The Darwinian Returns to Scale

David Baqaee and Emmanuel Farhi

BU, 2020

Origins of Aggregate Increasing Returns to Scale

- Technical efficiency?
- ► Allocative efficiency?
- Unresolved theoretically and empirically.

- Monopolistic competition: Kimball demand.
- Heterogeneity: marginal costs, markups, pass-throughs.
- Technical increasing returns: fixed costs (entry, overhead).

CES Non-Starter

- CES (e.g. Melitz, 2003): special case.
- ► Efficient: only technical efficiency, no allocative efficiency.
- Counterfactual: constant markups, complete pass-throughs.
- ▶ Non-starter: need to move away from CES.
- ▶ Kimball: allows any demand curve, markups, pass-throughs.

Theoretical Results

- Comparative statics in second best (welfare, output, TFP).
- Decomposition into technical and allocative efficiency.
- Dist. to frontier and gains from industrial/competition policy.
- Measurable sufficient statistics.

Empirical and Quantitative Results

Non-parametric estimation.

Increasing returns from technical and allocative efficiency.

► Key: heterogeneity × inefficiency via Darwinian reallocations.

Large gains from industrial/competition policy.

► Key: heterogeneity × inefficiency on all margins.

Selected Related Literature

- Chamberlin (33), Robinson (33).
- Spence (76), Dixit-Stiglitz (77), Lancaster (79), Salop (79), Hart (85), Mankiw-Whinston (86), Vives (99), Zhelobodko et al. (12), Dhingra-Morrow (19), Midrigan et al. (19).
- Norman (76), Krugman (79), Dixit-Norman (80), Helpman-Krugman (85), Venables (85), Melitz (03), Arkoloakis et. al (12), Melitz-Redding (14), Midrigan et al. (15), Arkolakis et al. (19), Bartelme et al. (19).
- Harberger (54,61,71), Epifani-Gancia (11), Hsieh-Klenow (09), Baqaee-Farhi (19).

Outline

► Setup.

- Concepts and Solution Strategy.
- Comparative Statics with Homogeneous Firms.
- Comparative Statics with Heterogeneous Firms.
- ▶ Dist. to Frontier and Gains from Industrial/Competition Policy.
- Empirical and Quantitative Results.

Households

Mass L of identical households with unit labor supply.

Kimball preferences over varieties of consumption goods:

$$\int_0^\infty \Upsilon(\frac{y_\omega}{Y}) d\omega = 1.$$

Maximize utility s.t. budget constraint (wage numeraire):

$$\max_{\{y_{\omega}\}} Y$$

s.t.

$$\int_0^\infty p_\omega y_\omega d\omega = 1.$$

Demand Curves

Demand curve for each variety:

$$\frac{p}{P} = \Upsilon'(\frac{y}{Y}),$$

with "price index" and "demand index" given by

$$P = rac{ar{\delta}}{Y}$$
 and $ar{\delta} = rac{1}{\int_0^\infty rac{y_\infty}{Y} \Upsilon'(rac{y_\omega}{Y}) d\omega}$

► Elasticity:

$$\sigma(\frac{y}{Y}) = \frac{\Upsilon'(\frac{y}{Y})}{-\frac{y}{Y}\Upsilon''(\frac{y}{Y})}.$$

Producers

Each variety supplied by single producer.

- Free entry with cost f_e (labor), type realization $\theta \sim g(\theta)$.
- ▶ Production with overhead cost f_o , marginal cost $1/A_\theta$ (labor).
- Maximize profits s.t. demand:

$$\max_{\{p_{\theta}, y_{\theta}\}} L(p_{\theta}y_{\theta} - \frac{1}{A_{\theta}}y_{\theta}) - f_{o}$$

s.t.

$$\frac{p_{\theta}}{P} = \Upsilon'(\frac{y_{\theta}}{Y}).$$

Markups, Entry and Exit

Optimal price and markup:

$$p_{\theta} = rac{\mu_{ heta}}{A_{ heta}}, \quad ext{where} \quad \mu_{ heta} = \mu(rac{y_{ heta}}{Y}) = rac{1}{1 - rac{1}{\sigma(rac{y_{ heta}}{Y})}}.$$

Survival if profits exceed overhead cost:

$$Lp_{\theta}y_{\theta}\left(1-\frac{1}{\mu_{\theta}}\right)\geq f_{o}.$$

Entry profitable if expected profits exceed entry cost:

$$\frac{1}{\Delta}\int_0^\infty \max\left\{Lp_\theta y_\theta\left(1-\frac{1}{\mu_\theta}\right)-f_o,0\right\}g(\theta)d\theta\geq f_e.$$

Equilibrium

- Households maximize utility.
- Firms maximize profits.
- Free entry and exit.
- Markets clear.

