Nonlinearities in Disaggregated Economies with Implications for the Covid-19 Crisis

David Baqaee Emmanuel Farhi

UCLA Harvard

May 3, 2020

The Question We Ask

• Covid-19 unusual aggregate shock.

• Messy mix of big heterogenous supply and demand shocks.

• Nonlinearities (amplification and interactions)?

How We Try to Answer the Question

• Study output, unemployment, inflation.

• Use general disaggregated model and aggregate up.

• Allow for neoclassical and Keynesian channels.

• Find quantitatively large nonlinearities from both channels.

• Explain where they come from.

• Explain why they matter.

Agenda

Neoclassical Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Conclusion

Agenda

Neoclassical Nonlinearities

Setup

General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Conclusion

Model Structure

- ${\mathscr N}$ produced goods.
- \mathscr{G} factors in inelastic supply.
- Homothetic final demand (can generalize).
- Goods produced using other goods and factors.

Final Demand

• Final demand maximizes homothetic aggregator:

$$\mathscr{D}(c_1,\ldots,c_{\mathscr{N}};\boldsymbol{\omega}_{\mathscr{D}}),$$

with c_i final consumption of good i, $\omega_{\mathcal{D}}$ demand shifter.

• Budget constraint:

$$\sum_{i \in \mathcal{N}} p_i c_i = \sum_{f \in \mathscr{G}} p_f L_f + \sum_{i \in \mathcal{N}} \pi_i,$$

with p_i prices, p_f wages, L_f factors, π_i profits.

Producers and Factors

• Good *i* produced under constant returns:

$$y_i = A_i F_i (x_{i1}, \ldots, x_{i\mathcal{N}}, L_{i1}, \ldots, L_{i\mathcal{G}}),$$

with y_i output, x_{ij} input j, L_{if} factor f, A_i total factor productivity.

Producer i maximizes profits:

$$\pi_i = \max_{\{y_i\}, \{x_{ij}\}, \{L_{if}\}} p_i y_i - \sum_{j \in \mathcal{N}} p_j x_{ij} - \sum_{f \in \mathcal{G}} p_f L_{if}$$

• Inelastic factor supplies *L_f*.

Equilibrium

• Agents optimize.

• Markets clear.

Comparative Statics

• Perturb initial equilibrium with shocks.

• Supply shocks: A_i , L_f .

• Demand shocks: $\omega_{\mathcal{D}}$.

• Preference-driven or policy-induced.

• Could also be equilibrium outcomes in richer model.

• Captures factor augmenting productivity shocks with relabeling.

• Captures variable returns with fixed quasi-factors.

• Can be applied within a period or intertemporally.

Input-Output Definitions

- Final demand as producer 0, factors as endowment producers.
- Input-output matrix:

$$\Omega_{ij} \equiv rac{p_j x_{ij}}{p_i y_i} = rac{p_j x_{ij}}{\sum_{k \in \mathscr{N} + \mathscr{G}} p_k x_{ik}}.$$

Leontief inverse matrix:

$$\Psi \equiv (I - \Omega)^{-1} = I + \Omega + \Omega^2 + \dots$$

• Nominal GDP:

$$GDP \equiv \sum_{i \in N} p_i x_{0i}.$$

• Sales shares:

$$\lambda_i \equiv \frac{p_i y_i}{GDP} = \Psi_{0i}.$$

• Define changes in real GDP $\Delta \log Y$ as in data.

• Deflate changes in nominal GDP by changes in GDP deflator.

• With demand shocks (see paper): exotic path-dependence properties and divergence from welfare.

Nested CES Economies

• General nested-CES economy (can generalize).

• Relabel network so that each node corresponds to one CES nest.

• Demand share-shifter ω_0 in final demand nest 0.

