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Abstract

We show that the tension between entry and rents lies at the core of a general theory

of aggregation with scale effects. We characterize the responses of macro aggregates

to micro shocks in disaggregated economies with general forms of entry, internal or

external returns to scale, input-output linkages, and distortions. In particular, we

decompose changes in aggregate productivity into changes in technical and allocative

efficiency, and show that the latter depend on changes in rents and quasi-rents across

markets. In addition, we give formulas for the social costs of distortions. Finally,

we prove that while first-best industrial policy is network-independent, second-best

policy supports the more “networked” parts of the economy by boosting the backward

linkages of markets with high forward linkages and returns to scale. As an application,

we quantify the misallocation from markups in the U.S.: accounting for entry raises

the aggregate efficiency loss from 20% to 40%. This number depends sensitively on

how entry is modeled, in ways that we make precise.
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1 Introduction

In macroeconomics, exogenous aggregate productivity is god of the gaps, bridging the
distance between model and data and explaining inexplicable variations in output. In
this paper, we consider how scale economies, shaped by entry-exit and accompanying
distortions, endogenously determine aggregate productivity and output. We analyze how
microeconomic shocks translate into macroeconomic effects, characterize the efficiency
losses from misallocation, and derive optimal first- and second-best industrial policies.

The class of models that we consider is much broader than the family of macro models
typically used to analyze scale effects, for example, Dixit and Stiglitz (1977), Krugman
(1979), Romer (1987), Aghion and Howitt (1992), Murphy et al. (1989), Hopenhayn (1992),
and Melitz (2003). In particular, we allow for an arbitrary pattern of distorting wedges
and technological heterogeneity. We allow for increasing, decreasing, or constant internal
and external returns to scale, as well as within and cross-industry heterogeneity. Finally,
we study disaggregated production structures accommodating input-output linkages in
both production and entry.

We decompose changes in aggregate productivity into changes in technical and alloca-
tive efficiency via an aggregation equation:

∆ log TFP = ∆ log TFP tech + ∆ log TFP alloc.

Technical efficiency measures the direct impact of technology shocks, holding fixed the
allocation of resources, and allocative efficiency measures the indirect effect of shocks due
to the reallocation of resources.1

We show that changes in technical efficiency are given by

∆ log TFP tech =
∑

i

λF
i ∆ log Ai,

where ∆ log Ai is an appropriately normalized productivity shock to the ith producer and
λF

i is a measure of forward linkages from i to the household. The weight λF
i depends on

expenditure shares and is related but not exactly equal to the size of i as measured by its
sales as a share of GDP. It has the same intuition as Hulten (1978)’s theorem.

Under conditions that guarantee efficiency of the equilibrium, the logic of the envelope
theorem implies that reallocation effects can be ignored to a first order ∆ log TFP alloc = 0,
leaving only the direct effect of the shocks. Once we stray from efficiency, changes in

1There are different notions of changes in allocative efficiency. In this paper, we define them as changes
in output due to reallocations of resources. See Baqaee and Farhi (2019a) for a detailed discussion.
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allocative efficiency play a dominant role in determining the aggregate consequences of
disturbances. These indirect reallocation effects depend on which markets expand and
shrink. They also depend on whether these adjustments in market sizes occur through
changes in the size of existing producers or through changes in the number of producers.
We show that the resulting changes in allocative efficiency can be summarized by changes
in rents and quasi-rents.

To be specific, we define rents to be income accruing to proprietors after variable
costs have been deducted from revenues. Proprietors earn rents because of non-constant
returns to scale (Ricardian rents) and because of markups (monopoly rents).2 We define
the quasi-rents associated with a given market as the expenditures on entry that were paid
by the producers who entered that market.

Our treatment of entry is novel. In a broad class of models, entrants pay an entry cost
to obtain a, perhaps random, production technology. In such models, the entry of new
producers, and the quasi-rents associated with that entry, can be represented using linear
projections. Let λπ denote the vector of rents as a share of GDP in each market. We show
that changes in quasi-rents associated with each market is the projection of the vector
∆ logλπ on the space spanned by the linear entry technology

̂∆ logλπ,

with residual
∆ logλπ − ̂∆ logλπ.

The projection determines the amount of entry into the different markets and interacts
with increasing external economies. The residual measures the imperfect ability of entry to
keep up with rents and interacts with decreasing internal economies. Therefore, in a least-
squares sense, entry minimizes rents claimed by existing producers, and the projection
and residuals from a regression summarize reallocation effects in general equilibrium.

In particular, in response to productivity shocks, changes in allocative efficiency are

∆ log TFPalloc = −
∑

i

λF
i E

int
i

(
∆ logλπ,i − ̂∆ logλπ,i

)
+

∑
i

λF
i E

ext
i

̂∆ logλπ,i,

where Eint
i is an internal scale elasticity (of market output to the variable inputs of produc-

ers), Eext
i is an external scale elasticity (of market output to the number of producers), and

the sum is over all markets i (including primary factors). We derive similar formulas for

2Here, monopoly rents also includes all the revenues collected by distortionary wedges (since other
distorting wedges, say taxes, can be represented as markups).
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the response to changes in markups and other distortions.
There are two terms in this expression. The first term depends on decreasing internal

returns to scale (Eint
i > 0). A positive residual in market i means that quasi-rents are failing

to keep up with rents. This implies that producers in market i are scaling up and running
into diminishing returns. This raises the shadow price of their producer-specific fixed
factor and lowers output. If weighted sum of residuals is negative, that means beneficial
reallocations, by making better use of resources, have made factors of production less
scarce. The second term depends on external increasing returns to scale. With increasing
external returns to scale (Eext

i > 0), allocative efficiency further improves if reallocations
increase entry in markets with high external economies on balance across markets. The
sum of these terms is always zero in efficient economies, but not in inefficient economies.3

It is often believed that entry when there are decreasing internal returns, like in Hopen-
hayn (1992), and entry when there are increasing external returns, like in Dixit and Stiglitz
(1977) or Melitz (2003), give similar results. However, the equation above shows that this
folk wisdom is generally incorrect when there are inefficiencies. Reallocation effects in
Dixit-Stiglitz/Melitz-type models depend on the projection, whereas in the Hopenhayn-
type models they depend on the residual. This distinction matters and leads to differences
in macroeconomic behavior.

We complete this new perspective by providing propagation equations which show
how changes in these different categories of rents are determined in equilibrium as a
function of the microeconomic primitives and the shocks. These propagation equations,
which capture backward and forward propagation through supply chains, also character-
ize how every price and quantity responds to a shock in equilibrium. The aggregation and
propagation equations fully characterize the model’s positive properties to a first order.

From a normative perspective, we also characterize optimal industrial policy as well
as the gains from implementing it. We show that while first-best policy is network-
independent, second-best policies do depend very much on the network structure. In
particular, for economies with increasing returns, we rationalize and revise Hirschman
(1958)’s influential argument that policy should encourage those sectors with the most
forward and backward linkages, and we give precise formal definitions for these loose
concepts. We show that the optimal marginal intervention aims to boost backward link-
ages for producers that have relatively high forward linkages and returns to scale.

Finally, we show that the social cost of inefficiencies is approximately the sales-

3Both terms in this formula can be interpreted as changes in the shadow value of fixed-factors associated
with non-constant-returns-to-scale. There are fixed factors associated with decreasing internal returns, and
fixed factors associated with increasing external returns. The former have positive shadow prices, and the
latter have negative shadow prices.
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weighted sum of a series of Harberger triangles, some associated with production and
some associated with entry. We also characterize these Harberger triangles in terms of
microeconomic primitives.

Although our main contribution is theoretical, we also provide an example application
by quantifying the social costs of markups using micro data for the U.S. We decompose the
losses into losses arising from misallocation of resources in production (due to dispersion
in markups) and misallocation of resources in entry (due to bias in average markups). One
might imagine that since markups incentivize entry, models with endogenous entry would
assign smaller losses to markups than models without an entry margin. On the contrary,
we find that distortions on the entry margin, caused by the markups, are quantitatively
as important as distortions on the production margin. To use a concrete example, without
entry we find that markups estimated by a production-function approach à la De Loecker
et al. (2019) reduce aggregate productivity by around 20%.4 Accounting for entry can
double these losses. Furthermore, the specific number one attaches to these losses depends
sensitively on knowledge of the production structure, including the strength of external
economies, the extent to which entry is targeted, the resources used for entry, and the
view one takes on the presence of entry restrictions in the data. While these features are
critical on a theoretical and quantitative level, little is know about them in practice, and
more empirical work is needed to convincingly measure them.

The structure of the paper is as follows. In Section 2, we set up the general model
and define the equilibrium notion. In Section 3, we prove conditions under which the
equilibrium is efficient and derive comparative statics for the efficient case. In Section 4, we
specialize the model and introduce notation necessary to analyze inefficient equilibria. In
Section 5, we provide and discuss the aggregation formula for how shocks affect aggregate
output. Section 6 contains backward and forward propagation equations that determine
how rents respond to shocks as a function of primitives. In Section 8, we analyze the
normative properties of the economy, including first- and second-best optimal policy and
the social costs of distortions. Finally, Section 9 is a quantitative application where we use
a calibrated model to compute and dissect the social costs of markups and the benefits of
industrial policy in the U.S. using firm-level data on markups.

Related Literature. Our results apply to a broad range of popular models in the macro,
trade, and growth literatures. For instance, our framework encompasses and generalizes

4We also use alternative approaches for estimating markups: an alternative implementation of the
production-function (PF) approach with different categories of costs, the user-cost approach (UC), and
the accounting-profits (AP) approach. Although the numbers depend on the specification, the qualitative
message remains the same.
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models of entry like Dixit and Stiglitz (1977) or (a finite-horizon version of) Hopenhayn
(1992), the closed economy version of Melitz (2003), and finite-horizon versions of models
of endogenous growth with lab-equipment like Romer (1987) and Grossman and Helpman
(1991). It also nests multi-sector and production network models like Hulten (1978), Long
and Plosser (1983), and much of the subsequent literature like Gabaix (2011), Acemoglu
et al. (2012), Carvalho and Gabaix (2013), and Baqaee and Farhi (2019b), amongst others.

This paper is most closely related to Baqaee (2018) and Baqaee and Farhi (2019a)
which establish aggregation and propagation results for inefficient production networks
with and without entry. Baqaee (2018) considers production networks with external
economies, entry, and distortions. This paper builds on that framework using a more
general model, allowing for a more sophisticated handling of the entry condition, returns
to scale, production functions, and network linkages in both production and entry. Fur-
thermore, unlike Baqaee (2018), this paper also characterizes reallocation, misallocation,
and optimal policy.

On the other hand, Baqaee and Farhi (2019a) analyze reallocation and misallocation
but, unlike this paper, abstract from entry. This paper nests and provides a new angle on
that paper. In particular, Baqaee and Farhi (2019a) show that a reduction in factor shares
can imply an improvement in allocative efficiency due to reallocation. In this paper, the
factor shares are rents not offset by entry, and so a decline in the price of these factors
represents beneficial reallocation (i.e. beneficial reallocation makes factors cheaper/less
scarce).

This paper also relates to other papers on cross-sectional misallocation and indus-
trial policy, with or without externalities, like Restuccia and Rogerson (2008), Hsieh and
Klenow (2009), Epifani and Gancia (2011), Edmond et al. (2018), Liu (2017), Osotimehin
and Popov (2017), Behrens et al. (2016), and Bartelme et al. (2019). By showing that even in
non-neoclassical models losses can be approximated using Harberger triangles, the paper
also extends the insights of Harberger (1954) and Harberger (1964).

2 General Framework

The model consists of a representative household, a set of producers, and a set of entrants.
In this section, we describe the model, and define the equilibrium. A circular flow diagram
of the economy is depicted in Figure 1. Each rectangle represents a type of agent in the
model. Loosely speaking, entrants buy resources to enter. After paying the entry costs,
entrants are assigned (perhaps randomly) to produce. Meanwhile, producers produce
using intermediate materials they purchase from other producers. The representative
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household owns all resources in the economy and purchases consumption goods using
national income. We begin by describing the problem each agent is faced with, starting
with the producers.

Producers HouseholdsEntrants

Assignment

Entry Resources
Intermediates

Consumption

Figure 1: Circular flow schematic of the economy showing the flow of resources.

2.1 Markets and Producers

There is a set of markets indexed by i ∈ N . Each market i is populated by an endogenous
mass Mi of identical producers with output

yi = fi

({
xi j

}
j∈N

,Ai

)
,

where fi is a neoclassical production function, Ai is some scalar indexing productivity,
xi j is the input quantity of market good j (including primary factors). Each producer
minimizes costs and sets its price py

i equal to its marginal cost times an exogenous markup
µi.

The output good of market i is given by

Yi = Fi
(
Miyi

)
,

where the market aggregator Fi may have constant, decreasing, or increasing returns to
scale in the producer-level output yi. The price of the market good PY

i is equal to the
marginal cost of producing Yi times an exogenous wedge µY

i . Unlike the producer-level
markup µi, revenues generated by the market-level wedge µY

i are not rebated to the owner
of i and instead go directly to the household. The market-level wedge µY

i therefore acts
like an output tax.

To understand the versatility of this modeling block, consider the following examples.
Let xi denote a bundle of inputs and ignore productivity by setting Ai = 1 as an argument.

7



Assume that fi(x) = x1−εi . Suppose that Fi(x) = x
1

1−εi . Then Yi = (Mix
1−εi
i )

1
1−εi captures a CES

market structure with an elasticity of substitution 1/εi between differentiated varieties
produced under constant returns to scale. Suppose instead that Fi(x) = x. Then Yi =

Mix
1−εi
i captures a market structure with perfectly substitutable varieties produced under

decreasing returns to scale.

Primary Factors. A subset of markets F ⊂ N correspond to primary factors. These mar-
kets are populated by an exogenous mass M f of producers whose production functions
f f have zero returns to scale. We also assume that the market aggregator has constant re-
turns to scale F f (M f y f ) = M f y f . In addition, we assume that there are no markups/wedges
µ f = µY

f = 1. Basically, there is no entry into the market, each producer produces a fixed
amount of output, and producer outputs are aggregated linearly, so that total market
output is also fixed. This allows us to capture endowments of primary factors such as
labor, land, or the initial capital stock.

2.2 Entrants

There is an infinite supply of potential entrants who are grouped into types indexed by
j ∈ E. Entrants pay fixed costs and enter subject to a zero-profit condition.

Fixed Costs. To enter, potential entrants must pay a fixed cost

g j

({
xE, ji

}
i∈N

)
, (1)

where g j has constant returns, and xE, ji is the input quantity of market good i. A simple
example is when firms pay entry costs in units of labor if they choose to enter, as in
Hopenhayn (1992) or Melitz (2003).

The entry matrix ζ is an |E| × |N −F | positive-valued matrix. Type- j entrants who pay
the sunk cost are randomly assigned, according to ζ( j, i), the ability to produce in market
i ∈ N −F . Without loss of generality, assume that the rows of ζ are linearly independent.5

A simple example is that there is only one type of entrant and technology is assigned
randomly, as in Hopenhayn (1992) or Melitz (2003). We denote by ME, j the endogenous
mass of type- j entrants who pay the entry cost.

If there is no way to enter market i ∈ N , which occurs when ζ( j, i) = 0 for all j ∈ E, then
we allow for an exogenous mass Mi of incumbents who operate in the market without

5If the rows of ζ are not linearly independent, then some entry types are redundant (can be replicated
by playing a mixed entry strategy).
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having to enter.
We refer to markets where entry is not possible as uncontested markets and denote their

collection by N c. We also sometimes simply call them incumbents, since each of these
markets operate like a representative incumbent. We refer to markets where entry is
possible as contested markets and denote their collection by Nu. Note that since we are
flexible in the way we define and combine markets, we can capture a situation where
incumbents and entrants coexist by having them operate in different markets with highly-
substitutable market goods.

Sunk vs. Overhead Costs. The entry matrix ζ can capture sunk and overhead costs
simultaneously. To capture sunk costs, suppose that ζ( j, i) has positive support for a range
of different i’s. In this case, once the entry cost j has been paid, the entrant will always
choose to operate all of its technologies i since the entry cost is sunk. At the other extreme,
suppose that ζ( j, i) = 1 for one specific i and zero otherwise. In this case, entrant j will
only choose to pay the cost if operating technology i is worth paying the fixed cost. In
other words, the fixed cost is not sunk.

We can also consider intermediate situations in which entrant j pays a sunk cost and
draws a mixture of zero-returns technologies j′. Other entrants j′′ can purchase the output
of j′ and combine it with another fixed cost to enter with certainty into producing i. This
structure mimics the entry decision in standard models such as Hopenhayn (1992) and
Melitz (2003) where potential entrants first pay a sunk cost and then decide whether or
not to pay an additional overhead cost before operating.6

Zero-Profit Conditions. The zero-profit condition for type- j entrants is

∑
i

ζ( j, i)ME, j

Mi
λπ,i = ME, j

∑
k∈N

PY
k xE, jk,

where
λπ,i = Mip

y
i yi −Mi

∑
j∈N

PY
j xi j

is the total rent or variable profit (we use the two terms interchangeably) earned by all
the producers of market i. The left-hand side of the zero-profit condition is the expected

6The difference between our treatment of overhead costs and that in Hopenhayn (1992) and Melitz (2003)
is that we assume divisibility and that they assume non-divisibility. We could capture non-divisibility by
letting g j(

{
xE, ji

}
i∈N

) have variable (possibly increasing) returns to scale (for example, by making it a step
function). This would not affect Theorems 1 or 2. See Appendix A for more details and for an alternative
set-theoretic formalization which sidesteps these issues.
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total rent earned by type- j entrants and the right-hand side is the total cost of entry. This
condition ensures that the rents earned by type- j entrants are quasi-rents rather than pure
rents.

2.3 Households

There is a representative household whose preferences are given by a homothetic utility
function over market goods

Y = D ({Ci}i∈N ) .

To avoid corners, we require that Y ≤ 0 whenever Ci = 0 for any i ∈ N .
The budget constraint of this representative household requires total final expenditure

to equal total income defined as revenues net of expenditures∑
i∈N

PY
i Ci =

∑
i∈N

PY
i Yi −

∑
j∈N

PY
j xi j −

∑
j∈E

ME, j

∑
k∈N

PY
k xE, jk.

Note that payments to primary factors are included as the revenues of zero-returns-to-
scale incumbents in markets F ⊂ N .

2.4 Resource Constraints

The resource constraint for market good i ∈ N is

Yi = Ci +
∑
j∈N

M jx ji +
∑

j

ME, jxE, ji,

where the mass of entrants for contested markets i ∈ N c is given by

Mi =
∑
j∈E

ζ( j, i)ME, j.

This reflects the fact that market good i is used by households, producers (as intermediate
inputs), and entrants (as fixed costs), and that non-incumbent producers in market i are
entrants of different types.

2.5 Equilibrium

The decentralized equilibrium is an allocation of resources and collection of prices which
clears markets and solves each agents’ decision problem.
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Definition 1. A decentralized equilibrium is a collection of prices
{
PY

i py
i

}
and quantities{

Ci,Yi, yi, xi j, xE,i j,ME, j,Mi

}
, such that given productivities {Ai}and markups/wedges

{
µi, µY

i

}
:

(i) the representative household maximizes utility; (ii) each price is equal to marginal cost
times the markup; (iii) entrants earn zero profits; (iv) prices clear all markets.

We treat markups/wedges as exogenous and provide comparative statics with respect
to changes in technology and in markups/wedges. Endogenizing markups/wedges re-
quires additional assumptions and results in additional equations for changes in markups.
Those equations can then be combined with our comparative statics, using the chain rule,
to generate comparative statics.

Since we allow for reduced-form wedges, this means that many types of distortions
like taxes, financial frictions, or nominal rigidities, are nested as special cases. For instance,
to capture a financial friction on i’s ability to purchase inputs, add a fictitious incumbent
producer to the model who buys inputs on behalf of i. An output wedge on this fictitious
producer can then implement the same allocation as a financial friction on i.

Similarly, since we allow for productivity shocks to producers, we can capture produc-
tivity shocks to the entry or overhead costs of operation by adding fictitious incumbents
who buy inputs to be used for entry or overhead.

Finally, using the Arrow-Debreu trick of indexing commodities by dates and states of
the world, we can capture dynamic stochastic models.

Going forward, the primary object of interest is the response of aggregate output d log Y
to shocks. Since the supply of primary factors is fixed, changes in aggregate output also
coincides with changes aggregate productivity d log TFP as well as with changes consumer
welfare.7 In Appendix F.2 we generalize our results to the case where factor supply is not
perfectly inelastic .

2.6 Noteworthy Special Cases

At this level of abstraction, with appropriately defined markups, the model nests most
general equilibrium models with entry, including models where goods are perfectly substi-
tutable and firms have diminishing returns, as well as models where goods are imperfectly
substitutable and firms have constant marginal cost. For example, it nests models of in-
dustry dynamics like (a finite-horizon version of) Hopenhayn (1992), the closed-economy

7We abstract away from the well-understood issues related the treatment of new goods in the measure-
ment of aggregate output. However, we note that they depend on the extent to which new goods appear
directly in final demand or as intermediates. To the extent that new goods appear as intermediates, they
are adequately captured in real GDP as it is constructed in the data.
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version of Melitz (2003), models with product variety like Dixit and Stiglitz (1977), Krug-
man (1979), and Dhingra and Morrow (2019), (finite-horizon versions of) growth models
with lab-equipment, like Romer (1987) and Grossman and Helpman (1991), and models
of production networks without entry like Baqaee and Farhi (2019a) or with entry like
Baqaee (2018).

3 Marginal-Cost-Pricing Benchmark

In this section, we consider the marginal-cost pricing benchmark defined as follows.

Definition 2. A marginal-cost pricing equilibrium is a decentralized equilibrium where
µi = µY

i = 1 for all i ∈ N .

We prove two theorems. Theorem 1 shows that the marginal cost-pricing benchmark
is efficient. This normative theorem is also important from a positive perspective since it
ensures that the response of aggregate output to shocks can easily be obtained by applying
the envelope theorem. Theorem 2 uses this insight to derive comparative statics.

Theorem 1 (First Welfare Theorem). The marginal-cost pricing equilibrium is Pareto-efficient.

Theorem 1, which generalizes the first welfare theorem to an environment with fixed
and sunk costs of operation is interesting for both normative and positive reasons. From
a normative perspective, it immediately clarifies how the optimal allocation can be im-
plemented using linear taxes, and we use this implementation in Section 8 when we ap-
proximate the decentralized economy’s distance from the Pareto-efficient frontier. From
a positive perspective, Theorem 1 implies the following result.

Theorem 2 (Comparative Statics under Efficiency). In the marginal-cost pricing equilibrium,
the response of aggregate output to a Hicks-neutral productivity shock d log Ai is given by

d log Y
d log Ai

=
Mip

y
i yi

GDP
,

which is the total sales of market i as a share of GDP. Similarly, the response of aggregate output
to an entry productivity shock d log ζ( j, i) is given by

d log Y
d log ζ( j, i)

=
λπ,iζ(i, j)ME, j

GDP
,

which is the rents earned by type- j entrants from producing in market i as a share of GDP.