"Coordinates" for Equilibrium Allocations

Sales, markups, and mass of firms:

$$\lambda_{ heta} = (1 - \mathcal{G}(heta^*)) M p_{ heta} y_{ heta}, \quad \mu_{ heta}, \quad ext{and} \quad M.$$

Pin down allocation:

$$y_{ heta} = rac{\lambda_{ heta} A_{ heta}}{\mu_{ heta} (1 - G(heta^*)) M} \quad ext{and} \quad p_{ heta} = rac{\mu_{ heta}}{A_{ heta}}.$$

Use as "coordinates".

Equilibrium Equations

Consumer welfare:

$$1 = (1 - G(\theta^*))M\mathbb{E}\left[\Upsilon(\frac{\lambda_{\theta}A_{\theta}}{\mu_{\theta}MY})\right].$$

Free entry:

$$\frac{Mf_e\Delta}{L} = \mathbb{E}\left[\lambda_{\theta}\left(1 - \frac{1}{\mu_{\theta}}\right) - \frac{(1 - G(\theta^*))Mf_o}{L}\right]$$

٠

Selection:

$$\frac{(1-G(\theta^*))Mf_o}{L} = \lambda_{\theta^*}\left(1-\frac{1}{\mu_{\theta^*}}\right).$$

Equilibrium Equations

Markups:

$$\mu_{ heta} = \mu(rac{\lambda_{ heta}A_{ heta}}{\mu_{ heta}(1-G(heta^*))MY}).$$

► Variety demand:

$$rac{\mu_{ heta}}{A_{ heta}} = P\Upsilon'(rac{\lambda_{ heta}A_{ heta}}{\mu_{ heta}(1-G(heta^*))MY}).$$

Price index and demand index:

$$P = rac{ar{\delta}}{Y} \quad ext{and} \quad ar{\delta} = rac{1}{M\mathbb{E}\left[rac{\lambda_{ heta}A_{ heta}}{\mu_{ heta}MY}\Upsilon'(rac{\lambda_{ heta}A_{ heta}}{\mu_{ heta}(1-G(heta^*))MY})
ight]}.$$

Outline

Setup.

- Concepts and Solution Strategy.
- Comparative Statics with Homogeneous Firms.
- Comparative Statics with Heterogeneous Firms.
- Dist. to Frontier and Gains from Industrial/Competition Policy.
- Empirical and Quantitative Results.

Demand Concepts

Markups:

$$\mu(\frac{y}{Y}) = \frac{1}{1 - \frac{1}{\sigma(\frac{y}{Y})}} \ge 1.$$

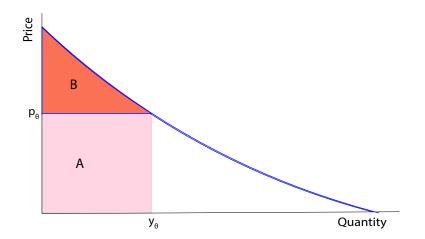
Pass-throughs:

$$ho(rac{y}{Y})=rac{1}{1+rac{y}{Y}\mu'(rac{y}{Y})}\sigma(rac{y}{Y})} \lneq 1.$$

• Infra-marginal surplus ratios (noting $\bar{\delta} = \mathbb{E}_{\lambda}[\delta_{\theta}]$):

$$\delta(rac{y}{Y}) = rac{\Upsilon(rac{y}{Y})}{rac{y}{Y}\Upsilon'(rac{y}{Y})} \geq 1.$$

Infra-Marginal Surplus Ratio $\delta = rac{A+B}{A}$



Demand Properties

- Not imposed in theory but verified empirically.
- Marshall's weak second law of demand:

$$\mu'(rac{y}{Y}) \geq 0 \quad \Longleftrightarrow \quad
ho(rac{y}{Y}) \leq 1.$$

Marshall's strong second law of demand:

$$\rho'(\frac{y}{Y}) \leq 0.$$

Welfare and Real Output

► Welfare per capita:

 $d \log Y$.

