student working independently at her own computer and the 

computer taking the role of the teacher. Most current CAI programs adaptively 

select each new lesson or practice problem based on the individual student’s 

current understanding as measured by previous practice problems and quizzes.8 

The experiments collectively tested 18 different CAI software products across 

reading in grades 1, 4, and 6; and for math in grade 6, pre-algebra, and algebra.  

 I report evidence that, among math teachers, the introduction of computer-

aided instruction software reduces by approximately one-quarter the variation in 

                                                 
7 I propose a version of the teacher’s problem that (i) makes a clear distinction between the tasks 

that comprise the job of a classroom teacher, and a teacher’s skills in each of those tasks; and (ii) 

explicitly considers the teacher’s own decisions about education production in her classroom. The 

task-skills distinction is a useful and increasingly common feature in the literature on how 

technical change affects labor (Acemoglu and Autor 2011).  
8 A distinction is sometimes made between computer-aided and computer-managed instruction, 

with the latter reserved for software which includes the adaptive, individualized features. For 

simplicity and following prior usage in economics, I refer to this broader category as computer-

aided instruction or CAI. 
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teacher productivity, as measured by student test scores. The standard deviation of 

teacher effects among treatment teachers was 0.22 student standard deviations, 

compared to 0.30 for control teachers. The reduction in variance is the result of 

improvements for otherwise low-producing teachers, but also losses in 

productivity among otherwise high-producing teachers. However, estimates for 

reading teacher productivity show no treatment effects.  

 The sign of the effect on variance is likely consistent with most reader’s 

priors. If a computer skill replaces teacher skill in performing a given task, then 

the between-teacher variation in the productivity of that particular task should 

shrink. However, skill substitution in the given task is only the first-order effect. 

The total effect of some new technology on the variance of teacher productivity 

will depend on how individual teachers choose to reallocate time and effort across 

other tasks after giving some task(s) to the computer (see Appendix B for more 

discussion of this point and the next two paragraphs).  

I also find evidence that the new software changes how teachers’ carry out 

their job day-to-day. Data from classroom observations show a substantial 

reallocation of class time across tasks: treatment teachers increase by 35-38 

percent the share of class time devoted to individual student work (often work 

using the CAI software), with offsetting reductions in the share of class time in 

whole-class lectures. This reallocation is consistent with teachers making a 

rational production decision: spending more of their class-time budget on 

individual student work and less on lectures because CAI increases the marginal 

rate of technical substitution of the former for the latter in producing student 

achievement. The reallocation is further motivated by a change in the relative 

effort costs. CAI reduces teacher effort on two margins. First, the teacher’s role 

during individual student practice time shrinks to mostly monitoring instead of 

actively leading. Second, treatment math teachers reduce their total work hours, 

cutting time previously spent on planning and grading in particular.  
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Additionally, the reduction in effort costs, especially at the labor-leisure 

margin, is one explanation for why high-performing teachers might rationally 

choose to begin using CAI even though it reduces their student’s achievement 

scores. Consistent with this explanation, as detailed below, the labor-leisure shift 

is largest among the relatively high-performing teachers. Willingness to trade 

student achievement for reduced own effort adds important nuance to the notion 

of teachers as motivated agents (Dixit 2002). 

For most results in the paper, the argument for a causal interpretation 

relies only the random assignment study designs. This is the case for the reduction 

in the variance of teacher productivity, and the average changes in teacher effort 

and time allocation.9 I use unconditional quantile regression methods to estimate 

the treatment effect heterogeneity. Some strong interpretations of quantile 

treatment effects require a rank invariance assumption. However, even if this 

assumption does not hold, the results still support important causal conclusions 

about the heterogeneity of effects, including the conclusion that productivity 

improved for some otherwise low-performing teachers but declined for some 

high-performers. 

The analysis in this paper suggests new computer technology is an 

important contributor to differences in teacher productivity.10 It also highlights 

interactions between teachers’ skills and teachers’ production decisions in 

determining observed performance.11 Replacing teacher labor with machines, like 

                                                 
9 Subtly, while the direction and magnitude of change in the variance of productivity are identified 

by random assignment alone, identifying the level of variance requires a further assumption, i.e., 

the standard identifying assumption about student sorting common throughout the teacher value-

added literature. I discuss this issue later in the paper. 
10 Jackson and Makarin (2016) provide experimental evidence from another empirical example: 

providing lesson plans as a substitute for teacher effort and skill. As with CAI, the effects depend 

on prior teacher performance. Previously low-performing teachers improved, while there was little 

to no effect for high-performing teachers. 
11 Examination of teachers’ production decisions by economists has been rare (Murnane and 

Phillips 1981; Brown and Saks 1987; and Betts and Shkolnik 1999 are exceptions). 
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the computer-aided instruction example I examine, can greatly benefit students in 

some classrooms, especially the classrooms of low performing teachers, while 

simultaneously making students in other classrooms worse off. This difference in 

outcomes arises partly because, given the option, some teachers choose to use a 

new technology, even if it reduces their students’ achievement, because it also 

substantially reduces their workload.  

  

1. Computers in schools and computer-aided instruction 

Research evidence on whether computers improve schooling is mixed at 

best. Hundreds of studies take up the question—often reporting positive effects on 

student outcomes—but a minority of studies employ research designs appropriate 

for strong causal claims. That minority find mixed or null results (see reviews by 

Kirkpatrick and Cuban 1998; Cuban 2001; Murphy et al. 2001; Pearson et al. 

2005). In the economics literature, several studies examine variation in schools’ 

computer use induced by changes in subsidies (Angrist and Lavy 2002; Goolsbee 

and Guryan 2006; Machin, McNally, and Silva 2007; Leuven, Lindahl, 

Oosterbeek, and Webbink 2007; Barrera-Osorio and Linden 2009). In these 

studies, schools respond to the subsidies by increasing digital technology 

purchases, as expected, but with no consistent effects on student outcomes. In 

broad cross-sectional data, Fuchs and Woessmann (2004) find positive 

correlations between computers and student outcomes, but also demonstrate that 

those relationships are artifacts of omitted variables bias.12 

                                                 
12 Evidence on the educational benefits of home computers is also mixed. Fuchs and Woessmann 

(2004), Vigdor and Ladd (2010), and Malamud and Pop-Eleches (2011) all find negative effects of 

home computers. In a recent field-experiment, Fairlie and Robinson (2013) find no effect of a 

computer at home on achievement, attendance, or discipline in school. By contrast, Fairlie (2005), 

Schmitt and Wadsworth (2006), Fairlie, Beltran, and Das (2010), and Fairlie and London (2012) 

all find positive effects. 
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 Of course, “computers in schools” is a broad category of interventions. 

Computers can contribute to a range of tasks in schools: from administrative 

tasks, like scheduling classes or monitoring attendance, to the core tasks of 

instruction, like lecturing and homework. Today, software and digital products for 

use in schools is a nearly eight billion dollar industry (Education Week 2013). In 

this paper, I focus on one form of educational computer technology—computer-

aided instruction software—which is designed to contribute directly to the 

instruction of students in classrooms. 

1.A Description of computer-aided instruction  

Computer-aided instruction (CAI) software is designed to replace 

traditional teacher labor by delivering personalized instruction and practice 

problems to students one-on-one, with each student working largely 

independently at her own computer. Most CAI programs adaptively select each 

new tutorial or practice problem based on the individual student’s current 

understanding as measured by past performance on problems and quizzes. If the 

student has yet to master a particular concept, the software teaches that concept 

again. Most products provide detailed reports on each student’s progress to 

teachers. 

 Figure 1 shows screen images from two different CAI products included 

in the data for this paper. As the top panel shows, from software for use in an 

algebra class, some CAI products largely replicate a chalkboard-like or textbook-

like environment, though the product shown does actively respond in real-time 

with feedback and help as the student enters responses. The bottom panel, from a 

first grade reading lesson, shows one frame from a video teaching phonics for the 

letters l, i, and d. With its animated characters and energetic tone of voice, the 

latter is, perhaps, an example of the often cited notion that computers can provide 

a more “engaging” experience for students. 
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1.B Evidence on the student achievement effects of computer-aided instruction  

 While CAI was a new option for (most) teachers in this study, CAI is not a 

new technology. The psychologist B. F. Skinner proposed a “teaching machine” 

in the 1950s, and the development and research evaluation of computer-aided 

instruction dates back to at least the mid-1960s. Early experimental studies 

documented positive, often large, effects on student achievement (Suppes and 

Morningstar 1969; Jamison, Fletcher, Suppes, and Atkinson 1976).  

In the past decade, results on CAI have been decidedly more mixed, again, 

especially if one focuses on studies with rigorous designs (see review in Dynarski 

et al. 2007). Many field-experiments testing several software programs find zero 

effects of CAI (or at least null results) on student test scores in reading and math 

classes at elementary and secondary school levels (for reading see Rouse and 

Krueger 2004; Drummond et al. 2011; for math see Cavalluzzo et al. 2012; Pane, 

Griffin, McCaffrey, and Karam 2013; for both see Dynarski et al. 2007). 

Exceptions include both strong positive and strong negative effects (for positive 

effects see He, Lindon, and MacLeod 2008; Banerjee, Cole, Duflo, and Linden 

2009; Barrow, Markman, and Rouse 2009; for negative effects see Lindon 2008; 

Pane, McCaffrey, Slaughter, Steele, and Ikemoto 2010).13  

These generally null average test-score effects may, however, be masking 

important differences from classroom to classroom. For example, Barrow, 

Markman, and Rouse (2009) show that the test-score gains from CAI are larger 

for students who should benefit most from an individualized pace of instruction: 

students in large classes, students far behind their peers academically, and 

students with poor school attendance rates. I focus in this paper on differences 

between teachers in how CAI affects their productivity; a question as yet 

                                                 
13 Results cited in this paragraph track outcomes for just one school year: the teacher’s first year 

using the software. Outcomes in the second year are occasionally measured, but just as mixed 

(Campuzano et al. 2009, Pane et al. 2013). 
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unaddressed in the literature on computers in schools or teacher productivity 

generally. 

 In this study I use data from four of the experiments cited above: Dynarski 

et al. (2007), Barrow, Markman, and Rouse (2009), Drummond et al. (2011), and 

Cavalluzzo et al. (2012). All but two of the 18 products tested had no effect (or at 

least null results) on average test scores.14 None of the four original analyses 

examined how CAI affects teacher productivity. 

 

2. Setting, data, and experimental designs 

Data for this study were collected in four field-experiments conducted 

during the past decade. In each experiment, teachers randomly assigned to the 

treatment condition received computer-aided instruction (CAI) software to begin 

using in their classrooms. As described earlier, in nearly all cases, the treatment 

had no detectable effect on average student test scores (Appendix Table A1). 

Table 1 summarizes the key details of each experiment: randomization design, 

products tested, grade-levels and subjects, and key data collected.  

Collectively the experiments tested 18 different CAI software programs in 

reading classes in grades 1, 4, and 6; and mathematics in grade 6, pre-algebra 

(typically grade 8), and algebra (typically grade 9). The combined analysis sample 

includes more than 650 teachers and 17,000 students in over 200 schools and 80 

districts from all regions of United States.15 By design, participating schools 

generally had low levels of student achievement at baseline and served mostly 

students in poverty. Table 2 reports statistics for available student and teacher 

                                                 
14 Appendix Table A1 reports mean test-score effects both from the original study reports (Column 

1) and from my own re-analysis (Columns 2 and 4). The two exceptions to null effects are: 

Barrow, Markman, and Rouse (2009) who find a positive effect for ICL of 0.17 student standard 

deviations; I find the same result. Cavalluzzo et al. (2012) report a non-significant but negative 

effect of 0.15 student standard deviations; I find essentially the same negative point estimate, but 

estimate it with sufficient precision to find it statistically significant.  
15 Three of four experiments were funded by the Institute for Education Sciences, U.S. Department 

of Education. IES requires that all references to sample sizes be rounded to the nearest 10.  
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characteristics. Many schools were in large urban districts, but suburban and rural 

schools also participated. All schools and districts volunteered to participate.  

Data from classroom observations shows strong take-up of the treatment, 

at least on the extensive margin: students were observed using CAI in 79 percent 

of math teachers’ classes and 96 percent of reading teachers’ classes (see Table 5 

Row 1). In control classrooms the rates were 15 and 17 percent respectively. 

Throughout the paper I limit discussion to intent to treat effects in the interest of 

space. Two-thirds of treatment classes used CAI on computers in their own 

classroom, and one-third in shared computer labs (data from EET study only). 

The experiments lasted for one school year, thus, all outcomes were measured 

during teachers’ first year using the new software.  

2.A Data  

 Students in all experiments were tested both pre- and post-experiment 

using standardized achievement tests. Starting at scale score units, I standardize 

(mean 0, standard deviation 1) all test scores within cells defined by grade, 

subject, and test form, using control means and standard deviations. Test 

publisher and form varied by grade, subject, and experiment (see Table 1); but all 

tests were “low stakes” in the sense that students’ scores were not used for formal 

accountability systems like No Child Left Behind or teacher evaluation.16 Each 

experiment also collected some, but differing, demographic characteristics of 

students and teachers. 

 Three of the four experiments conducted classroom observations to 

measure how teachers divided class time among different tasks and activities.17 

Using these data, I measure the proportion of class time spent in three categories: 

whole class instruction or lectures, small group activities, and individual student 

                                                 
16 In all but one case, the NROC experiment, the tests were administered only for purposes of the 

experiment.  
17 Appendix C describes the differences in data collection, and my decisions in combining data. 
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work. The observation data also record whether CAI software—either study-

provided products or other products—was used during the class.  