Agenda

Neoclassical Nonlinearities

Setup

General Results

Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Conclusion

Aggregation Equation

• Changes in output are approximated by (second order):

$$\Delta \log Y \approx \underbrace{\sum_{k \in \mathcal{N}} \lambda_k \Delta \log A_k + \sum_{f \in \mathscr{G}} \lambda_f \Delta \log L_f}_{\text{first order: Hulten}} + \frac{1}{2} \underbrace{\sum_{k \in \mathcal{N}} \lambda_k \Delta \log \lambda_k \Delta \log A_k + \frac{1}{2} \sum_{f \in \mathscr{G}} \lambda_f \Delta \log \lambda_f \Delta \log L_f}_{\text{second order: nonlinearities}}.$$

- First order (Hulten's theorem): initial shares.
- Second order (nonlinearities): equilibrium changes in shares.
- Demand shocks: no independent impact; matter only via interactions with supply shocks.
- Network and elasticities matter via changes in shares (suff. stat.).

Propagation Equations

• Changes in shares are approximated by (first order):

$$\begin{split} \lambda_i \Delta \log \lambda_i &\approx \theta_0 Cov_{\Omega^{(0)}} \Big(\Delta \log \omega_0, \Psi_{(i)} \Big) \\ &+ \sum_{j \in 1 + \mathscr{N}} \lambda_j (\theta_j - 1) Cov_{\Omega^{(j)}} \Big(\sum_{k \in \mathscr{N}} \Psi_{(k)} \Delta \log A_k \\ &+ \sum_{g \in \mathscr{G}} \Psi_{(g)} \left(\Delta \log \lambda_g - \Delta \log L_g \right), \Psi_{(i)} \Big). \end{split}$$

• Network and elasticities suff. stat.

Cobb-Douglas ($\theta_j = 1$)

• Changes in output are approximated by (second order):

$$\begin{split} \Delta \log Y &\approx \underbrace{\sum_{k \in \mathscr{N}} \lambda_k \Delta \log A_k + \sum_{f \in \mathscr{G}} \lambda_f \Delta \log L_f}_{\text{first order: Hulten}} \\ &+ \underbrace{\frac{1}{2} Cov_{\Omega^{(0)}} \left(\Delta \log \omega_0, \sum_{k \in \mathscr{N}} \Psi_{(k)} \Delta \log A_k + \sum_{f \in \mathscr{G}} \Psi_{(f)} \Delta \log L_f \right)}_{\text{second order: demand shocks } \times \text{ supply shocks}}. \end{split}$$

- Amplification or mitigation.
- Key role of network in propagating demand shocks.

Agenda

Neoclassical Nonlinearities

Setup General Results

Illustrative Examples

Quantitative Illustration Additional Results

Keynesian Nonlinearities

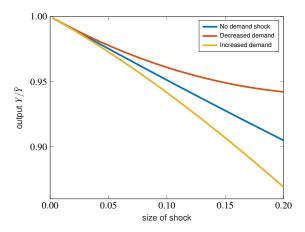
Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Conclusion

Concrete Examples

- Amplification of negative supply shocks:
 - Amazon's forced warehouse closure in France while consumers shift demand towards Amazon;
 - meat-packing plants (Smithfield, JBS) in U.S. while consumers shift demand towards meat.
- Mitigation of negative supply shocks:
 - restaurant closures while consumers shift demand away from restaurants;
 - cinema closures while consumers shift demand away from cinemas.

Numerical Illustration


• Two sectors of same size.

• Each sector produce with a labor.

• Labor reduction in one sector.

 Compare scenario without simultaneous demand shocks and scenarios with simultaneous demand shocks towards or away from affected sector.