12



Theorem 2 is an envelope theorem which extends Hulten (1978) to economies with
selection, fixed costs, increasing returns, and an extensive margin of product creation
and destruction. In particular, it shows that, for marginal-cost-pricing equilibria, simple
and readily observable sufficient statistics like the sales or profit shares summarize the
macroeconomic impact of microeconomic disturbances in general equilibrium.8

Extending Theorem 2 to cover biased technical change, for example factor-augmenting
shocks, or shocks to the entry or overhead costs of operation is trivial. To model these
shocks, say a shock to i’s ability to use input k, simply introduce a new producer who buys
from k and sells to i. A Hicks-neutral shock to this new producer is the same as a biased
shock in the original model. This trick allows us to restrict attention to Hicks-neutral
shocks without loss of generality. In the next section, we derive comparative statics for
Hicks-neutral shocks when the economy is inefficient.

4 Inefficient Framework

Comparative statics in efficient models are easy to derive because, following the logic
of the envelope theorem, reallocation effects can be ignored. Comparative statics in
inefficient models are harder to obtain because, since the envelope theorem no longer
applies, reallocation effects can no longer be ignored. To emphasize our mechanisms of
interest, we specialize our general framework by making some simplifying assumptions.

4.1 Capturing IRS and DRS

We split the production Yi of market good i into three steps.

Assumption 1. For each i ∈ N , there is γi and εi in [0, 1] such that9

Yi =
(
Miyi

) 1
γi , yi = q1−εi

i , and qi = A
γi

1−εi
i fi

({
xi j

}
j∈N

)
,

where fi has constant returns to scale.

In effect, this assumption splits the production of every market good i into three distinct
steps each with a homothetic production function.10 Inputs are first combined together to

8For the proof in Appendix A, we also allow for non-divisible overhead costs.
9Our choice of notation for the exponents 1− εi and γi reflects a compromise to make the specializations

of the formulas to both the DRS case and the CRS case natural.
10In Appendix F.1 we relax Assumption 1, and show that our results extend to the case where internal

economies are non-isoelastic allowing for variable returns to scale at the producer level, and where external
economies are non-isoelastic along the lines of Kimball (1995).
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form producer-level qi. These are then passed through a decreasing returns to scale (DRS)
production function to make producer-level yi. Finally, the mass Mi of yi’s are linearly
combined and passed through an aggregator function to make the aggregated good Yi.
The aggregator Fi may be subject to increasing returns to scale (IRS) γi < 1. The parameters
εi and γi control internal and external returns to scale (on the margin) respectively. The
exponent on Ai is a convenient normalization made without loss of generality to ensure
that Yi is unit-elastic in the productivity shock.11

We also allow at each step for markups/wedges over marginal costs µq
i , µ

y
i , and µY

i .
Letting pq

i and py
i be the prices of qi and yi, we can derive the following relationships

between the revenues of the different steps and the costs of the first step

PY
i Yi = γiµ

Y
i Mip

y
i yi =

γi

1 − εi
µY

i µ
y
i Mip

q
i qi =

γi

1 − εi
µY

i µ
y
i µ

q
i Mi

∑
j∈N

PY
j xi j

 . (2)

Although it complicates the notation, we introduce both qi and yi because it makes it
more straightforward to map the model to the rest of the literature. In practice, there are
two common approaches for setting up entry models. By explicitly tracking qi, yi, and Yi,
and assigning markups/wedges µq

i , µ
y
i , and µY

i , for each, we can easily switch back and
forth between these two interpretations.

The first approach exemplified by Hopenhayn (1992), imagines that the sales data
should be mapped to py

i yi, with goods that are perfect substitutes and produced with
diminishing returns. It is obtained by assuming that 1 − εi < γi = 1 and that µq

i = µY
i = 1.

We then have decreasing internal returns to scale and constant external returns to scale.
We refer to this approach as the DRS benchmark.

The second approach, exemplified by Dixit and Stiglitz (1977), imagines that the sales
data should be mapped to pq

i qi, with goods that are imperfect substitutes a la CES and
produced with constant returns. This case is obtained by assuming that 1 − εi = γi < 1
and that µy

i = 1 − εi and µY
i = 1/γi. We then have constant internal returns to scale and

increasing external returns to scale (due to love of varieties). We refer to this approach
as the IRS benchmark. Note that under the IRS benchmark, there are offsetting (implicit)
markups and markdowns µy

i = 1/µY
i separate from the usual markup µq

i .
12

Proposition 1. The DRS and IRS benchmarks can be obtained as special cases of the model. They
are attained by setting for each i ∈ N − F :

11For comparison, note that we did not impose this unit-elasticity normalization in Section 2.
12Intuitively, when solving models with product differentiation, we implicitly assume that the curvature

from the CES aggregator itself does not generate any income, or in other words that yi and Yi are sold at
average rather than marginal, cost.
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1. γi = 1, µq
i = 1, and µY

i = 1 for the DRS benchmark;

2. γi = 1 − εi, µ
y
i = 1 − εi, and µY

i = 1/γi, for the IRS benchmark.

A corollary of Proposition 1 and Theorem 1 is that the competitive equilibrium under
perfect competition (µy

i = 1) in Hopenhayn-style models are generally efficient, even if
such models are generalized to include multiple sectors and input-output linkages.

Define µi = µy
i µ

q
i . We assume that the revenues generated by µq

i and µy
i both go to

the entrant, so it is only their product that matters for the determination of equilibrium
outcomes. Therefore, we refer to µi as the markup of market i. On the other hand, we
assume that the revenues generated by µY

i go directly to the household and are not earned
by entrants, therefore, we refer to µY

i as the wedge of market i (isomorphic to an output
tax).

The next assumption rules out corners in Mi by ensuring that markups are not so low
that producer i always makes negative profits.

Assumption 2. For each i ∈ N c, µi ≥ 1 − εi.

4.2 Notation and Other Preliminaries

We normalize nominal GDP to one throughout. This means that all prices are quoted
in the nominal GDP numeraire and that all sales, revenues, expenditures, and costs are
expressed as shares of GDP.

We also represent the final demand function Y = D(C1, . . . ,CN) as the first producer
in N . In other words, we represent real GDP as the output of some incumbent producer
standing in for the household. To emphasize the unique role the household plays in the
economy, we index it by the number 0, to remind the reader that the zero-th producer is
the household.

All the objects introduced below are defined at the initial equilibrium (around which
we provide first-order and second-order approximations). We normalize the mass of
entrants ME, j to one at the initial equilibrium.

The Entry Matrix

Define the |E| × |N| normalized entry matrix ζ̃ by

ζ̃( j, i) =
ζ( j, i)ME, j∑

k∈E ζ(k, i)ME,k
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whenever market i is contested and zero otherwise. This matrix gives the fraction of
producers in market i who are type- j entrants.

Let λB
i be the |N| × 1 vector of sales PY

i Yi. The superscript B anticipates that sales are
the natural measure of backward linkages in this model. Let λπ and λE be the |N| × |N| and
|E| × |E| diagonal matrices of total rents (variable profits) and total expenditures on entry.
The zero-profit condition for entry implies that for each entrant type j, entry costs exactly
offset expected rents

λE, j =
∑
i∈N

ζ̃( j, i)λπ,i,

where the total rent of market i is

λπ,i = λB
i πi, where πi =

(
1 −

1 − εi

µi

)
1

γiµY
i

. (3)

Here πi is the share of market i’s sales that are claimed as profits. The profit margin πi

consists of the rents due to market power 1−1/µi and the rents due to diminishing returns
εi/µi. Revenues generated by µY

i are not paid out to the entrants, and so the profit margin
is decreasing in µY

i .
Let d logλπ be the |N|×1 vector of changes in rents, d log M the |N|×1 vector of changes

in masses of producers, and d log PE the |E| × 1 vector of changes in entry prices.13,14 Then
we can state the following key lemma, which will prove very useful in characterizing
equilibrium outcomes.

Lemma 1. In equilibrium,

d log M = ζ̃′(ζ̃λπζ̃′)−1
(
ζ̃λπ d logλπ − λE d log PE

)
,

= d̂ logλπ − ζ̃
′(ζ̃λπζ̃′)−1λE d log PE.

Holding fixed entry costs (d log PE = 0), Lemma 1 shows how entry responds to
changes in rents across the economy: entry changes to match the changes in rents d logλπ
to the extent possible. The normalized entry matrix ζ̃ acts like the data matrix in a
regression, and the response of the entrants to a change in rents is the linear projection of
the changes in rents d logλπ onto the space spanned by ζ̃. Therefore, new entry acts to

13The entry price PE, j of the jth entrant is the marginal cost associated with the production function in
equation (1).

14We are purposefully defining λπ as an |N| × |N| diagonal matrix and d logλπ be the |N| × 1 vector in
order to streamline the matrix expressions for projections below. Throughout the draft, and in order to
lighten the notation, we often use the same symbol to denote vectors and their counterparts as diagonalized
matrices.
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minimize the rents going to existing producers.
The ith component of this projection, denoted by d̂ logλπ,i, measures the changes in

quasi-rents in market i. In other words, it is the change in the amount of resources spent
by those entrants who go on to become producers of type i. Changes in quasi-rents in
market i can depend on the changes in rents d logλπ, j in all markets j ∈ N .15

We can decompose changes in overall rents into its projection (changes in quasi-rents)
and its residual

d logλπ︸   ︷︷   ︸
∆Rents

= d̂ logλπ︸   ︷︷   ︸
Projection

+ (d logλπ − d̂ logλπ)︸                    ︷︷                    ︸
Residual

.

This projection and residual will turn out to neatly summarize reallocation effects in the
presence of inefficiencies.

Holding fixed entry prices (d log PE = 0), if there are as many entrant types as there are
markets |E| = |N −F |, then a change in profits in a given market maps, one for one, into a
change in the mass of entrants in that market. We call this situation fully directed entry,
because in this case, changes in rents are captured entirely by new entrants as quasi-rents.
When entry is fully-directed, the residual is zero and existing producers can be perfectly
replicated through entry.

Definition 3. Entry is fully-directed if there are as many entrant types as there are markets
|E| = |N − F |.

If there are fewer entrant types than markets |E| < |N − F |, entry into a particular
product type may be restricted, or even impossible. When entry into a product type i is
impossible, ζ( j, i) = 0 for every j ∈ E, product i is either not produced, or if it is produced,
then it is produced by incumbents. In this case, increases in i’s rents d logλπ,i will not
affect entry into i at all, since d̂ logλπ,i = 0.

We say entry is non-overlapping when multiple entrant types cannot enter into the
same market i. We impose non-overlapping entry without loss of generality.16

Assumption 3. Entry is non-overlapping. That is, for each i ∈ N , there is at most one
entrant type j ∈ E that can produce product i: ζ( j, i) , 0.

15More generally, for any |N| × 1 vector X we will write X̂i to denote its ith projection.
16To see why we can impose this without loss of generality, consider a situation where entrants 1 and 2

enter into the same market, so that M = ME,1 + ME,2 with Y = (Mq1−ε)1/γ. To turn this into a model with
non-overlapping entry, create two fictitious markets Yi = (Miq1−ε

i )1/γ with Mi = ME,i for i ∈ {1, 2}. Now
create a third fictitious market, with no entry, where Y3 = (Yγ

1 + Yγ
2 )1/γ. Note that Y3 = Y, which means that

we have recast a model with overlapping entry into an equivalent model with non-overlapping entry. We
impose this assumption throughout.
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IO Matrices

We introduce the forward and backward Input-Output (IO) matrices ΩB and ΩF and their
accompanying Leontief inverses ΨB and ΨF. Intuitively, the backward matrix encodes
the endogenous transmission of sales backward from downstream customers to their up-
stream suppliers, whereas the forward matrix captures the transmission of prices forward
from upstream suppliers to their downstream customers.17

Shocks to productivities and markups/wedges work through a linear system of equa-
tions for changes in sales d logλB

i and prices d log PY
i with forcing terms given by the

shocks. The elementary building blocks used to derive these equations describe: how an
autonomous change in the sales of i affects the sales of the other j’s, directly and indirectly
through the network, and holding prices and shocks constant; and how an autonomous
change in the price of j affects the prices of the other i’s, directly and indirectly through
the network, and holding sales and shocks constant. The backward and forward Leontief
inverses ΨB and ΨF encode precisely this information.

Backward IO Matrix. Let ΩV be the |N| × |N| matrix whose i jth element is equal to i’s
variable expenditures on inputs from j as a share of revenues

ΩV
ij ≡

MiPY
j xi j

PY
i Yi

.

Let ΩE be the |E| × |N| matrix whose i jth element is equal to entrant i’s expenditures on
inputs from j as a share of the total entry costs

ΩE
ij ≡

PY
j xE,i j∑

k∈N PY
k xE,ik

.

Finally let π be the |N| × |N| diagonal matrix of profit shares.
The backward IO matrix combines variable and fixed expenditures

ΩB = ΩV + πζ̃′ΩE.

Its i jth element ΩB
ji is the fraction of the revenues of j directly paid out to i for variable

17In Baqaee (2018), these are referred to as the supply- and demand-side matrices. In Baqaee and Farhi
(2019a), these are referred to as the revenue- and cost-based matrices.
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production and entry. The associated backward Leontief inverse is

ΨB =
(
I −ΩB

)−1
= I + ΩB +

(
ΩB

)2
+ · · · .

Its i jth element ΨB
i j is the fraction of the revenues of i directly and indirectly (through the

network) paid out to j for variable production and entry.
The sales of j can be broken down into to its sales to the the different i’s according

to λB
j =

∑
i λ

B
i ΩB

i j. By implication, the i jth element of the backward IO matrix therefore
encodes the the elasticity of the sales of j to the sales of i, so that ΩB

i j = ∂ logλB
j /∂ logλB

i ,
where the partial derivative indicates that prices and shocks as well as other sales are
held constant. The i jth element of the backward Leontief inverse therefore encodes the
elasticity of the sales of j to the sales of i, so that ΨB

i j = ∂ logλB
j /∂ logλB

i , where the partial
derivative indicates that prices and shocks are held constant.18

Forward IO Matrix. Let µ, µY, and ε/γ be the |N| × |N| diagonal matrices of µi, µY
i , and

εi/γi. The forward IO matrix is

ΩF = µYµΩV +
ε
γ
ζ̃′ΩE.

Its i jth element ΩF
i j is the fraction of the cost of i directly attributable to the price of j

through variable production and entry. The associated forward Leontief inverse is

ΨF =
(
I −ΩF

)−1
= I + ΩF +

(
ΩF

)2
+ · · · .

Its i jth element ΩF
i j is the fraction of the cost of i directly and indirectly (through the

network) attributable to the price of j through variable production and entry.
By Shepard’s lemma, the i jthe element of the forward IO matrix encodes the elasticity

of the price of i to the price of j, so that ∂ log PY
i /∂ log PY

j = ΩF
i j,where the partial derivative

indicates that sales and shocks as well as other prices are held constant. By repeated ap-
plications of Shepard’s lemma, the i jth element of the forward Leontief therefore encodes
the elasticity of the price of j to the price of i, so that ΨF

i j = ∂ log PY
i /∂ log PY

j , where the
partial derivative now indicates that sales and shocks are held constant but that other
prices are allowed to vary.

18As we shall see, that prices and shocks are held constant implies that ΩB is also held constant.
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Domar Weights. Following Domar (1961), the Domar weight of market i is

λB
i =

PY
i Yi

GDP
= PY

i Yi,

where the last equality follows from our choice of numeraire. Theorem 1 implies that for
the efficient benchmark, Domar weights are key sufficient statistics.

As a matter of accounting the Domar weight of i coincides with its backward Domar
weight defined as the ith element of the zero-th row of the backward Leontief inverse

λB
i =

∑
j

ΩB
0 jΨ

B
ji = ΨB

0i.

It captures the household’s exposure to i via backward linkages or equivalently i’s cen-
trality in demand.

The forward Domar weight of product i is the ith element of the zero-th row of the
forward Leontief inverse

λF
i = ΨF

0i =
∑

j

ΩF
0 jΨ

F
ji.

It captures the household’s exposures to i via forward linkages or equivalently i’s centrality
in supply.19

In the efficient marginal-cost pricing benchmark, the forward and backward Domar
weights of market i coincideλB

i = λF
i , so that the supply centrality (forward Domar weight)

of the market is equal to its demand centrality (backward Domar weight), and both are
equal to its sales share. By contrast, with inefficiencies, in general, the backward and
forward Domar weights of market i differ λB

i , λ
F
i and their ratio λF

i /λ
B
i measures the

wedge between the supply and demand centralities of the market, or equivalently the
reduction in the size of the market caused by the cumulated distortions in its downstream
supply chain.

5 Aggregation

We now proceed to generalizing Theorem 2 to inefficient economies. We provide our
comparative statics in two successive steps. First, in this section , we provide an aggre-
gation equation which gives the response to shocks of aggregate output as a function of
changes in sales, rents, and quasi-rents. Second, in the next section, we provide propa-

19The backward and forward Domar weight generalize the revenue- and cost-based Domar weights in
Baqaee and Farhi (2019a).
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gation equations which give changes in sales (or rents) and quasi-rents, as a function of
microeconomic primitives. Putting the two steps together yields our result. The shocks
that we consider are shocks to all productivities, markups, and wedges which we write
in vector form as (d log A,d logµ,d logµY).

5.1 The Aggregation Equation

Theorem 3 (Comparative Statics with Inefficiencies). The response of aggregate output (wel-
fare) to shocks (d log A,d logµ,d logµY) is given by

d log Y =
∑
i∈N

λF
i d log Ai −

∑
i∈N

λF
i

1 − εi

γi
d logµY

i −

∑
i∈N

λF
i

1 − εi

γi
d logµi (4)

−

∑
i∈N

λF
i

(
1 −

1 − εi

γi

) (
d logλB

i − d̂ logλπ,i
)

+
∑
i∈N

λF
i

(
1
γi
− 1

)
d̂ logλπ,i.

Theorem 3 is the key result of the paper, and we spend the rest of this section unpacking
the intuition and working through some examples. Since aggregate nominal output is
normalized to one, changes in aggregate output are the opposite of changes in final-
demand prices d log Y = −d log PY

0 . And indeed, there is a simple dual interpretation of
the formula tracking changes in final-demand prices. The first line captures changes in
final-demand prices when sales and quasi-rents are held constant, and the second line
accounts for changes in sales and quasi-rents. Intuitively, the first term on second line
captures how for each market i, changes in the scale of operation of individual producers
affect the price of the market good because of decreasing internal returns to scale. The
second term on the second line captures how, for each market i, changes in entry affect the
price of the market good by stimulating external economies. In both cases, what matters
is then how, for each market i, the change in the price of the good affects the price of
final-demand.

We can re-express Theorem 3 in different useful ways using the relationship between
rents, sales, and profit margins d logλπ,i = d logλB

i + d logπi. For example, we can write

d log Y =
∑
i∈N

λF
i d log Ai −

∑
i∈N

λF
i d logµY

i −

∑
i∈N

λF
i d logµi −

∑
i

λF
i

(
1 −

1 − εi

γi

)
d log

 εi
µi

1 − 1−εi
µi


−

∑
i∈N

λF
i

(
1 −

1 − εi

γi

) (
d logλπ,i − d̂ logλπ,i

)
+

∑
i∈N

λF
i

(
1
γi
− 1

)
d̂ logλπ,i. (5)

Intuitively, the first line captures the effect of shocks on prices when rents and quasi-rents
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are held constant, and the second line accounts for changes in rents and quasi-rents. The
fact that we now prevent or allow rents and quasi-rents to adjust, rather than sales and
quasi-rents as in the previous expression, introduces two differences. First, the last term on
the first line is new and accounts for the fact that, holding fixed rents, changes in markups
change the ratio of Ricardian to monopoly rents. Increases in markups in market i cause
individual producers to scale down which, in the presence of decreasing internal returns
to scale, mitigates the increase in the price of the market good caused by the increase in
markups, and hence also the increase in final-demand prices. Second, the first term on the
second line now features the residuals of the projection of rents on entry. If rents outpace
quasi-rents in market i, then the price of the market good increases because of decreasing
internal returns to scale, and hence so do final-demand prices.

5.2 The Role of Reallocation

We now show that Theorem 3 also provides an interpretable decomposition of changes
in output into changes in technical and allocative efficiency along the lines of Baqaee and
Farhi (2019a) and thereby offer an alternative primal interpretation of the formula.

LetX denote the (|N|+ |E|)× |N| allocation matrix of the economy, whereXi j records the
fraction of good j used by a producer or entrant i ∈ N + E. It is defined in physical units.
Together with the vector of productivity shifters A, the allocation matrix pins down the
whole allocation, and hence aggregate outputY(A,X).

In particular, equilibrium aggregate output is obtained by using the equilibrium allo-
cation matrix X(A, µ, µY) where µ and µY are the vectors of markups/wedges. Changes
in equilibrium aggregate output in response to shocks can therefore be written, in matrix
notation, as

d log Y =
∂ logY
∂ log A

d log A︸             ︷︷             ︸
∆Technical Efficiency

+
∂ logY
∂X

dX︸        ︷︷        ︸
∆Allocative Efficiecny

,

where the first term is the direct effect of changes in technology, holding the allocation of
resources constant, and the second term is the indirect effect of equilibrium reallocations

dX =
∂X

∂ log A
d log A +

∂X
∂ logµ

d logµ +
∂X

∂ logµY d logµY.

Proposition 2 (Decomposition with Inefficiencies). In response to shocks (d log A,d logµ,d logµY),
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changes in aggregate output can be decomposed in changes in technical efficiency

∂ logY
∂ log A

d log A =
∑
i∈N

λF
i d log Ai,

and changes in allocative efficiency

∂ logY
∂X

dX = −
∑
i∈N

λF
i

1 − εi

γi
d logµY

i −

∑
i∈N

λF
i

1 − εi

γi
d logµi

−

∑
i∈N

λF
i

(
1 −

1 − εi

γi

) (
d logλB

i − d̂ logλπ,i
)

+
∑
i∈N

λF
i

(
1
γi
− 1

)
d̂ logλπ,i.

Changes in technical efficiency are a Hulten-like weighted sum of changes in produc-
tivities. The weights are forward Domar weights rather than traditional Domar weights.
This is because when the allocation of resources is kept constant, productivity shocks are
pushed forward through supply chains to the household.

Changes in allocative efficiency can be traced back to reductions in prices (shares)
of specific fixed factors associated with individual producers and with entry. Focus on
productivity shocks for simplicity, so that the first line of the expression for changes in
allocative efficiency is zero. There are two terms on the second line.

The first term depends on decreasing internal returns to scale 1 − (1 − εi)/γi. When
d logλB

i −d̂ logλπ,i > 0, this means that individual producers in market i are scaling up and
running into diminishing returns. This raises the shadow price of their producer-specific
fixed factor and contributes negatively to changes in allocative efficiency in proportion to
the forward Domar weight λF

i (1 − (1 − εi)/γi) of these specific fixed factors.20,21

The second term depends on increasing external returns to scale 1/γi − 1. When
d̂ logλπ,i > 0, this means that entry is increasing in market i and triggering external
economies from love of variety. This reduces the (negative) shadow price of the specific
fixed factor associated with entry and contributes positively to changes in allocative
efficiency in proportion to the forward Domar weight λF

i (1/γi − 1) of these specific fixed
factors.