 One experiment, the “Evaluation of Educational Technologies” (EET), 

also conducted extensive interviews with teachers twice during the study school 

year. Most notably, in the spring interviewers asked teachers to estimate how 

many hours, in or out of school, they spent in a typical week on various work-

related tasks: teaching, preparing lessons, grading, and administering tests. I use 

teachers’ responses to examine labor-leisure decisions. For treatment teachers, the 

EET interviews also include several questions about CAI use specifically: time 

spent learning the software, adjusting lesson plans, and setting up the systems; 

frequency of technical problems; use of software reports provided by the 

software; and others.  

2.B Experimental designs 

All four studies divided teachers between treatment and control conditions 

by random assignment, but with somewhat different designs. The “Evaluation of 

Educational Technologies” (EET) study, which included 15 different CAI 

products, and the evaluation of Thinking Reader (TR) both randomly assigned 

teachers within schools. In the EET study, all treatment teachers in the same 

school and grade-level were given the same CAI software product to use. The 

evaluation of National Repository of Online Courses Algebra I (NROC) randomly 

assigned schools within three strata defined by when the school was recruited to 

participate. The evaluation of I CAN Learn (ICL) randomly assigned classes 

within strata defined by class period (i.e., when during the daily schedule the class 

met). About one-half of teachers in the ICL experiment taught both a treatment 

and control class. 

  To assess whether the random assignment procedures were successful, I 

compare the average pre-treatment characteristics of treatment and control 

samples in Table 2. The samples are relatively well balanced, though observable 
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characteristics differ from experiment to experiment. Both treatment teachers and 

students appear more likely to be male, but I cannot reject a test of the joint null 

of all mean differences equal to zero. Additional details on random assignment 

procedures and additional tests are provided in the original study reports.18 

 My measurement of teacher productivity requires student observations 

with both pre- and post-experiment test scores. Thus, even if samples were 

balanced at baseline, treatment-induced differences in attrition over the school 

year could bias my estimates. Since, as I describe shortly, teacher productivity is 

measured with student test score growth, attrition correlated with baseline test 

scores is of particular concern. As shown in Table 3, there is little evidence of 

differential attrition patterns in math classes.19 Treatment did not affect average 

student (top panel) and teacher (bottom panel) attrition rates, nor did treatment 

change the relationships between baseline test scores and the likelihood of 

attrition. In reading classes, however, treatment appears to have reduced attrition 

overall, but increased the likelihood that a teacher would attrit if assigned a more 

heterogeneously skilled class. As shown in the appendix, these reading attrition 

differences are largely limited to the TR experiment. Notably, though, attrition 

rates for teachers were very low in both subjects—less than two percent of all 

teachers attrited.  

 

3. Effects of CAI on the variance of teacher productivity 

My first empirical objective is to estimate the causal effect of treatment—

providing new CAI technology to classroom teachers—on the variance of teacher 

productivity. Throughout the paper I focus on one aspect of productivity: a 

                                                 
18 Results of an additional test are also consistent with random assignment: I apply the methods 

described in Section 3.A but replace outcome test score with baseline test score. p-values for this 

test range between 0.53-0.60. 
19 Within panels, each column in Table 3 reports coefficients from a linear probability model with 

“attrited” as the outcome. All models include fixed effects for randomization blocks. 
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teacher’s contribution to student academic achievement as measured by test score 

growth. A large literature documents substantial variability in this measure of 

productivity (Jackson, Rockoff, and Staiger 2014), and recent evidence suggests 

that variability is predictive of teacher productivity differences measured with 

students’ long-run economic and social outcomes (Chetty, Friedman, and Rockoff 

2014b). 

3.A Methods 

A teacher’s contribution to her students’ test scores is not directly 

observable. To isolate the teacher’s contribution, I assume a statistical model of 

student test scores where a test score, 𝐴𝑖,𝑡, for student 𝑖 at the end of school year 𝑡 

can be written 

𝐴𝑖,𝑡 = 𝑓𝑒(𝑖)(𝐴𝑖,𝑡−1) + 𝜓𝑠(𝑖,𝑡) + 𝜇𝑗(𝑖,𝑡) + 𝜀𝑖,𝑡. 

 (1) 

The 𝜇𝑗(𝑖,𝑡) term represents the effect of teacher 𝑗 on student 𝑖’s test score; net of 

prior achievement, 𝑓𝑒(𝑖)(𝐴𝑖,𝑡−1), and school effects, 𝜓𝑠(𝑖,𝑡). The specification in 1, 

now commonplace in the literature on teachers, is motivated by a dynamic model 

of education production, suggested by Todd and Wolpin (2003), in which prior 

test score, 𝐴𝑖,𝑡−1, is a sufficient statistic for differences in prior inputs.  

 With the model in 1 as a key building block, I take two separate 

approaches to estimating the effect of treatment on the variance of teacher 

productivity 

𝛿 ≡  𝑣𝑎𝑟(𝜇| 𝑇 = 1) − 𝑣𝑎𝑟(𝜇| 𝑇 = 0). 

The first approach is a least-squares estimate of the conditional variance function. 

Specifically, I estimate the treatment effect on the variance 𝛿𝐿𝑆 by fitting  

(𝜇𝑗 − 𝔼[𝜇𝑗| 𝑇𝑗, 𝜋𝑏(𝑗)])
2

 = 𝛿𝐿𝑆𝑇𝑗 + 𝜋𝑏(𝑗) + 𝜈𝑗, 

(2) 
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where 𝑇𝑗 is an indicator = 1 if the teacher was assigned to the CAI treatment and 

zero otherwise, and 𝜋𝑏(𝑗) represent fixed effects for each randomization block 

group, 𝑏. The latter are included to account for the differing probabilities of 

selection into treatment; probabilities dictated by each experiment’s design (i.e., 

random assignment within schools, recruitment strata, or class period).  

My approach to estimating Specification 2 has three steps. Step one, 

estimate 𝜇, as described in the next paragraph. Then follow the common, feasible 

approach to fitting conditional-variance specifications like 2: Step two, estimate 

𝔼[𝜇̂𝑗| 𝑇𝑗 , 𝜋𝑏(𝑗)] by ordinary least-squares, i.e., fit 𝜇̂𝑗 = 𝛿𝑇𝑗 + 𝜋̃𝑏(𝑗) + 𝑢𝑗 .20 Step 

three, estimate Specification 2 using the squared residual from step two, 𝑢̂𝑗
2, as the 

dependent variable. I calculate standard errors for 𝛿𝐿𝑆 that allow for clustering 

within schools. 

In step one I estimate the test-score productivity of each teacher, 𝜇̂𝑗, by 

fitting Equation 1 treating the 𝜇𝑗(𝑖,𝑡) as teacher fixed effects.21,22 The 𝜓𝑠(𝑖,𝑡) terms 

are school fixed effects, and 𝑓𝑒(𝑖) is a quadratic in pre-experiment test score. The 

parameters of 𝑓𝑒(𝑖) are allowed to be different for each of the various tests, 𝑒, used 

to measure 𝐴𝑖,𝑡 and 𝐴𝑖,𝑡−1; each 𝑒 is defined by the intersection of grade-level, 

subject, and experiment. Note that this teacher-fixed-effects approach does not 

require a distributional assumption about 𝜇𝑗(𝑖,𝑡), and identifies other model 

parameters using only within-teacher variation. Finally, the estimated teacher 

fixed effects, 𝜇̂𝑗, include estimation error. I “shrink” the 𝜇̂𝑗, multiplying each 

                                                 
20 It may seem intuitive to interpret the estimate of 𝛿 from step two as the treatment effect on the 

mean of teacher productivity. However, as I discuss further in Section 4, the mean productivity 

effect cannot be separately identified. 
21 The teacher fixed effects are parameterized to be deviations from the school average, rather than 

deviations from an arbitrary hold out teacher, using the approach suggested by Mihaly, 

McCaffrey, Lockwood, and Sass (2010).  
22 Kane and Staiger (2008) and Chetty, Friedman, and Rockoff (2014a) use an alternative 

approach to estimating 𝜇̂𝑗 which, in short, uses average test-score residuals. My estimates of 𝛿̂𝐿𝑆 

are robust to taking this alternative approach. 
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estimate by its estimated signal-to-total variance ratio.23,24 

  The second approach to estimating 𝛿 is a maximum likelihood estimate, 

𝛿𝑀𝐿, obtained by treating 𝜇𝑗(𝑖,𝑡) as teacher random effects. I fit a slightly re-

parameterized version of Equation 1, 

𝐴𝑖,𝑡 = 𝑓𝑒(𝑖)(𝐴𝑖,𝑡−1) + 𝜓𝑠(𝑖,𝑡) + 𝜇𝑗(𝑖,𝑡)
𝑇 𝑇𝑗(𝑖,𝑡) + 𝜇𝑗(𝑖,𝑡)

𝐶 (1 − 𝑇𝑗(𝑖,𝑡)) + 𝜀𝑖,𝑡, 

(3) 

where 𝜇𝑗(𝑖.𝑡)
𝑇  and 𝜇𝑗(𝑖.𝑡)

𝐶  are random effects with the assumed distribution 

[
𝜇𝑗(𝑖,𝑡)

𝑇

𝜇𝑗(𝑖,𝑡)
𝐶 ] ~𝑁([

𝜇𝑇

𝜇𝐶] , [
𝜎

𝜇𝑇
2 0

0 𝜎
𝜇𝐶
2 ]). 

That is, the model allows the estimated variance of the teacher-specific random 

intercepts to differ between treatment and control. I also allow the variance 𝜀𝑖,𝑡 to 

be difference for treatment and control groups. As in the least-squares approach, 

𝜓𝑠(𝑖,𝑡) are school fixed effects and 𝑓𝑒(𝑖) is a quadratic function specific to each 

test. Maximum likelihood estimation of this linear mixed model provides 𝜎̂
𝜇𝑇
2  and 

𝜎̂
𝜇𝐶
2 , and thus 𝛿𝑀𝐿 = (𝜎̂

𝜇𝑇
2 − 𝜎̂

𝜇𝐶
2 ). 

 To interpret either of the two estimates, 𝛿𝑀𝐿 or 𝛿𝐿𝑆, as the causal effect of 

new CAI software on the variance of teacher productivity requires two 

assumptions. Assumption 1: At the start of the experiment, there was no 

difference between the treatment teachers and control teachers in teachers’ 

potential for making productivity gains (losses) during the experiment school 

year. This assumption should be satisfied by the random assignment study 

designs.  

                                                 
23 I estimate signal variance with the total variance of 𝜇̂𝑗 minus the mean squared standard error of 

the 𝜇̂𝑗. Signal variance is estimated separately for treatment and control samples. The total 

variance for estimate j is signal variance plus the squared standard error of 𝜇̂𝑗.  
24 Estimates of the treatment effect on the variance are still statistically significant, and not 

substantially different if I do not shrink the teacher fixed effect estimates. 
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Assumption 2: Students were not assigned to teachers based on 

unobserved (i.e., omitted from Equation 1 or 3) determinants of potential for test 

score growth: 𝔼[𝜀𝑖,𝑡| 𝑗] = 𝔼[𝜀𝑖,𝑡]. This assumption is necessary for obtaining 

consistent estimates of 𝜇̂𝑗, and parameters like it throughout the teacher effects 

literature. Empirical tests of this assumption by Chetty, Friedman, and Rockoff 

(2014a) and Kane and Staiger (2008) find little residual bias in 𝜇̂𝑗 if the 

estimating equation includes, as I do, flexible controls for students’ prior 

achievement, and controls for teacher and student sorting between schools.25,26  

 Assumption 2 is, strictly speaking, only needed to identify the levels of 

variance. A weaker alternative is sufficient for causal estimates of the relative 

difference in variance, and thus the sign of 𝛿𝑀𝐿 or 𝛿𝐿𝑆. Assumption 2 Alternative: 

Any source of (residual) bias in estimating 𝜇̂𝑗 is independent of the condition, 

treatment or control, to which a teacher was assigned. Like Assumption 1, this 

alternative assumption should be satisfied by the random assignment of teachers. 

 One final note about methods, the experiment for I CAN Learn randomly 

assigned classes, not teachers, to treatment and control conditions. Half of 

teachers in that experiment taught both a treatment and control class. Except 

where explicitly noted in one analysis, I treat each ICL class as a separate 

observation 𝑗 and estimate a separate 𝜇𝑗. I show the results are robust to excluding 

ICL entirely from the estimation sample. Moreover, the inclusion of ICL appears 

to attenuate the estimated effect of treatment on the variance of productivity (see 

Appendix Table A2). The smaller effects in the ICL sample may be the result of 

                                                 
25 For detailed discussions of the theoretical and econometric issues in isolating teacher 

contributions to student test score growth see Todd and Wolpin (2003), Kane and Staiger (2008), 

Rothstein (2010), and Chetty, Friedman, and Rockoff (2014a).  
26 Students were not randomly assigned to classes or teachers in any of the four experiments. 

Schools in the ICL experiment claimed the class assignment process, carried out by software, 

close to random; and tests of the data are consistent with that claim (Barrow, Markman, and Rouse 

2009, footnote 9). 
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teachers with both types of class re-allocating saved effort from their treatment 

class to their control class. 

3.B Estimates  

 At least in (middle- and high-school) math classes, providing teachers 

with computer-aided instruction software for use in their classrooms substantially 

reduces the variability of teacher productivity, as measured by student test score 

growth. Columns 1 and 4 of Table 4 report the estimated standard deviation of 

teacher productivity in the control group, measured in student standard deviation 

units. Columns 2 and 5 report estimates of 𝛿𝐿𝑆 and 𝛿𝑀𝐿, respectively, using the 

pooled sample of all experiments. In treatment mathematics classes, the standard 

deviation of teacher productivity fell by between one-quarter and one-half. This 

change is consistent with the prediction that labor-replacing technology should 

reduce the variation in teacher productivity. In (elementary and middle-school) 

reading classes, by contrast, there was no statistically significant or practical 

difference. 

