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Abstract

This paper derives an intertemporal optimality condition for economies with private information, focusing on a class of

recursive preferences. By comparing it to the situation where agents can freely save in a risk-free asset market, we derive the

optimal savings distortions necessary for constrained optimality. Our recursive preferences are homogeneous and satisfy a

balanced-growth condition, while allowing us to separate the role of risk aversion and intertemporal elasticity of

substitution. We perform some quantitative exercises that disentangle the respective roles played by these two parameters

in optimal distortions and the implied welfare gains.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

When perfect insurance is unavailable, savings may help individuals smooth the impact on consumption of
temporary shocks to income. However, models that derive imperfect insurance from private information
suggest banning free access to savings. Constrained efficient allocations in these economies require some
distortion in individuals’ savings decisions (Diamond and Mirrlees, 1977; Rogerson, 1985; Ligon, 1998;
Golosov et al., 2003; Farhi and Werning, 2006). The goal of this paper is to further our understanding of the
differences between constrained-efficient allocations and market equilibria. In particular, we investigate the
role of preferences.

It is useful to frame the comparison of the market equilibrium and the planning problem in terms of the
different variations on consumption plans that are feasible in each case.

With unfettered access to a risk-free asset, agents can perform the following variation to their consumption
plans. At any point in time, individuals can lower their current consumption by one unit and increase it in all
future periods and contingencies by a constant absolute amount, equal to the net rate of return. At a market
equilibrium, individuals find themselves at an optimum within this class of variations. The corresponding
optimality condition is the familiar intertemporal Euler equation.
e front matter r 2008 Elsevier B.V. All rights reserved.
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Instead, a planner must consider the response that any change in the consumption plan may have on work
effort, if the latter is not fully under her control due to private information. In general, there exists a class of
variations available to the planner on the agent’s consumption such that incentives and work effort are
preserved. At the constrained-efficient allocation, the planner finds the optimum within this class of variations.

The variations available to the planner do not always, or even typically, coincide with those available to
agents in a free-market equilibrium. Differences in these sets of variations lead to optimality conditions that
are potentially incompatible. Distortions on savings may then be required to implement the constrained
optimum with an asset market.

The first point emphasized by this paper is that the particular form that the set of allowable variations for
the planner takes, depends critically on preferences. We begin by showing that there exists a particular class of
preferences for which the set of variations available to the planner actually coincides with that available to
agents in a free market. As a result, the constrained efficient allocation requires no distortions on agents’
savings. The preferences required for this result feature no income effects on work effort. This particular result
demonstrates that the form of the discrepancy between the constrained-optimum and the market equilibrium
is likely to depend, in general, on preference assumptions.

Next, we propose a class of homogeneous preferences with a balanced-growth condition on work effort that
delivers a simple and intuitive class of variations. The allowable variations on consumption for the planner in
this case are as follows. At any point in time, the planner can lower the agent’s current consumption and
increase it in all future periods and contingencies by a constant proportional amount. This type of variation is
not available to the agent through the asset market, which opens up the possibility for the planner to find
Pareto-improvements. The optimal savings distortions are dictated by the difference between the absolute and
proportional variations on consumption available to the agent and planner, respectively.

Proportional changes in consumption leave incentives unaltered precisely because preferences are
homogeneous and satisfy a balanced-growth condition. We believe that the simplicity and plausibility of
these variations is a desirable feature of the preferences we propose. They lead to simple intuitions, transparent
theoretical results and a tractable framework for quantitative analysis.

Within this class of variations the resulting optimality condition is extremely simple. It requires that the
ratio of current utility to lifetime utility always equal the ratio of current consumption to the expected present
discounted value of lifetime consumption. We term this simple optimality condition the Golden Ratio. It can
also be stated as a Modified Inverse Euler equation in a form that resembles the standard Inverse Euler
equation that was derived as a necessary condition for optimality for the variations considered in Farhi and
Werning (2006).

These preferences have three advantages. First, they are flexible enough to allow us to study the respective
impact of two crucial parameters: the coefficient of relative risk aversion and the intertemporal elasticity of
substitution. Second, although they feature nonseparability of consumption and work effort, these preferences
call for no savings distortions in the absence of recurring uncertainty—just as the separable preferences
studied in the literature on the Inverse Euler equation. Third, they lead to a very clean separation result for
welfare gains between an idiosyncratic part and an aggregate part.

Towards the end of the paper, we perform some quantitative welfare exercises that compute the gains from
optimal savings distortions. We follow Farhi and Werning (2006), where we developed a new approach to
analyze the welfare gains from distorting savings and moving away from letting individuals save freely. The
method forgoes a complete solution for both consumption and work effort, and focuses, instead, entirely on
consumption. We restrict our attention to the case of geometric random walk consumption and constant work
effort. Our main goal is to isolate and compare the effects that the intertemporal elasticity of substitution and
the coefficient of relative risk aversion have on the size of the intertemporal wedge and the welfare gains from
optimal distortions. Thus, although we borrow from Farhi and Werning (2006), the focus in that paper was on
the generality in terms of the stochastic process for the baseline allocation of consumption. Instead, our focus
here is on a set of stylized baseline allocations that allow us to clearly separate the impact of different
preferences assumptions.

Welfare gains depend crucially on four factors: the concavity of the production function, the coefficient of
relative risk aversion g, the intertemporal elasticity of substitution r�1 and the variance of consumption
growth s2� .
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As in Farhi and Werning (2006), we find that gains are decreasing in the concavity of the production
function. In partial equilibrium with a linear production function, gains can be extremely large. By contrast,
for an endowment economy welfare gains are zero under our hypothesis of a geometric random walk
consumption process. For the intermediate case of a neoclassical production function, welfare gains are
greatly mitigated.

The steady state of the optimal allocation with savings distortions feature a lower capital stock and a higher
interest rate than the corresponding steady state of the market equilibrium, where the precautionary savings
motive is at work. The variance of consumption growth and the coefficient of relative risk aversion control the
strength of this motive and hence both the interest rate increase and the decrease in capital between the
baseline steady state and the optimal steady state. The intertemporal elasticity of substitution on the other
hand controls the speed of the transition: the higher r�1, the faster the transition, and the higher the welfare
gains. The configuration of these three parameters influences greatly the magnitude of the welfare gains.

2. Constrained efficiency vs. free savings

In this section we present a two period economy to introduce the basic concepts and set the stage for the rest
of the paper. Against this background, in the next section we turn to an infinite horizon economy with
recursive preferences.

Consider a simple economy with two periods t ¼ 0; 1. There is no uncertainty at t ¼ 0 but at the beginning
of period t ¼ 1 a state s1 2 S is realized; we assume S is finite, with #S values and pðsÞ is the probability of
outcome s1 ¼ s. The agent consumes in the first period and consumes and works in the second. Let c0 denote
consumption in the first period and ðc1ðsÞ;Y 1ðsÞÞ denote consumption and output as a function of the realized
state in the second period.

We adopt a general specification of preferences and denote the agent’s utility functional over allocations by
Uðc0; c1ð�Þ;Y 1ð�ÞÞ. Thus, U takes a scalar c0 and two functions c1ð�Þ and Y 1ð�Þ as inputs. As a special benchmark
case, one can assume the state s1 determines the worker’s productivity and that the worker has an expected-
utility function uðc0; c1; e1Þ over consumption in both periods and work effort e1ðsÞ � Y 1ðsÞ=s. Then
Uðc0; c1ð�Þ;Y 1ð�ÞÞ ¼ E½uðc0; c1ðsÞ;Y 1ðsÞ=sÞ�.

Technology is linear

c0 þ q
X
s2S

c1ðsÞpðsÞpq
X
s2S

1Y 1ðsÞpðsÞ (1)

for some q40. Here, R ¼ 1=q is the rate of return between periods 0 and 1.