Real output per capita (prices, see paper for quantities):

 $d \log Q^p = -\mathbb{E}_{\lambda}[d \log p_{\theta}].$

Technical and Allocative Efficiency

Allocation and productivity vectors:

$$\mathscr{X} = (I_e, I_o, \{I_{\theta}\}) \text{ and } \mathscr{A} = (L, f_e \Delta, f_o, \{A_{\theta}\}).$$

Welfare function:

$$Y = \mathscr{Y}(\mathscr{A}, \mathscr{X}).$$

Technical and allocative efficiency:

No equivalent for real output capita (prices).

Solution Strategy

- Start at initial equilibrium.
- Shocks: population, fixed costs, productivity.
- Changes in welfare and real output.
- Changes in technical and allocative efficiency.
- Sufficient statistics: sales λ_{θ} , markups μ_{θ} , pass-throughs ρ_{θ} , infra-marginal surplus ratios δ_{θ} .

Outline

Setup.

- Concepts and Solution Strategy.
- Comparative Statics with Homogeneous Firms.
- Comparative Statics with Heterogeneous Firms.
- Dist. to Frontier and Gains from Industrial/Competition Policy.
- Empirical and Quantitative Results.

Social Inefficiency

Entry only efficiency margin.

Excessive entry iff:

 $\delta < \mu$.

Welfare

Change in welfare per capita with population shocks:

$$d\log Y = \underbrace{(\delta - 1)d\log L}_{\text{technical efficiency}} + \underbrace{\delta \frac{\xi}{1 - \xi} d\log L}_{\text{allocative efficiency}},$$

where

$$\xi = \left(1 -
ho
ight) \left(1 - rac{\delta - 1}{\mu - 1}
ight) rac{1}{\sigma} = \left(1 -
ho
ight) \left(1 - rac{\delta}{\mu}
ight).$$

• $\xi > 0$ (increasing returns via allocative efficiency) iff:

- 1. $\rho < 1$ (incomplete pass-through);
- 2. $\delta < \mu$ (excessive entry).

Real Output

Changes in real output per capita (prices):

$$d\log Q^p = \frac{1-\rho}{\sigma}(d\log Y + d\log L).$$

Outline

Setup.

- Concepts and Solution Strategy.
- Comparative Statics with Homogeneous Firms.
- Comparative Statics with Heterogeneous Firms.
- Dist. to Frontier and Gains from Industrial/Competition Policy.
- Empirical and Quantitative Results.

Social Inefficiency

► Three margins of efficiency: entry, selection, relative size.

► Excessive entry iff:

$$\mathbb{E}_{\lambda}[\delta_{ heta}] < rac{1}{\mathbb{E}_{\lambda}[rac{1}{\mu_{ heta}}]}.$$

Excessive selection iff:

$$\delta_{ heta^*} > \mathbb{E}_{\lambda}[\delta_{ heta}].$$

Excessive relative size θ' vs. θ iff:

 $\mu_{\theta'} < \mu_{\theta}.$

Welfare

Change in welfare per capita:

$$\begin{split} d\log Y = \underbrace{\left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1\right) d\log L}_{\text{technical efficiency}} \\ + \underbrace{\frac{\xi^{\varepsilon} + \xi^{\mu} + \xi^{\theta^{*}}}{1 - \xi^{\varepsilon} - \xi^{\mu} - \xi^{\theta^{*}}} \left(\mathbb{E}_{\lambda}[\delta_{\theta}]\right) d\log L}_{\text{allocative efficiency}}, \end{split}$$

where

$$\begin{split} \xi^{\varepsilon} &= \left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1 \right) \left(\mathbb{E}_{\lambda}[\sigma_{\theta}] - \mathbb{E}_{\lambda(1-1/\mu)}[\sigma_{\theta}] \right) \left(\mathbb{E}_{\lambda}\left[\frac{1}{\sigma_{\theta}}\right] \right), \\ \xi^{\theta^{*}} &= \left(\mathbb{E}_{\lambda}[\delta_{\theta}] - \delta_{\theta^{*}} \right) \left(\lambda_{\theta^{*}} \gamma_{\theta^{*}} \frac{\sigma_{\theta^{*}} - \mathbb{E}_{\lambda(1-1/\mu)}[\sigma_{\theta}]}{\sigma_{\theta^{*}} - 1} \right) \left(\mathbb{E}_{\lambda}\left[\frac{1}{\sigma_{\theta}}\right] \right), \\ \xi^{\mu} &= \left(\mathbb{E}_{\lambda}\left[(1 - \rho_{\theta}) \left(1 - \frac{\mathbb{E}_{\lambda}[\delta_{\theta}] - 1}{\mu_{\theta} - 1} \right) \right] \right) \left(\mathbb{E}_{\lambda}\left[\frac{1}{\sigma_{\theta}}\right] \right). \end{split}$$