20When we refer to the price of producer-specific fixed factors, we rely on Lionel McKenzie’s insight that
any non-CRS production function h(x) can be represented by a CRS technology h̃(x, z) = zh(x/z) where z is a
producer-specific fixed factor with supply z = 1. The marginal cost of h(x) coincides with the marginal cost
of h̃(x, z), where the effect of scale in the former is captured by the (shadow) price of the fixed factor in the
latter.

21Recall that primary factors f ∈ F ⊂ N are captured as producer-specific fixed factors in factor markets
with zero-returns-to-scale individual producers (1 − (1 − ε f )/γ f = 1) aggregated linearly (1/γ f = 1) with no

entry (d̂ logλπ, f = 0).
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Improvements in allocative efficiency can be measured by a forward-weighted sum
of reductions in the shadow prices of fixed factors. Beneficial equilibrium reallocations,
by using more resources more efficiently, reduce the shadow prices of fixed factors on
balance across markets. This can only occur when the economy is inefficient. When the
economy is efficient, reductions in the shadow prices of some specific fixed factors are
exactly compensated by increases in others.

Corollary 1 (Decomposition under Efficiency). In the marginal-cost pricing equilibrium, as
long as εi < 1 for all i ∈ N , changes in technical and allocative efficiency are given by22

∂ logY
∂ log A

d log A =
∑
i∈N

λF
i d log Ai and

∂ logY
∂X

dX = 0,

with λF
i = λB

i .

In the efficient benchmark, technology shocks only have direct effects and not indirect
reallocation effects. Of course, this does not mean that reallocations do not occur in
efficient models, but merely that their impact is irrelevant to a first order.

5.3 Useful Special Cases

We build additional intuition by considering different specializations of Theorem 3. We
consider a univariate productivity shock d log Ai (holding constant other productivities,
wedges, and markups). The intuition for a shock to markups/wedges is similar, but for
brevity, we relegate this discussion to Appendix G.

We use the reformulation in equation (5) to get

d log Y = λF
i d log Ai −

∑
j∈N

λF
j

(
1 − ε j

γ j
− 1

) (
d logλπ, j − ̂d logλπ, j

)
+

∑
j∈N

(
1
γ j
− 1

)
̂d logλπ, j.

In a Cobb-Douglas economy where all the productions functions f j and g j are Cobb-
Douglas, all sales are constant (d logλB

j = 0). All profit margins are also constant (d logπ j =

0) because there are no shocks to markups and wedges. Hence rents and quasi-rents are
constant (d logλπ, j = ̂d logλπ, j = 0). The expression then simplifies to d log Y = λF

i d log Ai.
Intuitively, the productivity shock is pushed forward through the supply chain to the
household.

22The extra assumption ensures that entry is not socially wasteful. When it is violated, equilibrium
reallocations affecting entry can reduce (but not increase) aggregate output to a first order. See Appendix E
for more details.
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When the economy is not Cobb-Douglas, productivity shocks induce changes in the
sizes d logλB

j of the different markets, and hence also changes in rents d logλπ, j and quasi-

rents ̂d logλπ, j. The response of aggregate output is then complicated by the endogenous
response of entry to changes in profits. We analyze productivity shocks in three bench-
marks, corresponding respectively to constant, decreasing, and increasing returns to scale.
That is, we consider the following cases: (CRS) 1 − ε j = γ j = 1; (DRS) 1 − ε j < γ j = 1; and
(IRS) 1 − ε j = γ j < 1 for every j ∈ N − F .

Productivity shocks with CRS. When 1 − ε j = γ j = 1 for all j ∈ N − F , Theorem 3
reduces to

d log Y = λF
i d log Ai −

∑
f∈F

λF
f d logλB

f .

There are neither decreasing internal economies nor increasing external economies. We
therefore only need to track changes in primary factors prices. Here we have used the fact
primary factor markets f ∈ F satisfy 1−(1−ε f )/γ f = 1, 1/γ f = 1, and d logλB

f −d̂ logλπ, f =

d logλB
f , because of respectively zero returns to scale, linear aggregation, and no entry.

The content of this equation is that equilibrium reallocations from the productivity
shock are beneficial if they reduce the forward-weighted average of changes in primary
factor prices.

When there is no entry (ζ̃ = 0), we recover the result of Baqaee and Farhi (2019a). If
there is entry, then it is socially wasteful. The clearest example is when entry is possible
in all non-primary-factor markets and there is a single primary factor. We then get

d log Y = λF
i d log Ai,

so that socially wasteful entry absorbs or exudes resources so that there are no changes in
allocative efficiency, even though there are reallocations and the economy is inefficient.

Productivity shocks with DRS. When 1 − ε j < γ j = 1 for all j ∈ N − F , Theorem 3
becomes

d log Y = λF
i d log Ai −

∑
f∈F

λF
f d logλB

f −

∑
j∈N−F

λF
j ε j

(
d logλπ, j − d̂ logλπ, j

)
.

There are decreasing internal economies but no increasing external economies. This means
that we no longer only need to track changes in the prices of primary factors as in the
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CRS case, but also of changes in the specific fixed factor prices associated with individual
producers. The key sufficient statistic for these two sorts of specific fixed factors is the
residual from the projection of rents on entry.

If for some market j ∈ N , entry cannot keep up with rents so that d logλπ, j−d̂ logλπ, j >
0, then individual producers in this market scale up and run into diminishing returns. As
a result, the prices of their producer-specific factors increase. This reallocation contributes
to reducing aggregate output in proportion to the forward Domar weight λF

i εi of these
specific fixed factors.

The total effect of reallocations is obtained by summing over all markets (non-primary
factor markets and primary factor markets). Reallocations lead to a more efficient use of
resources when they reduce the scarcity of fixed factors by making them cheaper.

Such improvements in allocative efficiency cannot occur when the economy is efficient.
In this case factor prices cannot go down on balance across markets. To see this, note that,
in the efficient case, λπ, j = λ jε j and so

∑
j∈N λ

F
j ε j(d logλπ, j − d̂ logλπ, j) = 0 by definition of

the residual.
Changes in allocative efficiency can also be zero even the economy is inefficient and

when there are equilibrium reallocations. The clearest example is when entry not only
possible in all non-primary-factor markets but is also fully directed, and when in addition
there is a single primary factor. We then get

d log Y =λF
i d log Ai.

There are only changes in technical efficiency, and no changes in allocative efficiency. In-
tuitively, in this case, changes in the prices of market goods are determined independently
from changes in their sales because changes in sales are accommodated entirely through
changes in entry. In other words, reallocations happen entirely on the extensive margin
of entry and exit and offset one another.

Productivity shocks with IRS. When γ j = 1 − ε j < 1 for all j ∈ N − F so that all
non-primary factor markets are of the CES kind, Theorem 3 becomes

d log Y = λF
i d log Ai −

∑
f∈F

λF
f d logλB

f +
∑

j∈N−F

λF
j

(
1
γ j
− 1

)
d̂ logλπ, j.

There are constant internal returns to scale and increasing external returns to scale. Hence
we still need to keep track of the changes int he prices of primary factors, but we no longer
need to track of changes in the prices of specific fixed factors associated with individual
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producers as in the DRS case. Instead, we now need to keep track of changes in the entry
margin itself — that is, the projection of changes in rents on entry.

If in some market j, quasi-rents increase so that d̂ logλπ, j > 0, then entry in the market
increases and triggers external economies from love of variety. This reduces the negative
price of the associated specific fixed factor. This reallocation contributes to increasing
aggregate output in proportion to the forward Domar weight λF

i (1/γi − 1) of these specific
fixed factors.

The total effect of reallocations is obtained by summing over all markets (non-primary
factor markets and primary factor markets). Reallocations lead to a more efficient use of
resources when they reduce the scarcity of specific fixed factors by making them cheaper.

The clearest example is once again when entry is possible in all non-primary-factor
markets and there is a single primary factor. We then get

d log Y = λF
i d log Ai +

∑
j∈N−F

λF
j

(
1
γ j
− 1

)
d̂ logλπ, j.

6 Propagation

The aggregation equation in the previous section gives changes in aggregate output as
a function of changes in sales (or rents) and quasi-rents. In this section, we complete
the theory by deriving propagation equations for the changes in sales (or rents) and
quasi-rents. We do this in two steps: forward and backward propagation.23 Forward
propagation establishes how changes in prices feed forward from suppliers to consumers,
and backward propagation describes how changes in sales feed backward from consumers
to their suppliers. Together, they pin down changes in sales, rents, and quasi-rents, as
well as all other disaggregated variables such as prices, quantities, etc.

6.1 Forward Propagation

We start by describing the response of prices to shocks.

Proposition 3 (Forward Propagation). In response to shocks (d log A,d logµ,d logµY), changes
in prices are given by

d log PY
i = −

∑
j∈N

ΨF
ijd log A j +

∑
j∈N

ΨF
ij

1 − ε j

γ j
d logµY

j +
∑
j∈N

ΨF
ij

1 − ε j

γ j
d logµ j

23This generalizes the changes in consumer and producer centrality introduced in Baqaee (2018).
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+
∑
j∈N

ΨF
ij

(
1 −

1 − ε j

γ j

) (
d logλB

j − d̂ logλπ, j
)
−

∑
j∈N

ΨF
ij

(
1
γ j
− 1

)
d̂ logλπ, j

Proposition 3 is similar to Theorem 3. In fact, since aggregate nominal output is
normalized to one, changes in aggregate output are just the opposite of the changes in
final-demand prices d log Y = −d log P0. Therefore, Proposition 3 can be specialized to
yield Theorem 3.24 The general intuition is similar.

6.2 Backward Propagation

We continue by describing the responses of sales, rents, and quasi-rents to shocks.

Lemma 2 (Profit Shares). In response to shocks (d log A,d logµ,d logµY), changes in sales,
rents, and profit margins are related through

d logλπ,i = d logλB
i + d logπi, where d logπi = −d logµY

i +

1−εi
µi

1 − 1−εi
µi

d logµi.

This lemma implies that it is enough to characterize changes in sales d logλB
i since we

can then immediately obtain changes in rents d logλπ,i and quasi-rents d̂ logλπ,i.
For simplicity, we assume that all production and entry functions in the economy

fi and gi are of a nested-CES form. By relabelling each CES aggregator to be a new
incumbent (by which we mean a representative producer in an uncontested market with
an exogenous unit mass of producers) and linking them together via the input-output
network, we can, without loss of generality, assume that each production function in
variable production fi corresponds to one nest with a single elasticity of substitution θi.25

Furthermore, by introducing a new incumbent transforming the different inputs of gi into
a single customized input, we can, without loss of generality, assume that each production
function in entry gi uses a single input.

In order to state our results, we use the input-output covariance operator:

Covm(X,ΨB
(i)) =

∑
k∈N

µY
mµmΩV

mkxkΨ
B
ki −

∑
k∈N

µY
mµmΩV

mkΨ
B

ki


∑

k∈N

µY
mµmΩV

mkxk

 ,
where ΨB

(i) is the ith column of the backward Leontief inverse ΨB. It is the covariance

24We call Theorem 3 a theorem and Proposition 3 a proposition because of their economic, rather than
mathematical, significance.

25See the discussion of standard-form economies in Baqaee and Farhi (2019b) for more information.

28



between the vector X and the ith column of ΨB, using the mth row of µYµΩV as the
probability distribution, where we rely on the fact that

∑
k∈N µ

Y
mµmΩV

mk = 1.

Proposition 4 (Backward Propagation). In response to shocks (d log A,d logµ,d logµY), ab-
solute changes in sales are given by

dλB
i = −

∑
m∈N

λB
m

1 − εm

γmµmµY
m

∑
k∈N

ΩV
mkΨ

B
ki d log(µmµ

Y
m)+

∑
m∈N

λB
m

1 − εm

γmµmµY
m

∑
j∈E

ζ̃ jm

∑
k∈N

ΩE
jkΨ

B
kid logµm

−

∑
m∈N

λB
m

(
1 −

1 − εm

µm

)
1

γmµY
m

∑
j∈E

ζ̃ jm

∑
k∈N

ΩE
jkΨ

B
kid logµY

m−

∑
m∈N

λB
m

1 − εm

γmµmµY
m

(θm−1)Covm

(
−d log PY,ΨB

(i)

)
.

Proportional changes in sales can be deduced using d logλB
i = dλB

i /λ
B
i .

The intuition is familiar from the structure of neoclassical input-output models (see
Baqaee and Farhi, 2019b). The first term is the mechanical effect of changes in markups/wedges
on the demand for i via the intensive margin: and increase in m’s markup/wedge
d log(µmµY

m) > 0 reduces m’s demand for each of its input k in proportion to λB
m(1 −

εm)/(γmµmµY
m)ΩV

mk, and this in turn reduces the demand for i in proportion to the exposure
ΨB

ki of k to i.
The second term is the effect of changes in markups on the demand for i via the exten-

sive margin: an increase in m’s markup d logµm stimulate entrant type j’s expenditures
on k in proportion to λB

m(1 − εm)/(γmµmµY
m)ζ̃ jmΩE

jk, and this in turn increases the demand
for i in proportion to the exposure ΨB

ki of k to i.
The third term is the mechanical effect changes in wedges on the demand for i via the

extensive margin: an increase in m’s output tax on d d logµY
m discourages entrant type

j’s expenditure on k in proportion to λB
m(1 − (1 − εm)/µm)/(γmµY

m)ζ̃ jmΩE
jk, and this in turn

reduces the demand for i in proportion to the exposure ΨB
ki of k to i.

The fourth and final term captures the effect of substitutions on the intensive margin.
Changes in relative prices d log P caused by the shocks lead individual producer in every
market m ∈ N to shift their expenditures on their inputs. This in turn changes expenditures
on i in proportion to λB

m(1 − εm)/(γmµmµY
m)(θm − 1)Covm(d log P,ΨB

(i)).

7 Illustrative Examples

In this section, we provide three fully worked-out illustrative examples: the one-sector
heterogenous-firm economy, the multi-sector economy, and the roundabout-entry econ-
omy. All three examples have a unique primary factor in exogenous supply which we
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refer to as labor (indexed by L). We explain how different assumptions about returns
to scale and entry shape the comparative statics for aggregate output or equivalently
for aggregate TFP since labor supply is exogenous. For brevity, we only discuss shocks
to productivities. We provide illustrative examples with shocks to markups/wedges in
Section 8 in the context of a broader analysis of optimal policy.

We use the following notation throughout. Given three vectors U, V, and W with∑
k Uk = 1, we writeEU(V) =

∑
k UkVk and CovU(V,W) =

∑
k Uk(VkWk)−(

∑
k UkVk)(

∑
k UkWk).

We also sometimes use overlines to signal initial values when there is an ambiguity , but
we drop them when there is none: for example, we alternatively write λ

B
i or λB

i depending
on the context.

7.1 One-Sector Heterogenous-Firm Economy

In this example, we consider a one-sector heterogenous-firm economy. We focus on a
“superstar” shock: a shock to productivities that disproportionately increases the pro-
ductivity of high-markup firms. Here we are motivated by recent evidence from the
U.S. showing that the rise in average markups is largely a within-sector and across-firms
phenomenon driven by the rise of superstar firms with high markups (Autor et al., 2017;
Vincent and Kehrig, 2017; Baqaee and Farhi, 2019a; De Loecker et al., 2019).

In Baqaee and Farhi (2019a), we argued that the reallocations of resources towards high-
markup firms associated with this shock explain almost 50% of aggregate TFP growth over
the past 20 years. Here we explain how different views on returns to scale (IRS vs. DRS)
and entry (no entry vs. free entry) shape the response of aggregate output.

7.1.1 IRS à la Melitz (2003)

Consider a single-sector economy where aggregate output

Y =

∑
k

q
θ−1
θ

k


θ−1
θ

is a CES aggregate of differentiated varieties indexed by k with an elasticity of substitution
θ > 1 and associated gross external returns to scale 1/γ = θ/(θ − 1). Each variety k is
produced from labor with constant returns and a productivity Ak by a single firm and sold
at a constant exogenous markup µq

k > 1 over marginal cost

qk = Aklk, pq
k = µq

kmck.
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To mimic the trends in the data, we submit this economy to a vector of firm-level produc-
tivity shocks d log A which disproportionately increase the productivity of high-markup
firms so that CovλB(d log A, 1 − 1/µq) > 0.

To apply our formulas, we will use the backward Domar weight (sales share) and
the forward Domar weight of each firm, which are equal to each other λB

k = λF
k . When

there is no entry, we will also use the backward Domar weight (income share) and the
forward Domar weight of labor which are then given by λB

L = 1/µ̄q < 1 and λF
L = 1, where

µ̄q = 1/EλB(1/µq) is the (harmonic) average markup. Finally, when there is free entry, we
will use the fact that the backward Domar weight (income share) of labor is one λB

L = 1.
These identities will continue to hold in the DRS case.

No Entry. We first consider the case where there is no entry. We take the set of firms as
exogenously given. Changes in aggregate output are given by

d log Y = EλB
(
d log A

)
− d logλB

L ,

where

d logλB
L = −(θ − 1)

(
µ̄q
− 1

)
CovλB

1 − 1
µq

1 − 1
µ̄q

,d log A

 .
The term EλB(d log A) is Hulten-like and captures the effect of the shock on technical

efficiency. The term −d logλB
L is the reduction in the labor share and captures the effect

of the shock on allocative efficiency. Since the shock disproportionately increase the
productivity of high-markup firms (CovλB(d log A, 1 − 1/µq) > 0), and since firms are
substitutes (θ > 1), it reallocates labor towards high-markup firms and reduces the labor
share (rents earned by labor). This reallocation improves allocative efficiency, because
high-markup firms were too small to begin with from a social perspective, and boosts
aggregate output.

Free Entry. Now consider a long-run steady-state version of the same model with free
entry instead of no entry. The set of firms is endogenous. Potential entrants pay a fixed
entry cost in units of labor and draw a k at random from a fixed distribution, which
determines their productivity Ak and markup µq

k. Now Theorem 3 implies that

d log Y = EλB
(
d log A

)
+

1
θ − 1

d log
(
EλB

(
1 −

1
µq

))
,
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where, from Proposition 4,

d log
(
EλB

(
1 −

1
µq

))
= (θ − 1)CovλB

1 − 1
µq

1 − 1
µ̄q

,d log A

 .
Unlike in the no-entry case, the labor share is one λB

L = 1 even though the variable profit
share is positive EλB(1 − 1/µq) > 0. Changes in the labor share (rents earned by labor)
d logλB

L = 0 no longer play any role in the determination of changes in allocative efficiency.
Instead, we must now track changes in the variable profit share d log(EλB(1−1/µq)) (quasi-
rents). Similarly, the elasticity of substitution θ no longer plays any role because its roles
in substitution and love for variety cancel out.

There are changes in technical efficiency captured by the Hulten-like term EλB(d log A)

and changes in allocative efficiency are CovλB

(
1− 1

µq

1− 1
µ̄q
,d log A

)
. Average profits increase

because the shock triggers reallocations towards high-markup firms. This in turn increases
entry and generates improvements in allocative efficiency by enabling external economies
arising from love for variety.

The improvements in technical efficiency are given by the same Hulten-like term as in
the no entry-case. By contrast, the changes in allocative efficiency, which are still positive,
are different. As before, improvements in efficiency brought about by reallocation of labor
to high-markup firms economizes on labor. However, unlike the no-entry case, the labor
saved is no longer used towards the variable production of incumbents, but instead is
used for the entry and variable production of new firms.26

7.1.2 DRS à la Hopenhayn (1992)

We slightly modify the model and instead assume that aggregate output

Y =
∑

k

yk,

is a linear aggregate of undifferentiated varieties. The varieties are perfectly-substitutable
and can be thought of as being the same good. Each variety k is produced from labor with
decreasing returns 1 − ε < 1 and productivity Ak by a single firm and sold at a constant

26Comparing the free-entry and no-entry model shows that increases in aggregate output are larger when
there is no entry if, and only if, there is too much entry to begin with. That is, if (θ − 1)(µ̄q

− 1) > 1. In this
case, releasing labor towards variable production by incumbents dominates releasing labor towards entry
and variable production of new firms. Somewhat surprisingly, this means that the rise of markups may be
less bad if incumbents are able to restrict (excessive) entry through lobbying or deterrence.
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exogenous markup µy
k over marginal cost

yk = Akl1−ε
k , py

k = µy
k mck.

It turns out that the response d log Y of aggregate output to the shock d log A is exactly
the same as in the IRS case if we set ε = 1/θ < 1 andµy

k = µq
k(θ−1)/θ. This is true regardless

of whether there is no entry or free entry. The easiest way to see this is that the DRS model
is equivalent to a power transformation to the utility function of the household with an
offsetting inverse power transformation of the productivity shocks.

It is tempting to draw from this example the comforting lesson that the differences
between IRS models à la Melitz (2003) and DRS models à la Hopenhayn (1992) are cosmetic,
and that fundamentally the two approaches can be used interchangeably in applications
based on convenience. In fact, as we shall see with the next example, this lesson is highly
specific to the one-sector heterogenous-firm setting and does not generalize.

7.2 Multi-Sector Economy

In this section, we consider a multi-sector economy with homogenous firms within sectors,
targeted free entry in all sectors with entry costs paid in units of labor. We focus on a
shock to sector-level productivities. We explain how different views on returns to scale
(IRS vs. DRS) now lead to very different responses of aggregate output.

7.2.1 IRS with Free Entry à la Dixit and Stiglitz (1977)

Consider a multi-sector economy where aggregate output

Y =

∑
k

Y
θ0−1
θ0

k


θ0−1
θ0

is a CES aggregate of differentiated sectors indexed by k with an elasticity of substitution
θ0. Each sector k’s output

Yk =

(
Mkq

θk−1
θk

k

) θk
θk−1

is itself a CES aggregate of an endogenous mass Mk of differentiated varieties with an
elasticity of substitution θk > min{θ0, 1} and associated gross external returns to scale
1/γk = θk/(θk − 1). Each variety in sector k is produced from labor with constant returns
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and productivity Ak by a single firm and sold at a markup µq
k > 1 over marginal cost

qk = Aklk, pq
k = µq

kmck.

We are interested in a long-run steady-state with targeted free entry in all sectors where
potential entrants choose which sector to enter into and pay a sector-specific fixed entry
cost in units of labor. We submit this economy to a vector of sector-level productivity
shocks d log A and denote by θ the vector of within-sector elasticities of substitution.

To apply our formulas, we will use the backward Domar weight (sales share) and the
forward Domar weight of each sector, which are equal to each other λB

k = λF
k . We will also

use the fact that the backward Domar weight (income share) of labor is one λB
L = 1. These

identities continue to hold in the DRS case.
From Theorem 3, changes in aggregate output are given by

d log Y = EλB(d log A) +
∑

k

1
θk − 1

λB
k d log

λB
k

1 −
1
µq

k

 ,
and from Proposition 4,

∑
k

1
θk − 1

λB
k d log

λB
k

1 −
1
µq

k

 =
CovλB

(
θ−1
θ−θ0

, d log A
)

EλB

(
θ−1
θ−θ0

) .