Interaction of Supply and Demand Shocks

Uniform Elasticities ($\theta_i = \theta$) and Labor-Supplied Shocks

• 'As if" CES aggregate production function:

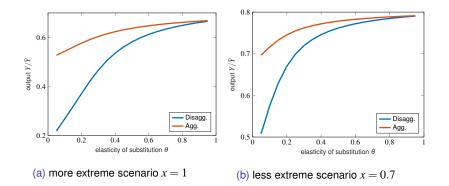
$$\frac{Y}{\bar{Y}} = \left(\sum_{f \in \mathscr{G}} \bar{\lambda}_f \left(\frac{L_f}{\bar{L}_f}\right)^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}$$

Irrelevance of the network!

• Conditions for network relevance (see paper for examples): non-uniform elasticities, demand shocks, TFP shocks.

Uniform Elasticities ($\theta_i = \theta$) and Labor-Supplied Shocks

• Changes in output are approximated by (second order):


$$\Delta \log Y \approx \underbrace{\sum_{f \in \mathscr{G}} \lambda_f \Delta \log L_f}_{\text{first order: Hulten}} + \underbrace{\frac{1}{2} \frac{\theta - 1}{\theta} Var_{\lambda} \left(\Delta \log L\right)}_{\text{second order: nonlinearities}}.$$

• Amplify negative shocks with complementarities × heterogeneity.

Numerical Illustration

- Stylized version of U.S. economy: 66 sectors, sectoral production using capital, labor, and intermediates.
- Factors cannot be reallocated across sectors (short run).
- Uniform elasticities ($\theta_i = \theta$).
- Labor-supplied shocks: in each sector, remove fraction x of workers in jobs that cannot be done from home (built from Mongey et al. (2020) and Dingel and Neiman (2020)).
- Compare to CES aggregate production function with same elasticity θ, and single labor and capital aggregates.

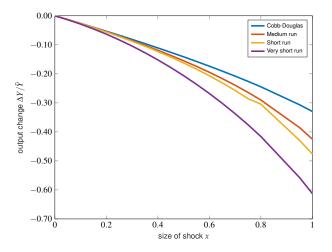
More Amplification with Heterogenous Shocks

Agenda

Neoclassical Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities


Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Conclusion

Quantitative Illustration

- Same 66-sector inout-output model as before.
- Elasticities: between labor and capital (η), between intermediates (θ), between value-added and intermediates (ε), and between final consumptions in final demand (σ).
- Three calibrations inspired by estimates in literature:
 - $(\sigma, \theta, \varepsilon, \eta) = (0.7, 0.1, 0.1, 0.1)$ for very short run;
 - $(\sigma, \theta, \varepsilon, \eta) = (0.7, 0.1, 0.3, 0.5)$ for short run;
 - $(\sigma, \theta, \varepsilon, \eta) = (0.95, 0.1, 0.5, 0.5)$ for medium run.
- Same labor-supply shock: fraction x of "can't work from home" removed from workforce.

Amplification from Nonlinearities

Agenda

Neoclassical Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Conclusion

More in Paper

• Elastic factor supplies.

Reallocation.

• Welfare.

Keynesian Nonlinearities

• So far, second-order neoclassical nonlinearities.

• Now, first-order Keynesian nonlinearities from nominal "kinks":

- downward nominal wage rigidity;
- ZLB constraint on nominal interest rate.

Agenda

Neoclassical Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup

General Results Illustrative Examples Quantitative Illustration Additional Results

Conclusion

Keynesian Model

• Two periods: present and future.

• Utility maximization s.t. intertemporal budget constraint.

• Present: same as before + downward nominal wage rigidity.

• Future: full employment + fixed nominal expenditure.

• Monetary policy: full employment s.t. ZLB.

Euler Equation for Intertemporal Problem

• Log-linearized Euler equation:

$$d\log Y = -\rho d\log p^Y + d\log \zeta.$$

Aggregate demand (AD) shock:

$$d\log \zeta = -\rho \left(d\log(1+i) + d\log\beta - d\log\bar{p}_*^Y \right) + d\log\bar{Y}_*.$$

• No AD shock \implies stagflation (recession and inflation).