Understanding ξ^{ε} via Demand Curve $\frac{p}{P} = \Upsilon'(\frac{y}{Y})$

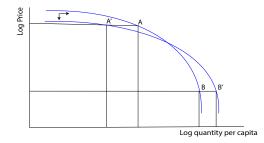


Figure: Reallocation effect due to increased entry (holding fixed markups and the selection cutoff) assuming second Marshall laws of demand.

- $\xi^{\varepsilon} > 0$ (irrespective of shape of demand).
- Assuming second Marshall laws of demand, signs of ξ^{θ*} and ξ^μ ambiguous (too much or too little selection and entry).

Real Output

Changes in real output per capita (prices):

$$d\log Q^{\rho} = \left(\mathbb{E}_{\lambda}\left[(1-\rho_{\theta})\right]\right) \left(\mathbb{E}_{\lambda}\left[\frac{1}{\sigma_{\theta}}\right]\right) \left(d\log Y + d\log L\right).$$

Outline

Setup.

- Concepts and Solution Strategy.
- Comparative Statics with Homogeneous Firms.
- Comparative Statics with Heterogeneous Firms.
- ▶ Dist. to Frontier and Gains from Industrial/Competition Policy.
- Empirical and Quantitative Results.

Efficient Allocation and Industrial/Competition Policy

Industrial/competition policy implements efficient allocation.

Regulate markups to equal infra-marginal surplus ratios:

$$\mu_{ heta} = \delta_{ heta} > 1.$$

Introduce production subsidies to offset markups:

$$au_ heta = rac{1}{\delta_ heta} < 1.$$

Restores efficiency on all margins: entry, selection, relative size.

Dist. Frontier and Gains from Industrial/Competition Policy

Second-order approximation to distance to frontier and gains from industrial/competition policy:

$$\begin{split} \mathscr{L} &\approx \frac{1}{2} \mathbb{E}_{\lambda} \left[\sigma_{\theta} \left(\frac{\mathbb{E}_{\lambda} \left[\mu_{\theta} \right]}{\mathbb{E}_{\lambda} \left[\delta_{\theta} \right]} - 1 \right)^{2} \right] \\ &+ \frac{1}{2} \lambda_{\theta^{*}} \gamma_{\theta^{*}} \left(\mathbb{E}_{\lambda} \left[\delta_{\theta} \right] - \delta_{\theta^{*}} \right)^{2} \\ &+ \frac{1}{2} \mathbb{E}_{\lambda} \left[\sigma_{\theta} \left(\frac{\mu_{\theta}}{\mathbb{E}_{\lambda} \left[\delta_{\theta} \right]} - \frac{\mathbb{E}_{\lambda} \left[\mu_{\theta} \right]}{\mathbb{E}_{\lambda} \left[\delta_{\theta} \right]} \right)^{2} \right]. \end{split}$$

Separate contributions from inefficients along different margins: entry, selection, relative size.

Outline

Setup.

- Concepts and Solution Strategy.
- Comparative Statics with Homogeneous Firms.
- Comparative Statics with Heterogeneous Firms.
- ▶ Dist. to Frontier and Gains from Industrial/Competition Policy.
- Empirical and Quantitative Results.

Non-Parametric Estimation

Inputs:

\$\lambda_{\theta}\$, \$\rho_{\theta}\$, \$M\$ (data);
\$\bar{\mu} = 1/[\mathbb{E}_{\lambda}[1/\mu_{\theta}]]\$ and \$\bar{\delta} = \mathbb{E}_{\lambda}[\delta_{\theta}]\$ (postulates).

Outputs:

• $\mu_{\theta}, \sigma_{\theta}, A_{\theta}, \delta_{\theta}, \gamma_{\theta}$ (local counterfactuals);

• f_e , f_o , $\Upsilon(\cdot)$ (global counterfactuals).