The Hulten-like term EλB(d log A) is the change in technical efficiency. The term∑
k 1/(θk−1)λB

k d log(λB
k (1−1/µq

k)), reflecting changes in allocative efficiency, is the weighted
sum of changes in variable profits with weights reflecting the size and external economies
in each sector.

Assume that sectors are substitutes with θ0 > 1 and that the shock disproportionately
increases the productivity of sectors with high external economies (low elasticities of sub-
stitution). Then CovλB((θ−1)/(θ−θ0), d log A) > 0 and so the shock leads to improvements
in allocative efficiency. Basically, the shock triggers beneficial reallocations of labor to-
wards sectors with high external economies which were too small to begin with from a
social perspective. These forces operate in reverse when sectors are complements with
θ0 < 1.

The correlation of productivity shocks and markups, which was key in the single-
sector heterogenous-firm economy, is now completely irrelevant. This is because now
labor reallocations happen purely on the extensive margin via changes in entry in the
different sectors, while the intensive margin remains unchanged as individual producers
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in the different sectors keep operating at the same scale. Instead, the key is now the
correlation of productivity shocks and returns to scale.

7.2.2 DRS with Free Entry

We now show that changes in aggregate output are very different under DRS. Consider
the same multi-sector model but now assume that each sector k’s output

Yk = Mkyk

is a linear aggregate of an endogenous mass Mk of undifferentiated varieties. Each variety
in sector k is produced from labor with decreasing returns 1− εk and productivity Ak by a
single firm and sold at a markup µy

k over marginal cost

yk = Akl
1−εk
k , py

k = µy
k mck.

Like in the IRS case, we are again interested in how a long-run steady-state with targeted
free entry in all sectors responds to a vector of sector-level productivity shocks d log A.

Changes in aggregate output are given by

d log Y = EλB(d log A).

Changes in technical efficiency are captured by the same Hulten-like term as in the IRS case.
By contrast, there are no longer any changes in allocative efficiency. This occurs despite
the fact that there are equilibrium reallocations and that the model is inefficient. Basically,
the adjustment in the sizes of the different sectors happen entirely on the extensive margin
via changes in entry. Individual producers in the different sectors keep operating at the
same scale so that there is no change on the intensive margin. Since in addition there are
no external economies, changes in prices only reflect exogenous changes in productivities
with no changes in the shadow prices of specific fixed factors. Reallocations therefore do
not save on specific fixed factors and are, therefore, neutral on efficiency grounds. This
example clarifies that the IRS and DRS models are, in general, very different.

7.3 Roundabout-Entry Economy

In this section, we consider a roundabout-entry economy with one product sector popu-
lated by homogenous firms and free entry with entry costs paid in units of an entry good
produced with labor and products. We focus on a shock to the productivity of the product

35



sector. We explain how different views regarding the costs of entry (labor vs. products)
and returns to scale (IRS vs. DRS) shape the response of aggregate output. 27

IRS with Free Entry. Consider a roundabout-entry economy where aggregate output

Y = Y1 − x21

is the output of the product sector which is not used for entry. The output of the product
sector

Y1 =

(
M1q

θ1−1
θ1

1

) θ1−1
θ1

is a CES aggregate of an endogenous mass M1 of differentiated varieties with an elasticity
of substitution θ1 > 1 and associated external returns to scale 1/γ1 = θ1/(θ1 − 1). Each
variety is produced from labor with constant returns and productivity A1 by a single firm
and sold at a markup µq

1 over marginal cost

q1 = A1l1, pq
1 = µq

1mc1.

We are interested in a long-run steady-state with free entry where potential entrants pay
a fixed entry cost that relies on both goods and factors. In particular, suppose the entry
good is produced from labor and products and sold at marginal cost

Y2 =

ΩV
2L

(
l2

l2

) θ2−1
θ2

+ Ω
V
21

x21

x21

θ2−1
θ2


θ2
θ2−1

, PY
2 = µY

2 mc2.

Consider a positive productivity shock d log A1 > 0.
To apply our formulas, we will use the backward Domar weight (sales share) and

Domar weight of productsλB
1 = 1/(1−1/(1−1/µq

1)ΩV
21) ≥ 1 andλF

1 = 1/(1−1/(θ1−1)ΩV
21) ≥ 1.

We will also use the fact that the backward Domar weight (income share) of labor is one
λB

L = 1.
Consider first the special case where entry uses only labor ΩV

21 = 0. Changes in
aggregate output are then given by

d log Y = d log A1.

27Note that there is a non-trivial input-output structure in entry but not in variable production. We refer
the reader to Section 8 for some illustrative examples with a non-trivial input structure in entry.
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There are only changes in technical efficiency, given by a Hulten-like term, and no changes
in allocative efficiency.

Consider next the general case where entry also uses products ΩV
21 > 0. From Theorem

3, changes in aggregate output are now given by

d log Y = λF
1 d log A1 +

θ2−1
θ1−1λ

F
1(λB

1 − 1)
(
1 −ΩV

21

)
1 − θ2−1

θ1−1λ
F
1(λB

1 − 1)
(
1 −ΩV

21

)λF
1 d log A1.

The first term on the right-hand side is Hulten-like and captures changes in technical
efficiency, and the second term captures changes in technical efficiency.

When labor and products are Cobb-Douglas in entry θ2 = 1, there are only changes
in technical efficiency and no changes in allocative efficiency. The effects of productivity
shocks on technical efficiency are amplified, the more so, the higher is λF

1 , or equivalently
the greater the roundaboutness ΩV

21 of the economy. This is because the productivity shock
hits products which are then used to make more products via entry.

When labor and products are not Cobb-Douglas in entry θ2 , 1, there are also changes
in allocative efficiency. Focus on the substitutes case θ2 > 1. Changes in allocative
efficiency are then positive and are responsible for a second source of amplification. An
increase in the productivity of products leads to a reduction in their price. This leads to
a substitution towards products and away from labor in entry, and generates more entry.
This in turn further reduces the price of products because of love for variety, etc. ad
infinitum. In fact changes in aggregate output become arbitrarily large when θ2 increases
towards a critical threshold.

This example shows that with IRS, the denomination of the entry costs influences the
comparative statics of the model in important ways. We now show that this dependence,
while still present, is lessened with DRS.

DRS with Free Entry. Consider now a version of the same model but where the product
sector, instead of being modeled as IRS sector, is modeled as a DRS sector which linearly
aggregates a mass of undifferentiated varieties each produced under decreasing returns
1 − ε1 with productivity A1 and sold at a markup µy

1 over marginal cost. Changes in
aggregate output are then given by

d log Y = λF
1d log A1,

where λF
1 = 1/(1 − ε1Ω

V
21) ≥ 1. There are only changes in technical efficiency, given by

a Hulten-like term, and no changes in allocative efficiency. Unlike in the IRS case, this
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property holds no matter whether products are used in entry or not.
Together with the multi-sector example above, this example underscores that the DRS

and IRS models are only isomorphic when the input-output structure is trivial (a single
sector and entry in labor). Away from this special case, they behave very differently.

8 Optimal Policy and Misallocation

In this section, we turn to optimal policy. We describe first-best policies when instruments
are unrestricted as well as second-best policies when only limited instruments are avail-
able. We also characterize the gains from optimal policy by computing the economy’s
distance to the efficient production possibility frontier.

8.1 First-Best Policy

Theorem 1 implies that the first best is attained when µY
i = µi = 1 for all i ∈ N . The first

best can be implemented in different ways using different instruments. Starting from a
second-best equilibrium when markups/wedges are not at their first-best values, this can
be achieved by applying, in each market i, a combination of (gross) output taxes τY

i = 1/µY
i

and τi = 1/µi, with the revenues collected paid respectively to the household and to the
producers of the good.28 This is immediate since the taxes and markups/wedges matter
only through τY

i µ
Y
i and τiµi. Alternatively, the first best can be implemented by keeping

τY
i and replacing τi by markup regulations that ensure µi = 1.

For example, in the DRS benchmark where 1 − εi < γi = 1 and µY
i = 1, optimal

policy can be obtained through perfect competition µy
i = 1. In the IRS benchmark where

1 − εi = γi < 1, µy
i = 1 − εi, and µY

i = 1/γi, optimal policy can be obtained through
monopolistic markups µq

i = 1/(1 − εi) > 1 and output subsidies τY
i = γi < 1.

An important observation is that first-best policy is independent of the input-output
network. The policy intervention in each market depends only on the markups/wedges
and the returns to scale of that market.

8.2 Second-Best Policy

Whereas the first-best policy is network-independent, second-best policies do depend on
the details of the network. In this section, we deliver simple bang-for-buck formulas to
assess and compare the merits of different marginal interventions. These formulas revive

28The revenues collected by a tax are negative if the gross tax is below one and acts like a gross subsidy.
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and revise the informal policy recommendations of Hirschman (1958), who argued in
favor of encouraging sectors with increasing returns that had the most backward and
forward linkages. The analysis reveals the extent to which details matter: effective policy
depends crucially on the nature of the intervention and on subtle features of the economy.

We focus on the IRS benchmark. We assume that there is only one primary factor which
we call labor. We also assume that entry is possible in all markets, or, in other words,
that all markets are contested. We consider marginal interventions at the no-intervention
equilibrium. We investigate markup regulation and entry subsidization, which can loosely
be thought of as capturing respectively competition and industrial policy. These two types
of interventions neatly illustrate two very different ways in which forward and backward
linkages can matter.

Markup Regulation. To start with, consider a budget-neutral intervention reducing the
markups d logµq

i < 0 of the producers of market i. The response of aggregate output,
normalized by the revenues −λB

i d logµq
i > 0 transfered away from the producers by the

associated implicit subsidy, is

−
1
λB

i

d log Y
d logµq

i

=
λF

i

λB
i

1
γi

µq
i − 1/γi

µq
i − 1

 +
∑

j∈N−F

λF
j

(
1
γ j
− 1

) − 1
λB

i

̂d logλB
j

d logµq
i

 .
The first term is the direct effect of the markup reduction, holding sales constant. It
captures two opposing effects on the price of market good i and in turn on final-demand
prices. On the one hand, the policy reduces the price of each individual producer in
market i, making the good cheaper for the household. On the other hand, the policy also
dis-incentivizes entry into market i, which increases the effective price of i due to reduced
variety. Overall, whether the sign of the direct effect is positive or negative depends on
whether there is too little or too much entry in market i to begin with, which in turn
depends on whether the initial markup µq

i is lower or higher than the infra-marginal
surplus created by new varieties 1/γi.

Under monopolistic competition, the direct effects exactly cancel µq
i = 1/γi, leaving us

the second term

−
1
λB

i

d log Y
d logµq

i

=
∑

j∈N−F

λF
j

(
1
γ j
− 1

) − 1
λB

i

̂d logλB
j

d logµq
i

 . (6)

The bang-for-buck impact of the intervention is measured by a simple sufficient statistic: a
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forward-weighted sum across markets j of the changes in backward-linkages (i.e. market
size and hence entry) resulting from the intervention −(1/λB

i ) ̂d logλB
j /d logµq

i interacted
with increasing returns to scale 1/γ j − 1.29

Entry Subsidies. Now consider marginal entry subsidies to type-i entrants at the no-
intervention equilibrium. Without loss of generality, we treat the entry production func-
tion gi(xE,i j) of i as though it were operated by an incumbent producer assembling the
resources needed to enter and selling them at marginal cost µY

E,i = 1. These entry-good
producers play a special role and we will to denote their backward and forward Domar
weights as λB

E,i and λF
E,i. The backward Domar weight is equal to the profits earned by

type-i entrants λB
E,i =

∑
j∈N−F ζ̃i jλπ, j. The forward Domar weight is captures the impact of

type-i entry on final-demand prices λF
E,i =

∑
j∈N−F ζ̃ jiλF

j (1/γ j − 1).
Introducing an entry subsidy on type-i entrants is equivalent to reducing the markup

d logµE,i < 0 of the producer of entry good i. At the no-intervention equilibrium the
budgetary impact is just−λB

E,i d logµY
E,i > 0. The response of aggregate output, normalized

by its budgetary impact to allow bang-for-buck comparisons, is

−
1
λB

E,i

d log Y
d logµY

E,i

=

λF
E,i

λB
E,i

−
λF

L

λB
L

 +
∑

j∈N−F

λF
j

(
1
γ j
− 1

) − 1
λB

E,i

̂d logλB
j

d logµY
E,i

 , (7)

where, at the no-intervention equilibrium, λB
L = 1 since all markets are contested, but

λF
L , 1 in general since there are inefficiencies.

The bang-for-buck impact of the intervention depends on two simple sufficient statis-
tics corresponding to the two terms in this expression. The second term is exactly the
same as that for measuring the bang-for-buck impact of markup regulations in equation
6 and it has the same intuition.

By contrast, the first term is specific to entry subsidies. It depends on the difference
between two ratios of forward to the backward Domar weights: that of the entry condition
λF

E,i/λ
F
E,i where the intervention takes place, and that of labor λF

L/λ
B
L .30 The ratio of forward

to backward Domar weights i measures the reduction in the size i caused by cumulated
markups downstream. Hence, the first term boils down to a comparison of the cumulated
distortions downstream from entry good i compared to labor. Holding sales constant, the

29When there are intermediate goods, it is actually possible for a markup reduction to increase the

sales of all contested markets − ̂d logλB
j /d logµq

i simultaneously, further increasing the room for policy
improvements by encouraging intermediate-input use.

30This first term is reminiscent of Liu (2017), who studied marginal interventions around the decentralized
equilibrium of a production network economy without variable returns to scale or entry.
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entry subsidy stimulates entry by type-i entrants, which reduces final demand prices; but
also absorbs more resources into entry, which increases the real price of labor (the labor
share) and in turn final-demand prices.

Illustrative Example: Cobb-Douglas Economies. To make this more concrete, specialize
the analysis to the case where all the productions functions fi and gi are Cobb-Douglas.
In addition, assume that entry only uses labor. As we shall see, the optimal intervention
formulas then take a simple form.

Under our assumptions the backward and forward Leontief inverses restricted to the
non-primary-factor-markets (indicated by superscriptN − F ) are given by

ΨB,N−F =
(
I −ΩV,N−F

)−1
= I + ΩV,N−F +

(
ΩV,N−F

)2
+ · · · ,

ΨF,N−F = (I − µqΩV,N−F )−1 = I + µqΩV,N−F +
(
µqΩV,N−F

)2
+ · · · .

For non-primary-factor-markets i, backward and forward Domar weights are given by
λB

i = ΨB,N−F
0i and λF

i = ΨF,N−F
0i . This shows that the ratio of forward to backward Domar

weightsλF
i /λ

B
i , captures the extent to which market i is shrunk by multiple marginalization

downstream. If in addition markups are at their monopolistic-competition levels µ j
q =

1/γ j, then λF
i /λ

B
i becomes a measure of the cumulated gross increasing returns in the

downstream supply chain (excluding itself) of market i. The adjusted ratio (λF
i /λ

B
i )(1/γi)

also includes the gross increasing returns of market i rather than only those of markets
strictly downstream from i.

This means that the bang-for-buck impact of a marginal entry subsidy for type-i en-
trants is

−
1
λB

E,i

d log Y
d logµY

E,i

=
λF

E,i

λB
E,i

−
λF

L

λB
L

where
λF

E,i

λB
E,i

=
∑

j∈N−F

ζ̃i jλB
j

(
1 − 1

µ
q
j

)
∑

j′∈N−F ζ̃i j′λB
j′

(
1 − 1

µ
q
j′

)
λ

F
j

λB
j

1
γ j
− 1

1 − 1
µ

q
j

 .
Entry subsidies are most effective when they target entrants i with the highest ratio

of forward to backward Domar weights λF
E,i/λ

B
E,i, or equivalently entrants entering on

average in markets j with the highest ratios of forward to backward Domar weights λF
j /λ

B
j

and net returns to scale to profit margins (1/γ j − 1)/(1 − 1/µq
j).

31

If markups are at their monopolistic-competition levels µ j
q = 1/γ j, this boils down to

31The weights in the average across markets reflect the probability ζ̃i j of entering market j and the

associated profitsλB
j

(
1 − 1

µ
q
j

)
. They reflect the relative importance of market j in incentivizing type-i entrants.
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targeting entrants that enter on average in those markets j that have the most cumulated
gross increasing returns in their downstream supply chains (including themselves) as
captured by the adjusted ratio (λF

j /λ
B
j )(1/γ j). If in addition, all markets have the same

increasing returns to scale, then this tends to favor upstream interventions.
We next consider markup regulation. We assume for simplicity that at the no-

intervention equilibrium, markups are their monopolistic-competition levels µ j
q = 1/γ j,

and that entry is perfectly targeted. The changes in market sizes triggered by the
intervention take the simple form −d logλB

j /d logµq
i = ΨB

i j(λ
B
i /λ

B
j ) when j , i and

−d logλB
j /d logµq

i = 0 when j = i. The bang-for-buck impact of a marginal increase
in the markups of market i is then

−
1
λB

i

d log Y
d logµq

i

=
∑

j∈N−F−{i}

λF
j

λB
j

(
1
γ j
− 1

)
ΨB

i j.

Therefore, markup regulations are most effective when they reduces markups in markets
i that are downstream from supply chains ΨB

i j composed of markets j with the most net
increasing returns (1/γ j − 1) and the most cumulated gross increasing returns in their
own downstream supply chains (excluding themselves) as captured by the ratio of their
forward to backward Domar weights λF

j /λ
B
j . If in addition, all markets have the same

increasing returns to scale, then this tends to favor downstream interventions.
In Appendix H, we fully work out an example with three sectors: two final-good sectors

and an intermediate-good sector. One of the final-good sectors uses only labor in variable
production while the other one uses only the intermediate good. There is free entry using
labor in all sectors. To maximize bang for buck, interventions should leverage the larger
cumulated increasing returns along the vertical supply chain: markup reductions should
be targeted to the final-good sector which is downstream from the intermediate good
sector, and entry subsidies should be targeted to the upstream intermediate-good sector.

8.3 Social Costs of Distortions

In this section, we characterize the gains from optimal policy, which coincide with the
social costs of distortions, the distance from the efficient frontier, or the amount of misal-
location. We show that even with non-neoclassical ingredients like entry, non-convexities,
and external economies, the distance to the frontier can be approximated via a Domar-
weighted sum of Harberger triangles associated with variable production and entry. We
then specialize the result and work through a series of examples to emphasize how seem-
ingly minor details can drastically alter one’s view about the extent of misallocation.
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By Theorem 2, the marginal-cost pricing equilibrium with markups/wedges µi =

µY
i = 1 is efficient. We consider nearby equilibria associated with close-to-efficient

markups/wedges. For any equilibrium variable X, we denote by d log X the log-deviation
of X from its value at the marginal-cost pricing equilibrium, which can also be thought of as
the change in X caused by the deviations d logµi and d logµY

i of the markups/wedges from
their marginal-cost pricing values. We provide a second-order approximation in these de-
viations (d logµ,d logµY) of the associated aggregate efficiency loss L = −(1/2) d2 log Y.

Proposition 5 (Deadweight-Loss). The efficiency loss can be approximated as the sum of Har-
berger triangles associated with variable production and entry

L ≈
1
2

∑
i∈N−F

λB
i

1
γi

d log yi d log
(
µiµ

Y
i

)
+

1
2

∑
i∈N−F

λB
i

1
γi

d log Mi d logµY
i .

This expression is best suited for the DRS case because it emphasizes the change d log yi

in the quantity of each undifferentiated variety in each market i. For the IRS benchmark,
it is useful to rewrite the loss function to emphasize the change d log qi in the quantity of
each differentiated variety in each i. We get

L =
1
2

∑
i∈N−F

λB
i d log qid log

(
µiµ

Y
i

)
+

1
2

∑
i∈N−F

λB
i

1
γi

d log Mid logµY
i .

In conjunction with the forward and backward propagation equations in Propositions
3 and 4, we can rewrite these loss functions in terms of microeconomic primitives. We
relegate this general formula to Appendix A, and focus on a few prominent examples
obtained by considering a special class of models with a sectoral structure.

8.3.1 Sectoral Models

To generate examples, we will use sectoral models defined by the following conditions:

1. every non-primary-factor-market i ∈ N − F can be assigned to a unique sector I,
with common returns to scale εi = εI and γi = γI, and so that its output matters
only through sectoral output

YI =

∑
i∈I

YγI
i


1
γ
I

=

∑
i∈I

Miyi


1
γ
I

=

∑
i∈I

Miq
1−εI
i


1
γ
I

;

2. individual producers in the markets market i in sector I, have the same production
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function qi = Ai fI
({

xiJ
})

, where xiJ indicates that inputs are sectoral aggregates, but
have different productivities Ai;

3. there is one type of entrant for each sector I, and entrants are randomly assigned to
markets i ∈ I according to some fixed distribution;

4. individual producers in the markets market i in sector I charge different markups
µi = µq

iµ
y
i but share common output wedges µY

i = µY
I
.

Sectoral models, common in the literature, are worth singling out because their within-
sector heterogeneity can be aggregated. We can then break the problem of computing the
distance to the frontier into two recursive blocks, within and across sectors. See Appendix
I for detailed derivations.

Throughout the following examples, we define the sales share of sector I to be
λB
I

=
∑

j∈I λ
B
j , and producer i’s share of sector I to be λI,Bi = λB

i /λ
B
I
. We will denote by

EλI,B(d logµ) and VarλI,B
(
d logµ

)
the within-sector weighted expectations and variances

of changes in markups/wedges d logµi of producers i ∈ Iwith weights λI,Bi .

8.3.2 Sectoral DRS Example

For sectoral models, we can provide a straightforward characterization of the loss function
with DRS. That is, where 1 − εI < γI = 1, µY

I
= 1, and µq

i = 1. We proceed under the
additional assumptions that there is only one primary factor, that entry paid in that
factor, and that there are no deviations of output wedges from their efficient benchmarks
d logµY

I
= 0.

Proposition 6. In sectoral versions of the DRS benchmark with only one primary factor, with
entry paid in that factor, and with no deviations of output wedges from their efficient benchmarks
d logµY

I
= 0, the loss function is given by

L =
1
2

∑
I

λI

( 1
εI
− 1

)
VarλI,B

(
d logµ

)
+

1
2

∑
I

λI

( 1
εI
− 1

) (
EλI,B

(
d logµ

))2 .

Because there are no output wedges, we know from Proposition 5 that there are no
Harberger triangles associated with entry and only Harberger triangles associated with
variable production. Of course, this does not mean that the entry margin is irrelevant, but
changes in entry only matter through the impact on variable production.

The first term in the loss function captures misallocation arising from distortions in
relative producer sizes driven by dispersed markups/wedges within sectors. The second
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term captures misallocation arising from distortions in the average size of firms within
sectors, or equivalently, distortions driven by an inappropriate average levels of markups
within sectors. The losses increase with the returns to scale: they go to zero in the zero-
returns to scale limit where εI goes to one, and they go to infinity in the constant-returns
limit where εI goes to zero.