2.1. Free savings

2.1.1. First-best

The first-best allocation simply maximizes utility subject only to technology equation (1). At this allocation
the first-order conditions for consumption are given by

Uc0ðc0; c1ð�Þ;Y 1ð�ÞÞ ¼ m,

Uc1ðsÞðc0; c1ð�Þ;Y 1ð�ÞÞ ¼ qpðsÞm,

where m is the multiplier on the resource constraint. The first-order conditions for consumption can be
combined into the following generalized Euler equation:

1 ¼
1

q

X
s2S

Uc1ðsÞðc0; c1ð�Þ;Y 1ð�ÞÞ

Uc0ðc0; c1ð�Þ;Y 1ð�ÞÞ
. (2)

In the expected-utility case this equation specializes to the familiar Euler equation

1 ¼ RE
uc1 ðc0; c1ðsÞ; e1ðsÞÞ

uc0 ðc0; c1ðsÞ; e1ðsÞÞ

� �
. (3)
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2.1.2. Competitive equilibrium with free savings

The Euler equation (2) also obtains in a free-market economy where individuals have access to saving at rate
of return R. For example, suppose that agents live in an incomplete market setting, facing the budget
constraints

c0 þ k1p0, (4a)

c1ðsÞpY 1ðsÞ þ Rk1 8s 2 S. (4b)

Then the first-order conditions for the agent’s utility maximization problem with respect to savings k1 delivers
Eq. (2).1 Note that the budget constraints (4a)–(4b) imply the resource constraint (1).
2.1.3. A general set-up

More generally, under what conditions does (2) hold? Consider the abstract optimization problem of
maximizing utility Uðc0; c1ð�Þ;Y 1ð�ÞÞ subject to

ðc0; c1ð�Þ;Y 1ð�ÞÞ 2F

for some constraint set F. This nests as special cases both the first-best planning problem—with F ¼Ffb

defined by the resource constraint (1)—and the agent’s optimization in the free-market setting—with F ¼
Ffm defined by the budget constraints (4a)–(4b). Suppose that starting from any allocation ðc0; c1ð�Þ;Y 1ð�ÞÞ 2

F it is possible to define simple variations that maintain the allocation in F:

ðc0 � qD; c1ð�Þ þ D;Y 1ð�ÞÞ 2F (5)

for all D in neighborhood of D ¼ 0. That is, a feasible allocation can be perturbed by decreasing (increasing)
consumption in the first period, while increasing (decreasing) consumption in parallel across all states s in the
second period. Note that the same output allocation Y 1ðsÞ, Y 1ðsÞ=s, is maintained for all states s.

Property (5) holds for both the first-best planning problem and the agent’s optimization problem in a free-
market setting. More generally, whenever it is satisfied at an optimum, then the generalized Euler equation (2)
must be satisfied.
2.1.4. Second-best with private information

Consider next a private-information setting, where the state s is observed only by the agent. By the
revelation principle, the best the planner can do is to request a report r 2 S from the agent regarding s 2 S and
assign consumption and output in the second period accordingly. Without loss of generality, one can assume
that telling the truth is optimal.

Let r ¼ sðsÞ denote a reporting strategy for the agent, mapping true states of the world s 2 S into reports
r 2 S. Let S denote the set of all strategies. The truth-telling strategy is denoted by s�ðsÞ ¼ s for all s 2 S. An
agent using strategy s 2 S obtains ðcs1ðsÞ;Y

s
1ðsÞÞ ¼ ðc1ðsðsÞÞ;Y 1ðsðsÞÞÞ in state s. Incentive-compatibility can be

expressed as

Uðc0; c1ð�Þ;Y 1ð�ÞÞXUðc0; c
s
1ð�Þ;Y

s
1ð�ÞÞ 8s 2 S. (6)

The second-best planning problem corresponds to the case whereF ¼Fsb defined by equations (1) and (6). A
second-best optimum maximizes utility subject to selecting an allocation in Fsb.

In this general context, typically property (5) with Fsb fails. The next proposition, however, provides an
example where it holds.

Proposition 1. Let Uðc0; c1ð�Þ;Y 1ð�ÞÞ ¼ Ûðc0; c1ð�Þ � vðY 1ð�Þ; �ÞÞ where Û monotone in its second argument. Then

property (5) holds for Fsb for all feasible allocations ðc0; c1ð�Þ;Y 1ð�ÞÞ 2Fsb.
1Indeed, this result holds more generally, even if we assume that there are some taxes and transfers that are a function of output or the

state, so that we impose c1ðsÞpTðY 1ðsÞ; sÞ þY 1ðsÞ þ Rk1 in the second period.
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Proof. The result follows by noting that incentive compatibility (6) holds if and only if

cðsÞ � vðY ðsÞ; sÞXcðrÞ � vðY ðrÞ; sÞ 8r; s 2 S,

which is independent of c0 and invariant to the operation of exchanging cð�Þ for cð�Þ þ D for any D. &

If property (5) holds for all D (not just in a neighborhood around D ¼ 0) then it is without loss of generality
to allow agents to freely save, in the sense that the planner can allow the agent to select the value for D in this
variation. It follows that, for the class of preferences identified by the proposition, the planner can allow the
agent to save freely, without distortions, at the technological rate of return R ¼ 1=q. The economic
interpretation of the quasi-linear specification c� vðY ; sÞ is that there are no income effects on work effort.
Savings from the first period do not then affect the choice between work effort and earnings. As a result, they
do not disturb incentive compatibility and property (5) holds.

An equivalent way of postulating property (5) is as follows. Any direct mechanism ðc0 � qD; c1ðrÞ þ
D;Y 1ðrÞÞ essentially offers the agent an ex post menu in each state s equal to the loci of points ðc1ð�Þ þ D;Y 1ð�ÞÞ.
In each state s, the agent selects an optimal point on this menu, ðc�1;Y

�
1Þ. Property (5) then amounts to

assuming that this optimum Y �1 is invariant to D. Proposition 1 then identifies the largest class of preferences
that guarantee that this is the case for all feasible allocations.

2.2. Distorted savings

From the previous subsection, we know that the variations that result from free savings do not generally
preserve incentive compatibility. In this situation, what can we say about the desirability of free savings? We
approach this question in two complementary ways.

2.2.1. A Lagrangian approach

The first is to attach Lagrange multiplier mðsÞ on the incentive constraints (6), leading to an optimality
condition that includes the effect that D may have on incentive constraints:

q
qD

L ¼ 1þ
X
s2S

mðsÞ

 !
�qUc0

ðc0; c1ð�Þ;Y 1ð�ÞÞ þ
X
s2S

Uc1ðsÞðc0; c1ð�Þ;Y 1ð�ÞÞ

 !

�
X
s2S

mðsÞ �qUc0
ðc0; c1ðsð�ÞÞ;Y 1ðsð�ÞÞÞ þ

X
s2S

Uc1ðsÞðc0; c1ðsð�ÞÞ;Y 1ðsð�ÞÞÞ

 !

¼ 0.

Note that if all the incentive constraints are slack, so that mðsÞ ¼ 0 for all s 2 S, then this expression boils
down to the Euler equation (2). Otherwise, the Euler equation (2) will typically not hold. Indeed, if one signs
the term �qUc0

ðc0; c1ðsð�ÞÞ;Y 1ðsð�ÞÞÞ þ
P

s2SUc1ðsÞðc0; c1ðsð�ÞÞ;Y 1ðsð�ÞÞÞ for different strategies s and char-
acterizes which multipliers are nonzero, then one can sign the intertemporal wedge required in the Euler
equation.

2.2.2. Feasible variations

Another line of attack is to find a different variation, that does preserve incentive compatibility, without
changing work effort. This leads to an intertemporal optimality condition that does not involve Lagrange
multipliers. One can then compare this optimality condition with the Euler equation (2).