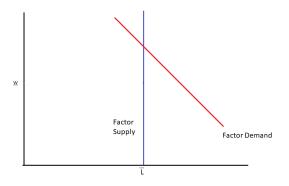
Euler equation for Nominal Expenditure $E = p^Y Y$

• Euler equation for nominal expenditure:

$$d\log E = (1-\rho)d\log p^{Y} + d\log \zeta.$$

• Focus on $\rho = 1$ nominal expenditure exogenous:

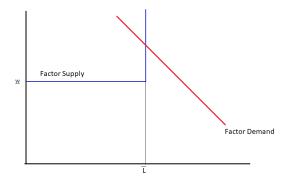
$$d\log E = d\log \zeta.$$


Factor Supply and Factor Demand

• Different types of factors.

• Always-flexible $f \in \mathscr{K}$ ("capitals") with vertical supply curves.

- Potentially-rigid $f \in \mathscr{L}$ ("labors") with L-shaped supply curves:
 - flexible in equilibrium $f \in \mathscr{F}$;
 - rigid in equilibrium $f \in \mathscr{R}$.


Supply and Demand for "Capitals"

- Shocks to supply $d\log \bar{L}_f$ and nominal demand $d\log \lambda_f + d\log E$.
- Flexible wage adjustment $d \log w_f$.

• Factor supplied
$$d \log L_f = d \log \overline{L}_f$$
.

Supply and Demand for "Labors"

- Shocks to supply $d\log \bar{L}_f$ and nominal demand $d\log \lambda_f + d\log E$.
- Constrained wage adjustment $d \log w_f \ge 0$.
- Factor supplied $d \log L_f = \min \{ d \log \lambda_f + d \log E, d \log \overline{L}_f \}$.

Neoclassical Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup

General Results

Illustrative Examples Quantitative Illustration Additional Results

Propagation and Aggregation Equations

• Beware of multiple equilibria!

- Nonlinear determination of rigid-factor set \mathscr{R} .
- Linear derivative given set of rigid factors \mathscr{R} :
 - same propagation and aggregation equations;
 - apply with $d \log L_f$ from factor-supplied equations.

Neoclassical Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Cobb-Douglas ($\theta_j = 1$)

• Changes in output

$$d\log Y = \underbrace{\sum_{i \in \mathcal{N}} \lambda_i d\log A_i + \sum_{f \in \mathscr{G}} \lambda_f d\log \bar{L}_f,}_{\text{Neoclassical effect}} + \underbrace{\sum_{f \in \mathscr{L}} \lambda_f \min\left\{ Cov_{\Omega^{(0)}} \left(d\log \omega_0, \frac{\Psi_{(f)}}{\lambda_f} \right) + d\log \zeta - d\log \bar{L}_f, 0 \right\}}_{\text{Keynesian amplification}}.$$

- First-order Keynesian nonlinearities amplify output reductions.
- Keynesian unemployment if demand shifts away from a factor.
- Network key for propagation of shocks to composition of demand.

Uniform Elasticities ($\theta_j = \theta$) and Labor-Supply Shocks

- Network irrelevance once again!
- With substitutes ($\theta > 1$):
 - reduction in labor supplied increases demand for other labors;
 - no Keynesian unemployment;
 - unique equilibrium.
- With complements ($\theta < 1$):
 - reduction in labor supplied reduces demand for other labors;
 - Keynesian unemployment (factors with smallest supply shocks);
 - possibility of multiple equilibria.
- Generalizes to also include AD shocks.

Uniform Complementarities ($\theta_j = \theta < 1$)

• Global comparative statics (Δ instead of d).

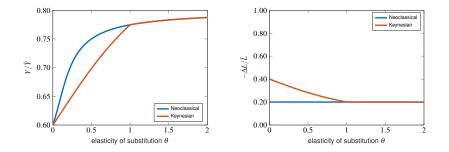
• Set of equilibrium vectors $\Delta \log L$ with partial ordering \leq is *lattice*.