Proposition 6 is surprising if one is familiar with the misallocation literature. Normally,
elasticities of substitution are key pieces of information. In this case, this information is
not relevant since there is no misallocation across sectors.32

8.3.3 Sectoral IRS Examples

Now consider a sectoral version of the IRS benchmark where 1 − εI = γI < 1, µY
I

= 1/γI,
and µy

i = 1/(1− εI). We denote by θI = 1/εI = 1/(1−γI) the CES elasticity of substitution
associated with every sector I.

The behavior of sectoral IRS models is substantially more complicated than that of
sectoral DRS models. In particular, whereas cross-sector elasticities of substitution are
irrelevant under DRS, they remain very much relevant under IRS. Rather than providing
the complicated general formula, we instead focus on some simple examples to give
intuition. In each case, seemingly small changes in the assumptions about the nature of
entry make the welfare costs of distortions quite different.

One-Sector Heterogenous-Firm Economy. We start with the one-sector model heterogenous-
firm economy described in Section 7.1 with IRS and free entry. The aggregate efficiency
loss is

L =
1
2
θVarλB

(
d logµq) +

1
2
θEλB

(
d logµq)2 .

The first term, which captures misallocation on the intensive margin from the fact that
high-markup firms are too small and low-markup firms are too big, depends on the
elasticity of substitution and on the dispersion of markups. This term is standard in the
literature (see e.g. Hsieh and Klenow, 2009; Baqaee and Farhi, 2019a). The second term,
which captures misallocation on the extensive margin arising from the fact that there is
too much or too little entry, depends on the elasticity of substitution and on the level of
markups, and is new to the literature.

32In this model, changes in sectoral markups do not change relative sectoral prices to a first-order. An
increase in a sector’s markup increases the prices of producers in that sector but reduces their scale. At the
efficient point, these effects cancel exactly. Therefore, sectoral prices do not change to a first-order, which
means that to a first-order, the elasticity of substitution across sectors is not relevant for how quantities
adjust. Since Harberger triangles are products of first-order changes in quantities and first-order changes
in the markups, the cross-sectoral elasticity of substitution is irrelevant to a second-order.
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If instead of inefficient markupsµq
i , we considered inefficient output wedgesµY

i instead,
then the extensive margin would be unaffected and we would only have misallocation on
the intensive margin, leading to

L =
1
2
θVarλB

(
d logµY

)
.

This example underscores an important difference between models with and without
free entry. In the latter markups and output taxes are equivalent (see e.g. Baqaee and Farhi,
2019a). However, in models with free entry, higher markups incentivize entry whereas
higher output taxes do not.

Multi-Sector Economy. We continue with the multi-sector economy described in Section
7.1 with IRS and free entry. The aggregate efficiency loss is

L =
1
2

∑
I

λIθI
(
EλI,B

(
d logµ

))2 .

Note that while the elasticities of substitution within sectors θI matter, the elasticity of
substitution in consumption across sectors θ0 does not. This is because, at the efficient
marginal-cost pricing equilibrium, changes in markups distort the allocation of resources
within a sector between the extensive and intensive margins but these distortions have
offsetting effects on the price of the sector good. Basically, there is only misallocation
within sectors but no misallocation across sectors.

By contrast, with no entry and instead an exogenous mass Mi of incumbents in each
market, the aggregate efficiency loss function becomes

L =
1
2
θ0VarλB

(
EλI,B(d logµ)

)
,

where the variance is the weighted variance of sectoral markups with weights given by
sectoral sales shares λB

I
. In contrast to the free-entry case, the elasticity of substitution

across sectors θ0 is now relevant but the elasticities of substitution within sectors θI are
not, and there is only misallocation across sectors but not within sectors.

This examples illustrates that allowing for entry changes which elasticities of substi-
tution are even relevant to misallocation.
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Roundabout Economy. We finish with the roundabout economy described in Section
7.3. Suppose first that entry uses only labor. Then the aggregate efficiency loss is

L =
1
2

1
1 − γ1

(d logµ1)2 =
1
2
θ1(d logµ1)2.

The loss is increasing in the elasticity of substitution across products θ1 since the love-
of-variety effect is declining in θ1, and goes to infinity as θ1 goes to infinity since entry
becomes socially wasteful.

Next, suppose that entry uses only products. Then the aggregate efficiency loss be-
comes

L =
1
2

(θ1 − 1)3

(θ1 − 2)2 (d logµ1)2.

Once again, the losses goes to infinity as θ1 goes to infinity and for similar reasons. How-
ever, the loss is no longer increasing inθ1, but is instead U-shaped, and also goes to infinity
as θ1 goes to 2 from above, since love of variety becomes so strong that output becomes
linear in the mass of entrants. This example breaks the long-standing intuition in the mis-
allocation literature that efficiency losses are increasing in the elasticity of substitution.
In Appendix D.2.1, we show that this U-shaped pattern also arises with input-output
linkages in variable production rather than entry.

This example illustrates how changing the input-output structure of entry can trans-
form the losses from misallocation.

9 Quantitative Application

In this section, we quantify the social cost of distortions, or equivalently the gains from
optimal policy. We also compute the social bang for a marginal buck of competition or
industrial policy. We calibrate the model to fit U.S. data and provide a brief account of
how we proceed; the details of how we map the model to data are in Appendix B.

9.1 Description of Quantitative Model

Our quantitative model has a sectoral structure with heterogenous firms within sectors
and one primary factor capturing value-added. We merge firm-level data from Compustat
with industry-level data from the BEA. We use annual input-output tables from the BEA,
and assign each firm in the our Compustat sample to a BEA industry. In the data, we
observe industry-level sales shares for industries I; input-output entries for industries
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I and J ; the sales shares of the Compustat firms i in industry I; and the markup µi of
Compustat firm i.

We adopt the baseline estimates of De Loecker et al. (2019) to obtain firm-level markups
using a production-function (PF) approach. In Appendix C, we perform robustness checks
by recomputing our results using three alternative methods for estimating markups: an
alternative implementation of the production-function approach with different categories
of costs, the user-cost approach (UC), and the accounting-profits (AP) approach. Although
the numbers depend on the specific approach, the qualitative message remains the same.

The model has a nested CES structure where each firm i in industry I has a CES
production function combining value-added and intermediate inputs with an elasticity
of substitution θ1. The intermediate input component is itself a CES aggregator of inputs
from other industries with an elasticity of substitution θ2. Finally, we have the within-
sector elasticities εI and γI for each BEA industry. This means that at the sector level, we
can have DRS or IRS.

Drawing on estimates from Atalay (2017), Herrendorf et al. (2013), and Boehm et al.
(2014), we set the elasticity of substitution across sectors in consumption to be θ0 = 0.9,
between value-added and intermediates to be θ1 = 0.5, and across sectors in intermediates
to be θ2 = 0.2. Our results are not particularly sensitive to these choices.

We use the same within-sector elasticities for all sectors: εI = ε and γI = γ. We
consider two benchmarks corresponding to different returns to scale: IRS with 1 − ε = γ

and DRS with 1 − ε < γ = 1.
We consider two different scale elasticities, 1 − ε = 0.875 and 1 − ε = 0.75, which are

equivalent in the IRS benchmark to using CES aggregators with elasticities of substitution
given by θ = 8 and θ = 4 respectively.

Finally, we experiment with different ways of modeling entry: no entry, entry using
primary factors, and entry using primary factors and goods (in the same way as variable
production). The model without entry can be thought of as a short-run model, and the
model with entry as a long-run model.

Our quantitative model is, of course, highly stylized. We therefore caution the reader
from over-interpreting our quantitative results, which are meant only to be suggestive.
Our analysis emphasizes just how sensitive the quantitative results are to difficult-to-
measure parameters such as external economies, elasticities of substitution, input-output
linkages in variable production and in entry, markups, and barriers to entry.
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9.2 Social Costs of Distortions

We solve the model nonlinearly and compute the efficiency loss from misallocation. We
report the numbers as the percentage gain in welfare achieved by implementing optimal
policy starting from the decentralized equilibrium outcome. The results are in Table 1 for
different combinations of assumptions regarding entry and returns to scale.

Across the board, the losses from inefficiency are higher when we allow entry than we
do not, refuting the notion that endogenizing entry necessarily reduces the social cost of
markups.

The “Level only” row eliminates the dispersion of markups within each sector by
setting all markups within each sector equal to the harmonic average of markups in that
sector. The “Dispersion only” row proportionately rescales the markups in the data so that
their harmonic average within each sector is equal to one (this means average markups
are equal to the CES markups when we adopt the IRS benchmark and equal to one when
we adopt the DRS benchmark).

IRS, 1 − ε = 0.875 No Entry Entry uses Factors Entry uses Goods and Factors

Level only 4.6% 14% 10%
Dispersion only 30% 30% 30%
Benchmark 36% 50% 41%

IRS, 1 − ε = 0.75

Level only 4.6% 17% 20%
Dispersion only 22% 23% 20%
Benchmark 19% 32% 37%

DRS, 1 − ε = 0.875

Level only 1.5% 7.8% 7.6%
Dispersion only 23% 23% 23%
Benchmark 26% 35% 32%

DRS, 1 − ε = 0.75

Level only 0.8% 9.5% 10%
Dispersion only 9.2% 9.2% 9.2%
Benchmark 9.6% 19% 20%

Table 1: Efficiency losses from misallocation. Firm-level returns to scale 1 − ε = 0.875
under DRS correspond to elasticities of substitution across firms within sectors θ = 8
under IRS. Firm-level returns to scale 1 − ε = 0.75 under DRS correspond to elasticities of
substitution across firms within sectors θ = 4 under IRS.

When there is no entry, almost the entirety of the losses are explained by the dispersion
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effect. The losses due to the dispersion effect are due to misallocation across firms within
sectors, and are large because markups are very dispersed within sectors and because
the relevant elasticities within sectors are large. The losses due to the level effect, when
there is no entry, are entirely due to misallocation across sectors, and are small because
markups are not so dispersed across sectors and because the cross-sectoral elasticities of
substitution are low.

When there is entry, the level effect becomes comparable to the dispersion effect. The
losses due to the level effect now also reflect misallocation between entry and variable
production within sectors, and these losses are large because markups are in general too
large and because the relevant elasticities are large.

Whether entry only uses primary factors or also intermediates has ambiguous effects.
Depending on the scale elasticities, the relative size of the gains can go either way. When
the entry margin is more important (ε is larger), the gains tend to be higher when entry
also uses intermediates.

The efficiency losses are uniformly higher in the IRS benchmark than in the DRS
benchmark. To understand this, it is useful to think about the limit where ε goes to one,
which corresponds to a within-sector across-firm elasticity of one under IRS and a firm-
level return to scale of zero under DRS. In this limit, under IRS, the efficiency losses become
infinite if there are non-trivial input-output linkages because love of variety becomes
extreme and so do the inefficiencies in entry. By contrast, under DRS, the efficiency losses
go to zero as made clear by Propositions 5 and 6. This is because there are no Harberger
triangles associated with variable production since firms have a fixed scale d log yi = 0, and
there are no Harberger triangles associated with entry since there are no output wedges
d logµY

i = 0.
In Table 2, we compare the results of the benchmark model to versions of the model

that employ some commonly used shortcuts: ignoring intermediate goods in production
or entry (assuming no input-output); using a single-sector economy but allowing for
intermediates (round-about economy); ignoring firm-level heterogeneity within sectors
(no firm heterogeneity). We discuss each of these strawmen in turn.

The no-input-output-economy assumes away intermediates, and calibrates the size of
each industry to be equal to its value-added share. Without entry, this economy under-
shoots the benchmark model for reasons discussed at length by Baqaee and Farhi (2019a).
The undershooting becomes even more extreme once we allow for entry, underscoring
even more strongly the need to model input-output linkages.

The round-about economy assumes that all firms in the economy belong to a single
sector. The output of this sector is used both as the consumption good and as an in-
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IRS No Entry Entry uses Factors Entry uses Goods/Factors

Benchmark 36% 50% 40%
No Input-Output 16% 20% –
Round-about Economy 139% 182% 133%
No Firm Heterogeneity 4.6% 14% 10%

DRS

Benchmark 26% 35% 32%
No Input-Output 13% 18% –
Round-about Economy 91% 123% 108%
No Firm Heterogeneity 1.0% 7.8% 7.6%

Table 2: Efficiency losses from misallocation when different disaggregated aspects of the
economy are trivialized. We use firm-level returns to scale 1−ε = 0.875 under DRS, which
correspond to elasticities of substitution across firms within sectors θ = 8 under IRS.

termediate input into production. The one-sector round-about economy overshoots the
benchmark by a large amount. This is to be expected since the round-about economy
aggregates all firms in the economy into a single sector. This means cross-sectoral disper-
sions in markups (which are less costly than within-sectoral dispersions) are treated as if
they are within-sectors. Intuitively, dispersed markups now distort input choices across
producers by more, since firms in two different industries are treated as if they are highly
substitutable.

Finally, the no-firm-heterogeneity economy assumes that all firms in a sector are identi-
cal, with the same productivity shifter and the same markup equal to the sectoral markup.
The homogeneous sectors economy undershoots the benchmark by a large amount be-
cause even though it accounts for cross-sectoral distortions, it abstracts away from within-
sector misallocation.

All in all, the sensitivity of these numbers underscores the importance of theoretically
unpacking and precisely measuring the details. Our results highlight the need for more
empirical guidance on issues such as the strength of external economies and input-output
linkages in variable production and in entry.

Role of the Elasticity of Substitution Across Firms Within Sectors. In many models of
misallocation without entry, for example (e.g. Hsieh and Klenow, 2009; Baqaee and Farhi,
2019a), the distance to the frontier increases with the elasticity across firms within sectors.
As discussed in Section 8.3, this intuition also holds in our model with entry under DRS
but not under IRS.
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Figure 2a shows that for the IRS becnhmark, the distance to the frontier is U-shaped
as a function of the elasticity of substitution across firms within sectors θ. For instance,
the losses are 50% when θ = 8. This number falls to 32% when the elasticity is lowered to
θ = 4, before rising to close to 65% when the elasticity is lowered further to θ = 2.5. This
is consistent with the theoretical discussion in the last example of Section 8.3. Intuitively,
with non-trivial input-output linkages, a lower elasticity reduces misallocation along the
intensive margin, but magnifies misallocation along the extensive margin. In the limit
where θ goes to one, misallocation along the extensive margin becomes infinitely costly.

Role of Barriers to Entry. In our benchmark specifications with entry, we assume that
that no friction interferes with free entry. In other words, we assume that all rents are
quasi-rents rather than pure rents. However, it is plausible that, even in the long run,
profits are not entirely offset by the costs of entry. For example, it may be that resources
spent on entry are less than profits due to barriers to entry from regulations or due to
anti-competitive strategic deterrence. We capture these barriers to entry in reduced form
by introducing an entry tax/wedge.

Figure 2b displays the estimated distance to the frontier as a function of the view that
one takes on the size of entry barriers in the data, where the size of entry barriers are
measured by the size of the implicit entry tax/wedge (a value of one means that there
are no barriers to entry). Perhaps surprisingly, the efficiency losses are non-monotonic in
the size of entry barriers. Intuitively, whether barriers to entry increase or decrease the
estimated distance to the frontier depends on whether there is too little or too much entry
in the equilibrium with no entry barriers. Our estimated markups are relatively high,
which implies that there is too much entry in the equilibrium with no entry taxes/wedges.
As a result, if one takes the view that there are entry barriers in the data, then one is lead
to a lower estimate of the distance to the frontier.

9.3 Bang for Buck of Marginal Policy Interventions

We turn to the the effect of a marginal policy intervention in the decentralized equilibrium.
Figure 3 shows the bang-for-buck elasticity of aggregate output with respect to a marginal
entry subsidy (a form of industrial policy) or markup reduction (a form of competition
policy) in different industries. The elasticity is scaled by the revenues associated with
the intervention as in Section 8.2. For this exercise, we focus on the IRS case where
γI = 1 − εI = 0.875. We consider two alternative calibrations: one where we set markups
equal to their CES monopolistic values, and one where we set markups equal to their
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Figure 2: Efficiency losses for the benchmark IRS model when entry uses factors.

estimated values.
The monopolistic-markups calibration is a useful starting point for understanding the

results, since it helps isolate the role played by the input-output network. In this case, as
could be anticipated from the monopolistic-markup Cobb-Douglas example in Section 8,
markup reductions are always beneficial. Because we have imposed the same increasing
returns to scale from love of variety in all sectors, the greatest bang-for-buck are those
with more complex supply chains, namely manufacturing industries like motor vehicles,
metals, and plastics. The smallest gains come from those industries with the simplest
supply chains, mostly service industries like housing or legal services but also primary
industries like oil extraction or forestry.

For entry subsidies, the biggest gains, as expected, come from subsidizing those in-
dustries which are upstream in complex supply chains, namely primary industries like
forestry, oil, and mining, whereas subsidizing entry into relatively downstream industries,
like nursing, hospitals, or social assistance, is actually harmful.

When we move to the estimated markups, the shape of the input-output network is
not the only determinant of the relative ranking of different industries, as now we must
also consider whether each sector’s markups are too high or too low on average relative
to its external economies. Since we have imposed the same external economies from love
of variety in all sectors but we have estimated markups, we do not read too much into the
exact relative ranking of the different industries.

However, we can conclude that as we move farther away from the efficient frontier,
as we do when we go from monopolistic markups to estimated markups, the potency of
second-best policies increases dramatically. To see this, compare the magnitude of the
elasticities in the top row to the bottom row of Figure 6.
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Figure 3: The elasticity of output with respect to reductions in markups or an entry
subsidy to different sectors normalized by the cost of the intervention. The top row uses
CES markups, whereas the bottom row uses estimated PF markups.

But the larger effect sizes are a mixed blessing. Once we are far away from the frontier,
the scope for policy having unintended consequences also increases. Although there
appear to be many free lunches available to policy makers, many of them are poisoned
since policy interventions can have large positive or negative signs. In other words, as
implied by the theory of the second-best, interventions that seem sensible in isolation, like
reducing markups, can reduce output once we are deep inside the frontier.

10 Conclusion

Traditional theories of aggregation, by relying on aggregate envelope theorems, imply
that the aggregate production function can be treated like a black-box machine whose
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contents are irrelevant to a first order. The only causal ingredient from the production
side of the economy is, therefore, exogenous changes to the shape of this function. These
exogenous changes, or total factor productivity shocks, are highly volatile in the data and
responsible for a large fraction of the trend and cyclical components of aggregate output.

This approach is untenable for economies that are inside the Pareto-efficient frontier,
and disaggregated economies, where many different margins can be misallocated, are
likely to be deep inside the frontier. In these economies, total factor productivity is an
endogenous object and affected, to a first order, by reallocation effects. These reallocation
effects can be large enough to account for the bulk of variations in aggregate output.
Reallocation not only amplifies exogenous micro-level productivity shocks, it can even
replace exogenous productivity as a causal mechanism. And unlike changes in technology,
which are likely gradual, always positive, and related to the physical act of production,
changes in reallocation can be abrupt, beneficial or harmful, and related to the economic
choices about the allocation of scarce resources.

This paper shows that these reallocation forces are especially potent in the presence of
non-convexities and entry, where competitive markets can become a non-starter. Beneficial
reallocations, by making better use of scarce resources, reduce their shadow price, and
these prices are given by rents and quasi-rents. This provides a useful framework for
studying the macroeconomics of scale.
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Appendix A Proofs

We prove Theorem 1 using a slightly more general framework that allows for non-divisible
overhead costs. This allows us to prove Theorems 1 and 2 for environments that nest
Hopenhayn (1992) and Melitz (2003).

Non-Divisible Overhead

To augment the model with non-divisible overhead costs, suppose that in order to produce
i, each producer must also pay an overhead/fixed-cost

hi

({
xO,ik

}
k∈N

)
,

where hi has constant returns to scale and xO,ik are inputs used for overheads. A simple
example is when firms must pay an overhead cost in units of labor if they choose to
produce, as in Hopenhayn (1992) or Melitz (2003). When this overhead cost is zero, we
recover the set up in the main paper.

The set of goods j can produce is supp ζ( j) = {i ∈ N : ζ(i, j) , 0}, let B( j) be a set of
subsets of suppi ζ( j, i) ⊂ N . For each B ∈ B( j), entrant j can choose whether or not to
produce the products in B. We say B ⊂ N is active if its expected profits are greater than
zero ∑

i∈B

ζ( j, i)
λπi

Mi

 1{B is active} ≥ 0.

Entrant j does not produce i if i is ever a member of an inactive set. Hence, define the
active set for j as

B∗( j) =
⋂

B∈B( j)

{B is active} . (8)

Let the mass of type- j entrants who have paid the sunk cost be ME, j. Then, if i ∈ N is not
produced by incumbents, then the mass Mi of products i is

Mi =
∑
j∈E

ζ( j, i)ME, j1{i ∈ B∗( j)}.

In words, Mi is the mass of products controlled by those entrants who paid both the
sunk and overhead cost. This way of modelling the entrants’ decision to operate is very
general. At one extreme, we may imagine that entrant j can choose, one by one, whether
or not to operate each technology i. In this case, B( j) is the set of all singleton elements of
suppi ζ( j, i). On the other extreme, we might imagine that entrant j may be constrained
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to either operate all of its technologies or none of them. In this case, B( j) contains only
a single element {suppi ζ( j, i)}. Using B( j), we can model intermediate situations when j
can only choose whether or not to operate certain subsets of its technologies jointly.

A simple example is a case where firms can only operate at a given point in time if
they have chosen to operate in every previous point in time, as in Hopenhayn (1992) or
Melitz (2003). Of course, to model time in this fashion, we would simply index goods by
time.

To prove Theorem 1, we require the following lemma.

Lemma 3. At the prices in a decentralized equilibrium, the marginal cost pricing equilibrium
maximizes aggregate profits.

Proof. For each i ∈ N ,define

FZ
i (Miyi,Zi) = ZiFi

(
Miyi

Zi

)
1(Miyi > 0), (9)

and note that Zi = 1 gives FZ
i (Miyi,Zi) = Fi(Miyi). By assumption, since Fi has constant or

increasing returns to scale,
∂FZ

i
∂Zi
≤ 0.

When i sets prices according to marginal cost, we have PY
i Yi − py

i Miyi = ∂Fi/∂Zi.

Equivalently, we can think of the producer of Yi as purchasing inputs yiMi and Zi at
price py

i > 0 and PZ
i = ∂Fi/∂Zi ≤ 0 to maximize profits. Since every good is essential for

consumption, we can assume that every good must be produced and Zi = 1. In other
words, we can treat Zi as a fixed factor in inelastic supply Zi = 1 with a negative price.