The idea is to find a variation function dðD; sÞ on consumption in the second period that depends on the
realized state s so that

ðc0 þ D; c1ð�Þ þ dðD; �Þ;Y 1ð�ÞÞ 2F (7)

in a neighborhood of D ¼ 0. At an optimum we must then have that

Uc0ðc0; c1ð�Þ; e1ð�ÞÞ þ
X
s2S

Uc1ðsÞðc0; c1ð�Þ; e1ð�ÞÞ �
q
qD

dð0; sÞ ¼ 0. (8)



ARTICLE IN PRESS
E. Farhi, I. Werning / Journal of Monetary Economics 55 (2008) 21–4226
For example, with expected utility and uðc0; c1; e1Þ ¼ ûðc0; c1Þ � hðe1Þ a variation that is feasible is to set
dðD; sÞ so that

ûðc0 þ D; c1ðsÞ þ dðD; sÞÞ ¼ ûðc0; c1ðsÞÞ þ AðDÞ 8s 2 S, (9)

where AðDÞ is such thatX
s2S

ðDþ dðD; sÞÞpðsÞ ¼ 0. (10)

This variation shifts utility in a parallel way across states s 2 S. It preserves incentive compatibility because
these parallel shifts cancel each other out on both sides of Eq. (6). At an optimum A0ð0Þ ¼ 0 so that

q
qD

dð0; sÞ ¼ �
ûc0ðc0; c1ðsÞÞ

ûc1ðc0; c1ðsÞÞ
. (11)

It then follows that

1 ¼
X
s2S

ûc0ðc0; c1ðsÞÞ

ûc1ðc0; c1ðsÞÞ
pðsÞ, (12)

which is known as the Inverse Euler equation. By Jensen’s inequality, this condition is incompatible with the
Euler equation (3), except in the special case where there is no uncertainty in the marginal rate of substitution
ratio ûc0 ðc0; c1ðsÞÞ=ûc1ðc0; c1ðsÞÞ. Without uncertainty the optimality of no intertemporal distortions follows
from Atkinson–Stiglitz’s (1976) result on uniform taxation, which requires separability between consumption
and effort, as assumed in this case.
2.2.3. Logarithmic balanced-growth preferences

Within this class of preferences, an interesting special case with several advantages is the logarithmic
balanced-growth specification uðc0; c1Þ ¼ logðc0Þ þ b logðc1Þ. In this case the variations induce parallel
multiplicative shifts over second-period consumption:

dðD; sÞ ¼ d̄ðDÞc1ðsÞ (13)

for some d̄ðDÞ. Intuitively, incentives are provided by proportional rewards and punishments. If consumption
is scaled up or down by a constant it does not change the incentives for work effort.

In this case, unlike the preference class described in Proposition 1, income effects for work effort are
nonzero. Proportional variations are feasible precisely because of the balanced-growth condition, which
implies that income and substitution effects exactly cancel each other.

This logarithmic case seems economically appealing, because of the primitives and the simple proportional
variations it permits. One simple generalization of this case is to the expected-utility case where

uðc0; c1; e1Þ ¼ ~uðc0Þ þ b ~uðc1Þhðe1Þ (14)

and where ~uðcÞ ¼ c1�a=ð1� aÞ. This class of preferences also satisfies a balanced-growth condition. It is easily
verified that once again the feasible variations are proportional in consumption, as in (13).

In the next section we extend this class to an infinite horizon economy. Preferences that lead to the
feasibility of proportional variations turn out to be very tractable. In particular, they lead to a very simple
optimality condition. Within a class of baseline allocations, the optimum is easily identified and its welfare
improvements quantified.
3. Recursive preferences

We now turn to an infinite horizon and introduce a class of recursive preferences that are homogeneous in
the consumption process and separate risk aversion from the intertemporal elasticity of substitution as in
Epstein and Zin (1989). Consumption and work effort are not assumed to be separable, but satisfy a balanced-
growth condition.
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For this class of preferences, we provide simple variations on consumption that maintain incentive
compatibility. The variations involve proportional shifts in consumption that do not affect incentives. Both
the homogeneity and the balanced-growth specification on preferences are crucial for this result.

Based on these variations we derive the intertemporal optimality condition at the end of the section. The
condition is shown to be incompatible with allowing agents to freely save. In this way, an intertemporal wedge
on savings is present at the optimal allocation. Thus, some form of distortion on savings is required in any tax
implementation of the optimum. In the next section we explore the welfare gains from adhering to this
condition for some simple cases.

Our preferences do not satisfy the separability condition required for Atkinson–Stiglitz’s uniform
taxation theorem. Despite this, it is optimal in the absence of uncertainty to set the intertemporal distor-
tions to zero. Thus, for these preferences, optimal distortions in savings arise from ongoing idio-
syncratic uncertainty, just as in the additively separable expected-utility case that leads to the Inverse Euler
condition.

3.1. Moral hazard

We build on the following simple static moral-hazard model. At the beginning of the period, the agent first
exerts effort a, which is not observable by the planner. The state of nature s is then realized from the
distribution PðsjaÞ. The planner observes s and gives the agent consumption cðsÞ. The agent’s expected utility is
given by

E½UðcðsÞhðaÞÞja�.

We suppose the agent’s utility UðcÞ is a power function. This specification satisfies the standard balanced-
growth assumption, for which income and substitution effects cancel out. An equivalent reformulation of the
agent’s objective is

UðChðaÞÞ,

where

C � CE½cðsÞja� ¼ U�1ðE½UðcðsÞÞja�Þ

represents the certainty-equivalent obtained from the random consumption cðsÞ.
For our dynamic setting, we proceed analogously. At the start of period t the worker chooses effort at�1,

then the state st is realized and observed and the planner allocates consumption cðstÞ. Effort affects the
distribution of state st and lowers utility by a factor hðatÞp1 with hð0Þ ¼ 1. Preferences are given by the
recursion

v̂aðs
t�1Þ ¼ CðstÞhðaðst�1ÞÞ,

where

CðstÞ � CE½W ðcðstÞ; v̂aðs
tÞÞjaðst�1Þ; st�1� (15)

represents lifetime-certainty-equivalent consumption, with

CE ¼ R�1ER (16)

is the certainty-equivalent function and

W ðc; v̂Þ � u�1ðð1� bÞuðcÞ þ buðv̂ÞÞ (17)

is a time aggregator, mapping current consumption and future utility into a constant-consumption equivalent.
With this representation of preferences, one can easily see the analogy with the simple static setting. By a

change of variables, however, the same preferences can be represented in the following, more convenient, way.
For any given effort plan a � faðstÞg, an allocation c � fcðstÞg implies a process for lifetime utility fvðstjaÞg that
solves

vaðs
tÞ ¼W ðcðstÞ;CE½hðaðstÞÞvaðs

tþ1ÞjaðstÞ; st�Þ 8t; st. (18)
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Incentive compatibility of c, v and a� requires a� to maximize initial lifetime utility

va� ðs0ÞXvaðs0Þ 8a. (19)

Since preferences are recursive, this implies that a� maximizes continuation utility after any history

va� ðs
tÞXvaðs

tÞ 8a; t; st. (20)

Otherwise, a plan that follows a� up to st and then switches to the actions prescribed by a at and after st would
be preferable to a�. That is, Bellman’s Principle of Optimality applies to the agent’s dynamic program.

We now consider variations in the consumption process that maintain incentive compatibility. After history
st the consumption sequence is just shifted proportionally, and this does not affect incentives. At st we shift
consumption to compensate, so that incentives are not affected in period t and earlier periods. The key
property we use is the homogeneity of W ðc; v0Þ and of CE.

Proposition 2. Assume uðxÞ ¼ x1�r=ð1� rÞ and RðxÞ ¼ x1�g=ð1� gÞ with r; gX0. Suppose that c, v and a�

satisfy conditions (18) and (19). Fix a history st. Consider the variation:

~cðstÞ ¼

DcðstÞ for st ¼ st;

D0cðstÞ for t4t and st � st;

cðstÞ otherwise:

8><
>:

Then for any D0 there exists a D such that ~c, ~v and a� satisfy conditions (18) and (19).

Proof. Let ~v be such that

~vaðs
tÞ ¼ D0vaðs

tÞ for t4t and st � st,

~vaðs
tÞ ¼ vaðs

tÞ for tXt and st1st,

so that condition (18) with ~c is met for all st with tXt with stast. Now set D so that

va� ðs
tÞ ¼W ðDcðstÞ;D0CE½hða�ðstÞÞva� ðs

tþ1Þja�ðstÞ; st�Þ,

so that ~va� ðs
tÞ ¼ va� ðs

tÞ. Using recursion (18), the inequality (20) evaluated at st implies

CE½hða�ðstÞÞva� ðs
tþ1Þja�ðstÞ; st�XCE½hðaðstÞÞvaðs

tþ1ÞjaðstÞ; st�,

so that

~va� ðs
tÞ ¼W ðDcðstÞ;D0CE½hða�ðstÞÞva� ðs

tþ1Þja�ðstÞ; st�Þ

XW ðDcðstÞ;D0CE½hðaðstÞÞvaðs
tþ1ÞjaðstÞ; st�Þ ¼ ~vaðs

tÞ.