Non-Parametric Estimation (Key Equations)

• Changes in λ_{θ} with A_{θ} :

$$\frac{d\log\lambda_{\theta}}{d\theta} = \frac{\rho_{\theta}}{\mu_{\theta} - 1} \frac{d\log A_{\theta}}{d\theta}.$$

• Changes in μ_{θ} with A_{θ} :

$$rac{d\log\mu_{ heta}}{d heta} = (1-
ho_{ heta}) rac{d\log A_{ heta}}{d heta}.$$

Non-Parametric Estimation (Local)

• Recover μ_{θ} and A_{θ} by solving:

$$rac{d\log\mu_{ heta}}{d heta} = rac{(\mu_{ heta}-1)(1-
ho_{ heta})}{
ho_{ heta}}rac{d\log\lambda_{ heta}}{d heta} \quad ext{s.t.} \quad rac{1}{\mathbb{E}_{\lambda}[rac{1}{\mu_{ heta}}]} = ar{\mu},
onumber \ rac{d\log A_{ heta}}{d heta} = rac{\mu_{ heta}-1}{
ho_{ heta}}rac{d\log\lambda_{ heta}}{d heta} \quad ext{s.t.} \quad A_{ heta^*} = 1.$$

• Recover δ_{θ} by solving:

$$rac{d\log \delta_{ heta}}{d heta} = rac{\mu_{ heta} - \delta_{ heta}}{\delta_{ heta}} rac{d\log \lambda_{ heta}}{d heta} \quad ext{s.t.} \quad \mathbb{E}_{\lambda}[\delta_{ heta}] = ar{\delta}.$$

Non-Parametric Estimation (Global)

► Recover Υ using:

$$\Upsilon(\frac{y}{Y}) = \frac{\delta_{\theta(y)}\lambda_{\theta(y)}}{\bar{\delta}M}.$$

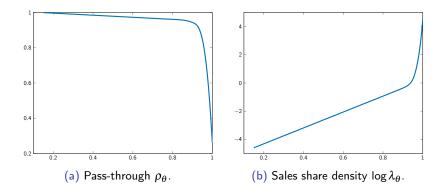
where $\theta(y)$ inverse of $y_{\theta} = (\lambda_{\theta}A_{\theta})/(M\mu_{\theta})$.

▶ Recover $f_e \Delta$ and f_o using:

$$rac{f_e\Delta}{L} + (1 - G(heta^*))rac{f_o}{L} = rac{1}{M}\mathbb{E}\left[\lambda_{ heta}\left(1 - rac{1}{\mu_{ heta}}
ight)
ight],
onumber \ rac{f_o}{L} = rac{1}{M}\lambda_{ heta^*}\left(1 - rac{1}{\mu_{ heta^*}}
ight).$$

- Belgian data for manufacturing firms.
- Sales and pass-throughs by firm size for ProdCom sub-sample (price and quantity data) from Amiti et al. (19).
- Extrapolate to entire manufacturing sample by matching firms on size.

Data



Postulates for Initial Conditions

• Take one of two values for $\bar{\delta}$:

•
$$\bar{\delta} = \bar{\mu}$$
 (efficient entry);

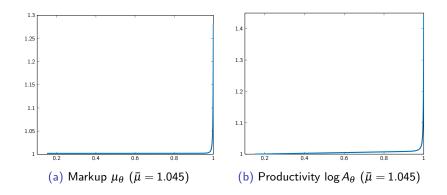
• $\bar{\delta} = \delta_{\theta^*}$ (efficient selection).

▶ Take one of two values for $\bar{\mu}$

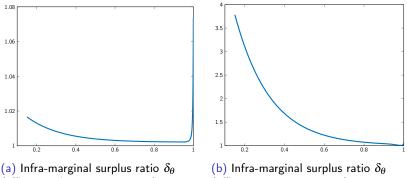
•
$$\bar{\mu} = 1.045 \ (d \log Y / d \log L \approx 0.14);$$

•
$$\bar{\mu} = 1.09 \ (d \log Y / d \log L \approx 0.3).$$

Estimates



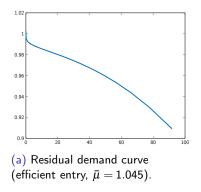
Estimates (Efficient Selection vs. Efficient Entry)

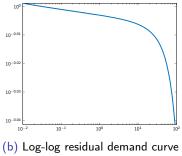


(efficient selection, $\bar{\mu} = 1.045$).