Aggregate profits are then given by

Π(p,w) = PY
· Y − PZ

· Z −
∑
j∈E

∑
i<B( j)

ζ( j, i)ME, j

 ∑
j∈N−F

(
xi j +

xO,i j

Mi

)
+

∑
f∈F

xi f +
xO,i f

Mi




−

∑
k∈N−F

pkxE, jk −

∑
f∈F

p f xE, j f

=
∑
j∈E

∑
i<B( j)

ζ( j, i)ME, j

(
piAi fi(xi j, xi f )

)
−

∑
f∈F

p f xE, j f

−

∑
j∈E

∑
i<B( j)

ζ( j, i)ME, j

 ∑
j∈N−F

(
xi j +

xO,i j

Mi

)
−

∑
f∈F

xi f +
xO,i f

Mi


 −∑

k∈N

pkxE, jk

Since all producers have increasing or constant marginal cost, profits generated at this
allocation must be lower than if those producers produced at the profit-maximizing,
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cost-minimizing allocation chosen by the marginal-cost pricing equilibrium. Hence,

Π(p,w) ≤
∑
i<B( j)

ζ( j, i)ME, jλπi −

∑
k∈N

pkxE, jk −

∑
f∈F

w f lE, j f

≤

∑
j∈E

 ∑
i<B∗( j)

ζ( j, i)λπi − C j

 ME, j,

where C j is the unit cost of the jth entrant. We know that for the prices prevailing in the
equilibrium,

(∑
i<B∗( j) ζ( j, i)λπi − C j

)
= 0, for every j ∈ E. Hence, at the decentralized prices,

Π(p,w) ≤ 0, (10)

for any allocation. �

Proof of Theorem 1. Suppose that there exists some feasible allocation (denoted by primes)
which is preferred to the decentralized one. Call this allocation c′, and since it is strictly
preferred, there must be some i ∈ N such that c′i > ci. This means that c′ is unaffordable
at the equilibrium prices, hence PY

· c′ > PY
· c. The allocation c′ is delivered by some

production plan, so that summing over all markets using the decentralized prices, we
must have ∑

i∈N

PYc′i =PY
· Y′ −

∑
i∈N

∑
j∈N

pi

(
x′jiM

′

j + x′E, ji
)
−

∑
i∈N

∑
j

pix′E, ji

>PY
· Y −

∑
i∈N

∑
j∈N

pi

(
x jiM j + xO, ji

)
−

∑
i∈N

∑
j

pixE, ji.

Denote the total supply of factor f ∈ F by L f . Now, subtract
∑

f∈F p f LF + PZ
·Z′ from both

sides

PY
· Y′ −

∑
i∈N

∑
j∈N

pi

(
x′jiM

′

j + x′O, ji
)
−

∑
i∈N

∑
j∈E

pix′E, ji

− PZ
· Z′ −

∑
f∈F

p f

∑
i∈N

x′i f Mi

∑
i∈E

x′E,i f +
∑
i∈N

x′O,i f


>

PY
· Y −

∑
i∈N

∑
j∈N

pi

(
x jiM j + xO, ji

)
−

∑
i∈N

∑
j∈E

pixE, ji

− PZ
· Z −

∑
f∈F

p f

∑
i∈N

xi f Mi

∑
i∈E

xE,i f +
∑
i∈N

xO,i f

 .
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The last line follows from factor market clearing for every f ∈ F and the fact that Zi =

Z′i = 1.
Rewrite this as ∑

i∈N

λ′πi
Mi −

∑
i∈N−F

∑
j∈E

pix′E, ji −
∑
f∈F

p f

∑
i∈E

x′E,i f >∑
i∈N

λπiMi −

∑
i∈N−F

∑
j∈E

pixE, ji −

∑
f∈F

p f

∑
i∈E

xE,i f .

Substitute in the values of Mi to get∑
j∈E

∑
i∈N

λ′πi

(
ζ( j, i)M′

E, j1(i < B∗′( j))
)
−

∑
i∈N−F

∑
j∈E

pix′E, ji −
∑
f∈F

p f

∑
i∈E

x′E,i f >∑
j∈E

∑
i∈N

λπi

(
ζ( j, i)ME, j1(i < B∗( j))

)
−

∑
i∈N−F

∑
j∈E

pixE, ji −

∑
f∈F

p f

∑
i∈E

xE,i f

This contradicts the lemma, hence such an allocation cannot exist. �

Proof of Theorem 2. An application of the envelope theorem to the planning problem de-
centralized by the marginal-cost pricing equilibrium. �

Proof of Proposition 1. The perfect substitutes version is straightforward. Under the im-
perfect substitutes assumption, we assume differentiated products sell at prices pq

i and
quantity qi. These differentiated varieties are then purchased by different agents j, so that
the total quantity of good i purchased by j is defined to be

x ji =
(
Miq

1−εi
ji

) 1
1−εi = M

1
1−εi
i q ji,

where q ji is the quantity of variety i purchased by j. The budget j spends on purchasing
variety i is then

PY
i xi j = Mip

q
i q ji.

Recall that PY
i is the marginal cost of producing xi j so we can write

PY
i xi j = µY

i µ
y
i

γi

1 − εi
Mip

q
i q ji = µY

i µ
y
i Mip

q
i q ji.

So we require that µY
i µ

y
i = 1.

On the other hand, under the differentiated products interpretation, the profits accruing
to each variety must be

(1 − 1/µq
i )piqi.
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In general, the profits accruing to each producer are1 −
1 − εi

µq
iµ

y
i

 pq
i qi

µY
i γi

.

Letting µy
i = (1 − εi) and µY

i = 1/γi = 1/(1 − εi) gives us the correct amount of rents.
�

Proof of Lemma 1. We assume that the rows of ζ are linearly independent, otherwise there
are trivial entry types. Initialize the quilibrium where all ME have been normalized to
unity, we have the zero-profit conditions

λE,i =
∑
j∈N

(
ζi j∑

k∈E ζkj

)
λπ j ,

=
∑
j∈N

ζ̃i jλπ j ,

where ζ̃i j = ζi jME,i/
(∑

k∈E ζkjME,k

)
. Using the fact that

Mi =
∑

j

ζ jiME, j. (11)

loglinearize to get the zero-profit condition

∑
j

ζ̃i jλπ jd logλπ j −

∑
j

ζ̃i jλπ j


∑

j

ΩE
ijd log P j

 =
∑

j

ζ̃i jλπ jd log M j, (12)

or in matrix notation, where λE and λπ are diagonal matrices:

ζ̃λπd logλπ − λEΩEd log P = ζ̃λπζ̃
′d log ME. (13)

If ζ has linearly independent columns then

(ζ̃λπζ̃′)−1
(
ζ̃λπd logλπ − λEΩEd log P

)
= d log ME, (14)

and
ζ̃′(ζ̃λπζ̃′)−1

(
ζ̃λπd logλπ − λEΩEd log P

)
= d log M. (15)

From constant returns to scale, we know that ΩEd log P = d log PE. �
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Proof of Theorem 3. The aggregation equation is

d log Y = −Ω′(0)d log P. (16)

Hence we can write, for any individual firm,

d log pq
i = d logµq

i +
∑

j

µq
i Ω

V
ij d log PY

j −

( γi

1 − εi

)
d log Aq

i

d log py
i = d log pq

i +
εi

1 − εi
d log yi + d logµy

i ,

d log PY
i = d logµY

i + d log py
i +

(
γi − 1

)
d log Yi,

d log PY
i = d logµY

i +
εi

1 − εi
d log yi + d logµy

i +

d logµq
i +

∑
j

µq
i Ω

V
ij d log PY

j +
(
γi − 1

)
d log Yi −

( γi

1 − εi

)
d log Aq

i ,

= d logµY
i +

εi

1 − εi

(
γid log Yi − d log Mi

)
+ d logµy

i + d logµq
i

+
∑

j

µq
i Ω

V
ij d log P +

(
γi − 1

)
d log Yi −

( γi

1 − εi

)
d log Aq

i ,

= d logµY
i +

(
εi

1 − εi
γi + γi − 1

)
d log Yi −

εi

1 − εi

(
d log Mi

)
+ d logµy

i

+ d logµq
i +

∑
j

µq
i Ω

V
ij d log PY

j −

( γi

1 − εi

)
d log Aq

i ,

= d log
(
µY

i µ
y
i µ

q
i

)
+

( γi

1 − εi
− 1

)
d logλB

i −

( γi

1 − εi
− 1

)
d log Pi

−
εi

1 − εi

(
d log Mi

)
+

∑
j

µq
i Ω

V
ij d log P − d log Aq

i ,( γi

1 − εi

)
d log Pi = d log

(
µY

i µ
y
i µ

q
i

)
+

( γi

1 − εi
− 1

)
d logλB

i −
εi

1 − εi

(
d log Mi

)
+

∑
j

µq
i Ω

V
ij d log P j −

( γi

1 − εi

)
d log Aq

i ,

d log Pi =

(
1 − εi

γi

)
d log

(
µY

i µ
y
i µ

q
i

)
+

(
1 −

(
1 − εi

γi

))
d logλB

i

−
εi

γi

(
d log Mi

)
+

(
1 − εi

γi

)∑
j

µq
i Ω

V
ij d log PY

j − d log Aq
i ,

We know that
d log M = ζ̃′(ζ̃λπζ̃′)−1

(
ζ̃λπd logλπ − λEΩEd log P

)
. (17)
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Substitute our expression for entry to get, in matrix notation,

d log P =
1 − ε
γ

d logµ − d log Aq +

(
1 −

1 − ε
γ

)
d logλY +

(1 − ε)
γ

µqΩVd log P

+
ε
γ
ζ̃′(ζ̃λπζ̃′)−1

(
λEΩEd log P

)
−
ε
γ

d log λ̂π,

=ΨF

(
1 − ε
γ

d logµ − d log Aq +

(
1 −

1 − ε
γ

)
d logλ −

ε
γ

(
d log λ̂π + d log ẑ

))
,

=ΨF

(
1 − ε
γ

d logµ − d log Aq

)
+ ΨF

(
ε
γ

(
d logλ − d log λ̂π

)
+

(
1 −

1
γ

)
d logλ

)
,

where

ΨF =

(
I −

(1 − ε)
γ

µqΩV
−
ε
γ
ζ̃′(ζ̃λπζ̃′)−1λEΩE

)−1

. (18)

�

Proof of Proposition 2. Without loss of generality, impose no-overlapping entry. Then ζ̃ ∈
{0, 1}E×N, hence

(ζ̃λπζ̃′)−1λE = IE×E. (19)

Therefore,

ΨF =

(
I − µYµqΩV

−
ε
γ
ζ̃′ΩE

)−1

. (20)

The feasibility condition is

d log Yi =
Ci

Yi
d log Ci +

∑
j∈N

M jx ji

Yi
d log(x jiM j) +

∑
j∈E

xE, ji

Yi
d log xE, ji. (21)

Now consider the feasible allocation rule which holds the allocation matrix Xconstant:

d log Yi = d log Ci = d log x jiM j = d log xE, ji. (22)

Under this allocation rule we have

d log yi = γid log Ai+(1−εi)
∑
j∈N

µq
i Ω

V
ij d log xi j = γid log Ai+(1−εi)

∑
j∈N

µq
i Ω

V
ij

(
d log Y j − d log Mi

)
.

(23)
Hence

d log Yi = d log Ai +
∑
j∈N

µY
i µ

q
i Ω

V
ij

(
d log Y j − d log Mi

)
+

1
γi

d log Mi
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= d log Ai + µY
i

∑
j∈N

µq
i Ω

V
ij d log Y j +

εi

γi
d log Mi

= d log Ai + µY
i

∑
j∈N

µq
i Ω

V
ij d log Y j +

εi

γi

∑
m∈E

ζ̃mid log ME,m

= d log Ai + µY
i

∑
j∈N

µq
i Ω

V
ij d log Y j +

εi

γi

∑
m∈E

∑
j∈N

ζ̃miΩ
E
mjd log Y j

In matrix form

d log Y = d log A + µYµqΩVd log Y +
ε
γ
ζ̃′ΩEd log Y

= (I − µYµqΩVd log Y −
ε
γ
ζ̃′ΩE)−1d log A

= ΨFd log A.

�

Proof of Proposition 3. The proof for this is the same as that of Proposition 3. �

Proof of Proposition 4. Define the notation λY
i = PiYi, λ

y
i = py

i yi, and λq
i = pq

i qi. Note that
λY

i = λB
i . Now recall

λπi =

1 −
1 − εi

µq
iµ

y
i

 λB
i

µY
i γi

.

d logλπi = d logλB
i − d logµY

i +

1−εi

µ
q
i µ

y
i(

1 − 1−εi

µ
q
i µ

y
i

)d logµq
iµ

y
i (24)

In other words,

λE = diag (ME) ζ
(
1 − (1 − ε)

(
µqµy)−1

)
diag(M)−1diag(µYγ)−1λB, (25)

So,

λB′ = λB′ΩV + (λE)′ΩE,

= λB′ΩV + λB′
(
1 − (1 − ε)

(
µqµy)−1

)
diag(M)−1diag(µYγ)−1ζ′diag (ME) ΩE.

Therefore, using the fact that dε = 0,

dλB′ = λB′dΩV + λB′ (1 − ε) diag(d log(µqµy))(µqµy)−1diag(M)−1diag(µYγ)−1ζ′diag (ME) ΩE
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− λB′
(
1 − (1 − ε)

(
µqµy)−1

)
diag(M)−1diag(d log M + d logµY)diag(µYγ)−1ζ′diag (ME) ΩE

+ λB′
(
1 − (1 − ε)

(
µqµy)−1

)
diag(M)−1diag(µYγ)−1ζ′diag (ME) dΩE

+ λB′
(
1 − (1 − ε)

(
µqµy)−1

)
diag(M)−1diag(µYγ)−1ζ′diag (ME) diag(d log ME)dΩE

+ dλB′
(
ΩV +

(
1 − (1 − ε)

(
µqµy)−1

)
diag(M)−1diag(µYγ)−1ζ′ΩE

)
,

= λB′
(
dΩV + (1 − ε) diag(d log

(
µqµy))diag

(
µqµy)−1 diag(M)−1diag(µYγ)−1ζ′diag (ME) ΩE

)
ΨB

− λB′
((

1 − (1 − ε)
(
µqµy)−1

)
diag(M)−1diag(d log M + d logµY)diag(µYγ)−1ζ′diag (ME) ΩE

)
ΨB

+ λB′
((

1 − (1 − ε)
(
µqµy)−1

)
diag(M)−1diag(µYγ)−1ζ′diag (ME) diag

(
d log ME

)
ΩE

)
ΨB

+ λB′
((

1 − (1 − ε)
(
µqµy)−1

)
diag(M)−1diag(µYγ)−1ζ′diag (ME) dΩEΨB

)
, (26)

where, using the fact that in the initial equilibrium ζdiag(M)−1 = ζ̃

ΨB =
(
I −ΩV

−

(
1 − (1 − ε)

(
µqµy)−1

)
diag(M)−1diag(µYγ)−1ζ′diag (ME) ΩE

)
,

=
(
I −ΩV

−

(
1 − (1 − ε)

(
µqµy)−1

)
diag(µYγ)−1ζ̃′ΩE

)
.

The constituent parts of (26) are:

dΩV
ij = −ΩV

ij d log
(
µq

iµ
Y
i µ

y
i

)
+

(
µq

i

)−1
(1 − θi)Covi

(
d log P, I( j)

)
, (27)

[
(1 − ε) diag(d logµqµy)diag

(
µqµy)−1 diag(µYγ)−1ζ̃′diag (ME) ΩE

]
i j

=
∑

k

(1 − εk)
γk

d log
(
µq

kµ
y
k

)
µq

kµ
y
kµ

Y
k

ζ̃ikΩ
E
ij

(28)

[(
1 − (1 − ε)

(
µqµy)−1

)
diag(d log M + d logµY)diag(µYγ)−1ζ̃′diag (ME) ΩE

]
i j

=
[(

1 − (1 − ε)
(
µqµy)−1

)
diag(d log M + d logµY)diag(µYγ)−1ζ̃′diag (ME) ΩE

]
i j

(29)

[(
1 − (1 − ε)

(
µqµy)−1

)
diag(µYγ)−1ζ̃′diag (ME) diag

(
d log ME

)
ΩE

]
i j

=
∑

k

(
1 − (1 − εi)

(
µq

iµ
y
i

)−1
) (
µY

i γi

)−1
ζ̃kiΩ

E
kjd log ME,i (30)

[(
1 − (1 − ε)

(
µqµy)−1

)
diag(µYγ)−1ζ̃′diag (ME) dΩE

]
i j

= 0, (31)

where the last line follows from the fact that we have assumed (without loss of generality)
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that ΩE is degenerate. Combining all this, we get

dλB
i = −

∑
m∈N

λB
m

∑
k∈N

ΩV
mkΨ

B
kid log

(
µq

mµ
y
mµ

Y
m

)
+

∑
m

λB
m

(
µq

m

)−1
(1 − θm)Covm

(
d log P,ΨB

(i)

)
+

∑
j∈E

∑
m∈N

∑
k∈N

λB
m

(1 − εm)
γk

d log
(
µq

mµ
y
m

)
µq

kµ
y
kµ

Y
k

ζ̃ jmΩE
jkΨ

B
ki

−

∑
k∈N

∑
m∈N

∑
j∈E

λB
m

(
1 − (1 − εm)

(
µq

mµ
y
m

)−1
) 1
µY

mγm
ζ̃ jmΩE

jk

(
d log Mm + d logµY

)
ΨB

ki

+
∑
k∈N

∑
m∈N

λB
m

∑
j∈E

(
1 − (1 − εm)

(
µq

mµ
y
m

)−1
) 1
µY

mγm
ζ̃ jmΩE

jkd log ME, jΨ
B
ki.

With non-overlapping entry, we use the following identity

Lemma 4. Under non-overlapping entry, the following identity holds:

∑
k∈N

∑
m∈N

∑
j∈E

λB
m(1 − (1 − εm)

(
µq

mµ
y
m

)−1
)

1
µY

mγm
ζ̃ jmΩE

jkd log MmΨB
ki

=
∑
k∈N

∑
m∈N

∑
j∈E

λB
m(1 − (1 − εm)

(
µq

mµ
y
m

)−1
)

1
µY

mγm
ζ̃ jmΩE

jkd log ME, jΨ
B
ki. (32)

Proof. Rearrange the left-hand side to be:

∑
k∈N

∑
m∈N

∑
j∈E

ζ̃ jmλπmΩE
jk

(
d log Mm − d log ME, j

)
ΨB

ki =
∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm − d log ME, j

)
=

∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm

)
− λE, jd log ME, j


=

∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm

)
− λE, jd log ME, j

 .
The free-entry condition is

PE, j =
∑
k∈N

ζ jkλπk

1
Mk
. (33)

λE, jd log PE, j =
∑
k∈N

ζ̃ jkλπkd logλπk −

∑
k∈N

ζ̃ jkλπkd log Mk,∑
k∈N

ζ̃ jkλπkd log Mk =
∑
k∈N

ζ̃ jkλπkd logλπk − λE, jd log PE, j
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ζ̃λπd log M = ζ̃λπd logλπ − λEd log PE.

On the other hand,
λEd logλE = λEd log ME + λEd log PE. (34)

Finally, note that, free entry requires that

λE = ζ̃λπ,

λEd logλE = ζ̃λπd logλπ + ζ̃d log ζ̃λπ.

If there is non-overlapping entry, then

d log ζ̃ = 0. (35)

Hence,

λEd log ME = λEd logλE − λEd log PE

= ζ̃λπd logλπ − λEd log PE

= ζ̃λπd log M.

Therefore, ∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm

)
− λE, jd log ME, j

 = 0, (36)

as needed. In general,

λE = ζ̃λπ,

λEd logλE = ζ̃λπd logλπ + dζ̃λπ

= ζ̃λπd logλπ + d log MEζ̃λπ − ζ̃d log Mλπ

Hence

λEd log ME = λEd logλE − λEd log PE

= ζ̃λπd logλπ + d log MEζ̃λπ − ζ̃d log Mλπ − λEd log PE

= ζ̃λπd log M + d log MEζ̃λπ − ζ̃d log Mλπ

= d log MEζ̃λπ
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In other words,

∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm − d log ME, j

) = 0. (37)

Simplify it a bit

ζ̃λπd log M = ζ̃λπζ̃
′(ζ̃λπζ̃′)−1

(
ζ̃λπd logλπ − λEΩEd log P

)
= ζ̃λπd logλπ − λEΩEd log P

λEd log ME = λE

(
(ζ̃λπζ̃′)−1

(
ζ̃λπd logλπ − λEΩFd log P

))
,

= diag(ζ̃λπ1)(ζ̃λπζ̃′)−1
(
ζ̃λπd logλπ − λEΩFd log P

)
.

Hence

ζ̃λπd log M − λEd log ME = ζ̃λπd logλπ

− diag(ζ̃λπ1)ΩFd log P

− diag(ζ̃λπ1)(ζ̃λπζ̃′)−1
(
ζ̃λπd logλπ − diag(ζ̃λπ1)ΩFd log P

)
=

(
IE×E − diag(ζ̃λπ1)(ζ̃λπζ̃′)−1

) (
ζ̃λπd logλπ − diag(ζ̃λπ1)ΩFd log P

)
where we use the fact that

(ζ̃λπζ̃′)−1
(
ζ̃λπd logλπ − λEΩEd log P

)
= d log ME, (38)

and
ζ̃′(ζ̃λπζ̃′)−1

(
ζ̃λπd logλπ − λEΩEd log P

)
= d log M. (39)

Hence, in general we have

∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm

)
− λE, jd log ME, j

 =
[(

IE×E − diag(ζ̃λπ1)(ζ̃λπζ̃′)−1
)

(
ζ̃λπd logλπ − diag(ζ̃λπ1)ΩFd log P

)]′
ΩEΨB. (40)

�
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Having defined
d log P̂ = ζ̃′(ζ̃λπζ̃′)−1λEΩFd log P, (41)

with the aid of the lemma above, if we have non-overlapping entry, we get the simpler
expressions

dλB
i = −

∑
m∈N

λB
m

∑
k∈N

ΩV
mkΨ

B
kid log

(
µq

mµ
y
mµ

Y
m

)
+

∑
j∈E

∑
m∈N

∑
k∈N

λB
m

(1 − εm)
γm

d log
(
µq

mµ
y
m

)
µq

mµ
y
mµ

Y
m

ζ̃ jmΩE
jkΨ

B
ki

−

∑
k∈N

∑
m∈N

∑
j∈E

λB
m

(
1 − (1 − εm)

(
µq

mµ
y
m

)−1
) 1
µY

mγm
ζ̃ jmΩE

jkd logµY
mΨB

ki

+
∑

m

λB
mµ

Y
m
−1

(1 − θm)CovΩ̃V,m

(
d log P,ΨB

(i)

)
.

�

Proof of Proposition 5. We start with

d log Y =
∑

i

bid log Ci

Cid log Ci = Yid log Yi −

∑
j∈N

x jid log x jiM j −

∑
j∈N

x jiM jd log M j −

∑
j∈E

xE, jid log xE, ji

PiCid log Ci = PiYid log Yi −

∑
j∈N

Pix jiM jd log x ji −

∑
j∈N

Pix jiM jd log M j −

∑
j∈E

PixE, jid log xE, ji

bid log Ci = λB
i d log Yi −

∑
j∈N

Pix ji

PY
M j

(
d log x ji + d log M j

)
−

∑
j∈E

PixE, ji

PY
d log xE, ji

d log Y =
∑
i∈N

λB
i d log Yi −

∑
j∈N

Pix ji

PY
M j

(
d log x ji + d log M j

)
−

∑
j∈E

PixE, ji

PY
d log xE, ji

 ,
=

∑
i∈N

λB
i d log Yi −

∑
j∈N

P jxi j

PY
Mi

(
d log xi j + d log Mi

)
−

∑
j∈E

PixE, ji

PY
d log xE, ji

 ,
We also have

PiYi = µY
i µ

y
i

γi

1 − εi
Mip

q
i q

q
i = µY

i γiMip
y
i yi.