 The treatment effects in math are educationally substantial. In control 

classrooms, students assigned to a teacher at the 75th per centile of the job 

performance distribution will score approximately 0.20 standard deviations higher 

on achievement tests than their peers assigned to the median teacher. (The 

estimated control standard deviation is on the high end of existing estimates, see 

Jackson, Rockoff, and Staiger 2014.) By contrast, in treatment classrooms a 

student’s teacher assignment has become much less consequential. The median to 

75th percentile difference is just 0.12 to 0.15 standard deviations.  

This reduction in variance is partly due to the standardization that 

intuitively occurs when using a computer to carry out some task(s). But the 

magnitude of the reduction is also partly due to changes in how teachers’ choose 

to carry out their work day to day—changes induced by the option of using CAI. I 

discuss those changes in Section 5. 
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As shown in Appendix Table A2, the main pattern of results in Table 4 is 

not driven by a particular CAI product, nor the data from a particular experiment. 

In Appendix Table A2 I repeat the entire estimation process on subsamples which 

iteratively exclude one experiment at a time. The robustness of the estimates 

across samples is strong evidence that the treatment effects are a general 

characteristic of computer-aided instruction rather than the idiosyncratic 

characteristic of one particular experiment or software program. Additionally, the 

robustness across experimental designs suggests spillover effects were limited—

across treatment and control teachers in the same school, or across treatment and 

control classes taught by the same teacher—since the experiments’ different 

designs each permitted different opportunities for spillovers. 

 The remaining two rows in Appendix Table A2 test sensitivity to the 

omission of school fixed effects (in Equations 1 and 3). For some purposes 

estimates of 𝜇̂𝑗 and 𝜎̂𝜇
2 without school fixed effects are preferred, and, given the 

alternative assumption 2, the inclusion or exclusion should not dramatically affect 

the inferences of interest. In place of school fixed effects I include fixed effects 

for the randomization block groups, 𝑏. The results are very robust to this change. 

Finally, the absence of effects in reading classes is striking next to the 

large effects in math classes. As I show later, reading teachers were equally likely 

to use the software, and made similarly large changes in their use of classroom 

time. I raise two possible explanations for the lack of effects in reading. First, CAI 

may replace teachers’ labor in aspects of reading instruction where teachers’ 

contributions are already (relatively) homogeneous. Researchers have long noted 

that teachers’ estimated effects on reading test scores vary less than their 

estimated effects on math scores (Jackson, Rockoff, and Staiger 2014). Second, 

alternatively, CAI may replace teachers’ labor in aspects of reading instruction 

that the typical standardized reading test does not measure. Kane and Staiger 

(2012) show that differences in teachers’ observed instructional skills do predict 
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differences in student test scores on an atypical reading test which measures a 

broad range of reading and writing skills, but those same observed skills do not 

predict differences on a typical narrowly-focused standardized reading test.  

 

4. Heterogeneity of effects on teacher productivity 

If CAI reduces variation in teacher productivity, a critical follow-up 

question is whether the reduction is the result of productivity improvements 

among otherwise low-performing teachers, or productivity losses among 

otherwise high-performing, or both. The variance could also shrink if the 

productivity of all teachers improved (declined), but the relatively low-performing 

teachers improved more (declined less). In this section I test whether the 

treatment effects on teachers are heterogeneous, in particular whether the CAI-

induced change in a teacher’s productivity is related to her counterfactual 

productivity level. 

4.A Methods 

To test for treatment effect heterogeneity I examine the quantiles of 𝜇̂𝑗—

the teacher productivity estimates described in Section 3—comparing quantiles of 

the treatment teacher distribution to quantiles of the control distribution. Recall 

that the 𝜏th quantile of the 𝑐𝑑𝑓 𝐹(𝑦), denoted 𝑞𝜏(𝑦), is defined as the minimum 

value of 𝑦 such that 𝐹(𝑦) = 𝜏. 

I begin by simply plotting the quantiles of 𝜇̂𝑗 separately for treatment 

(solid line) and control teachers (dotted line) in Figure 2. These plots are 

traditional 𝑐𝑑𝑓 plots with the axes reversed. Each line traces out a series of 

quantiles calculated at increments of 𝜏 = 0.01, for example, 𝑞𝜏=0.01(𝜇̂𝑗|𝑇𝑗 =

1) … 𝑞𝜏=0.99(𝜇̂𝑗|𝑇𝑗 = 1) for the solid line. In Figure 2, and throughout this 

section, I show results using teacher fixed effects estimates of 𝜇̂𝑗 obtained as 

described in Section 3. Results using, instead, best linear unbiased predictions 
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(BLUPs) of teacher random effects show similar patterns.  

Our interest is in the vertical distance between the solid and dotted lines: 

the difference between the productivity level of a 𝜏th percentile treatment teacher 

and a 𝜏th percentile control teacher. To obtain point estimates for these vertical 

differences, 𝛾𝜏, I use the unconditional quantile regression method proposed by 

Firpo, Fortin, and Lemieux (2009). The regression specification is 

[𝜏 − 𝟏{𝜇𝑗 ≤ 𝑞𝜏}] [𝑓𝜇𝑗
(𝑞𝜏)]

−1

= 𝛾𝜏𝑇𝑗 + 𝜋𝜏,𝑏(𝑗) + 𝜖𝜏,𝑗, 

(4) 

where the dependent variable on the left is the influence function for the 𝜏th 

quantile, IF (𝜇𝑗; 𝑞𝜏, 𝐹𝜇𝑗
), 𝑇𝑗 is the treatment indicator, and 𝜋𝜏,𝑏(𝑗) the 

randomization block fixed effects. Firpo and colleagues detail the properties of 

this IF-based estimator, which are straightforward in this randomly-assigned 

binary treatment case.27 For inference I use cluster-bootstrap standard errors (500 

replications) which allow for dependence within schools. The interpretation of the 

quantile treatment effects 𝛾𝜏, and their relevance to effect heterogeneity, involves 

some subtleties which I take up below, but the basic causal warrant rests on 

Assumptions 1 and 2 described in Section 3. 

Before creating Figure 2 or estimating 𝛾𝜏, I make one modification to the 

teacher productivity estimates: I set the mean of 𝜇̂𝑗 to zero within each CAI-

product-by-treatment-condition cell. The motivation is that mean teacher 

productivity effects are not identified separately from the total mean effects of 

treatment. In practical terms, a treatment indicator would be collinear with teacher 

fixed effects when estimating Equation 1. If there are large positive (negative) 

                                                 
27 Firpo (2007) develops an alternative approach to estimating unconditional quantile treatment 

effects using propensity score weighting. Perhaps not surprisingly, the results presented in Figure 

3 are robust to taking this alternative approach. In this setting, the Firpo (2007) approach 

simplifies to calculating 𝛾𝜏 = 𝑞𝜏(𝜇𝑗|𝑇𝑗 = 1) − 𝑞𝜏(𝜇𝑗|𝑇𝑗 = 0) where each observation 𝑗 is 

weighted by the inverse probability of treatment (IPTW). 
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average effects on teacher productivity, then de-meaning 𝜇̂𝑗 would induce 

negative (positive) bias in estimates of 𝛾𝜏. However, the total mean treatment 

effect estimates in Appendix Table A1 are almost all null suggesting such bias is 

not a first-order concern. 

4.B Estimates 

 The treatment-control differences in the top-panel of Figure 2 suggest 

computer-aided instruction software can affect the productivity of different math 

teachers in quite different ways. The use of CAI appears to improve the 

productivity of otherwise low-performing math teachers, yet simultaneously 

lower the productivity of otherwise high-performing teachers. In contrast to math, 

but consistent with the results in Table 4, there is little if any difference for 

reading teachers. In Figure 3, focusing on math teachers, I plot the estimated 

unconditional quantile treatment effects 𝛾𝜏 and 95 percent confidence intervals.  

 The interpretation of these treatment-control differences requires some 

subtlety. There are two interpretations. First, without any further assumptions, we 

can use Figure 2 and the estimates 𝛾𝜏 to describe changes in the distribution of 

teacher productivity brought on by the introduction of CAI software. Imagine two 

schools, identical except that school A uses CAI and school B does not. The 

estimates in Figure 3 suggest that in school A the impact of being assigned to a 

bottom-quartile teacher instead of a top-quartile teacher will be much less 

consequential than in school B. But this reduction in the consequences of teacher 

assignment comes partly because students in the classrooms of school A’s top 

teachers are not learning as much as students in the classrooms of school B’s top 

teachers.  

More generally, for each quantile 𝜏, 𝛾𝜏 measures the difference in the two 

productivity distributions at the 𝜏th percentile, for example, the “difference in 

median productivity” when 𝜏 = 0.5. Thus the series of 𝛾𝜏 in Figure 3 provide an 
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alternative description of how treatment affects the variability in teacher 

productivity—less-parametric than the estimates in Table 4 but at the cost of less 

precision.  

 As the language of the school A versus school B example indicates, this 

first interpretation has clear relevance to management and policy decisions. In 

particular, this first interpretation is relevant when considering CAI as an 

intervention alongside other interventions, like more-selective hiring and firing or 

on-the-job training, aimed at improving the stock of teaching quality generally. 

A second, though not mutually exclusive, interpretation is that 𝛾𝜏 

measures the causal treatment effect of CAI on teachers’ at the 𝜏th percentile of 

the teacher productivity distribution. Under this interpretation, for example, the 

estimates in Figure 3 suggest CAI cuts productivity by 0.07 student standard 

deviations among 75th percentile teachers, but raises productivity by 0.09 among 

25th percentile teachers. This second interpretation also has value for 

management of teachers, particularly the supervision of individuals. 

Heterogeneous effects may prompt school principals to encourage (permit) CAI 

use by some teachers but not others.  

This second interpretation requires a third assumption of rank-invariance. 

Assumption 3: While treatment may have changed productivity levels, it did not 

change the rank ordering of teachers in terms of estimated productivity. This third 

assumption is unlikely to hold perfectly. However, even if this assumption is 

violated, we can still make some causal conclusions about treatment effect 

heterogeneity from Figure 3. Specifically, if the estimated treatment effect at one 

point in the distribution is positive (negative), then treatment improved (lowered) 

productivity for at least some teachers (Bitler, Gelbach, and Hoynes 2003).28  

                                                 
28 A different question of heterogeneity is whether the mean effect on test scores for a given CAI 

software covaries with that software’s effect on the variance of teacher performance. To test this 

question I estimated (i) total mean effect and (ii) effect on the variance of teacher effects by each 
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5. Effects of CAI on teachers’ instructional choices and effort  

 In this final section I estimate the effects of treatment—computer-aided 

instruction software—on teachers’ decisions about how to allocate classroom time 

across different activities, and on teachers’ level of work effort. Changes in 

teachers’ decisions and effort are potential mechanisms behind the estimated 

changes in teacher productivity, especially mechanisms relevant to magnitude and 

heterogeneity of treatment effects. 

5.A Effects on teachers’ allocation of class time 

I first examine whether computer-aided instruction software changes how 

teachers divide class time among different tasks or activities. In three of four 

experiments researchers observed teachers and students during class time, and at 

regular intervals recorded what instructional activities were taking place: (i) 

lecturing or whole-class activities, (ii) students working individually, (iii) students 

working in pairs or small groups.29 In Table 5, I report the proportion of class 

time control teachers allocated to each of these three tasks, on average, and the 

treatment-control differences in time allocation. Each reported treatment effect on 

the proportion of class time, 𝛽̂, is estimated in a simple least-squares regression 

𝑦𝑗 = 𝛽𝑇𝑗 + 𝜋𝑏(𝑗) + 𝜂𝑗 , 

(5) 

                                                                                                                                     
of the 18 CAI programs, and then correlated (i) and (ii). The results should be interpreted with 

caution given the small sample for any one program, and thus large standard errors on (i) and (ii). 

In math the larger is the mean effect the smaller is the reduction in between-teacher variance. 

There is apparently no relationship in reading. 
29 The observation protocols and data collection instruments differed somewhat across studies. 

The primary differences were in the level of detail collected; for example, recording “small 

groups” and “pairs” as two separate activities versus one activity, or recording data at 7 minute 

intervals versus 10 minute intervals. Appendix C describes the differences in protocols and 

instruments, and my decisions in combining the data. The pattern of results in Table 5 holds for 

each of the three studies when analyzed individually (Appendix Table C2). 
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which includes the same treatment indicator, 𝑇𝑗, and randomization block fixed 

effects, 𝜋𝑏(𝑗), as used in earlier sections of the paper. Standard errors allow for 

clustering within schools. 𝛽̂ is identified by the random assignment designs. 

 Data from direct observations in classrooms show notable changes in 

teachers’ instructional choices and practices. Treatment teachers doubled the 

share of class time devoted to students working individually, on average; the 

added individual time would have otherwise been devoted to lectures or other 

whole-class activities. As reported in Table 5, this pattern is true of both math and 

reading classrooms. In math classrooms the share of class time allocated to 

individual student work increased from 38 percent of class time to 73 percent. 

Simultaneously, the share of time in whole-class activities fell by half, from 61 

percent to 30 percent.30 The magnitudes are similar in the reading classes.31 

This reallocation of class time, from lectures to individual work, is 

consistent with teachers who are making rational production decisions—

responding to changes in the marginal productivity and marginal costs of 

individual student time. This interpretation assumes that the changes in 

productivity and costs do, on average, favor increasing the use of individual 

student work. That would be true in the plausible case, described in Appendix B, 

where using CAI increases the marginal productivity of time allocated to 

individual student work and simultaneously decreases the marginal costs. 