(efficient entry, $\bar{\mu} = 1.045$).

Residual Demand Curve





(efficient entry, $\bar{\mu} = 1.045$).

Counterfactual: 1% Population Shock

	$ar{\mu}=1.045$		$ar{\mu}=$ 1.090	
	$ar{\delta}=\delta_{ heta^*}$	$ar{\delta}=ar{\mu}$	$ar{\delta}=\delta_{ heta^*}$	$ar{\delta}=ar{\mu}$
Welfare	0.130	0.145	0.293	0.323
Technical efficiency	0.017	0.045	0.034	0.090
Allocative efficiency	0.114	0.100	0.260	0.233
F .	0 117	0.400	0.070	1 200
Entry	0.117	0.408	0.272	1.396
Exit	0.000	-0.251	0.000	-1.006
Markups	-0.004	-0.057	-0.012	-0.157
Real GDP per capita	0.024	0.024	0.051	0.052

Table: The elasticity of welfare and real GDP per capita to population with heterogeneous firms.

Counterfactual: 1% Population Shock (Homogenous Firms)

	$ar{\mu}=$ 1.045		$ar{\mu}=1.090$	
	$ar{\delta} = \delta_{ heta^*}$	$ar{\delta}=ar{\mu}$	$ar{\delta}=\delta_{ heta^*}$	$ar{\delta}=ar{\mu}$
Welfare	0.030	0.045	0.060	0.090
Technical efficiency	0.017	0.045	0.034	0.090
Allocative efficiency	0.013	0.000	0.026	0.000
Real GDP per capita	0.021	0.022	0.042	0.043

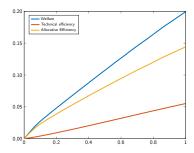
Table: The elasticity of welfare and real GDP per capita to population with homogenous firms.

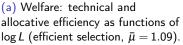
Counterfactual: 50% Population Shock (Nonlinearities)

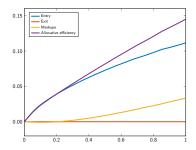
	$ar{\mu}=1.045$		$ar{\mu}=1.090$	
	$ar{\delta}=\delta_{ heta^*}$	$ar{\delta}=ar{\mu}$	$ar{\delta}=\delta_{ heta^*}$	$ar{\delta}=ar{\mu}$
Welfare	0.100	0.099	0.215	0.216
Technical efficiency	0.025	0.048	0.052	0.098
Allocative efficiency	0.075	0.051	0.162	0.117
F .	0.000	0 1 0 7	0.145	0.070
Entry	0.066	0.107	0.145	0.272
Exit	0.000	-0.065	0.000	-0.176
Markups	0.008	0.008	0.017	0.021
				0.074
Real GDP per capita	0.025	0.024	0.054	0.051

Table: The average elasticity of welfare and real GDP per capita to population with heterogeneous firms for a 50% population shock.

Counterfactual: 50% Shock (Nonlinearities)







(b) Allocative efficiency: entry, exit, and markups as functions of log *L* (efficient selection, $\bar{\mu} = 1.09$).

Gains from Industrial/Competition Policy

Second-order approximation as local counterfactual.

Exact number as global counterfactual.

► Work in progress.

Conclusion: Summary

- Increasing returns to scale?
- Technical and allocative efficiency.
- Gains from industrial/competition policy.
- ► Key: heterogeneity × inefficiency.
- Different for welfare and real output or TFP.

Conclusion: Extensions

- Other demand systems and market structures.
- Open economy.
- Dynamics.
- ► HAIO.

Back-Up Slides

Welfare and Real Output

Welfare per capita:

$$d\log Y = \left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1\right) d\log M \\ + \left(\mathbb{E}_{\lambda}[\delta_{\theta}] - \delta_{\theta^*}\right) \lambda_{\theta^*} \frac{g(\theta^*)}{1 - G(\theta^*)} d\theta^* + \mathbb{E}_{\lambda}\left[d\log(\frac{A_{\theta}}{\mu_{\theta}})\right].$$

Real output per capita (prices):

$$d\log Q^p = \mathbb{E}_{\lambda}\left[d\log(\frac{A_{ heta}}{\mu_{ heta}})
ight].$$