• Unique best and worst equilibrium.

• $\Delta \log Y$ and $\Delta \log L$ increasing in $\Delta \log \overline{L}$ and $\Delta \log \zeta$.

• Key: reduction in labor supplied *reduces* demand for other labors.

Numerical Illustration


• Uniform elasticity θ .

• Two labor markets of equal size.

• Reduction of 40% in labor supply of one of the labors.

 Compare Keynesian economy with downward nominal rigidity to neoclassical economy with flexible wages.

Keynesian vs. Neoclassical

- Keynesian unemployment decreases with elasticity θ .
- Keynesian output amplification hump-shaped in elasticity θ .

Neoclassical Nonlinearities

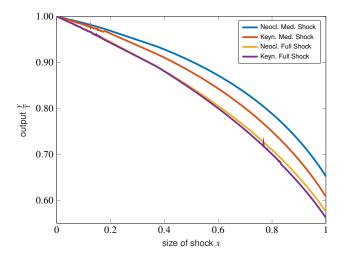
Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

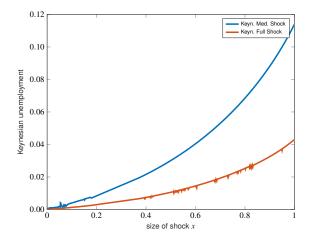
Quantitative Illustration

• Same 66-sector inout-output model as before.

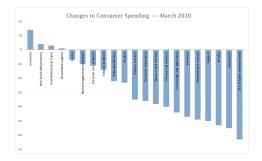

• Use higher elasticities $(\sigma, \theta, \varepsilon, \eta) = (0.95, 0.1, 0.5, 0.5).$

 Same labor-supply shock: fraction x of "can't work from home" removed from workforce.

 Also consider only shock to sectors with below-median ability to work from home (more heterogenous, milder).


• Compare neoclassical and Keynesian economies

Keynesian Output Amplification

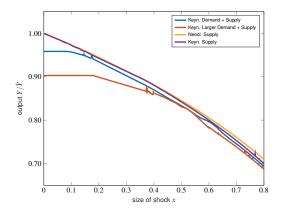

 More Keynesian output amplification with more heterogenous shock even though milder shock.

Keynesian Unemployment

 More Keynesian unemployment with more heterogenous shock even though milder shock.

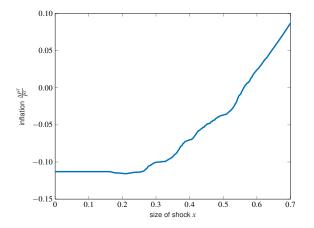
Negative AD shock?

- Survey from McKinsey: "Over the next 2 weeks, do you expect that you will spend more, about the same, or less money on these categories than usual?"
- Histogram bars: fraction of respondents who said "increase" minus fraction of respondents who said "decrease".


Interaction of Labor Supply and AD Shocks

• AD shock and labor-supply shocks together.

• Scale negative labor-supply shock *x* as before.


• Combine with fixed negative AD shock $\Delta \log \zeta \in \{-0.1, -0.2\}$.

Labor Supply and AD Shocks: Output

 A given negative AD shock matters *less* for output with larger negative supply shocks.

Labor Supply and AD Shocks: Inflation

 A given negative AD shock matters a lot for inflation even with large negative supply shocks.

Neoclassical Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

More in Paper

• Semi-downward-flexible wages.

• Policy: monetary, fiscal...

• More "kinks": endogenous demand and supply shocks.

Neoclassical Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

Keynesian Nonlinearities

Setup General Results Illustrative Examples Quantitative Illustration Additional Results

- Covid-19 large heterogenous shock.
- Supply shocks and demand shocks.
- Triggers neoclassical and Keynesian nonlinearities.
- Important qualitatively and quantitatively.
- Important for designing policy response.
- Revisit numbers as data becomes available.