Hence, we have that

~vaðs
tÞp~va� ðs

tÞ ¼ va� ðs
tÞ for all a,

a� is optimal from period t onward and delivers the same continuation utility as previously.
For any plan a define an alternative plan â that switches to a� from period t onward: âðstÞ ¼ aðstÞ for tot

and âðstÞ ¼ a�ðstÞ for tXt. The result above implies that

~vaðs0Þp~vâðs0Þ ¼ vâðs0Þpva� ðs0Þ ¼ ~va� ðs0Þ. (21)

That is, â dominates a and yields the same utility as without the variation, which in turn is dominated by the
recommended action a� which also yields the same utility as after the variation. This establishes that a�

remains incentive compatible. &

3.2. Private information: a dynamic Mirrleesian economy

Here we build on Mirrlees’ static private information model. At the beginning of the period, the agent
privately observes productivity y. The agent then makes a report r and the planner gives the agent
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consumption cðrÞ as function of the report. The agent’s expected utility is

E½UðcðrÞhðr; yÞÞjs�,

where r ¼ sðyÞ is the agent’s reporting strategy. We suppose the agent’s utility UðcÞ is a power function. This
specification satisfies the standard balanced-growth assumption, for which income and substitution effects
cancel out.

For our dynamic setting, we assume the following structure of uncertainty. At the beginning of the period a
state st is realized and publicly observed by the agent and planner. Then yt is realized and observed only by the
agent. To simplify we assume that st and yt take on a finite number of values. After observing the shock yt the
agent makes a report rt regarding it to the planner. We collect the variables observed by the planner by
zt ¼ ðst; rtÞ and their histories by zt ¼ ðst; rtÞ.

For any reporting strategy s

vsðz
t; yt
Þ ¼W ðcðztÞ;CE½hðztþ1; ytþ1Þvsðz

tþ1; ytþ1
Þjstþ1; z

t; yt
�Þ, (22)

where ztþ1 ¼ ðstþ1;stþ1ðz
t; ytþ1

ÞÞ.
We let s� denote the truth-telling strategy s�t ðz

t; yt
Þ ¼ yt. Incentive compatibility requires

vs� ðz0; y0ÞXvsðz0; y0Þ 8s. (23)

The proof of the next result is in the Appendix.

Proposition 3. Assume uðxÞ ¼ x1�r=ð1� rÞ and RðxÞ ¼ x1�g=ð1� gÞ with r; gX0. For any allocation ðc; h; vÞ
satisfying (22) and (23), fix a history ẑt and consider the following variation:

~cðztÞ ¼

DcðztÞ for zt ¼ ẑt;

D0cðztÞ for t4t and zt � ẑt;

cðztÞ otherwise:

8><
>:

Then for any D0 there exists a D such that ð~c; h; ~vÞ satisfy (22) and (23) if: (a) Conditional on st, the realization of

yt is independent and identically distributed; or (b) r ¼ 1 so that uðxÞ ¼ log x.

We do not impose restrictions on the stochastic process for the observable state st. Regarding the
unobservable shock, the requirement in part (a) does not restrict the process for productivity, and can, in
particular, accommodate any degree of persistence. What this requirement does ensure is that the states that
affect the evolution of shocks are observable, that there are no hidden states. Although this implies that the
observable state st is a sufficient statistic for ðst; yt

Þ, in the sense that Prðstþn; ytþn
jst; yt
Þ ¼ Prðstþn; ytþn

jstÞ,
optimal allocations typically depend on the history yt. In this way, the history of reports rt is relevant. False
past reports may then affect the allocation the agent receives, but do not affect the planner’s capacity to
predict the agent’s future productivity. This tractability allows us to find variations that maintain incentive
compatibility.

In the logarithmic case, r ¼ 1, the crucial property is that

W ðDc;D0v0Þ ¼ D1�bðD0ÞbW ðc; v0Þ.

Hence, setting D1�bðD0Þb ¼ 1 in the variations does not affect the utility delivered by any reporting strategy. As
a result, no assumption on the structure of uncertainty is required.

3.3. The intertemporal optimality condition: the Golden Ratio or the modified Inverse Euler equation

Let us say that an allocation is efficient if it minimizes the present value of consumption E
P1

t¼0 qtct and
delivers a given lifetime utility level in an incentive compatible way. Then any efficient allocation cannot be
improved by the variations above. That is, these variations cannot reduce the discounted value of
consumption.

Fix a node ŝt. Increase consumption at ŝt proportionally by D, and increase consumption at all nodes that
follow it, st � ŝt, proportionally by D0. This variation is permitted by the propositions above. Indexing the
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variation by D0 and solving for D ¼ dðD0Þ that keeps utility constant, we consider the minimization

min
D0

dðD0ÞcðŝtÞ þ D0
X

t4t;st

qtcðstÞPr½stja�; ŝt�

 !
. (24)

The first-order necessary and sufficient condition for optimality is simply

ctP1
s¼0 qsEt½ctþs�

¼
ð1� bÞuðctÞ

uðvtÞ
. (25)

Thus, optimality requires the ratio of current to lifetime utility ð1� bÞuðctÞ=uðvtÞ to be equated to the ratio of
current consumption with its expected present value ct=

P1
s¼0 qsEt½ctþs�. Rearranging, the ratio of current

consumption and utility must be equated to the ratio of the present value of consumption with lifetime utility:

ct

ð1� bÞuðctÞ
¼

P1
s¼0 qsEt½ctþs�

uðvtÞ
. (26)

Both conditions formalize the optimality of a form of consumption smoothing. We call them the Golden
Ratio conditions.

The next result re-expresses the optimality condition above in a way that is more suitable for comparison
with the optimality condition—the Euler equation—that results when agents can save freely at the interest rate
q�1. We call this condition the Modified Inverse Euler equation.

Proposition 4. Define

xtþ1 �
htþ1vtþ1

CEt½htþ1vtþ1�
. (27)
(a)
 At the optimum in (24) the following condition holds:

1 ¼
q

b
Et x

1�r
tþ1

u0ðctÞ

u0ðctþ1Þ

� �
. (28)
(b)
 If agents can borrow and save freely at the interest rate q�1, then the allocation must satisfy the following

Euler equation:

1 ¼
b
q
Et x

r�g
tþ1

u0ðctþ1Þ

u0ðctÞ

� �
. (29)
Savings will generally be distorted at the optimal allocation, since the Modified Inverse Euler equation and
the Euler equation are incompatible. Thus, in any implementation of the planner’s optimum, agents cannot be
allowed to borrow and save freely at the interest rate 1=q.

Suppose that the optimality condition (28) holds. Define the intertemporal wedge t by solving for the factor
ð1� tÞ required so that the Euler equation (29) holds when 1=q is replaced with ð1� tÞ=q:

1� t ¼ Et x
r�g
tþ1

u0ðctþ1Þ

u0ðctÞ

� �
Et x

1�r
tþ1

u0ðctÞ

u0ðctþ1Þ

� �
(30)

so that

t ¼ �Cov
u0ðctþ1Þ

u0ðctÞ

x
1�g
tþ1

x
1�r
tþ1

;
u0ðctÞ

u0ðctþ1Þ
x
1�r
tþ1

 !
. (31)

Importantly, the intertemporal wedge t is zero whenever there is no uncertainty. For the case of certainty,
Atkinson–Stiglitz’s uniform-taxation result requires preferences to be separable between consumption and
leisure. However, in our recursive specification preferences are not separable. Interestingly, despite this, the
absence of resolution of uncertainty between two periods implies that there should be no intertemporal
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distortion on savings there. In other words, although the separability conditions required by Atkinson–Stiglitz
are violated, their uniform commodity taxation result holds under certainty with our preferences. Thus,
optimal distortions can be entirely attributed to ongoing idiosyncratic uncertainty, just as in the additively
separable expected-utility case that leads to the Inverse Euler equation (Golosov et al., 2003).

Note that if g ¼ 1 one gets that t40, guaranteeing that the intertemporal distortion on savings is positive.
Another interesting case is when ct is a geometric random walk at the baseline allocation, so that ctþ1 ¼ �tþ1ct.
It then follows that vt is proportional to ct, and t40. We shall study this case in more detail in the next section.

3.4. Constant absolute risk aversion preferences

In this subsection, we show that for a particular class of preferences with constant absolute risk aversion the
optimal distortion on savings is zero. In a static moral-hazard setting, a convenient specification of preferences
is

E½Uðc� hðaÞÞja�, (32)

where UðxÞ ¼ �e�ax is exponential. Equivalently, one can express ex ante utility as

CE½c� hðaÞja�. (33)

In our dynamic setting, we generalize this specification as follows. Let uðxÞ ¼ �e�rx and RðxÞ ¼ �e�gx and
consider the recursion

vaðs
tÞ ¼W ðcðstÞ;CE½vaðs

tþ1Þ � hðaðstÞÞjaðstÞ; st�Þ, (34)

where W ðc; v0Þ ¼ u�1ðð1� bÞuðcÞ þ buðv0ÞÞ and CE ¼ R�1ER. Incentive compatibility requires inequalities (19)
as before. The next proposition is proved in the Appendix.