Theoretical reasons to expect these two conditions with CAI are discussed in 

                                                 
30 Teachers could allocate class time to multiple tasks simultaneously. As shown in Table 5, 

researchers observed multiple activities at once about 20 percent of the time in math classes, and 

about 25 percent of the time in reading classes; accordingly the average allocations do not sum to 

one. However, treatment did not affect the frequency of multi-tasking. 
31 Additionally, reading teachers (in self-contained 1st and 4th grade classes) also increased the 

total amount of time spent on reading instruction, presumably at the expense of other subjects like 

math or art. The treatment effect estimate is shown in Appendix Table A3 Row 2; the data and 

estimation are described in Section 5.B. Indeed, total time spent on reading in a typical week 

roughly doubled. The increase in reading instruction may help explain why there was little effect 

on the variance of reading teacher productivity.  
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Appendix B. Empirical tests of these conditions are limited by scarce data, but the 

results are consistent.  

First, to test for a change in the productivity of individual student time, I 

regress estimated teacher fixed effects, 𝜇̂𝑗, on the treatment indicator, 𝑇𝑗; the three 

class time measures, the 𝑦𝑗s; and the interaction of 𝑇𝑗 and each 𝑦𝑗.32 The 

coefficient on “individual student work” time is, as predicted, somewhat larger for 

math treatment teachers than control teachers, though the difference is not 

statistically significant. Full results are available in the appendix.  

Second, to test for changes in costs, I examine measures of teacher effort. 

Two indirect measures of effort during class time are shown in the bottom panel 

of Table 5, and the estimation methods match the rest of Table 5. The results are 

consistent with a reduction in teacher effort costs. Treatment teachers’ most 

common role in class activities was “facilitating”, while control teachers were 

most often “leading” the class activity. Managing student behavior was also 

apparently less of a challenge in treatment math classes. Additionally, as 

described in the next section and shown in Table 6, treatment math teachers also 

spent fewer hours outside of class time doing preparatory work like grading and 

planning. Finally, in data gathered only for treatment classrooms, observers 

reported that nearly half of teachers took no active role when students were using 

CAI, and that technical difficulties with the software were relatively infrequent 

(occurring in just 27 percent of observations).  

A second interpretation of the time allocation changes is that teachers 

increased individual student time to comply with expectations of or 

recommendations by their manager, the software publishers, or the researchers, 

without regard to how it might affect productivity. I do not have data to test this 

                                                 
32 I also include randomization block fixed effects, and report clustered (school) standard errors. 
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second interpretation. However, the rational-decision interpretation and 

compliance interpretation are not mutually exclusive. 

5.B Effects on teachers’ total work hours 

Finally, I measure how teachers’ total work hours change after they are 

given CAI software to use in their classrooms. In structured interviews, teachers 

reported how many hours, in or out of school, they spent during a typical week on 

various work-related tasks for one typical class: teaching students, preparing 

lessons, grading, and administering tests. (These data are only available for the 

EET study.) Table 6 shows control teachers’ reported hours in each task, on 

average, and the percentage difference between treatment and control hours. The 

estimated treatment effects come from fitting Specification 5 with log hours as the 

dependent variable. 

Among math teachers, the software reduces work effort on the extensive 

margin. As reported in Table 6, treatment math teachers worked 23.4 percent 

fewer hours than their control colleagues. Time in the classroom did not change; 

both treatment and control teachers report about three hours per week teaching 

students, or about 35 minutes per day for the typical math class.33 But treatment 

math teachers spent less time planning lessons and grading, about one-third fewer 

hours in a typical week. 

This reduction in total work effort may help rationalize the behavior of 

math teachers who choose to use CAI in their classrooms despite the reduction in 

their productivity. (Of course, the reduction in total effort only reinforces the 

adoption of CAI for teachers whose productivity improves.) In short, a teacher 

may rationally trade smaller student achievement gains for reduced work effort. 

                                                 
33 These self-reported data on work hours are vulnerable to important sources of measurement 

error, even non-classical error. Accordingly, readers should be cautious about interpreting the 

levels, e.g., the control means. Both treatment and control teachers may have under or over 

reported the quantity of hours. However, the estimated treatment-control differences, 𝛽̂, in Table 6 

are nevertheless interpretable as causal effects as long as any source of reporting bias or error is 

independent of treatment assignment. 
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Unfortunately, the data in this study do not permit a thorough analysis of the 

relationship between changes in productivity and changes in effort. 34  

The student achievement losses among otherwise high-performing 

teachers, seen in Figure 2, may have an explanation outside the simple model. 

Perhaps high-performers were maximizing inter-temporally, and viewed the first 

year as a training investment; or high-performers felt an obligation to their 

managers or the research project even if their students were made worse off. Both 

examples suggest high-performing treatment teachers would be working harder 

during the experiment year in order to ameliorate the student achievement losses 

that would come with using CAI. In particular, a teacher should inter-temporally 

smooth utility, to some extent, by increasing effort in the first year using CAI. 

The estimates showing reduced hours in Table 6 Column 2 are average effects 

pooling all teachers; the averages may be driven by reductions among the low-

performers masking hours increases for high-performers. 

However, if high-performing teachers were making an achievement-effort 

trade off, we would instead expect to see reduced hours among (at least some) 

high-performers. To test this prediction I, first, divide teachers into terciles of 𝜇̂𝑗, 

and then, second, estimate changes in work hours separately for each tercile.35 

The results are reported in Table 6 Columns 3-5. Consistent with the prediction, 

relatively high-performing teachers (top tercile) did reduce their total work hours, 

and indeed that reduction was larger than that of their relatively low-performing 

colleagues though the difference is not statistically significant.  

                                                 
34 Teachers did report various fixed costs of using CAI. Treatment math teachers in the EET study 

reported spending, on average, 3.1 hours (s.d. 3.7) learning the software, 2.1 hours (3.4) setting up 

and configuring the software, and 4.1 hours (8.9) updating lesson plans. Fifty-nine percent said 

that they were given sufficient paid time to accomplish these tasks. These fixed costs, while 

positive, are small compared to the estimated recurring effort savings. 
35 The results in Table 6 Columns 3-5 come from a single regression, identical to Specification 5 

except that I interact 𝑇𝑗 with indicators for terciles of teacher productivity. The terciles of 𝜇̂𝑗 are 

determined separately for treatment and control distributions. 



 

28 

 

This approach is non-standard, notably because the productivity terciles 

are based on post-treatment outcomes. Identification requires an assumption akin 

to rank invariance, but somewhat weaker: while treatment may have changed 

productivity, it did not change the productivity tercile to which a teacher belongs. 

 

6. Conclusion 

Differences in teachers’ access to and use of technology—like computer-

aided instruction (CAI) software—contribute to differences in teachers’ 

productivity and professional practices. Providing math teachers CAI for use in 

their classrooms substantially shrinks the variance of teacher productivity, as 

measured by teacher contributions to student test score growth. The smaller 

variance comes from both productivity improvements among otherwise low-

performing teachers, but also productivity losses among some high-performing 

teachers. These changes in productivity partly reflect technology-induced changes 

in how teachers choose to accomplish their work: technology affects both 

teachers’ work effort and their decisions about how to allocate class time. These 

results are some of the first empirical evidence on how new technology affects 

teacher productivity. 

The analysis in this paper highlights, more broadly, how both teachers’ 

skills and teachers’ decisions contribute to their observed productivity. Replacing 

teacher labor with machines, like the computer-aided instruction example I 

examine, can greatly benefit students in some classrooms, especially the 

classrooms of low performing teachers, while simultaneously making students in 

other classrooms worse off. This difference in outcomes arises partly because, 

given the option, some teachers may choose to use a new technology, even if it 

reduces their students’ achievement, because it also substantially reduces their 

workload. Understanding teachers’ work decisions is critical to better research, 

and to better management and policy decisions.   
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Table 1—Summary of experiments and CAI products tested 
       

 Grade 

subject Products 

Random 

assignment 

design 

Student  

test 

Teacher 

measures Original report 

 (1) (2) (3) (4) (5) (6) 

EET—“Evaluation of Educational Technologies” 

 1st reading Academy of Reading 

Destination Reading 

Headsprout 

Plato Focus  

Waterford Early Reading 

 

Teachers 

within 

schools 

SAT-9 Classroom 

observations 

& teacher 

interviews 

 

Dynarski et al. 

(2007), and 

Campuzano et al. 

(2009) 

 4th reading Academy of Reading 

Knowledgebox 

Leapfrog 

Read 180 

 

 SAT-10   

 6th math Achieve Now 

iLearn Math 

Larson Pre-algebra 

 

 SAT-10   

 Algebra Cognitive Tutor Algebra 

Larson Algebra 

Plato Algebra 

 ETS EOC 

Algebra 

  

       

ICL—I CAN Learn 

 Pre-algebra 

& Algebra 

I CAN Learn Classes 

within class 

schedule 

periods 

NWEA  Barrow, 

Markman, Rouse 

(2009) 

       

NROC—National Repository of Online Courses, Algebra I 

 Algebra National Repository of  

  Online Courses  

Schools 

within 

recruitment 

strata 

ACT 

EXPLORE  

& ACT 

PLAN 

Classroom 

observations 

Cavalluzzo et al. 

(2012) 

       

TR—Thinking Reader 

 6th reading Thinking Reader Teachers 

within 

schools 

GMRT Classroom 

observations  

Drummond et al. 

(2011) 

       

  
Note: Student test abbreviations: “SAT-9” and “SAT-10” are the Stanford Achievement Test, 

versions 9 and 10, Pearson. “ETS EOC Algebra” is the end-of-course Algebra exam, Educational 

Testing Service. “NWEA” is a custom test of pre-algebra and algebra skills developed by 

Northwest Evaluation Association for the ICL study.   “GMRT” is the Gates-MacGinitie Reading 

Test, Houghton Mifflin Harcourt.  
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Table 2—Student and teacher characteristics,  

and pre-treatment covariate balance 

         

 

Cont.  

mean 

(st. dev.) 

Treat.  

mean 

(st. dev.) 

Diff. = 0 

p-value 

 

Joint 

test  

p-value 

 

Obs. 

 

(1) (2) (3) 

 

(4) 

 

(5) 

         Student characteristics 

    

0.335 

      Pre-experiment test score 0.002 -0.019 0.519 

   

19,420 

 

 

(0.919) (0.925) 

         Age 12.326 12.346 0.133 

   

18,790 a 

 

(0.559) (0.570) 

         Female 0.501 0.489 0.021 

   

21,810 

    Minority 0.382 0.367 0.461 

   

12,860 b 

   Special education program 0.101 0.117 0.154 

   

11,540 b 

   Gifted and talented program 0.130 0.126 0.842 

   

6,450 c 

   Free or reduced price lunch 0.730 0.773 0.199 

   

8,310 d 

   Attendance rate prior year 0.825 0.829 0.703 

   

1,060 d 

 

(0.164) (0.172) 

      

         Teacher characteristics 

    

0.064 

      Years of experience 11.134 11.412 0.630 

   

490 e 

 

(6.585) (6.445) 

         Age 40.263 39.126 0.172 

   

380 f 

 

(8.236) (8.135) 

         Female 0.867 0.805 0.013 

   

420 f 

   Minority 0.332 0.329 0.901 

   

380 f 

   Master’s degree 0.492 0.446 0.173 

   

480 e 

   Regular certification 0.927 0.919 0.659 

   

480 e 

   Number of students 28.121 28.338 0.846 

   

790 

 

 

(17.035) (15.992) 

         St. dev. students' pre- 0.816 0.832 0.165 

   

770 

       experiment test scores (0.191) (0.146) 

                        

 
Note: Means and standard deviations net of randomization block fixed effects. Rows without 

standard deviations are proportions from binary variables. Sample sizes have been rounded to 

nearest 10 following NCES restricted data reporting rules. Each experiment collected somewhat 

different student and teacher characteristics: (a) EET, NROC, and TR; (b) ICL, NROC, and TR; 

(c) NROC; (d) ICL; (e) EET and TR; and (f) EET. 
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Table 3—Attrition 

        

 

Math 

 

Reading 

 

Attrited… 

 

Attrited… 

 

before  

pre-test 

after pre-test,  

but before post-test 

 

before  

pre-test 

after pre-test,  

but before post-test 

 

(1) (2) (3) 

 

(4) (5) (6) 

Student attrition               

        Treatment -0.001 -0.003 -0.004 

 

-0.007 -0.015+ -0.016+ 

 

(0.011) (0.009) (0.009) 

 

(0.005) (0.009) (0.008) 

Pre-experiment test score 

  

-0.041** 

   

-0.025** 

   

(0.006) 

   

(0.006) 

Treatment *  

  

-0.003 

   

-0.000 

   pre-experiment test score 

  

(0.008) 

   

(0.007) 

        Number of observations 15,020 12,470 12,470 

 

7,340 6,950 6,950 

Control attrition rate 0.176 0.122 0.122 

 

0.057 0.081 0.081 

        Teacher attrition               

        Treatment 0.024 -0.000 -0.028 

 

a -0.006 -0.099* 

 

(0.020) (0.011) (0.037) 

  

(0.009) (0.043) 

Mean pre-experiment test score 

  

-0.021+ 

   

-0.023 

   

(0.012) 

   

(0.018) 

Treatment *  

  

0.020 

   

0.020 

   mean pre-experiment test score 

  

(0.017) 

   

(0.019) 

St. dev. pre-experiment test score 

  

-0.054+ 

   

-0.087* 

   

(0.028) 

   

(0.042) 

Treatment *  

  

0.029 

   

0.114* 

   St. dev. pre-experiment test score 

 

(0.044) 

   

(0.050) 

        Number of observations 430 400 400 

 

370 370 370 

Control attrition rate 0.024 0.015 0.015 

 

0.000 0.012 0.012 

 

              

 
Note: Pooled sample of all products and experiments. Each column within a panel reports 

estimates from a separate linear probability model. In Columns 1 and 4, the dependent variable is 

an indicator = 1 if the student (teacher) does not have a pre-experiment test score (any students 

with a pre-experiment test score). In Columns 2-3 and 5-6, the dependent variable is identical 

except that post-experiment test score replaces pre-experiment. In addition to the dependent 

variable reported in the table, all regressions include randomization block fixed effects. Sample 

sizes have been rounded to nearest 10 following NCES restricted data reporting rules.  
a Zero reading teachers attrited before the pre-test. 