Meanwhile, letting mcq be the marginal cost of producing q,

mcq
i

∂qi

∂xi j
= Pi,
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Hence
∂ log qi

∂ log xi j
= µq

i

Pixi j

pq
i qi

= µY
i µ

y
i µ

q
i

γi

(1 − εi)
Mi

Pixi j

PiYi
= µY

i µ
y
i µ

q
i

γi

(1 − εi)
MiΩ

V
ij , (42)

Furthremore,
d log qi =

∑
j

µq
i

p jxi j

piqi
d log xi j. (43)

So,

d log Yi =
1
γi

(
d log Mi + (1 − εi)d log qi

)
=

1
γi

d log Mi + (1 − εi)
∑

j

∂ log qi

∂ log xi j
d log xi j


=

1
γi

d log Mi + (1 − εi)
∑

j

µY
i µ

y
i µ

q
i

γi

(1 − εi)
MiΩ

V
ij d log xi j

 .
We can write

d log Y =
∑
i∈N

λB
i d log Yi −

∑
j∈N

P jxi j

PY
Mi

(
d log xi j + d log Mi

)
−

∑
j∈E
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 ,
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P jxi j
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d log xi j + d log Mi

)
−

∑
j∈E
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=

∑
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)
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=
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B
i
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Y
i µ

y
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[
γid log Yi − d log Mi + (1 − εi)d log Mi

]
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Y
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y
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Y
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y
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Y
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=
∑
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Y
i µ

y
i

 d log Yi

 +
∑
i∈N
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Finally, note that

λE, j =
∑

i
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y
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i µ

q
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 ζ̃i j

Hence,

d log Y =
∑
i∈N

λB
i

1 −
1

µq
iµ

Y
i µ

y
i

 d log Yi


+

∑
j∈E

∑
i∈N
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Diffrentiate this expression a second time with respect to d logµand d logµYand evaluate
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it at the efficient point to get

d2 log Y =
1
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i d log Yid log
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q
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Another way to write this is as

2d2 log Y =
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i d log Yid log
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y
i µ
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i

)
−

∑
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Where we use the fact that

d log Yi =
1
γi

d log yi +
1
γi

d log Mi (44)

and
d log Mi =

∑
j

ζ̃ jid log ME, j. (45)

Yet another representation is

d log Y =
∑
i∈N
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i

γi

1 −
1

µq
iµ

Y
i µ

y
i

 d log yi

 +
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2d2 log Y =
∑
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d log(µq
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Y
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y
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)
+

∑
j∈E
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)
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In the IRS case, this is

2d2 log Y =
∑
i∈N

λB
i d log(µq

iµ
Y
i µ

y
i )d log qi +

∑
i∈N

λB
i

γi
d logµY

i d log Mi (46)

�

Proof of Proposition 7. To prove this, for each industry with heterogeneous firms, we con-
struct an isomorphic industry with homogeneous firms which has the same price, quantity
and mass of entrants. To do this, consider some industry with heterogeneous firms, where
we drop the industry subscript to cut down on notation. The equations that determine
the industry’s mass of entrants, prices and quantity produced are

Y =

∑
i

Miyi

1/γ

yi = biq1−ε
i

py
i =

µy
i

bi

pq
i

1 − ε
qεi

pq
i =

µq
i p

inputs

Ai

PY = µYγip
y
i Y1− 1

γ

Mi = biM,

M =
1
γ
µY

∑
i

1 −
1 − ε
µq

iµ
y
i

λi,

where bi are the exogenous taste/productivity shifters for each firm. The comparison
industry with homogeneous firms is

Y∗ =
(
M∗y∗

) 1
γ

y∗ = q1−ε
∗

py
∗ = µy

∗

pq
∗

1 − ε
qε
∗

pq
∗ =

µq
∗p

inputs
∗

A∗
PY
∗

= µY
∗
py
∗Y1−1/γ

M∗ =
1
γ
µY
∗

(
1 −

1 − ε
µq
∗µ

y
∗

)
λ∗.

75



We want to have µq, µy, µY, A, such that we match the quantity Y = Y∗ and the price P = P∗

in the two cases. We need also want the mass of entrants to be the same.

M∗ = M (47)

hence

µY
∗

(
1 −

1 − ε
µq
∗µ

y
∗

)
= µY

∑
i

1 −
1 − ε
µq

iµ
y
i

 λi

λ∗

= µY

1 − (1 − ε)
∑

i

δi

µq
iµ

y
i

 ,
where δi is firm i’s sales shares in the industry. So, set

µY
∗

= µY (48)

µq
∗µ

y
∗ =

∑
i

δi

µq
iµ

y
i

−1

. (49)

To ensure that
PY = PY

∗
, (50)

we need

µy
∗µ

q
∗

1
A∗

qε
∗

=
µy

i µ
q
i

bi

1
Ai

qεi (51)

and we know that

PY = µY
µy

i

bi

µq
i p

inputs

(1 − ε)Ai
qεi γY1−1/γ (52)

Hence  biPY(1 − ε)Ai
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i µ

q
i p
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 = qεi (53)

Therefore,
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q
∗

1
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i µ

q
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1
Ai
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i µ

q
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∗ γµYpinputs
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q
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1
ε
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But we also must have

Y =

∑
i

Miq1−ε
i

 =
(
M∗q1−ε

∗

)
= Y∗ (54)

In other words

M∗
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=

∑
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(
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=

∑
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 Ai
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i µ

q
i
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ε

 (56)

or
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q
∗

∑
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i µ

q
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ε
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.

=

∑
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 Ai

µy
i µ

q
i /(µ

y
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q
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1−ε
ε


ε

1−ε

.

Let sectoral productivity be given by A∗ and sectoral markups be given by µ∗ where
recall that µq

iµ
y
i = µi. �

Proof of Lemma 5. First, we solve out for A as a function of primitives. To that end, note
that

λi =
Mpy

i yi

PYY
.

Use the fact that
py

i =
1

1 − ε
µq

iµ
y
i

(qi

bi

)ε
pinputs = PY. (57)

Hence

yi = bεi q1−ε
i = bεi
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iµ
y
i pinputs


1−ε
ε

. (58)

Next note that, firm i’s market share δi is given by

δi =
Myi

Y
=

Mbεi

(
PY(1−ε)bεi
µ

q
i µ

y
i pinputs

) 1−ε
ε

∑
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y
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ε
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=
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ε−1
ε

i∑
j b jµ

ε−1
ε

j

.

Hence, substituting in, we have
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∑
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µi

−1

,

=

∑
i
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−

1
ε

i∑
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j
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which means we can write
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ε


ε
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. (59)

First consider the derivatives of the sectoral productivity shifter

log A = −
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i bi
(
µi

)1− 1
ε

) ∑
i

biµ
1− 1

ε

i d logµi

2

−
1
ε

(1 − 1
ε )(∑

i bi
(
µi

)1− 1
ε

) ∑
i

biµ
1− 1

ε

i d logµ2
i


= −

1
ε

∑
i

bid logµ2
i

 +
1
ε

∑
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2

.

Obviously, at the efficient point d log A = 0.
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Now consider the log-derivative of the sectoral markup

d logµ∗ = −
1
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1
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biµ
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i d logµi∑
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=

∑
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�

Proof of Proposition 6. We assume there is one primary factor with no incumbents, no
input-output in entry costs. For a model with entry in sectors, we can assume away
within-industry heterogeneity momentarily. Therefore, we can assume entry is fully
directed. We use the deadweight loss triangles formula, along with the fact that for each
i ∈ N

d log Yi = d logλB
i − d log Pi.

So,

d logλB
l =

∑
k

(
δlk −

λB
k

λB
l

ΨB
kl

)
d logµq
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λ j

λl
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(l)), (60)

where δlk is Kronecker’s delta, and

d logλπi = d logλB
i +

( 1
εi
− 1

)
d logµi, (61)

d log P = ΨF

(
1 − ε
γ

d logµ
)

+ ΨF
(
ε
(
d logλ − d log λ̂π

))
,

= ΨF(1 − ε)d logµ −ΨF (1 − ε) d logµ = 0.

Hence

d logλB
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∑
k

(
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k

λB
l

ΨB
kl

)
d logµq

k, (62)

Furthermore, letting Λ denote labor’s share of income

d log ME = d logλπ − d log Λ,
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Combining everything gives
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∑
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Or
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∑
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This is the loss function for a model with homogeneous sectors.
To extend this into a sectoral model with within-sector heterogeneity, consider the

isomorphic sectoral model. We know that

d log Y =
d log Y
d log A

d log A +
d log Y
d logµ

d logµ (64)

1
2

d2 log Y =
1
2

d log A′
d2 log Y
d log A2 d log A+

d log Y
d log A

d2 log A+
1
2

d logµ′
d2 log Y
d logµ2 d logµ+

d log Y
d logµ

d2 logµ

(65)
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At the efficient point, d log A = 0 and d log Y/d logµ = 0,

−L =
1
2

d log Y
d log A

d2 log A +
1
2

d logµ′
d2 log Y
d logµ2 d logµ

where, from the proof of the previous proposition, we know that

d2 log Ak = −
1
2

1
ε
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(
d logµ(k)

)
. (66)

Finally, recall note that at the efficient point, from Hulten’s theorem, d log Y/d log A=

λB(1 − ε), so we get
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−
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)2

�

Appendix B Mapping Model to Data

Our calibrated model is sectoral in the formal sense defined in the paper. Our calibration is
very similar to Baqaee and Farhi (2019a), and we borrow much of the following discussion
from the Appendix of that paper.

We have two principal datasources: (i) aggregate data from the BEA, including the
input-output tables and the national income and product accounts; (ii) firm-level data
from Compustat. Below we describe how we treat the input-output data, merge it with
firm-level estimates of markups, and how we estimate markups at the firm-level.

B.1 Input-Output and Aggregate Data

Our input-output data comes from the BEA’s annual input-output tables. We calibrate
the data to the use tables from 1997-2015 before redefinitions. We also ignore the dis-
tinction between commodities and industries, assuming that each industry produces one
commodity. For each year, this gives us the backward expenditure share matrix ΩB at the
industry level. We drop the government, scrap, and noncomparable imports sectors from
our dataset, leaving us with 66 industries. We define the gross-operating surplus of each
industry to be the residual from sales minus intermediate input costs and compensation
of employees. The expenditures on capital, at the industry level, are equal to the gross
operating surplus minus the share of profits (how we calculate the profit share is described
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shortly). If this number is negative, we set it equal to zero. If any value in ΩB is negative,
we set it to zero.

In Appendix C, we supplement the markup estimates that are used in the main text
with three other estimates of markups. For each markup series, we compute the profit
share (amongst Compustat firms) for each industry and year, and then we use that profit
share to separate payments to capital from gross operating surplus in the BEA data for that
industry and year. Conditional on the harmonic average of markups in each industry-
year, we can recover the forward matrix ΩF = µΩ, also at the industry level. If for an
industry and year we do not observe any Compustat firms, then we assume that the profit
share (and the average markup) of that industry is equal to the aggregate profit share (and
the industry-level markup is the same as the aggregate markup).

We assume that the economy has an sectoral structure along the lines of Section 8,
so that all producers in each industry have the same production function up to a Hicks-
neutral productivity shifter. This means that for each producer i and j in the same industry
ΩF

ik = ΩF
jk. To populate each industry with individual firms, we divide the sales of each

industry across the firms in Compustat according to the sales share of these firms in
Compustat. In other words, if some firm i’s markup is µi and share of industry sales in
Compustat is x, then we assume that the mass of firms in that industry whose markups
are equal to µi is also equal to x. These assumptions allow us to use the markup data
and market share information from Compustat, and the industry-level IO matrix from the
BEA, to construct the firm-level cost-based IO matrix.

B.2 Estimates of Markups

Now, we briefly describe how our firm-level markup data is constructed. Firm-level
data is from Compustat, which includes all public firms in the U.S. The database covers
1950 to 2016, but we restrict ourselves to post-1997 data since that is the start of the
annual BEA data. We exclude firm-year observations with assets less than 10 million,
with negative book or market value, or with missing year, assets, or book liabilities. We
exclude firms with BEA code 999 because there is no BEA depreciation available for them;
and Financials (SIC codes 6000-6999 or NAICS3 codes 520-525). Firms are mapped to
BEA industry segments using ‘Level 3’ NAICS codes, according to the correspondence
tables provided by the BEA. When NAICS codes are not available, firms are mapped to
the most common NAICS category among those firms that share the same SIC code and
have NAICS codes available.
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B.2.1 Production Function Estimation Approach

This is our benchmark method for estimating markups, and the results in the main body
of the paper use this approach. For reference, we will call this the production function
estimation (or PF) markups.

For the production function estimation approach markups, we follow the procedure
PF1 described by De Loecker et al. (2019) with some minor differences. We estimate
the production function using Olley and Pakes (1996) (OP) rather than Levinsohn and
Petrin (2003). We use CAPX as the instrument and COGS as a variable input. We use the
classification based on SIC numbers instead of NAICS numbers since they are available for
a larger fraction of the sample. Finally, we exclude firms with COGS-to-sales and XSGA-
to-sales ratios in the top and bottom 2.5% of the corresponding year-specific distributions.
As with the other series, we use Compustat excluding all firms that did not report SIC or
NAICS indicators, and all firms with missing sales or COGS. Sales and COGS are deflated
using the gross output price indices from KLEMS sector-level data. CAPX and PPEGT –
using the capital price indices from the same source. Industry classification used in the
estimation is based on the 2-digit codes whenever possible, and 1-digit codes if there are
fewer than 500 observations for each industry and year.

To compute the PF Markups, we need to estimate elasticity of output with respect
to variable inputs. This is because once we know the output-elasticity with respect to a
variable input (in this case, the cost of goods sold or COGS), then following ?, the markup
is

µi =
∂ log Fi/∂ log COGSi

Ωi,COGS
,

where Ωi,COGS is the firm’s expenditures on COGS relative to its turnover.
The output-elasticities are estimated using Olley and Pakes (1996) methodology with

the correction advocated by Ackerberg et al. (2015) (ACF). To implement Olley-Pakes in
Stata, we use the prodest Stata package. OP estimation requires:

(i) outcome variable: log sales,

(ii) ”free” variable (variable inputs): log COGS,

(iii) ”state” variable: log capital stock, measured as log PPEGT in the Compustat data,

(iv) ”proxy” variable, used as an instrument for productivity: log investment, measured
as log CAPX in Compustat data.

(v) in addition, SIC 3-digit and SIC 4-digit firm sales shares were used to control for
markups .
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Given these data, we run the estimation procedure for every sector and every year.
Since panel data are required, we use 3-year rolling windows so that the elasticity estimates
based on data in years t − 1, t and t + 1 are assigned to year t. The estimation procedure
has two stages: in the first stage, log sales are regressed on the 3-rd degree polynomial
of state, free, proxy and control variables in order to remove the measurement error and
unanticipated shocks; in the second stage, we estimate elasticities of output with respect
to variable inputs and the state variable by fitting an AR(1) process for productivity to
the data (via GMM). Just like in De Loecker et al. (2019), we control for markups using a
linear function of firm sales shares (sales share at the 4-digit industry level).

In our benchmark estimates, we treat SG&A as a fixed cost. However, for robustness,
following De Loecker et al. (2019), we also compute markups using an approach where
SG&A is treated as a variable input in production. We call these the PF2 markups. The
overall estimation is still done via the ACF-corrected OP method (with CAPX as a proxy).

Finally, before feeding these markup estimates into the structural model, we winsorize
the markups at the 20th and 80th percentile to reduce the influence of outliers.

B.2.2 User Cost Approach

Our second approach to measuring markups is the user-cost approach (UC) markups.
The idea here is to recover the profits of a firm by subtracting total costs from revenues.
To compute total cost, we must measure the cost of capital. For this measure, we rely on
the replication files from Gutiérrez and Philippon (2016) provided German Gutierrez. For
more information see Gutiérrez and Philippon (2016). To recover markups, we assume
that operating surplus of each firm is equal to payments to both capital as well as economic
rents due to markups. We write

OSi,t = rki,tKi,t +

(
1 −

1
µi

)
salesi,t,

where OSi,t is the operating income of the firm after depreciation and minus income taxes,
rki,t is the user-cost of capital and Ki,t is the quantity of capital used by firm i in industry
j in period t. This equation uses the fact that each firm has constant-returns to scale. In
other words,

OSi,t

Ki,t
= rki,t +

(
1 −

1
µi

)
salesi,t

Ki,t
, (67)
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To solve for the markup, we need to account for both the user cost (rental rate) of capital
as well as the quantity of capital. The user-cost of capital is given by

rki,t = rs
t + KRP j − (1 − δki,t)E(Πk

t+1),

where rs
t is the risk-free real rate, KPR j is the industry-level capital risk premium, δ j is the

industry-level BEA depreciation rate, and E(Πk
t+1) is the expected growth in the relative

price of capital. We assume that expected quantities are equal to the realized ones. To
calculate the user-cost, the risk-free real rate is the yield on 10-year TIPS starting in 2003.
Prior to 2003, we use the average spread between nominal and TIPS bonds to deduce the
real rate from nominal bonds prior to 2003. KRP is computed using industry-level equity
risk premia following Claus and Thomas (2001) using analyst forecasts of earnings from
IBES and using current book value and the average industry payout ratio to forecast future
book value. The depreciation rate is taken from BEA’s industry-level depreciation rates.
The capital gains E(Πk

t+1) is equal to the growth in the relative price of capital computed
from the industry-specific investment price index relative to the PCE deflator. Finally, we
use net property, plant, and equipment as the measure of the capital stock. This allows us
to solve equation (67) for a time-varying firm-level measure of the markup. We winsorize
markups at the 5-95th percentile by year.

B.2.3 Accounting Profits Approach

The final approach to estimating markups is the accounting profits approach (AC). For
the accounting-profit approach markups, we use operating income before depreciation,
minus depreciation to arrive at accounting profits. Our measure of depreciation is the
industry-level depreciation rate from the BEA’s investment series. The BEA depreciation
rates are better than the Compustat depreciation measures since accounting rules and tax
incentives incentivize firms to depreciate assets too quickly. We use the expression

pro f itsi =

(
1 −

1
µi

)
salesi,

to back out the markups for each firm in each year. We winsorize markups and changes
in markups at the 5-95th percentile by year. Intuitively, this is equivalent to assuming that
the cost of capital is simply the depreciation rate (equivalently, the risk-adjusted rate of
return on capital is zero). The advantage of this approach is its simplicity.
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Appendix C Additional Quantitative Results

IRS, 1 − ε = 0.875 No Entry Entry uses Factors Entry uses Goods and Factors

PF2 Markups 12% 39% 47%
UC Markups 3.0% 23% 34%
AC Markups 4.5% 54% 75%

IRS, 1 − ε = 0.75 No Entry Entry uses Factors Entry uses Goods and Factors

PF2 Markups 24% 32% 31%
UC Markups 7.2% 15% 17%
AC Markups 11% 14% 14%

DRS, 1 − ε = 0.875

PF2 Markups 19% 25% 25%
UC Markups 6.0% 11% 11%
AC Markups 8.2% 13% 12%

DRS, 1 − ε = 0.75

PF2 Markups 9.0% 28% 29%
UC Markups 4.8% 40% 43%
AC Markups 2.6% 18% 19%

Table 3: The gains from moving to the efficient allocation. The IRS specification sets
γI = 1−εI = 0.875 and uses an imperfect-substitutes interpretation. The DRS specification
sets γI = 1, 1 − εI = 0.875 and uses a perfect-substitutes interpretation.

Appendix D Additional Examples

This section contains a detailed analysis of the “horizontal” and “vertical” economy.

D.1 Horizontal Economy

Next, to see the importance of directed versus undirected entry, consider the economy
depicted in Figure 4. For simplicity, suppose entry costs are paid in units of labor. Since
this economy is more complex, for brevity, we consider only productivity shocks to the
producers 1 through to N (we do not shock labor). For the economy in example 4, it is
easy to verify using the definition that the forward and backward Domar weight coincide
λB

i = λF
i = λY

i (even though the economy may be inefficient). Accordingly, for this example,
we drop the superscripts and write λi.
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· · ·1 N

L
Yi = (Miyi)

1
γi , yi = l1−εi

i ,

ME, j =

N∑
i=1

ζ ji
λπi

wL
, L =

N∑
i=1

li +

E∑
j=1

ME, j,

Mi =

N∑
j=1

ζ jiME, j, Y =

 N∑
i=1

λ̄iY
θ0−1
θ0

i


θ0
θ0−1

.

Figure 4: Horizontal Economy. The solid and dashed arrows represent the flow of
resources for production and for entry. The sole factor for this economy is indexed by L.
The equations assume free-entry, for the no-entry case, treat Mi as exogenous.

DRS with Directed Entry. In this case E = N, ζ is the identity matrix, and 1− εi < γi = 1.
Theorem 3 takes a very simple form

d log Y = Eλ(d log A),

where Eλ is the expectation operator with respect to the sales shares λ, using the fact
that λF

i = λB
i = λY

i . In this economy, a productivity shock to i could increase or decrease
the sales of industry i (depending on the elasticity of substitution across industries). The
change in the size of industry i will change the pattern of entry, as entrants enter into the
industries that expand and leave the industries that shrink. In equilibrium, no individual
producer changes their scale of operation, and all the adjustment in industry size comes
through the extensive margin. Therefore, in equilibrium, the only reason prices changes
is because of the changes in productivity (i.e. the prices of producer-specific quasi-fixed
factors do not change).

Superficially, it looks like this example satisfies Hulten’s theorem, since the elasticity
of output with respect to each productivity shock is given by the sales share. Surprisingly,
the initial value of markups µ are not relevant in this case! Although the allocation matrix
clearly does change in this example, the reallocation happens purely on the entry margin,
and resources along the intensive margin are not reallocated. Proposition 2 shows that
the reallocations caused by technology shocks in this example are neutral (much like they
would be if the initial allocation had been efficient). Using the notation of Section 5.2,
while reallocations do happen in this economy dX/d log A , 0, these reallocations do not
affect allocative efficiency d log Y/dXdX = 0. In fact, as example 3 shows, this property
always holds as long as (1) entry is directed and (2) there is only one incumbent industry
(i.e. one primary factor).
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DRS with Undirected Entry. Since entry is undirected, ζ is 1 × |N| and entrants are
randomly assigned to different products according to the existing market share of those
products ζ1i = λi. In this case, in response to productivity shocks d log A, we have

d log Y = Eλ(d log A) −
∑

j

ε jλ j

(
d logλπ j − d log λ̂π j

)
,

where we again use λF
i = λB

i = λY
i . The first term is the direct effect of the productivity

shock on consumer prices, holding fixed the price of fixed factors, and the second term
is the change in the price of those factors. Equivalently, the first term is the direct effect
of the productivity shock, holding fixed the allocation matrix, and the second term is the
change in the allocation matrix.