Proposition 5. Assume uðxÞ ¼ �e�rx and RðxÞ ¼ �e�gx with r; gX0. Suppose we have c, v and a� satisfying

conditions (18) and (19). Fix a history st. Consider the variation:

~cðstÞ ¼

cðstÞ þ D for st ¼ st;

cðstÞ þ D0 for t4t and st � st;

cðstÞ otherwise:

8><
>:

Then for any D0 there exists a D such that ~c, ~v and a� satisfy conditions (18) and (19).

As above, we say that an allocation is efficient if it minimizes the present value of consumptionX
t;st

qtcðstÞPr½stja�� (35)

required to deliver a given lifetime utility level in an incentive compatible way. Then any efficient allocation
cannot be improved by the variations above. That is, these variations cannot reduce the net present value of
consumption.

Indexing the variation at any node by D0 and solving for D that keeps utility constant we can write the
minimization subproblem as in (24). In this case, the first-order necessary and sufficient condition coincides
with the condition obtained if the worker could save and borrow freely at a market interest rate q�1.

Proposition 6. The optimum in (24) corresponds to the economy where agents can borrow and save freely at the

interest rate q�1. The following Euler equation holds:

u0ðctÞ ¼
b
q

u0ðCEðctþ1 � htÞÞ. (36)

Hence, for the CARA preferences under consideration, the constrained-optimality condition and the Euler
equation coincide. This section focused on a moral hazard setting, but a similar result should hold in a
Mirrleesian environment.



ARTICLE IN PRESS
E. Farhi, I. Werning / Journal of Monetary Economics 55 (2008) 21–4232
4. Welfare gains: quantitative explorations

In this section, we investigate the welfare gains from the optimal savings distortions derived in Section 3.
The analysis proceeds along the lines of Farhi and Werning (2006). We focus on the case where the baseline
allocation features a geometric random walk consumption process while work effort is constant. The analysis
in this section covers both to the private-information and moral-hazard settings.

Assumption 1. The baseline allocation fct; htg is such that ht ¼ h̄ is constant and ct is a geometric random walk
ctþ1 ¼ ct�tþ1 with �tþ1 identically and independently distributed over time.

4.1. Partial equilibrium

Let us first assume that there is a linear technology to transfer resources from period to period with a gross
rate of return R ¼ q�1.

The following proposition shows that if the baseline allocation is a pure geometric random walk and ht is
constant, then the cost minimizing allocation attainable through our variations is also a pure geometric
random walk.

Proposition 7. Suppose that Assumption 1 holds. Then the cost minimizing allocation f~ctg is obtained by

multiplying fctg by a deterministic drift g�1:

~ct ¼ ag�tct

with

g � ðqb̂
�1
E½��ðE½�1�g�Þ�ð1�rÞ=ð1�gÞÞ1=r and a �

1� qg�1E½��

1� qg�rE½��

� �1=ð1�rÞ

,

where b̂ ¼ bh̄
1�r

.

Hence the optimal allocation ~ct attainable from the baseline allocation through our variations is such that ~ct

also follows a geometric random walk, but with a different drift g�1E½�� instead of E½�� for the baseline
allocation. This new drift ensures that the constrained-optimality condition—a necessary and sufficient
condition for optimality within our class of variations—holds at the optimal allocation ~ct: Note that b and
h̄
1�r

play exactly similar roles in this formula: when ht ¼ h̄ is constant, it acts as a discount factor. This effect is
compounded with b to produce an effective discount factor b̂ ¼ bh̄

1�r
. It is also useful to note that if g41,

then a41 and vice versa.
Increasing g while maintaining the value of qE½�� is exactly equivalent to decreasing the effective discount

factor b̂. In other words, the higher g, the lower the effective discount factor b̂ that makes the constrained-
optimality condition hold.

Note also that given qE½�� and g, the intercept a depends only on the intertemporal elasticity of substitution
parameter r. The risk aversion parameter g only shifts the effective discount factor b̂ required for the
constrained-optimality condition to hold.

Economists are used to thinking of the discount factor as a primitive of the model, and as the equilibrium
interest rate as an outcome. However, contrary to interest rates, discount factors are not directly observable.
In fact, most of the evidence concerning discount factors comes from equilibrium values of interest rates.
Therefore, in the formula for the intercept a, we prefer to think of the equilibrium interest rate q as the
primitive and to solve for the effective discount factor b̂ that makes the constrained-optimality condition hold
given g and qE½��.

Intertemporal wedge: We can compute the optimal wedge in closed form

t ¼
�Covð�; ��gÞ

E½��E½��g�
.

Note that the wedge is always positive. Its magnitude in this example is independent of r and is entirely determined
by g; that is by the agent’s attitude toward risk. This highlights that the origin of the wedge is the combination of
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two factors: the riskiness of tomorrow’s consumption from today’s perspective and the agent’s risk aversion.
Absent shocks, there would be no reason to distort savings and the Euler equation would hold. Similarly, if the
agent were risk neutral, there would be no reason to distort savings and the wedge would also be zero.

We can re-express the wedge using the formalism of cumulants: let m be the moment generating function of log eð Þ:

m yð Þ � logE exp y log eð Þð Þ½ � ¼ logE ey
� �

.

The nth cumulant of log eð Þ is given by kn �
dnm
dyn 0ð Þ: Cumulants are closely related to moments, as we see from

the first four: k1 ¼ m1; k2 ¼ m2; k3 ¼ m3; k4 ¼ m4 � 3 m2
� 	2

: The notation is standard, with m1 denoting the
conditional mean of log eð Þ and mn; for nX1; denoting the nth central conditional moment.

Using this notation, we derive a formula that ties the wedge to the higher order moments or cumulants of log eð Þ :

� log 1� tð Þ ¼ m 1ð Þ þm �gð Þ �m 1� gð Þ ¼
X1
n¼2

kn=n! 1þ �gð Þn � 1� gð Þ
n

ð Þ.

In the lognormal case, which we explore below, the higher cumulants kn of log eð Þ are zero for nX3 and we
obtain a closed form for the wedge which depends only on the variance s2e of log eð Þ : log 1� tð Þ ¼ gs2e :

Outside of the lognormal case, higher cumulants kn of log eð Þ are non-zero and higher moments of the
distribution of consumption growth rates affect the wedge. For example, we can analyze the impact of
skewness k3: The contribution of this term to the wedge is given by k3

g 1�gð Þ

2
: Hence, negative skewness – k3o0

– decreases the wedge if go1 and increases the wedge if g41:
Welfare gains: The costs ~k and k of the baseline and the optimal allocations are easily computed to be

~k ¼
ac

1� qg�1E½��

and

k ¼
c

1� qE½��
.

Combining these two expressions, we can derive the relative reduction in expected discounted cost allowed by
our variations.

Proposition 8. Suppose that Assumption 1 holds. Then the relative expected discounted cost reduction achieved

by going from the baseline allocation to the optimal allocation is

k

~k
¼

1� qg�rE½��

1� qE½��

� �1=ð1�rÞ
1� qg�1E½��

1� qE½��

� �1�1=ð1�rÞ

. (37)

By homogeneity, the ratio of the cost of the optimal allocation to the cost of the baseline does not depend
on the current level of consumption c. Given the cost of the baseline allocation, or in other words, given qE½��,
g is a sufficient statistic for the welfare gains attainable through the variations. It is therefore instructive to
perform some comparative statics with respect to g.

Given qE½�� and g, the relative expected cost reduction depends only on the intertemporal elasticity of
substitution parameter r�1. This is a direct consequence of the fact noted above that given g and qE½��, the
intercept a does not depend on the risk aversion parameter.

At g ¼ 1, the reduction in cost is 0: This is because in this case, the constrained-optimality condition holds at
the baseline allocation. Moreover, a Taylor expansion around g ¼ 1 reveals that the cost reduction is zero at
the first order in g and increasing in g:

k

~k
’ 1þ

1

2

qE½��

ð1� qE½��Þ2
rðg� 1Þ2.