+ indicates p < 0.10, * 0.05, and ** 0.01  
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Table 4—Treatment effect on the variance of teacher productivity 

           

 

A: 

Conditional st. dev. of  

teacher fixed effects 

 

B: 

MLE of teacher st. dev.  

(random effects) 

 

Number of 

observations 

 

Cont.  

st. dev. 

Treat.      

- Cont. 

diff. 

Test  

diff. = 0 

p-value 

 

Cont.  

st. dev. 

Treat.      

- Cont. 

diff. 

Test  

diff. = 0 

p-value 

 

Teachers Students 

 

(1) (2) (3) 

 

(4) (5) (6) 

 

(7) (8) 

           Mathematics 0.295 -0.079 0.031 

 

0.315 -0.138 0.000 

 

400 11,030 

           Reading  0.115 0.002 0.969 

 

0.127 0.014 0.699 

 

360 6,450 

                      

 
Note: Pooled sample of all products and experiments. Teacher productivity measured in student 

standard deviations of the underlying student tests. Student test scores standardized within tests 

using control group mean and standard deviation. Column Group A estimated in two steps: (i) 

estimate within-school shrunken teacher fixed effects controlling for a quadratic in prior test score 

interacted with indicators for cells formed by combination of subject, grade-level, experiment, and 

test; (ii) estimate the conditional variance of the estimated teacher fixed effects. The latter step is a 

least-squares regression of squared residuals on a treatment indicator and randomization block 

fixed effects; the residuals are obtained from a regression of teacher fixed effects on the same right 

hand side variables. Standard errors allow for clustering within schools. Column Group B 

estimated with a linear mixed model including a fixed quadratic in prior test score interacted with 

cells, school fixed effects, and random effects variance parameters separately for treatment and 

control teachers. Sample sizes have been rounded to nearest 10 following NCES restricted data 

reporting rules. As discussed in the text, the study of ICL randomized classes not teachers. In this 

analysis teacher performance in each class is the unit of analysis for ICL observations, and 

Column 7 counts 140 classes for ICL. 
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Table 5—Treatment effects on teachers’ use of class time  

and teachers' in-class effort from classroom observation data 
      

 

Math 

 

Reading 

 

Control 

mean 

Treat.      

- Cont.  

diff 

 

Control 

mean 

Treat.      

- Cont.  

diff 

 

(1) (2) 

 

(3) (4) 

      Use of CAI during class (binary) 0.150 0.644** 

 

0.171 0.789** 

  

(0.055) 

  

(0.041) 

      
Use of class time           

Proportion of class time spent on… 

        Lecturing, whole-class instruction 0.612 -0.296** 

 

0.607 -0.306** 

  

(0.057) 

  

(0.047) 

   Individual student work 0.377 0.348** 

 

0.376 0.381** 

  

(0.053) 

  

(0.039) 

   Group work 0.092 -0.024 

 

0.214 -0.076* 

  

(0.040) 

  

(0.037) 

      Proportion of class time in multiple tasks 0.190 0.019 

 

0.256 0.006 

  

(0.056) 

  

(0.044) 

      
Teachers' in-class effort           

Proportion of class time the teacher was… (EET) 

       Leading 0.599 -0.355** 

 

0.544 -0.202** 

  

(0.059) 

  

(0.049) 

   Facilitating 0.261 0.305** 

 

0.369 0.092* 

  

(0.063) 

  

(0.041) 

   Monitoring 0.164 0.020 

 

0.256 0.006 

  

(0.035) 

  

(0.044) 

      "90+ percent of students on-task" (EET) 0.597 0.205** 

 

0.862 -0.039 

  

(0.072) 

  

(0.034) 

"High level of student attention" (NROC) 0.612 0.205+ 

   

  

(0.104) 

               

 
Note: Each cell in Columns 2 and 4 reports a treatment effect (mean) estimate from a separate 

least-squares regression. Each dependent variable is a proportion or binary indicator. Each 

regression includes a treatment indicator and randomization block fixed effects. Standard errors 

allow for clustering within schools. Columns 1 and 3 report control means of the dependent 

variable net of randomization block fixed effects. Pooled sample of EET, NROC, and TR products 

and experiments for use of CAI and use of class time estimates, with 230 math teacher 

observations and 340 reading teacher observations. Estimates for teacher's role (lead, facilitate, 

monitor) from EET only, with 150 math observations and 270 reading observations. Sample sizes 

have been rounded to nearest 10 following NCES restricted data reporting procedures. Results 

separately by study are available in the Appendix Table C2. 

+ indicates p < 0.10, * 0.05, and ** 0.01 
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Table 6—Treatment effects on teacher hours worked  

per week for one class, math teachers 

       

 

Control 

Treat. - Cont. 

difference 

 

Treat. - Cont. difference 

in log hours (st. err.) 

 

mean hours 

(st. dev.) 

log hours 

(st. err.) 

 

Bottom  

tercile 

Middle 

tercile 

Top  

tercile 

 

(1) (2) 

 

(3) (4) (5) 

       Total work hours  8.997 -0.234** 

 

-0.079 -0.161 -0.525* 

 

(2.660) (0.074) 

 

(0.171) (0.196) (0.234) 

Work hours spent… 

         Teaching students 2.961 0.009 

 

0.175 -0.004 -0.184 

 

(1.149) (0.084) 

 

(0.161) (0.303) (0.211) 

   Planning lessons 2.617 -0.379** 

 

-0.241 -0.413 -0.587+ 

 

(1.724) (0.121) 

 

(0.347) (0.268) (0.295) 

   Grading 2.548 -0.316** 

 

-0.159 -0.285 -0.572* 

 

(1.313) (0.104) 

 

(0.363) (0.219) (0.267) 

   Testing students 0.871 -0.023 

 

0.386 -0.309 -0.153 

 

(0.371) (0.093) 

 

(0.233) (0.255) (0.284) 

    

      

 

Note: Each cell in Column 2 reports a treatment effect (mean) estimate in log units from a separate 

least-squares regression. Each dependent variable is log hours worked. Each regression includes a 

treatment indicator and randomization block fixed effects. Standard errors allow for clustering 

within schools. Column 1 reports control mean hours worked net of randomization block fixed 

effects. The three estimates in each row of Columns 3-5 come from a single regression identical to 

Column 2 except that the treatment indicator is interacted with indicators for the terciles of teacher 

productivity; terciles defined separately for treatment and control teachers. See text for details of 

teacher productivity estimates, and identification assumptions for Columns 3-5. The estimation 

sample for includes 150 math teachers all from the EET study. Sample sizes have been rounded to 

nearest 10 following NCES restricted data reporting procedures. Standard errors allow for 

clustering within schools. 

+ indicates p < 0.10, * 0.05, and ** 0.01 
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Panel A—Cognitive Tutor Algebra I 
 

 
 

Panel B—Waterford Early Reading 
 

 
 

Figure 1—Screen images from CAI software 
 

Note: Panel A shows Cognitive Tutor Algebra I © Carnegie Learning, image drawn from and 

additional examples available at www.carnegielearning.com/galleries/4/ (last accessed November 

1, 2013). Panel B shows Waterford Early Reading © Waterford Institute, image captured from and 

full lesson shown at youtu.be/POa5djbx_WY (last accessed November 1, 2013).  

http://www.carnegielearning.com/galleries/4/
http://youtu.be/POa5djbx_WY
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Panel A—Math teachers 
 

 
 

Panel B—Reading teachers 
 

 
 

Figure 2—Quantiles of teacher productivity  
 

Note: The solid line traces out the quantiles of estimated teacher productivity (teacher fixed effects 

estimated as described in Section 3) for treatment teachers, and the dotted line the control 

quantiles. Productivity measured in student standard deviation units. The estimation sample 

includes 400 math and 360 reading teachers (rounded to nearest 10). 
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Figure 3—Treatment effects on math teacher productivity by quantile 
 

Note: The solid line traces a series of unconditional quantile treatment effect point estimates, from 

0.01 to 0.99 in increments of 0.01. The dotted lines trace the 95 percent confidence intervals. Point 

estimates are measured in student standard deviation units. Each UQTE is estimated using the 

recentered influence function approach suggested by Firpo, Fortin, and Lemieux (2009). For each 

quantile, 𝜏, the dependent variable is the influence function for quantile 𝜏 of the distribution of 

teacher productivity estimates (teacher fixed effects); the independent variables are a treatment 

indicator (the coefficient plotted) and randomization block fixed effects. Teacher fixed effects 

estimates come from a regression of standardized post-experiment student test score on a quadratic 

in pre-experiment test score, school fixed effects, and teacher fixed effects; the parameters of the 

quadratic are allowed to differ by test. Confidence intervals for the UQTE are cluster-bootstrap 

standard errors (500 replications) which allow for dependence within schools. The estimation 

sample includes 400 math teachers (rounded to nearest 10). 
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NEW TECHNOLOGY AND TEACHER PRODUCTIVITY: APPENDICIES 

for online publication 

Appendix A: Additional tables 

 

Appendix Table A1—Treatment effects on student test score means 

        

 Original 

analysis 

estimate 

 

Re-analysis for this paper 

  

no 

pre-score 

controls Obsv. 

 

quadratic  

in pre-

score Obsv. 

 

(1) 

 

(2) (3) 

 

(4) (5) 

        Mathematics Pooled 

  

-0.046 12,270 

 

-0.040 11,030 

    

  

(0.050) 

  

(0.038) 

    EET 

  

0.044 4,540 

 

0.070+ 4,060 

   

(0.073) 

  

(0.038) 

       Grade 6 0.07 

 

0.088 3,080 

 

0.125** 2,890 

 

[0.15] 

 

(0.104) 

  

(0.047) 

       Algebra -0.06 

 

-0.049 1,460 

 

-0.071 1,170 

 

[0.33] 

 

(0.055) 

  

(0.053) 

    ICL (algebra and pre-algebra) 0.173** 

 

0.162* 1,870 

 

0.167** 1,610 

 

(0.058) 

 

(0.071) 

  

(0.055) 

    NROC (algebra) -0.15 

 

-0.167* 5,860 

 

-0.168* 5,360 

 

[0.16] 

 

(0.081) 

  

(0.065) 

 

        Reading Pooled 

  

0.000 6,780 

 

0.016 6,450 

   

(0.033) 

  

(0.017) 

    EET 

  

0.027 4,630 

 

0.030 4,300 

   

(0.039) 

  

(0.021) 

       Grade 1 0.03 

 

0.063 2,410 

 

0.051 2,230 

 

[0.34] 

 

(0.060) 

  

(0.031) 

       Grade 4 0.02 

 

-0.012 2,220 

 

0.007 2,070 

 

[0.48] 

 

(0.047) 

  

(0.027) 

    TR (grade 6) -0.04 

 

-0.056 2,160 

 

-0.011 2,150 

 

[0.35] 

 

(0.061) 

  

(0.028) 

                 

 

Note: Standard errors in parentheses, or p-values in brackets when standard errors not reported. Estimates in 

Column1 taken from original study reports: EET Dynarski et al. (2007), ICL Barrow, Markman, and Rouse (2009), 

NROC Cavalluzzo et al. (2012), and TR Drummond et al. (2011). Each cell in Columns 2 and 4 reports the 

treatment effect estimate from a separate student-level least-squares regression using the samples described in the 

row labels. The dependent variable is standardized post-experiment test score. Column 2 estimates include only 

randomization block fixed effects, not additional controls. Column 4 estimates include randomization block fixed 

effects and a quadratic in pre-experiment test score, the parameters of which are allowed to differ by test form. 

Sample sizes have been rounded to nearest 10 following NCES restricted data reporting procedures.  

+ indicates p < 0.10, * 0.05, and ** 0.01 
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Appendix Table A2—Alternative samples and specifications:  

treatment effect on the variance of teacher productivity 

           

 

A: 

Conditional st. dev. of  

teacher fixed effects 

 

B: 

MLE of teacher st. dev. 

(random effects) 

 

Number of 

observations 

 

Cont.  

st. dev. 

Treat.      

- Cont. 

diff. 

Test  

diff. = 

0 

p-value 

 

Cont.  

st. 

dev. 

Treat.      

- Cont. 

diff. 

Test  

diff. = 0 

p-value 

 

Teacher

s 

Student

s 

 

(1) (2) (3) 

 

(4) (5) (6) 

 

(7) (8) 

           Mathematics Pooled 0.295 -0.079 0.031 

 

0.315 -0.138 0.000 

 

400 11,030 

    

             Excluding EET 0.327 -0.094 0.038 

 

0.350 -0.176 0.001 

 

260 6,970 

   Excluding ICL 0.231 -0.077 0.088 

 

0.265 -0.124 0.002 

 

260 9,420 

   Excluding NROC 0.316 -0.067 0.105 

 

0.329 -0.114 0.011 

 

280 5,670 

              Without school FEa 0.330 -0.139 0.040 

 

0.374 -0.221 0.000 

 

400 11,030 

           Reading Pooled 0.115 0.002 0.969 

 

0.127 0.014 0.699 

 

360 6,450 

              Excluding EET 0.103 0.008 0.491 

 

0.106 0.033 0.509 

 

90 2,150 

   Excluding TR 0.116 0.000 0.764 

 

0.135 0.002 0.971 

 

270 4,300 

              Without school FEb 0.115 0.002 0.969 

 

0.127 0.014 0.699 

 

360 6,450 

                      

 
Note: Estimation procedures identical to the main estimates Table 4, except as described in this note. (The main 

estimates are repeated for convenience in Rows 1 and 6). In Rows 2-4 and 7-8 each row excludes one of the four 

experiments from the estimation sample. In Rows 5 and 9 the school fixed effects are replaced with randomization 

block fixed effects, but the sample is the same as the main estimates. 
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Appendix Table A3—Treatment effects on teacher hours 

worked per week for one class, reading teachers 

   

 

Reading 

 

Control 

Treat. - Cont.  

difference 

 

mean hours 

(st. dev.) 

log hours 

(st. err.) 

 

(1) (2) 

   Total work hours  4.323 1.319** 

 

(2.818) (0.115) 

Work hours spent… 

     Teaching students 2.309 2.416** 

 

(2.277) (0.208) 

   Planning lessons 1.017 2.306** 

 

(1.036) (0.211) 

   Grading 0.565 2.261** 

 

(0.819) (0.197) 

   Testing students 0.432 1.447** 

 

(0.511) (0.189) 

  

  

 

Note: Estimation procedure is identical to Columns 1 and 2 in Table 6, except that this table reports results for 

reading teachers. The sample includes 260 readings teachers all from the EET study. Sample sizes have been 

rounded to nearest 10 following NCES restricted data reporting procedures. Standard errors allow for clustering 

within schools. 

+ indicates p < 0.10, * 0.05, and ** 0.01 
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Appendix B. Theoretical framework  

The job of a classroom teacher involves multiple tasks: lecturing, discipline, one-on-one 

tutoring, communicating with parents, grading, writing homework problems, and many more. If 

a computer replaces teachers in performing one of those tasks, then the between-teacher variation 

in the productivity of that particular task should shrink considerably. Imagine a single pre-

recorded video lecture replacing individual teachers’ diverse lecture styles and skills. 

Nevertheless many tasks will remain for each teacher to perform by herself. The total effect of 

some new technology on the variance of teacher productivity will depend on how individual 

teachers choose to reallocate time and effort across different tasks after giving some task(s) to 

the computer.  

Consider a teacher deciding how to allocate in-class time across different instructional 

activities: lectures, group work, individual student work, quizzes. The amount of class time is 

fixed. A new computer technology which replaces teacher labor and skills in one of those 

activities, call it activity A, will prompt the teacher to reallocate class time for two notable 

reasons: First, the computer will change the marginal productivity of class time spent in activity 

A, compared to what the marginal productivity would be if the teacher used only her own skills. 

Using the computer may be more effective or less effective than the teacher working alone. Thus 

the relative productivities of activities A, B, C, etc. will change. Second, the amount of teacher 

effort required during activity A will likely fall when the computer is replacing teacher labor. 

Effort is a first-order cost to the teacher of allocating class time to different activities, and thus 

the relative marginal costs of activities A, B, C, etc. will also change after the new computer 

technology is available.  

 To formalize these general observations and to guide my empirical analysis, I propose a 

version of the teachers’ problem that (i) makes a clear distinction between the tasks that 

comprise the job of a classroom teacher, and a teacher’s skills in each of those tasks; and (ii) 

explicitly considers the teacher’s own decisions about education production in her classroom. 

The task-skills distinction is a useful and increasingly common feature in the literature on how 

technical change affects labor (Acemoglu and Autor 2011, 2012). After setting up the basic 

teacher’s problem, I consider the introduction of a computer technology which replaces teacher 
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labor in one task, focusing on how the new technology changes teachers’ job decisions and 

teacher productivity.1  

 

A. The teacher’s problem and variation in teacher productivity 

The responsibility of a classroom teacher is to increase the knowledge and skills of her 

students. Let 𝑚 be a measure of teacher productivity: the quantity of knowledge and skill growth 

attributable to the teacher’s work, given the students and other resources she has been allocated 

by the school.2 (In this paper’s empirical analysis I will measure 𝑚 using teacher contributions to 

student math and reading test score growth, but in this theoretical discussion 𝑚 can be thought of 

more broadly.) Teacher productivity is a function of both a teacher’s skills, 𝜽, and her decisions, 

𝒙, about how to allocate resources—principally her own time and her students’ time—across 

different tasks, 𝑚(𝒙, 𝜽), with 
𝜕𝑚

𝜕𝑥𝑘
> 0 and 

𝜕2𝑚

𝜕𝑥𝑘
2 < 0. Each teacher makes many production 

decisions, 𝒙′ = (𝑥1, 𝑥2, … , 𝑥𝐾), including (i)  how to allocate a fixed amount of class time across 

different in-class activities; (ii) what homework to assign students; and (iii) how much time 

outside of class to spend in other teacher tasks: planning lessons, communicating with parents, 

grading, extra tutoring, etc. The teacher’s skills in each task, 𝜽′ = (𝜃1, 𝜃2, … , 𝜃𝐾), are her stock 

of current capabilities whether innate, or acquired by training or experience, or both. I 

incorporate teacher effort shortly. 

Variation in teacher productivity, 𝑣𝑎𝑟(𝑚), can arise from differences in teachers’ skills, 

𝜽, or differences in teachers’ input decisions, 𝒙, or some combination. A large and consistent 

empirical literature estimates substantial between-teacher variation in 𝑚, but, by contrast, very 

little is known about the functional form of 𝑚(𝒙, 𝜽) or the differences in teachers’ decisions. 

                                                 
1 Computer technology could, alternatively, complement or augment teacher skills. In this paper I focus on a 

technology which is a substitute for teacher labor because that is the nature of the computer-aided instruction 

applications I study empirically. 
2 In practice, inputs to 𝑚 like students and other resources vary between teachers in important ways; that variation 

has to be accounted for when measuring productivity. For this section, consider a representative set of teachers with 

homogeneous resource allocations from a representative school—including, importantly, homogeneity in the mix of 

students which they are assigned to teach. The “input decisions” I describe in this section are teachers’ decisions 

about how to use the inputs they have been allocated. I intend for 𝑚 to represent the teacher’s contribution to student 

outcomes, not the more general education production function to which 𝑚 is one input. In the empirical analysis I 

control for differences in students assigned and differences in school-level inputs.  
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How does a teacher choose 𝒙? In short, the teacher’s preferred decisions, 𝒙∗, balance a 

tradeoff between the intrinsic job satisfaction of seeing her students succeed and the disutility of 

her own work effort.  

Consider the teacher’s utility maximization problem  

max
𝑥

  𝑈[𝑤, 𝑚(𝒙, 𝜽), 𝑒(𝒙, 𝝐)], 

where 𝑈 is (i) increasing in her wages, 𝑤, and in the achievement and skills she fosters in her 

students, 𝑚; but (ii) decreasing in the effort she must expend, 𝑒. Each different input bundle, 𝒙, 

requires a different amount of effort from the teacher herself, determined by the function 𝑒(𝒙, 𝝐). 

The vector 𝝐′ = (𝜖1, 𝜖2, … , 𝜖𝐾) represents the teacher’s “effort prices” for each task; prices which 

vary between teachers.3 Disutility of effort is common in the analysis of employee behavior 

across jobs and sectors. By contrast the roles of 𝑤 and 𝑚 are peculiar to the teacher’s problem. A 

teacher gains utility from her job performance, but not because performance affects 

compensation or continued employment as it would in other jobs. In practice, teacher 

compensation, 𝑤, does not depend on skills, job decisions, or productivity; and involuntary 

turnover is rare.4 Teachers are, however, generally considered “motivated agents” who derive 

utility directly from contributing to their students’ growth and success, 𝑚, (Dixit 2002).  

I focus here on teachers input decisions, 𝒙, holding other things fixed. This is a plausible 

description of the teacher’s problem in the “short run”—for example, the duration of one school 

year. I assume that, in the short run, the teacher takes as fixed her own skills, 𝜽; her own costs, 

𝑒(∙); her wages, 𝑤; and her job assignment (i.e., the subject, grade, and specific group(s) of 

students she is assigned to teach). Teachers may be able to change their skills, job assignments, 

and other variables in the long run, but decisions like how much time to spend lecturing or how 

much homework to assign are made day to day and week to week. 

 This framework suggests individual teachers’ production decisions, and the tradeoff 

between 𝑚 and 𝑒 those decisions make, are important considerations when studying teacher 

productivity in general. But examination of teachers’ production decisions by economists has 

                                                 
3 In this version of the teacher’s problem effort is not an explicit or separate choice variable for the teacher. Rather 

the teacher makes her choice 𝒙 knowing that 𝒙 will require effort determined by the function 𝑒. The function 𝑒 may 

differ from teacher to teacher.  
4 Some recent, publically-noted teacher contracts explicitly make low performance a determinant of dismissal, or 

make wages a function of performance. The utility function in 1 could be modified replacing 𝑤 with an expected 

wage, e.g. 𝑤𝔼[𝑚,∙], or more general relationship, e.g. 𝑤(𝑚,∙). The general result—that teachers trade off student 

achievement and cost of effort—would still hold. I stay with the traditional fixed wages for simplicity of exposition. 
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been rare (Murnane and Phillips 1981; Brown and Saks 1987; and Betts and Shkolnik 1999 are 

exceptions). 

 

B. The teacher’s response to new technology 

In this paper I focus on how 𝒙 and 𝑚 change when a new labor-replacing computer 

technology is made available to teachers. To make the discussion concrete, consider a simple 

example of the teacher’s problem where the teacher makes one decision: how to allocate a fixed 

amount of class time, 𝑡̅, between two activities 𝑥1 and 𝑥2, for example, individual student work 

and lecturing. Let 𝑚 have a constant elasticity of substitution form, 𝑒 a simple linear form, and 

let 𝑤, 𝑚 and 𝑒 be linearly separable. The teacher’s problem before computers is  

max
𝑥1,𝑥2

     ([𝜃1𝑥1]𝜌 + [𝜃2𝑥2]𝜌)
1
𝜌 − [𝜖1𝑥1 + 𝜖2𝑥2]      subject to 𝑥1 + 𝑥2 ≤ 𝑡̅. 

(B1) 

The teacher chooses (𝑥1
∗, 𝑥2

∗), uses her own skills (𝜃1, 𝜃2) to carry out the work, pays the effort 

costs 𝑒∗, and produces 𝑚∗. 

Now imagine a new computer tool which can replace teacher labor in performing task 𝑥1. 

The computer has some level of “skill”, 𝜙1, in performing that task. When the new technology is 

available for the teacher to use, the teacher’s problem becomes 

max
𝑥1,𝑥2,𝑐

     ([𝑓(𝜃1, 𝑐)𝑥1]
𝜌

+ [𝜃2𝑥2]𝜌)
1
𝜌 − [𝑔̃(𝜖1, 𝑐)𝑥1 + 𝜖2𝑥2],     subject to 𝑥1 + 𝑥2 ≤ 𝑡̅ 

where 𝑓(𝜃1, 𝑐) = 𝑐𝜙1 + (1 − 𝑐)𝜃1,  𝑐 ∈ {0,1}. 

(B2) 

Now, in addition to choosing the quantity of 𝑥1 and 𝑥2, the teacher must also choose whether to 

use the computer, 𝑐 = 1, or not, 𝑐 = 0.5 Let 𝑚̃∗ be teacher productivity with the new computer 

tool available, and similarly other variables with the ~ notation. 

 After the introduction of the new technology the variance of teacher productivity will 

shrink, 𝑣𝑎𝑟(𝑚̃∗) ≤ 𝑣𝑎𝑟(𝑚∗), if the computer is a substitute for teacher skills and effort.  Stated 

formally, 

                                                 
5 I assume that the availability of new technology does not change the set of tasks the school assigns to the teacher. 

The teacher remains responsible for 𝑥1 whether the computer is used or not. To date, there are only very limited 

examples of schools redesigning teachers’ jobs tasks as a result of new technology.  
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PROPOSITION 1. The introduction of a new computer technology will reduce the 

variance of teacher productivity, 𝑣𝑎𝑟(𝑚̃∗) ≤ 𝑣𝑎𝑟(𝑚∗), if  

(i) the computer is a substitute for teacher skills in some task, 0 ≤
𝜕𝑓̃

𝜕𝜃1
≤ 1, and 

(ii) the computer is a substitute for teacher effort in the same task, 0 ≤
𝜕𝑔̃

𝜕𝜖1
≤ 1,  

(iii) but the computer does not otherwise change the underlying production  

function or effort cost function, that is if 𝑚 = 𝑛(𝒙, 𝜃1, 𝜃2, … , 𝜃𝐾) then 𝑚̃ =

𝑛(𝒙, 𝑓(𝜃1), 𝜃2, … , 𝜃𝐾) and similarly for 𝑒 and 𝑒̃. 

A proof is shown below.6 Intuitively, before the computer, differences between teachers in the 

productivity of time spent on task 𝑥1 were due to differences in teachers’ skills 𝜃1. The computer 

option weakens the relationship between skill and productivity, 𝑓′ ≤ 1, and thus shrinks the 

differences in the productivity of time spent on task 𝑥1. Additionally, as I discuss shortly, the 

computer option will encourage (many) teachers to reallocate more class time to 𝑥1 affecting the 

magnitude of the reduction in variance. The reallocation is furthered by the changes in effort 

costs, 𝑔̃′ ≤ 1. 

 The conditions of Proposition 1 certainly do not describe all educational computer 

technologies, but those conditions do (plausibly) describe computer-aided instruction software. 

CAI is designed to take on the teacher’s role in one-on-one teacher-student tutoring—

substituting the computer’s skills for the teacher’s. Yet, while CAI might make some educational 

activities more or less productive, the structure of the educational production function is not 

radically changed. By contrast, the conditions of Proposition 1 would not hold for technology 

which complements teacher skills, 𝑓′ > 1, for example an interactive white board. 