When g goes to infinity on the other hand, the cost reduction goes to 1=ð1� qE½��Þ. Taking g to infinity is like
taking the effective discount factor to 0: In that case, the optimal allocation for D�1 ¼ 1 is

~ct ¼ 0 for tX1 and ~c0 ¼ c0.
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In the limit where r goes to 1, we get

g ¼
q

b
E½�� and

k

~k
¼

b�1 � 1

b�1 � g
g�b=ð1�bÞ,

which is exactly the expression derived in Farhi and Werning (2006).
Euler at the baseline: Given the importance of g; we now investigate its main determinants in the interesting

case where the Euler equation holds at the baseline allocation. That the Euler equation holds at the baseline
means that

c
�r
t ¼ bq�1E½c

�r
tþ1h̄

1�r
v
r�g
tþ1 �ðE½v

1�g
tþ1 �Þ

ðg�rÞ=ð1�gÞ,

which can be re-expressed as

1 ¼ bq�1h̄
1�r

E½��g�ðE½�1�g�Þðg�rÞ=ð1�gÞ. (38)

The effective discount factor b̂ ¼ bh̄
1�r

can then be determined:

b̂ ¼ qðE½�g�Þ�1ðE½�1�g�Þðr�gÞ=ð1�gÞ.

Knowing b̂; the sufficient statistic g for the welfare gains in formula (37) can be derived using the formula in
Proposition 7.

Proposition 9. If Assumption 1 holds and the Euler equation holds at the baseline allocation, then

g ¼ ðE½��E½��g�ðE½�1�g�Þ�1Þ1=r.

When � is lognormally distributed log ��Nðm;s2� Þ, then the wedge t, the change in drift from the baseline
allocation g and the welfare gains can be computed in terms of the mean m and the variance s2� of consumption
growth:

Corollary 1. Suppose that � is lognormally distributed log ��Nðm;s2� Þ, then t and g are given by

t ¼ 1�
E½�1�g�

E½��E½��g�
¼ 1� exp½�gs2� � ’ gs2�

and

g ¼ exp
g
r
s2�

� �
’ 1þ

g
r
s2� .

As we already discussed, the wedge is increasing in the degree of risk aversion g and in the magnitude of the
shocks s2� : Moreover, g and s2� affect the wedge in a complementary way. When shocks are lognormal, the
formula takes the remarkably simple form t ¼ 1� exp½�gs2� �.

The crucial parameter g is associated with ðg=rÞs2� . The higher the variance of the shocks, and the higher risk
aversion, the higher the required change in drift g between the baseline and the optimum. Similarly, the higher
the intertemporal elasticity of substitution r�1, the higher g.

Intuitively, this can be seen by taking the limit as r goes to 0, so that consumption at different dates become
perfect substitutes. The Euler equation and the optimality condition are incompatible in the limit where r goes
to 0, since the required change in drift g goes to infinity. Note, however, that in this case, the intercept a
converges to 1� qðE½��g�Þ�1E½�1�g�. Intuitively, when r goes to 0, it is optimal to front-load consumption more
and more. In the limit, it is best to deliver all consumption in the first period so that agents are entirely shielded
from consumption risk. The cost reduction is nontrivial. Indeed, we have

lim
r!0

k

~k
¼

1� q exp mþ ð1� 2gÞ
s2�
2

� �

1� q exp mþ
s2�
2

� � ’ 1þ
qem

1� qem
gs2� .
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Fig. 1. Welfare gains as a function of s2� . Baseline consumption is a geometric random walk and ht is constant. The Euler equation holds.

The different curves correspond to different values of ŝ ranging from 1 to 3.
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Fig. 2. Welfare gains as a function of s2� when baseline consumption is a geometric random walk and ht is constant. The different curves

correspond to different values of r�1 ranging from 0:5 to 0:9.
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The gains are increasing in the intertemporal elasticity of substitution r�1: intuitively, as consumption at
different dates become more substitutable, it becomes easier to compensate the agent for a decrease in the drift
in consumption in order to lower his exposure to risk. In fact, we can derive a simple formula for small s�:

k

~k
’ 1þ

qem

ð1� qemÞ2
g2

r
s4� . (39)
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From this formula it is apparent that at the first relevant order, risk aversion and the intertemporal elasticity
of substitution enter the formula for the gains only through g2=r.

Quantitative exploration: Figs. 1 and 2 plot the reciprocal of the relative cost reduction using Eq. (37) as a
measure of the relative welfare gains as a function of s2� . The figures use an empirically relevant range for s2�
which is taken to vary between 0 and 0:007. The value of qE½�� is set to 0:97.

In Fig. 1, the intertemporal elasticity of substitution r�1 is set to 1 and the different curves correspond to
different values of the relative risk aversion coefficient g ranging from 1 to 3 in increments of 0:5: The gains are
increasing in g: Increasing g by 10% is exactly equivalent to increasing s2� by 10%.

In Fig. 2, the relative risk aversion coefficient g is set to 1, and the different curves correspond to different
values of the intertemporal elasticity of substitution r�1 ranging from 0:5 to 1 in increments of 0:1. The gains
are increasing in r�1. Increasing r�1 by 10% is roughly equivalent to increasing s2� by 5%.

Two lessons emerge from our simple exercise. First, welfare gains range from small to potentially large.
Second, they depend a lot on three parameters of the model: g, r and s2� : The coefficient of relative risk
aversion g and the variance of consumption growth s2� play an especially important role over the range
consistent with the available empirical evidence concerning these two parameters. The intertemporal elasticity
of substitution r�1 is important, but its influence over the empirically relevant range is somewhat less
dramatic. This is both because the range for this parameter is smaller and because r�1 enters with a smaller
power than g and s2� as can be seen from (39).

4.2. General equilibrium

Up to now we have restricted the analysis to partial equilibrium. Alternatively, one can think of the results
we have derived so far as applying to an economy facing some given constant rate of return to capital. In Farhi
and Werning (2006), we argue that neglecting general equilibrium effects magnifies the welfare gains from
reforming the consumption allocation. Here we explore the joint influence of risk aversion and the
intertemporal elasticity of substitution on general equilibrium welfare gains.

Planning problem: Consider a baseline allocation fct; htg. In order to set-up the planning problem, it is useful
to introduce the following notation: let Uðfct; htg;D�1Þ be the set of allocations ~ct attainable through our
variations from the baseline allocation fD�1ct; htg. Note that the shifted allocation fD�1ct; htg is incentive
compatible and delivers a value lifetime utility increased by a multiplicative factor D�1 to the agent. In general
equilibrium, the planning problem can be set-up as

W ðK0Þ ¼ max
f~ct; ~Ktþ1g

~v0 (40)

subject to

~vt ¼ htðð1� bÞ~c1�rt þ bðE½~v1�gtþ1 �Þ
1=ð1�gÞ

Þ
1=ð1�rÞ for t ¼ 0; 1; . . . ,

f~ctg 2 Uðfct; htg;D�1Þ,

~Ktþ1 þ E½~ct�pF ð ~Kt; ~NtÞ þ ð1� dÞ ~Kt for t ¼ 0; 1; . . . ,

~K0 ¼ K0.

Necessary and sufficient conditions for this problem are

~crt ¼
1

bh1�r
t ½F K ð ~Kt; ~NtÞ þ ð1� dÞ�

Et

~vtþ1

ðEt½~v
1�g
tþ1 �Þ

1=ð1�gÞ
~crtþ1

" #
for t ¼ 0; 1; . . . .

Of course, we have W ðK0Þ ¼ D�1W where W is the welfare achieved at the baseline allocation and D�1 is
the maximand in (40).

Note that we can always decompose ~ct ¼ ~cit
~Ct with the property that E½~cit� ¼ 1 and ~Ct ¼ E½~ct�, where the

superscript i stands for idiosyncratic. Since our variations allow for deterministic parallel shifts in
consumption, we have that f~ctg 2 Uðfct; htg;D�1Þ for some D�1 if and only if f~citg 2 Uðfcit; htg;D�1Þ.
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The analysis of this planning problem is tackled in full generality in Farhi and Werning (2006), where we
also explore nongeometric random walk baseline allocations: we provide cases where (40) can be separated
into two different planning problems, one involving only the idiosyncratic part of the allocation ~cit and the
other only the aggregate part ~Ct: Here instead, we focus on the special case where the baseline allocation
features geometric random walk consumption with constant ht.