The total effect of new technology on teacher productivity can be separated, at least 

conceptually, into a standardization effect and a reallocation effect. Standardization is the more 

intuitive effect: machines standardize the execution of the tasks they are given to perform, while 

human performance of the same tasks would inherently vary. The standardization effect would 

be the only effect if the introduction of new technology did not change the teacher’s time 

allocation decisions, that is if (𝑥1
∗, 𝑥2

∗) = (𝑥̃1
∗, 𝑥̃2

∗) in the current example. However, a rational 

                                                 
6 The prediction and proof apply to a range of production and cost functions, including but not limited to the CES-

style 𝑚. The prediction and proof can also easily be extended to a technology which replaces labor in several tasks. 

Finally, the specific 𝑓 in Problem 2 meets condition (i) but, of course, other 𝑓 would as well.  



51 

 

teacher will reevaluate her preferred time allocation decisions, and the resulting reallocation will 

contribute to what we observe as the total change in productivity.  

 New technology will prompt (many) teachers to reallocate time for two reasons: changes 

in productivity and changes in costs. First, using the computer for task 𝑥1 will change the 

marginal rate of technical substitution of 𝑥1 for 𝑥2. The teacher should, all else equal, shift class 

time away from 𝑥2 and into 𝑥1 if the computer is more productive than she is herself. Using the 

maximizing solutions to problems 1 and 2,  

𝑥̃1
∗ > 𝑥1

∗    ⇔    (𝑓̃(𝜃1,𝑐)

𝜃1
)

𝜌

> 𝑔̃(𝜖1,𝑐)

𝜖1
. 

(B3) 

Thus, holding effort costs constant, for teachers with 𝜙1 > 𝜃1 we would expect that 𝑐̃∗ = 1, 𝑥̃1
∗ >

𝑥1
∗, and 𝑥̃2

∗ < 𝑥2
∗. By contrast, teachers who are more skilled than the computer, 𝜙1 < 𝜃1, could 

choose to ignore the new tool leaving (𝑥1
∗, 𝑥2

∗) = (𝑥̃1
∗, 𝑥̃2

∗). In short, on this productivity margin, 

we would predict an increase in average time allocated to 𝑥1, complementing the standardization 

effect, and thus increasing the magnitude of the reduction in the variance of teacher productivity. 

 Second, teachers will also be prompted to reallocate time if using the computer changes 

the marginal costs of 𝑥1. The primary marginal cost to the teacher is the effort required of her, 𝑒, 

to carry out 𝒙. The teacher should, all else equal, shift class time away from 𝑥2 and into 𝑥1 if 

using the computer reduces the effort she must expend: 𝑔̃(𝜖1, 𝑐) < 𝜖1 in Equation B3.  

The net change in 𝑥1 for any one teacher, then, is a race between changes at these two 

margins: productivity and costs. Whether 𝑥1 will increase on average, 𝔼[𝑥̃1
∗] > 𝔼[𝑥1

∗], will 

depend the baseline distribution of skills and effort costs among teachers, and the particular 

computer tool. One intuitive case where 𝔼[𝑥̃1
∗] > 𝔼[𝑥1

∗] is described in Proposition 2.  

PROPOSITION 2. The introduction of a new computer technology will increase the 

average amount of class time allocated to task 𝑥1, 𝔼[𝑥̃1
∗] > 𝔼[𝑥1

∗], if 𝑈 is as specified in 

problem 2 and using the computer 

(i) increases the marginal productivity of task 𝑥1 on average, 𝔼 [
𝑓̃(𝜃1,1)

𝜃1
] > 1, and 

(ii) reduces the marginal costs of task 𝑥1 on average, 𝔼 [
𝑔̃(𝜖1,1)

𝜖1
] < 1 

among teachers who choose to use the computer, 𝑐∗ = 1. 
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A proof is shown below.7 

 Conditions (i) and (ii) in Proposition 2 are a plausible description of computer-aided 

instruction software. First, a lab of computers can tutor multiple students at once, giving each 

student full attention. A teacher, by contrast, must divide her tutoring attention across multiple 

students (Barrow, Markman, and Rouse 2008). Thus the computer could deliver a higher “dose” 

of tutoring even if the teacher is more skilled at tutoring in absolute terms. Second, the teacher 

may need to be present for the same amount of class time, 𝑡̅, but with less demanding 

responsibilities during class or less planning required before class. Of course the reverse could be 

true; using CAI might increase the effort required for 𝑥1, and, all else equal, cause the teacher to 

increase 𝑥2. For example, students using computers might make maintaining discipline more 

work for the teacher. Finally, conditions (i) and (ii) need only hold among teachers who adopt 

CAI, 𝑐∗ = 1. The teacher for whom CAI reduces the marginal productivity of 𝑥1 and increases 

its marginal costs could (should) simply ignore the new tool leaving her behavior unchanged, 

𝑥̃1
∗ = 𝑥1

∗. In short, the introduction of CAI should increase the average amount of class time 

teachers allocate to students working individually. In the empirical analysis I test for changes in 

class time allocation, and changes in the marginal effort costs of teachers. 

 A third proposition describes a simple but notable observation in this framework; it 

concerns teachers whose productivity would fall if they use the computer tool. 

PROPOSITION 3. A rational teacher will choose to adopt the new technology, 𝑐∗ = 1, 

even if her productivity falls, 𝑚̃∗ < 𝑚∗, if the reduction in her productivity is smaller, in 

utility terms, than the reduction her in effort costs.8 

This observation is simple but it underscores the importance of considering both 𝑚 and 𝑒 in 

deciding how to optimally manage the teacher workforce. Some students may be worse off—

they learn less at school—if their teacher adopts a new technology even while their teacher is 

made better off.  

 

 

                                                 
7 Proposition 2 is a specific case of a more general proposition that 𝔼[𝑥̃1

∗] > 𝔼[𝑥1
∗] if 𝑈 is as specified in problem 2 

and 𝔼 [
𝑓̃(𝜃1,1)

𝜃1
] >

1

𝜌
𝔼 [

𝑔̃(𝜖1,1)

𝜖1
] |𝑐∗ = 1. 

8 The proof is straightforward. Assume that 𝑤, 𝑚, and 𝑒 are linearly separable in 𝑈. In problem 2,  

𝑐∗ = 1 ⇔  (𝑚̃∗ + 𝑒̃∗|𝑐 = 1) ≥ (𝑚̃∗ + 𝑒̃∗|𝑐 = 0) = (𝑚∗ + 𝑒∗)  ⇔  (𝑚̃∗ − 𝑚∗) ≥ (𝑒̃∗ − 𝑒∗).  
The last inequality could, of course, hold even if (𝑚̃∗ − 𝑚∗) < 0. 
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C. Additional considerations 

Two additional considerations are worth discussing in this section. First, to solve 

problems like 2, teachers need good information about their own skills and the computer’s 

“skills”, among other things. Overly pessimistic beliefs about herself or optimistic beliefs about 

the technology would lead the teacher to overuse the technology. For example, in this paper’s 

empirical setting, any positive recommendation of CAI implied by the experimental trial itself 

could lead teachers to overestimate the value of CAI for their classroom. If teachers overuse 

(underuse) the new technology, the reductions in the variance of teacher productivity would be 

larger (smaller) and the increases in 𝑥1 similarly larger (smaller). 

  Second, teachers may feel pressure to use the new technology even if doing so would 

reduce their own utility or productivity; pressure from their managers, other teachers, or 

researchers. The resulting overuse would make the reductions in the variance of teacher 

productivity larger than would be the case if teachers freely chose. The effect on average time 

allocated to 𝑥1 is less clear, depending importantly on whether the pressure extends to class time 

allocation decisions or not.9 

 

D. Proofs 

Proposition 1 is a special case of Lemma 1.  

Lemma 1. Let 𝐙′ = (𝚯′, 𝚬′) = (𝛩1, 𝛩2, … , 𝛩𝐾; 𝛦1, 𝛦2, … , 𝛦𝐾) be a vector of 𝐽 = 2𝐾 exogenous 

random variables, teacher skills and teacher effort prices in the current paper, where each 𝑧𝑗 ∈

[𝑎𝑗, 𝑏𝑗]. Let 𝑚∗: 𝐳 → ℝ+ and 𝑚̃∗: 𝐳 → ℝ+ be differentiable functions. For notation, let ℎ𝑖
′ be the 

partial derivative of a function ℎ with respect to its 𝑖-th argument, e.g., 𝑚1
∗′ ≡

𝜕𝑚

𝜕𝜃1
. If  

(i)  𝑚∗(𝒛) = 𝑛(𝑓(𝜃1), 𝜃2, … , 𝜃𝐾 , 𝑔(𝜖1), 𝜖2, … , 𝜖𝐾) and  

  𝑚̃∗(𝒛) = 𝑛(𝑓(𝜃1), 𝜃2, … , 𝜃𝐾 , 𝑔̃(𝜖1), 𝜖2, … , 𝜖𝐾), 

(ii) 0 ≤ 𝑓′ ≤ 𝑓′, and  

(iii)  0 ≤ 𝑔̃′ ≤ 𝑔′  

                                                 
9 A third consideration: The discussion to this point has focused on teachers’ decisions in one school year, indeed 

the first year the technology is available, but teachers may be maximizing a stream of expected outcomes across the 

current and future years. A rational teacher may, therefore, begin using technology even if her productivity will fall 

in year one, if she believes the short-run costs are an investment in future, offsetting productivity gains. The 

empirical data for this study are limited to a single school year. However, in a multi-year model the teacher should 

inter-temporally smooth utility, to some extent, by increasing effort in year one; the available data do allow me to 

test that prediction. 
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then 

𝑣𝑎𝑟(𝑚̃∗(𝐙)) ≤ 𝑣𝑎𝑟(𝑚∗(𝐙)). 

Proof. 

 First, condition (a) of Lemma 2 holds. By assumption (i) 𝑚1
∗′ = 𝑛1

′ ∗ 𝑓′ and 𝑚̃1
∗′ = 𝑛1

′ ∗

𝑓′, noting that 
𝜕𝑧𝑖

𝜕𝑧𝑗
= 0 for all 𝑗 ≠ 𝑖.  By assumption (ii) 𝑠𝑔𝑛(𝑓′) = 𝑠𝑔𝑛(𝑓′). Thus 𝑠𝑔𝑛(𝑚̃1

∗′) =

𝑠𝑔𝑛(𝑚1
∗′). By a similar argument, using assumption (iii), 𝑠𝑔𝑛(𝑚̃𝐾+1

∗′ ) = 𝑠𝑔𝑛(𝑚𝐾+1
∗′ ). Finally, 

𝑚𝑗
∗′ = 𝑚̃𝑗

∗′ ⇒ 𝑠𝑔𝑛(𝑚̃𝑗
∗′) = 𝑠𝑔𝑛(𝑚𝑗

∗′) for all 𝑗 ≠ 1, (𝐾 + 1). 

  Second, condition (b) of Lemma 2 holds. Assumption (ii), 0 ≤ 𝑓′ ≤ 𝑓′, ⟹ 

|𝑓′| ≤ |𝑓′| ⟹ |𝑛1
′ | ∗ |𝑓′| ≤ |𝑛1

′ | ∗ |𝑓′| ⟹ |𝑚̃1
∗′| ≤ |𝑚1

∗′|. 

By a similar argument, using assumption (iii), |𝑚̃𝐾+1
∗′ | ≤ |𝑚𝐾+1

∗′ |. Finally, again, 𝑚𝑗
∗′ = 𝑚̃𝑗

∗′ ⇒

|𝑚̃𝑗
∗′| = |𝑚𝑗

∗′|, for all 𝑗 ≠ 1, (𝐾 + 1). 

  Applying Lemma 2 completes the proof. 

⎕ 

 

Lemma 2. Let 𝐙′ = (𝑍1, 𝑍2, … , 𝑍𝐽) be a vector of 𝐽 random variables, where each 𝑧𝑗 ∈ [𝑎𝑗, 𝑏𝑗]. 

Let 𝑓: 𝒛 → ℝ+ and 𝑔: 𝒛 → ℝ+ be differentiable functions, and 𝑓𝑗
′ ≡

𝜕𝑓

𝜕𝑧𝑗
. If for all 𝑗 

(a)  𝑠𝑔𝑛(𝑓𝑗
′) = 𝑠𝑔𝑛(𝑔𝑗

′ ), and  

(b) |𝑓𝑗
′| ≤ |𝑔𝑗

′|, then 

𝑣𝑎𝑟(𝑓(𝐙)) ≤ 𝑣𝑎𝑟(𝑔(𝐙)). 

Proof.  

Define a new function ℎ(𝒛, 𝜆) = 𝜆𝑓(𝒛) + (1 − 𝜆)𝑔(𝒛), where 𝜆 ∈ [0,1], then  

𝜕

𝜕𝜆
𝑣𝑎𝑟(ℎ(𝐙, 𝜆)) ≤ 0 ⇒ 𝑣𝑎𝑟(ℎ(𝐙, 1)) ≤ 𝑣𝑎𝑟(ℎ(𝐙, 0)) ⇒ 𝑣𝑎𝑟(𝑓(𝐙)) ≤ 𝑣𝑎𝑟(𝑔(𝐙)). 