Geometric random walk with constant ht: Suppose that the baseline allocation features geometric random
walk consumption with constant ht and constant aggregate consumption:

ctþ1 ¼ ct�tþ1 and ht ¼ h̄,

where �tþ1 is independently and identically distributed across agents and time and with E½�tþ1� ¼ 1. In other
words, Assumption 1 holds and E½�� ¼ 1.

Define

b� � bðE½�1�g�Þð1�rÞ=ð1�gÞ and b̂� � h̄
1�r

b�.

Proposition 10. Suppose that Assumption 1 holds and E½�� ¼ 1. The solution to (40) is ~ct ¼ ~Ctc
i
t where ~Ct and D�1

are the solutions of the standard neoclassical growth model with CRRA preferences:

ðD�1C0Þ
1�r

1� r
¼ ð1� b̂�Þ max

f ~Ct; ~Ktþ1g

X1
t¼0

b̂
t

�

~C
1�r
t

1� r
(41)

subject to

~Ktþ1 þ ~CtpF ð ~Kt; ~NtÞ þ ð1� dÞ ~Kt for t ¼ 0; 1; . . . ,

~K0 ¼ K0.

The property that the idiosyncratic component of the baseline allocation is already optimal relies
crucially on the assumption of geometric random walk with constant ht. Intuitively, as we saw above, the
planner only wants to affect the drift of f~citg; which is impossible in the case of an endowment economy where
1 ¼ E½~cit�.

In the case where the baseline allocation is a geometric random walk with constant ht, we can therefore
restrict our attention to the aggregate part of the allocation: all the potential welfare gains come from
modifying the aggregate component of the allocation.

Euler equation at the baseline: Suppose that in addition, the baseline allocation represents a steady state
where the Euler equation holds (Table 1).

Let qSS ¼ ð1� dþ FK ðKSS;NSSÞÞ
�1 be the inverse of the steady state interest rate. In that case, we can

derive as above an expression for b̂�:

b̂� ¼ qSSðE½�
�g�Þ
�1E½�1�g�ðE½��Þr�1 ¼ qSSðE½��Þ

r E½�1�g�

E½��E½��g�
.

Table 1

Welfare gains

g r�1 ¼ 0:5 r�1 ¼ 0:75 r�1 ¼ 1

dWPE (%) dWGE (%) ~rSS (%) dWPE (%) dWGE (%) ~rSS (%) dWPE (%) dWGE (%) ~rSS (%)

1 2.02 0.09 3.82 1.56 0.10 3.82 1.07 0.10 3.82

2 3.62 0.34 4.55 5.15 0.37 4.55 6.53 0.38 5.28

3 7.03 0.69 5.28 9.85 0.75 5.28 12.33 0.79 5.28
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That the baseline allocation is a steady state implies in particular that E½�� ¼ 1. We can therefore simplify the
formula for b̂�:

b̂� ¼ qSS

E½�1�g�

E½��E½��g�
.

The optimal allocation will eventually reach a steady state where the inverse of the interest rate ~qSS is given
by ~qSS ¼ b̂�.

When � is lognormally distributed log ��Nðm;s2� Þ, then we can compute b̂� and ~qSS in terms of m and s2� . We
get the remarkably simple formula:

~qSS ¼ b̂� ¼ qSS expð�gs
2
� Þ. (42)

Eq. (42) shows that the new interest rate is higher than the initial interest rate (that is, ~KSSoKSS) by a factor
given by expðgs2� Þ. The higher risk aversion and the variance of consumption growth, the higher the increase in
steady state interest rates, and the higher the reduction in steady state capital stock. Because the baseline
allocation has no trend, the intertemporal elasticity of substitution does not affect the level of the new interest
rate ~q�1SS . The only thing our variations allow in this case is to correct the externality created by the
precautionary savings motive, the intensity of which is controlled only by the relative risk aversion g and the
variance of consumption growth s2� .

As we just discussed, the coefficient of relative risk aversion g and the variance of consumption growth s2�
control the decrease in capital between the baseline steady state and the optimal steady state. The
intertemporal elasticity of substitution, on the other hand, controls the speed of the transition: the higher r�1,
the faster the transition, and the higher the welfare gains.

We now compute the welfare gains in general equilibrium for the neoclassical production function
F ðK ;NÞ ¼ KaN1�a þ ð1� dÞK . We set a ¼ 0:36, d ¼ 0:09. We set the variance of consumption growth at the
highest end of the values we used in our partial equilibrium computations: s2� ¼ 0:007. We take the initial
interest rate at the baseline allocation to be rSS ¼ q�1SS � 1 ¼ 3:07%. We perform the computations of welfare
gains for three different values of the intertemporal elasticity of substitution r�1—0:5, 0:75 and 1—and three
different values for the relative risk aversion coefficient g—1; 2 and 3. For each configuration of these
parameters, we report the welfare gains in partial equilibrium dWPE if the interest rate were fixed at rSS, the
welfare gains in general equilibrium dWGE and the interest rate ~rSS at the new steady state for the optimal
allocation.

An important general lesson from this exercise, as pointed out in Farhi and Werning (2006), is that taking
into account the concavity of the production function—that is, taking into account general equilibrium
effects—greatly mitigates the welfare gains. This is because in general equilibrium, reducing the drift of the
consumption process—the optimal policy under partial equilibrium—yields lower and lower gains as
consumption and capital go down over time and the equilibrium interest rate increases. As a consequence, it is
optimal to reduce the drift differential. Eventually, under the optimal allocation, the drift differential goes to 0
and the economy reaches the new steady state with a higher interest rate and a lower capital stock.

Even though the partial equilibrium welfare gains can be as high as 12.33%, the general equilibrium welfare
gains never go above 0:79%. The highest gains are reached for the highest value of the intertemporal elasticity
of substitution r�1 ¼ 1 and the highest value of the relative risk aversion coefficient g ¼ 3: For those
parameter values, the new interest rate is substantially higher than the initial interest rate: ~rSS ¼ 5:28%,
whereas rSS ¼ 3:07%. Despite this large difference in interest rates and therefore in steady state capital stocks,
the general equilibrium welfare gains are moderate at 0:79%.
5. Conclusion

This paper studied constrained efficient allocations in private information economies. We focused on how
the optimal savings distortions featured in those allocations depend on individuals’ preferences. We
introduced a recursive class of preferences that allowed a separation of risk aversion from intertemporal
substitution, and derived general results on the nature of optimal distortions.
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We then performed a quantitative investigation for a class of geometric random walk consumption
allocations. We showed that savings distortions depend only on risk aversion and the variance of the shocks to
consumption. However, the welfare gains from these distortions depend on both parameters, although we
found greater sensitivity to risk aversion.

The purpose of the quantitative exercise was to illustrate the role preferences, but it was limited in terms of
the consumption allocations it considered. In Farhi and Werning (2006) we undertake a comprehensive
exploration of savings distortions and welfare gains for general consumption processes.

Appendix
Proof of Proposition 3. Part (a). The proof parallels the proof of Proposition 2 closely. First note that since
preferences are recursive an incentive compatible allocation satisfies

vs� ðz
t; yt
ÞXvsðz

t; yt
Þ 8zt; yt; s, (43)

so that truth-telling maximizes continuation utility after any history of reports.
Let

~vsðz
t; yt
Þ ¼ D0vsðzt; yt

Þ for t4t and zt � ẑt,

~vsðz
t; yt
Þ ¼ vsðz

t; yt
Þ for tXt and zt1ẑt,

so that condition equation (22) with ~c is met for all yt with tXt with ytayt. Let D solve

vs� ðẑ
t; ytÞ ¼W ðDcðẑtÞ;D0CE½hðztþ1; ytþ1Þvs� ðztþ1; y

tþ1
Þjs�tþ1; ẑ

t; yt�Þ.

So that vs� ðẑ
t; ytÞ ¼ ~vs� ðẑ

t; ytÞ for all yt. Using the recursion (22), the inequality (43) evaluated at ẑt implies

CE½D0ðstþ1Þhðztþ1; ytþ1Þvs� ðztþ1; y
tþ1
Þjs�tþ1; ẑ

t; yt�

XCE½hðztþ1; ytþ1Þvsðztþ1; y
tþ1
Þjstþ1; ẑ

t; yt�

for all histories ytþ1 and reporting plans s. Hence,

~vs� ðz
t; ytÞ ¼W ðDcðztÞ;CE½D0ðstþ1Þhðztþ1; ytþ1Þvs� ðztþ1; y

tþ1
Þjs�tþ1; ẑ

t; yt�Þ

XW ðDcðstÞ;D0ðstþ1ÞCE½hðztþ1; ytþ1Þvsðztþ1; y
tþ1
Þjstþ1; ẑ

t; yt�Þ ¼ ~vsðz
t; ytÞ.