 

 
𝜕

𝜕𝜆
𝑣𝑎𝑟(ℎ(𝐙, 𝜆))  

=
𝜕

𝜕𝜆
{𝔼[ℎ(𝐙, 𝜆)2] − 𝔼[ℎ(𝐙, 𝜆)]2}  

apply Leibnitz-Reynolds’ Theorem, noting that 𝑎𝑗 and 𝑏𝑗 are constants ∀ 𝑗 

= 𝔼 [
𝜕

𝜕𝜆
ℎ(𝐙, 𝜆)2] − 2𝔼[ℎ(𝐙, 𝜆)]𝔼 [

𝜕

𝜕𝜆
ℎ(𝐙, 𝜆)]  

= 2𝔼[ℎ(𝐙, 𝜆)ℎ′(𝐙, 𝜆)] − 2𝔼[ℎ(𝐙, 𝜆)]𝔼[ℎ′(𝐙, 𝜆)]  
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  notice that, for any given 𝜆 ∈ [0,1],  

(a) if 𝑓𝑗
′ and 𝑔𝑗

′ ≥ 0, then ℎ is an increasing function of 𝑧𝑗, and ℎ′ ≡
𝜕

𝜕𝜆
ℎ(𝒛, 𝜆) is a 

decreasing function of 𝑧𝑗:  

𝜕

𝜕𝑧𝑗
ℎ(𝒛, 𝜆) = 𝜆𝑓𝑗

′ + (1 − 𝜆)𝑔𝑗
′ ≥ 0   

𝜕

𝜕𝑧𝑗
[

𝜕

𝜕𝜆
ℎ(𝒛, 𝜆)] =

𝜕

𝜕𝑧𝑗
[𝑓 − 𝑔] = 𝑓𝑗

′ − 𝑔𝑗
′ ≤ 0  

(b) else if 𝑓𝑗
′ and 𝑔𝑗

′ ≤ 0, then ℎ is a decreasing function of 𝑧𝑗, and ℎ′is an increasing 

function of 𝑧𝑗;  

 by Chebyshev’s Order Inequality 𝔼[ℎ(𝐙, 𝜆)ℎ′(𝐙, 𝜆)] ≤ 𝔼[ℎ(𝐙, 𝜆)]𝔼[ℎ′(𝐙, 𝜆)] , thus 

≤ 0         

⎕
10

 

 

Proposition 2. The introduction of a new computer technology will increase the average amount 

of class time allocated to task 𝑥1, 𝔼[𝑥̃1
∗] > 𝔼[𝑥1

∗], if 𝑈 is as specified in problem 2 and using the 

computer 

(i)  increases the marginal productivity of task 𝑥1 on average, 𝔼 [
𝑓̃(𝜃1,1)

𝜃1
] > 1, and 

(ii)  reduces the marginal costs of task 𝑥1 on average, 𝔼 [
𝑔̃(𝜖1,1)

𝜖1
] < 1 

among teachers who choose to use the computer, 𝑐∗ = 1. 

Proof. 

 𝔼[𝑥̃1
∗(𝜽, 𝝐) − 𝑥1

∗(𝜽, 𝝐)]  

  if 𝑐 ∈ {0,1} 

= 𝔼[𝑐∗]𝔼[𝑥̃1
∗(𝜽, 𝝐) − 𝑥1

∗(𝜽, 𝝐)|𝑐∗ = 1] + (1 − 𝔼[𝑐∗])𝔼[𝑥̃1
∗(𝜽, 𝝐) − 𝑥1

∗(𝜽, 𝝐)|𝑐∗ = 0]  

= 𝔼[𝑐∗]𝔼[𝑥̃1
∗(𝜽, 𝝐|𝑐 = 1) − 𝑥̃1

∗(𝜽, 𝝐|𝑐 = 0)|𝑐∗ = 1]  

= 𝔼[𝑐∗]𝔼 [
𝜕𝑥̃1

∗(𝜽,𝝐)

𝜕𝑐
|𝑐∗ = 1]  

= 𝔼[𝑐∗]𝔼 [
𝜕𝑥1

∗

𝜕𝑓̃(𝜃1)

𝜕𝑓̃(𝜃1)

𝜕𝑐
+

𝜕𝑥1
∗

𝜕𝑔̃(𝜖1)

𝜕𝑔̃(𝜖1)

𝜕𝜖1
 |𝑐∗ = 1]  

                                                 
10 A proof by See and Chen (2008) suggested the use of 

𝜕

𝜕𝜆
𝑣𝑎𝑟(ℎ). This proof requires weaker assumptions, and 

allows 𝐙 to be multivariate.  

See, C. & Chen, J. (2008). Inequalities on the variances of convex functions of random variables. Journal in Pure 

and Applied Mathematics, 9(3).  
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 from here use the CES production and linear cost functions as specified in problem 2 

= 𝔼[𝑐∗]𝔼 [{𝑥1
∗(1 + 𝑥1

∗)} {( 𝜌

1−𝜌
)

1

𝜃1
(𝑓(𝜃1, 1) − 𝜃1) + ( −1

1−𝜌
)

1

𝜖1
(𝑔̃(𝜖1, 1) − 𝜖1)} |𝑐∗ = 1]  

= 𝔼[𝑐∗]𝔼𝑥1
∗ [𝔼 [{𝑥1

∗(1 + 𝑥1
∗)} {( 𝜌

1−𝜌
)

1

𝜃1
(𝑓(𝜃1, 1) − 𝜃1) + ( −1

1−𝜌
)

1

𝜖1
(𝑔̃(𝜖1, 1) − 𝜖1)} |𝑥1

∗] |𝑐∗ = 1]  

= 𝔼[𝑐∗]𝔼[𝑥1
∗(1 + 𝑥1

∗)|𝑐∗ = 1]𝔼 [( 𝜌

1−𝜌
)

1

𝜃1
(𝑓(𝜃1, 1) − 𝜃1) + ( −1

1−𝜌
)

1

𝜖1
(𝑔̃(𝜖1, 1) − 𝜖1)|𝑐∗ = 1]  

The first two expectation terms in this expression will be positive, thus the sign of the third 

expectation will determine in the sign of 𝔼[𝑥̃1
∗(𝜽, 𝝐) − 𝑥1

∗(𝜽, 𝝐)]. When will the third term be 

positive? 

𝔼 [( 𝜌

1−𝜌
)

1

𝜃1
(𝑓(𝜃1, 1) − 𝜃1) + ( −1

1−𝜌
)

1

𝜖1
(𝑔̃(𝜖1, 1) − 𝜖1)|𝑐∗ = 1] > 0  

𝔼 [( 𝜌

1−𝜌
)

1

𝜃1
(𝑓(𝜃1, 1) − 𝜃1)] > −𝔼 [( −1

1−𝜌
)

1

𝜖1
(𝑔̃(𝜖1, 1) − 𝜖1)] |𝑐∗ = 1  

𝔼 [
1

𝜃1
(𝑓(𝜃1, 1) − 𝜃1)] >

1

𝜌
𝔼 [

1

𝜖1
(𝑔̃(𝜖1, 1) − 𝜖1)] |𝑐∗ = 1  

𝔼 [
𝑓̃(𝜃1,1)

𝜃1
] >

1

𝜌
𝔼 [

𝑔̃(𝜖1,1)

𝜖1
] |𝑐∗ = 1  

⎕ 
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Appendix C. Combining classroom observation data 

In three of four experiments—EET, NROC, and TR—researchers observed teachers and 

students during class time, and recorded, among other data, what instructional activities took 

place during class. This appendix describes differences across studies in the observation 

protocols and data collection instruments, and my decisions in combining the data. Complete 

details of instrument and protocol development, and other data collected during observations, are 

available in the original study reports. 

Researchers for the EET study, which contributes three-quarters of the classroom 

observation data in Table 5, observed classes for one hour. The observers’ data collection form 

listed several instructional activities, for example, “Lecture: teacher talking or presenting 

materials and students are mostly listening” and “Solo independent practice (at desk or 

computer): i.e., reading silently, worksheets, exercises.” Every ten minutes the researcher 

marked the activity currently in use (or activities if more than one). First, as detailed in Appendix 

Table C1, I combine the raw data into three task categories: (i) lecturing or whole-class 

activities, (ii) students working individually, and (iii) students working in pairs or small groups. 

Second, for each teacher, I calculate the mean of her binary 10-minute-interval data to estimate 

the proportion of class time in each of the three tasks.1  

TR and NROC protocols were similar. TR and NROC researchers also observed classes 

for one hour, and also recorded the current activity (activities) at regular intervals: every seven 

minutes for TR and every fifteen minutes for NROC. As shown in Appendix Table C1, the TR 

and NROC data collection form measured the same three main task categories, but using 

different language and item structure. The TR observation data, like the EET data, include each 

7-minute-interval record; and, as with the EET data, I calculate the mean of the interval data. 

However, the NROC 15-minute-interval records were apparently not kept for analysis. Instead 

the NROC observation data include only a single categorical measure of frequency for each task, 

from 0 for “not observed” to 5 for “extensively”. For each teacher in the NROC study, I use a 

binary measure = 1 if the task was observed at a frequency of four or five.  

                                                 
1 EET classroom observers also marked, at each 10 minute interval, the “teacher’s role during this activity” from 

among “leader,” “facilitator,” or “monitor/observer”; and the “proportion of students not doing the assigned 

task/activity.” Using these data I similarly calculate the proportion of class time the teacher spends in each role, and 

the proportion of class time with 90 percent or more of students on task.  
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The results in Table 5 are estimated using the combined data of the EET, NROC, and TR 

studies. The combined data include one observation per teacher, with a frequency measure for 

each of the three tasks, created as described in the previous two paragraphs. These frequency 

measures, 𝑦𝑗 in Equation 5 notation, are imperfect measures of a teacher’s true class time 

allocation, 𝑦𝑗
∗ thus 𝑦𝑗 = 𝑦𝑗

∗ + 𝜉𝑗. Moreover, the nature of 𝜉𝑗 is likely to differ from study to 

study, given the differences in observation protocols and data collection instruments. 

Nevertheless, the treatment effects in Table 5 are appropriately interpreted as “proportion of 

class time” under the assumption that 𝔼[𝜉𝑗|𝑇𝑗] = 𝔼[𝜉𝑗]. This assumption would be satisfied, for 

example, if the times selected for classroom observations were not a function of treatment 

condition. Additionally, estimates in Table 5, using Specification 5, use only within study 

variation, and the reported standard errors are heteroskedasticity-cluster robust. 

Finally, while this appendix details the specific decisions underlying Table 5, the pattern 

of time allocation and treatment effects in Table 5 is robust to alternative decisions for 

processing the raw observation data. For example, turning the EET and TR data into binary 

measures to match the NROC structure, and alternative cut-offs for making the NROC raw 

categorical data into binary data. Additionally, as shown in Appendix Table C2, the pattern of 

results in Table 5 also holds for each of the three studies when analyzed individually. 
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Appendix Table C1—Combining classroom observation  

instruments into key task categories 

     

Task  Study  Items included in task category, original instrument text 

     

     

Lecturing, whole-

class instruction 

 EET   Lecture: teacher talking or presenting material and students are 

mostly listening 

 Question and answer: teacher is leader and interaction with 

students is focused on questioning 
 

  TR   Was the instructional grouping a whole class or large group? 
 

  NROC   Direct instruction (lecture) 
 

     

Individual student 

work 

 EET   Solo independent practice (at desk or computer): i.e., reading 

silently, worksheets, exercises 
 

  TR   Were students working individually? 

 Were students working individually with teachers? 
 

  NROC   Independent seatwork (self-paced worksheets, individual 

assignments) 

 Computer for instructional delivery (computer-assisted 

instruction, drill and practice) 
 

     

Group work  EET   Pair or group practice, problem solving, or project work 
 

  TR   Was the instruction grouping a small group? 

 Was the instructional grouping in pairs? 
 

  NROC   Cooperative/collaborative learning 

 Student discussion 
 

 

Note: The assignment of items to the three categories was informed by reviewing original data collection 

instruments and observer training materials when available. For additional details on instruments and training see 

EET Dynarski et al. (2007), TR Drummond et al. (2011), and NROC Cavalluzzo et al. (2012). 
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Appendix Table C2—Treatment effects on the use of class time,  

and teachers' in-class effort by study sample 

            

 

Math 

 

Reading 

 

EET 

 

NROC 

 

EET 

 

TR 

 

Control 

mean 

Treat.      

- Cont.  

diff 

 

Control 

mean 

Treat.      

- Cont.  

diff 

 

Control 

mean 

Treat.      

- Cont.  

diff 

 

Control 

mean 

Treat.      

- Cont.  

diff 

 

(1) (2) 

 

(3) (4) 

 

(5) (6) 

 

(7) (8) 

            Use of CAI during class (binary) 0.076 0.808** 

 

0.245 0.366** 

 

0.209 0.771** 

 

0.013 0.859** 

  

(0.050) 

  

(0.103) 

  

(0.048) 

  

(0.050) 

            Use of class time                       

Proportion of class time spent on… 

              Lecturing, whole-class instruction 0.470 -0.288** 

 

0.863 -0.310* 

 

0.563 -0.251** 

 

0.779 -0.530** 

  

(0.044) 

  

(0.123) 

  

(0.050) 

  

(0.114) 

   Individual student work 0.307 0.412** 

 

0.487 0.239* 

 

0.380 0.361** 

 

0.368 0.464** 

  

(0.063) 

  

(0.094) 

  

(0.043) 

  

(0.093) 

   Group work 0.093 -0.032 

 

0.090 -0.011 

 

0.173 -0.030 

 

0.376 -0.267* 

  

(0.050) 

  

(0.066) 

  

(0.037) 

  

(0.112) 

            Proportion of class time in multiple tasks 0.035 0.031 

 

0.464 -0.002 

 

0.198 0.083+ 

 

0.479 -0.312** 

  

(0.033) 

  

(0.126) 

  

(0.045) 

  

(0.106) 

                        

 

Note: Accompanies Table 5. Each cell in even numbered columns reports a treatment effect (mean) estimate from a separate least-squares regression. Each 

dependent variable is a proportion or binary indicator. Each regression includes a treatment indicator and randomization block fixed effects. Standard errors 

allow for clustering within schools. Odd numbered columns report control means of the dependent variable net of randomization block fixed effects. EET math 

sample includes 150 teacher observations. Similarly, NROC math 80, EET reading 270, TR reading 60.Sample sizes have been rounded to nearest 10 following 

NCES restricted data reporting procedures.  

+ indicates p < 0.10, * 0.05, and ** 0.01 
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