Collecting the inequalities, we have shown that in period t

~vsðz
t; yt
Þp~vs� ðz

t; yt
Þ ¼ vs� ðz

t; yt
Þ for all zt; yt;s.

Thus, s� is optimal from period t onward and delivers the same continuation utility as previously.
For any plan s define an alternative plan ŝ that starts at s and then switches to s� from period t onward:

ŝtðz
t; yt
Þ ¼ stðz

t; yt
Þ for tot and ŝtðz

t; yt
Þ ¼ s�t ðz

t; yt
Þ for tXt. The result above implies that

~vsðz0; y0Þp~vŝðz0; y0Þ ¼ vŝðz0; y0Þpvs� ðz0; y0Þ ¼ ~vs� ðz0; y0Þ. (44)

That is, ŝ dominates s and yields the same utility as without the variation, which in turn is dominated by the
recommended action s� which also yields the same utility as after the variation. This establishes that s�

remains incentive compatible.
Part (b). Note that

~vsðz
t; yt
Þ ¼ D0vsðzt; yt

Þ for t4t and zt � ẑt,

~vsðz
t; yt
Þ ¼ vsðz

t; yt
Þ for tXt and zt1ẑt.

Set D ¼ ðD0Þ�b so that

~vsðẑ
t; ytÞ ¼ hðzt; ytÞW ðDcðẑtÞ;D0CE½vs� ðztþ1; y

tþ1
Þjs�tþ1; ẑ

t; yt�Þ

¼ hðzt; ytÞW ðcðẑtÞ;CE½vs� ðztþ1; y
tþ1
Þjs�tþ1; ẑ

t; yt�Þ ¼ vsðẑ
t; ytÞ.
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It follows by backward induction that

~vsðz
t; yt
Þ ¼ vsðz

t; yt
Þ for all st; tpt.

In particular, ~vsðz0; y0Þ ¼ vsðz0; y0Þ, so that the result follows from incentive compatibility of the original
allocation. &

Proof of Proposition 5. Let ~v be such that

~vaðs
tÞ ¼ vaðs

tÞ þ D0 for t4t and st � st,

~vaðs
tÞ ¼ vaðs

tÞ for tXt and st1st,

so that condition (18) with ~c is met for all st with tXt with stast. Now set D so that

va� ðs
tÞ ¼W ðcðstÞ þ D;CE½va� ðs

tþ1Þ þ D0 � hða�ðstÞÞja�ðstÞ; st�Þ

¼W ðcðstÞ þ D;D0 þ CE½va� ðs
tþ1Þ � hða�ðstÞÞja�ðstÞ; st�Þ,

so that ~va� ðs
tÞ ¼ va� ðs

tÞ. Using recursion (18), the inequality (20) evaluated at st implies

CE½va� ðs
tþ1Þ � hða�ðstÞÞja�ðstÞ; st�XCE½vaðs

tþ1Þ � hðaðstÞÞjaðstÞ; st�,

so that

~va� ðs
tÞ ¼W ðcðstÞ þ D;D0 þ CE½va� ðs

tþ1Þ � hða�ðstÞÞja�ðstÞ; st�Þ

XW ðcðstÞ þ D;D0 þ CE½vaðs
tþ1Þ � hðaðstÞÞjaðstÞ; st�Þ ¼ ~vaðs

tÞ.

Hence, we have that

~vaðs
tÞp~va� ðs

tÞ ¼ va� ðs
tÞ for all a,

a� is optimal from period t onward and delivers the same continuation utility as previously.
For any plan a define an alternative plan â that switches to a� from period t onward: âðstÞ ¼ aðstÞ for tot

and âðstÞ ¼ a�ðstÞ for tXt. The result above implies that

~vaðs0Þp~vâðs0Þ ¼ vâðs0Þpva� ðs0Þ ¼ ~va� ðs0Þ. (45)

That is, â dominates a and yields the same utility as without the variation, which in turn is dominated by the
recommended action a� which also yields the same utility as after the variation. This establishes that a�

remains incentive compatible. &

Proof of Proposition 6. The equation that defines D as a function of D0 is

�ð1� bÞuðctÞðe
�rD � 1Þ ¼ buðCEðvtþ1 � htÞÞðe

�rD0 � 1Þ.

From this equation we get that at D0 ¼ 0:

dD
dD0
¼ �

b
1� b

uðCEðvtþ1 � htÞÞ

uðctÞ
.

At the optimum, we must have that at D0 ¼ 0:

dD
dD0
¼ �

1

r
,

where r is defined by r ¼ q�1 � 1. Therefore, the following optimality condition must hold:

ð1� bÞuðctÞ ¼ bruðCEðvtþ1 � htÞÞ.

Noting that uðcÞ ¼ ð�1=rÞu0ðcÞ, this condition is equivalent to

ð1� bÞu0ðctÞ ¼ bru0ðCEðvtþ1 � htÞÞ,

which is the optimality condition in the problem where the agents can borrow and save freely at the interest
rate r. Transforming these two equivalent conditions into the Euler equation in the text is straightforward.
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Consider the constrained efficient allocation. We can rewrite the equation that defines D as a function of D0

in the following way:

�D0 ¼
1

r
logð1þ rð1� expð�rDÞÞÞ.

This defines �D0 as a concave function of D. Therefore, D0X� rD. Now consider giving the agents the
constrained efficient allocation and allowing them to not only choose a reporting strategy but also to borrow
and save between history st and subsequent periods. The following variations are then available to the agents:

~cðstÞ ¼

cðstÞ þ D for st ¼ st;

cðstÞ þ rD for t4t and st � st;

cðstÞ otherwise:

8><
>:

Since D0X� rD, whatever reporting strategy the agent chooses when these variations are permissible, he will
always achieve lower utility than under the same reporting strategy if he were given the variations allowed for
the planner. Since the constrained efficient allocation is incentive compatible, he cannot achieve higher utility
than under the constrained efficient allocation without any additional saving or borrowing. Generalizing that
argument to any history st, this proves the proposition. &

Proof of Proposition 7. When consumption is a geometric random walk and ht is constant, it is possible to
derive lifetime utility in closed form:

Lemma 1. Suppose that Assumption 1 holds. Then vt ¼ Ah̄ct with

A ¼
1� b

1� bh̄
1�r
ðE½�1�g�Þð1�rÞ=ð1�gÞ

 !1=ð1�rÞ

.

The key feature that delivers this result is the homogeneity of agents’ preferences. For a given h̄, a
proportional shift in consumption today moves consumption in every future period by a proportional factor,
thereby shifting lifetime utility in consumption equivalent units by the same multiplicative factor. The constant
disutility h̄ on the other hand, acts exactly like a discount factor. Hence utility in consumption equivalent units
vt is directly proportional to consumption and to the disutility from effort or work. This is reminiscent of the
static settings in Sections 2.1 and 2.2.

It is then easy to guess and verify that the solution proposed in Proposition 7 both preserves the level of
utility and satisfies the constrained-optimality condition. &

Proof of Proposition 10. Before proving this proposition, it is useful to establish the following lemma.

Lemma 2. Consider the allocation in Proposition 10. We can write ~vt ¼ ~V tv
i
t where vit is the lifetime utility

derived from fcit; h̄g: vit ¼ Ah̄cit with A ¼ ðð1� bÞ=ð1� b̂�ÞÞ
1=ð1�rÞ and

~V
1�r
t

1� r
¼ ð1� b̂�Þ

X1
s¼t

b̂
s�t

�

~C
1�r
t

1� r
.

Let us now prove Proposition 10. We only need to check that

~crt ¼
1

bh̄
1�r
½F K ð ~Kt; ~NtÞ þ ð1� dÞ�

Et

~vtþ1

ðEt½~v
1�g
tþ1 �Þ

1=1�g
~crtþ1

" #
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holds. Decomposing ~c1�rt into the product ~Ctc
i
t and using Lemma 2, we can express this condition as

1 ¼
b̂� ~C

�r
tþ1½FK ð ~Kt; ~NtÞ þ ð1� dÞ�

~C
�r
t

 !�1
.

This is the standard Euler equation that is trivially verified by the solution of the neoclassical growth
problem (41). This concludes the proof of Proposition 10. &
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