After some algebra, we can break the reallocation effect into two terms

d log Y − Eλ(d log A) =

[
Eλ(ε) − Eλ

(
1 −

1 − ε
µ

)] Covλ
(
1 − 1−ε

µ , d logλ
)

Eλ
(
1 − 1−ε

µ

)
+

[
Covλ

(
1 −

1 − ε
µ

, d logλ
)
− Covλ(ε, d logλ)

]
. (68)

Consider the first term and note that

d log M = d log λ̂π =
Covλ

(
1 − 1−ε

µ , d logλ
)

Eλ
(
1 − 1−ε

µ

) .

In this example, producers are enjoying both Ricardian and monopolistic rents, and the
rent share of sales is 1 − (1 − εi)/µi. Therefore, when Covλ

(
1 − 1−ε

µ , d logλ
)
> 0, this means

relatively more profitable industries are expanding, and this stimulates entry. If we were
to fix the fraction of production labor working in each i constant, more entry would be
beneficial if, and only if, the total rent share is lower than the Ricardian rent share:

Eλ(ε) > Eλ
(
1 −

1 − ε
µ

)
.

This is because the optimal amount of entry occurs whenever total rents equal Ricardian
rents (i.e. there are no monopolistic rents in aggregate). If the condition above holds, then
we have too little entry in equilibrium, and so an increase in entry, holding all else equal,
is beneficial. Putting these two observations together, the first line of (68) is then the effect
of the change in entry, holding fixed the share of production labor working in each i.
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The second line of (68) accounts for all else not being equal. Because entry is untargeted,
the share of workers across firms changes. This redistribution is beneficial when expansion
covaries more with total (Ricardian and monopolistic) rents than with Ricardian profits,
since in this case firms with relatively higher markups are scaling up. This is beneficial
because a relatively higher markup implies those firms had relatively too few workers
allocated to them.

Using the forward and backward propagation equations, we can solve this out in terms
of primitives

d log Y = Eλ
(
d log A

)
+ Eλ (ε)

Covλ
(
1 − 1−ε

µ ,
1
εd log A

)
Eλ

(
1 − 1−ε

µ

) −
Covλ(ε, 1

εd log A)
Eλ (ε)

 .
In the case where every firm has the same returns to scale εi = ε for every i ∈ N , the
expression simplifies further to just

d log Y = Eλ(d log A) + Covλ

1 − 1−ε
µ

1 − 1−ε
µ̄

,d log A

 ,
where µ̄ = Eλ(µ−1)−1 is the harmonic average markup. In this case, since all producers
have the same returns to scale, a change in sales shares d logλ can only stimulate entry if
the high markup firms are expanding, and since entry is undirected, this means that the
high markup firms are expanding their scale, which is beneficial.

IRS with Directed Entry. Now, suppose that 1 − εi = γi ∈ (0, 1), and adopt the product
differentiation interpretation. In other words, each i is produced using a CES aggregator
with elasticity of substitution 1/(1−γi). Assume that love-of-variety within each industry
is weaker than love-of-variety across industries, or 1/(1 − γi) ≥ θ0 for every i; otherwise,
output may be non-differentiable.33

Applying Theorem 3, we get

d log Y = Eλ(d log A) + Covλ

(
1
γ
, d logλ

)
.

The first term is the usual change in prices along the intensive margin, for a fixed mass
of entrants. The second term is how the change in the market share of different product
types affects profits and hence, entry. If i expands at the expense of other industries, then

33See Ciccone and Matsuyama (1996) for an explanation of why output becomes non-differentiable in
this case.
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this stimulates further entry into i, and this can increase or reduce output depending on
whether i has greater or less external economies than the rest of the economy.34 Unlike the
case with DRS, in this case, the elasticities of substitution are very important in determining
the response of output.

Define the vector θ = 1/(1−γ), where θ can be interpreted as the within industry elas-
ticity of substitution (across different producers in each i ∈ N) and θ0 is the cross-industry
elasticity of substitution. Using the backward and forward propagation equations we can
write the response of output in terms of primitives

d log Y = Eλ
(
d log A

)
+

Covλ
(
θ−1
θ−θ0

, d log A
)

Eλ
(
θ−1
θ−θ0

) .

So, if the cross-industry elasticity of substitution θ0 > 1, and the shocks negatively covary
with θi, then we have beneficial reallocation. Intuitively, when the shocks negatively
covary with θi, then sectors with stronger scale effects are receiving more positive shocks,
this causes more entry in those sectors as long as different sectors are substitutes, which
allows the effects of entry to reinforce itself. If sectors are complements, then these forces
operate in reverse.

Interestingly, the initial value of markups µ are not relevant to the comparative statics.
As with the DRS directed entry example, this stems from the fact that the reallocation
occurs purely on the entry margin, and resources along the intensive margin are not
reallocated. This means we do not have to compare the marginal benefit of reallocating
resources across different i (which would necessitate comparing relative markups).

IRS with Undirected Entry. Use the same elasticities of before, but now suppose that ζ
is 1 × |N|with ζ1i = λi. Theorem 3 simplifies to give

d log Y = Eλ
(
d log A

)
+ Eλ

( 1
θ − 1

)
Covλ

1 − 1
µ

1 − 1
µ̄

, d logλ


The first term is just the usual change in prices along the intensive margin, for a fixed

mass of entrants. The second term considers how the change in the market share of

34Whether or not i expands in equilibrium, in turn, depends on the strength of returns to scale in i, since
as more entry occurs the price effects of the initial entry are reinforced. Using Proposition 4,

d logλi = (1 − θ0)
θi − 1
θ − θ0

(
−d log Ai + d log Y

)
,

where θi = 1/(1 − γi).
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different product types affects profits and hence, entry. If i has relatively higher margins
than the rest of the economy, then an increase in the sales of i will stimulate additional
entry, but because entry is undirected, the benefits of this entry depend on the average of
external economies across all products.35 For brevity, suppose that θi is the same for all i,
then we can write

d log Y = Eλ
(
d log A

)
+ Eλ

(
θ0 − 1
θ − 1

)
Covλ

1 − 1
µ

1 − 1
µ̄

,d log A

 .
In words, high-markup sectors expand if productivity shocks covary positively with
the Lerner index 1 − 1/µ, and if the elasticity of substitution across industries θ0 > 1,
so that sectors receiving positive shocks expand. Compared to the previous example,
reallocations do occur on the intensive margin of production, and so the level of markups
is relevant for determining the welfare consequences of reallocation.

D.2 Vertical Economy

The final example we consider is the supply-chain in Figure 5 where entry costs are paid in
units of labor but there are input-output linkages in production. Once again, consider the
DRS model γ = 1 (with the perfect substitutes interpretation) and the IRS model γ = 1− ε
(with the imperfect substitutes interpretation).

HH12L

Yi = (Miyi)
1
γi , y2 = l1−ε2

2 ,

y1 = (Y2/M1)1−ε1 , Mi =
λπi

wL
,

L = M2l2 + M1 + M2, Y = Y1.

Figure 5: Vertical Economy. The solid and dashed arrows represent the flow of resources
for production and for entry, respectively. The sole factor for this economy is indexed by
L. The equations assume free-entry, for the no-entry case, Mi are exogenous.

35Whether or not i expands in equilibrium, in turn, depends on the strength of returns to scale in i
relative to the other sectors; as more entry occurs, all product types experience more entry, and relative
prices diverge due to differences in external economies of scale. Consider a univariate shock to i. Using
Proposition 4, whether this shock results in substitution towards or away from i depends on the elasticity
of substitution across products θ0:

d logλi = (1 − θ0)
(
−

1
θi − 1

1
1 − µ̄

Covλ(1 −
1
µ
, d logλ) − d log Ai + d log Y

)
.
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No Entry. Without entry, this model’s behavior is trivial. Since there is only one feasible
allocation of resources, the equilibrium is efficient regardless of the value of µY and µ. In
other words, the allocatin matrix does not change dX = 0. Hence, Corollary 2 implies
that

d log Y = λF
1 d log A1 + λF

2 d log A2 + 0 d logµ1 + 0 d logµ2.

The model’s behavior only becomes interesting once we all for the possibility of free entry.

DRS with Directed Entry. In this case, Theorem 3 implies that

d log Y = d log A1 + µ1λ2d log A2 −
(1 − ε1)/µ1

1 − (1 − ε1)/µ1

(
µ1 − 1

)
d logµ1

− µ1λ2
(1 − ε2)/µ2

1 − (1 − ε2)/µ2

(
µ2 − 1

)
d logµ2.

Whether an increase in markups raises or reduces output depends on whether or not firms
in each product market were above or below their efficient scale (i.e. µi is greater than or
less than 1).

IRS with Directed Entry. In this case, Theorem 3 becomes

d log Y = d log A1 + µ1λ2d log A2

+

(
1

(ε1 − 1) (µ1 − 1)
−

1
(ε2 − 1)

− 1
)

d logµ1 + µ1λ2

(
1

(ε2 − 1)(µ2 − 1)
− 1

)
d logµ2.

Unlike the DRS case, the scale elasticities interact with one another. First, consider the
upstream markups d logµ2. When µ2 = 1/(1−ε2), a change in upstream markups have no
effect on welfare. Intuitively, at this level of markups, d logµ2 does not affect the price of
industry 2 — an increase in markups raises the individual price but, by stimulating entry,
increases product variety. When µ2 = 1/(1 − ε2), these two effects exactly cancel (this is
exactly the markup associated with a Dixit-Stiglitz market structure).

Furthermore, regardless of the value of µ2, a change in µ2 has no effect on production
and entry downstream, since downstream profitability is not a function of upstream prices.
This is because profits generated downstream are λπ1 = (1 − 1/µ1) and do not depend on
µ2. So, when µ2 = 1/(1 − ε2), a change in µ2 has no effect on upstream or downstream
prices.

Markups downstream µ1 are a very different story. If µ1 = 1/(1 − ε1), then an increase
d logµ1 reduces output by −1/(ε2 − 1). Intuitively, this is because a higher µ1 reduces
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profitability upstream. The stronger are external economies upstream (the closer is ε2 to
one), the more costly are increases in markups downstream. An increase in downstream
markups d logµ1 increases entry downstream at the expense of entry upstream. Contrast
this with the DRS example where the scale elasticities upstream were irrelevant.

This example can rationalize why upstream or “linkage” industries, like semiconduc-
tors, which appear in supply chains of many other industries, are commonly touted as
prime candidates for industrial policy. Upstream industries are likely to be those indus-
tries which are double-marginalized most intensely, and therefore, even if all industries
have the same external economies of scale, double-marginalization implies that industries
that are relatively upstream experience too little entry in the decentralized equilibrium.
Therefore, subsidizing their entry can improve welfare. These questions, about the con-
duct of and gains from industrial policy lead naturally to the next section of the paper.

D.2.1

Baqaee and Farhi (2019a) show that in one-factor models without entry, the loss function
is a linear combination of elasticities of substitution — each elasticity is weighted by some
sufficient statistic that depends on forward and backward input-output matrix. This is no
longer true once we allow free-entry.

For example, consider the simple supply chain depicted in Figure 5. In this economy,
without free entry, the losses from markups are equal to zero since there is only one
feasible allocation of resources, and wedges do not distort any decisions.

However, if we allow for free entry into each industry, the loss function is given by

L =
1
2

θ2
1θ2

θ1θ2 − 1
(
d logµ1

)2
+

1
2
θ2

(
d logµ2

)2 .

The losses from an increase in downstream markups now depend on the elasticity of sub-
stitution upstream. Intuitively, an increase in markups downstream deprives upstream
producers from sales — this lowers entry upstream. In other words, the markup down-
stream distorts the entry margin upstream. In the case where upstream entry is irrelevant
θ2 → ∞, the losses in downstream markups simplify to the usual 1/2θ1(d logµ1)2, which
is what we had in the one-sector example.
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Appendix E Additional Examples for Theorem 3

To build more intuition, consider the CRS, DRS, and IRS special cases of Theorem 3,
limiting attention to univariate perturbations d log Ai and d logµi. Assume µY

i = 1/γi

throughout, consistent with both the perfect-substitutes and imperfect-substitutes inter-
pretation.36

Example 1 (CRS without Entry). No entry means that ζ = 0, and since there is no entry,
constant-returns can be achieved by γi = (1 − εi). Hence, Theorem 3 reduces to

d log Y = λF
i
(
d log Ai − d logµ

)
−

∑
f∈F

λF
f d logλB

f ,

where F is the set of primary factors. Recall that a primary factor is simply an incumbent
with zero returns to scale εi = 1, produced by incumbents. This recovers the main result
in Baqaee and Farhi (2019a). For comparison to the next example, note that when there is
only one primary factor, say labor indexed by L, we get

d log Y = λF
i
(
d log Ai − d logµi

)
− d logλB

L ,

whereλB
L is labor’s share of income (or equivalently, the backward Domar weight of labor).

Example 2 (CRS with Entry). Next, modify the example above to allow for entry. To make
the model CRS, assume that γi = 1− εi = 1 for all non-factor goods with directed entry. In
this case, Theorem 3 reduces to

d log Y = λF
i
(
d log Ai − d logµi

)
−

∑
f∈F

λF
f d logλB

f .

Superficially, this looks identical to the previous example, but it is not. The reason is that
with entry, the factor shares behave differently, even though the same equation holds.
The clearest example is when we restrict the model to have one primary factor, where the
comparative static becomes37

d log Y = λF
i
(
d log Ai − d logµi

)
− d logλB

L = λF
i
(
d log Ai − d logµi

)
. (69)

The change in the labor share d logλB
L disappears because it is always equal to zero. This

is because in the model with entry, labor’s share in aggregate income must always equal
36Setting µY

i = 1/γi ensures that the aggregator Yi = (Miyi)1/γi generates neither profits nor losses. This
is implicitly the assumption one makes whenever one uses a CES aggregator.

37Equation (69) is reminiscent of Liu (2017).
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one. Whereas, the model without entry necessitated knowing changes in the labor share,
an object that depends on details like the elasticities of substitution and the shape of the
production network, the one-factor model with entry does not require this information
because the labor share never changes.38

Example 3 (DRS with Entry). Consider again a model with only one factor of production,
decreasing returns εi ∈ (0, 1], and no external economies γi = 1. To build even more
intuition, suppose entry is fully directed so that Theorem 3 simplifies to

d log Y =λF
i

d log Ai −
1 − εi

1 − 1−εi
µi

(
1 −

1
µi

)
d logµi

 .
The first term corresponds to the technology effect working its way through the forward
linkages.

The second term, which depends on d logµi is zero around the efficient point µi = 1.
At the efficient point, an increase in markups induces entry but shrinks each individual
producer’s scale of operation. At the efficient point, these effects cancel out to a first order.

A surprising property of this model is that the elasticities of substitution in consump-
tion and in production across i ∈ N are irrelevant to a first-order. In this model, relative
prices are pinned down independently of demand despite the fact that the model is inef-
ficient and has decreasing returns to scale technology. Intuitively, this is because a shock
to i only reallocates resources across the intensive and extensive margin in i and there is
no substitution across i’s. 39,40

38In this version of the model, since 1 − ε = γ = 1, entry is socially wasteful. This means the model has
an unusual property at odds with a basic finding of neoclassical economics (exposited most famously by
Harberger, 1964). In ‘standard’ models, introducing a distorting wedge has no effect on output to a first
order starting at the efficient point (for a formal proof see e.g. Baqaee and Farhi, 2019a). In this example,
at the efficient equilibrium, a marginal increase in markups does reduce output: d log Y/d logµi = −λF

i .
Why does the classic intuition fail in this model? The reason is that in this model, the marginal increase
in markups around the efficient point induces entry. However, because producers have constant returns
to scale, entry is socially wasteful, so the marginal social benefits between entry and non-entry are not
equated, and therefore, reallocating resources towards entry reduces output to a first-order. In this version
of the model, an increase in markups acts exactly like a negative productivity shock — destroying, rather
than reallocating, resources. Of course, even in this version of the model, a wedge shock (i.e. d logµY

i ) does
not behave this way. For shocks to µY, the labor share changes, which means that we would then need to
know something about the input-output network and the elasticities of substitution (information required
to solve for the change in the labor share).

39Unlike Example 2, this example does not have the exotic property described before. At the efficient
allocation d log Y/d logµi = 0, even when entry is not fully directed. This is because entry, even when
its not fully directed, is not socially wasteful. Entry helps to overcome diminishing returns to scale in the
individual production functions, and so around the efficient point, marginal benefits of all activities are
being equated. Therefore, introducing a markup at the efficient point does not reduce output.

40This result is reminiscent of the no-substitution theorem (Georgescu-Roegen, 1951; Samuelson, 1951).
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If we drop the assumption that entry is fully directed, Theorem 3 becomes

d log Y =λF
i

d log Ai −
1 − εi

1 − 1−εi
µi

(
1 −

1
µi

)
d logµi

 − λFε ·
(
d logλπ − d̂ logλπ

)
.

Since entry is not directed, we must account for the residual rents. If for some product
k ∈ N , there is a large increase in profit shares d logλπk without an accompanying increase
in the projection d̂ logλπk

, then this means that entry is not able to respond to the increase
in profitability. In this case, the individual producers in k are earning higher rents,
their producer-specific factors are becoming more expensive, and this negatively affects
output by a degree dependent on how valuable those producer-specific fixed factors are
to production εk.

Example 4 (IRS with Entry). Finally, consider the IRS case with γi = 1 − εi < 1 for every
i ∈ N (except the factors). This coincides with using a CES aggregator with love-of-variety,
where the product-level elasticity of substitution is 1/εi = 1/(1 − γi). Since products are
aggregated using a CES aggregator, adopt the imperfect substitutes interpretation in
Proposition 1 µY

i = 1/γi and µy
i = (1 − εi). Since µY

i > 1, this implies the model is no
longer efficient. For simplicity, continue to assume there is only one primary factor and
no incumbents. Then Theorem 3 becomes

d log Y = λF
i
(
d log Ai − d logµi

)
+

∑
k∈N

λF
k

(
1
γk
− 1

)
d̂ logλπk

.

In the previous DRS example, the key object were the residuals. In this case, the key
objects is the projection in the regression. This is because now, a large projected value
d̂ logλπk

means that increased rents are being captured by new entrants, and increased
entry into product type k boosts output because k is produced with increasing returns on
the margin. The closer is γ to one, the weaker is the love-of-variety effect, and the less
important are the increasing returns to scale and changes in quasi-rents.

Appendix F Extensions

In this section, we consider some extensions to the basic model. First, we consider relaxing
Assumption 1. Next, we consider an extension where factor supply is endogenous.

However, it holds under different assumptions: in particular, one does not need to assume constant returns
to scale, nor perfect competition. The classic no-substitution theorem requires both assumptions, and will
fail if either postulate is vioalted.
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F.1 Relaxing Assumption 1

In this section, we relax Assumption 1 by considering how the model changes if (i) entry
happens via a non-iso-elastic Kimball (1995) aggregator, and (ii) if the extent of decreasing
returns to scale is variable.

F.1.1 Relaxing IRS

For the IRS benchmark, we can relax the assumption that entry happens via a CES aggre-
gator by using the Kimball demand system instead. In other words, index firms in market
i by some parameter θ, and suppose the production function is given by

yi(θ) = Ai(θ)
[

fi(xi j(θ))
]1−εi

, (70)

where fi has constant returns to scale. Next, suppose that the inputs into the production
function are defined implictly via the equation:

1 =

∫
Υi j

(
xi j(θ, θ′)

xi j(θ)

)
M j(θ′)dθ′, (71)

where Υi j is an increasing concave function and M j(θ) is the mass of type θ firms in j ∈ N .
The resource constraint for the output of this firm is then

yi(θ) =
∑

j

∫
x ji(θ′, θ)M j(θ′)dθ′ + ci(θ′). (72)

Let P(i, j) be the marginal cost of input xi j(θ).Because of homotheticity, we can consider the
marginal cost of xi j(θ) as depending only on {p j(θ′),M j(θ′)}θ′ . Define for each (i, j) ∈ N2,

the linear operator s(i, j) : L2(R)→ R

s(i, j) · z =

∫ (
pi(θ′)xi j(θ, θ′)Mi(θ′)

P(i, j)xi j(θ)

)
z(θ′)dθ. (73)

Then we can write the change in the marginal cost of xi j

d log P(i, j) = s(i, j) · d log p j − s(i, j) ·
[
(δi j − 1)d log M j

]
, (74)

where

δi j(θ) =

(∫
Υ′

(
xi j(θ, θ′)

xi j(θ)

)
xi j(θ, θ′)

xi j(θ)
M j(θ′)dθ′

)−1

. (75)
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By homotheticity, δi j(θ) is not a function of θ. The variable δi j > 1 measures the love-of-
variety effect in this model.

By Shephard’s lemma

d log pi(θ) = −d log Ai(θ) + d logµi(θ) +
∑

j

ΩF
ijd log P(i, j) +

εi

1 − εi
d log yi(θ)

= −d log Ai(θ) + d logµi(θ) +
∑

j

ΩF
ijd log P(i, j) +

εi

1 − εi
d logλi(θ)

−
εi

1 − εi
d log Mi(θ) −

εi

1 − εi
d log pi(θ)

= −(1 − εi)d log Ai(θ) + (1 − εi)d logµi(θ) + (1 − εi)
∑

j

ΩF
ijd log P(i, j)

+ εi
(
d logλi(θ) − d log Mi(θ)

)
Therefore

d log P(i, j) = s(i, j) ·

−(1 − εi)d log Ai(θ) + (1 − εi)d logµi(θ) + (1 − εi)
∑

j

ΩF
ijd log P(i, j)


+ s(i, j) ·

(
εi

(
d logλi(θ) − d log Mi(θ)

))
− s(i, j) ·

[
(δi j − 1)d log M j

]
=

s(i, j) · (1 − εi)d log
µi(θ)
Ai(θ)

+ (1 − εi)
∑

j

ΩF
ijd log P(i, j)


+ εis(i, j) ·

(
d logλi(θ) − d log Mi(θ)

)
− s(i, j) ·

[
(δi j − 1)d log M j

]
We also have that

λπi(θ) =

(
1 −

1 − εi

µi(θ)

)
λi(θ). (76)

Define the function ζ j(i, θ) to be the mass of entrant j mapped to (i, θ).Zero-profit condition
for type j entrant is

Eζ j

(
λπi(θ)

)
= PE, (77)

where the expectation is with respect to ζ j. We also have

Mi(θ) =

∫
E
ζ j(i, θ)ME, jdj. (78)
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So we can write

d logλπi(θ) = d logλi(θ) +

1−εi
µi(θ)(

1 − 1−εi
µi(θ)

)d logµi(θ) (79)

∑
i

∫
ζ j(i, θ)

λπi(θ)
Mi(θ)

(
d logλπi(θ) − d log Mi(θ)

)
dθ = PEd log PE (80)

d log Mi(θ) =

∫
E
ζ j(i, θ)ME, jd log ME, jdj∫

E
ζ j(i, θ)ME, jdj

. (81)

Let ζ̃ : E→ RNand λπ : RN → RNbe linear operators. Then we can write

d log Mi(θ) = ζ̃ · d log ME (82)

ζ̃∗ · λπ · d logλπ − ζ̃∗ · λπ · d log M = PEd log PE (83)

ζ̃∗ · λπ · d logλπ − ζ̃∗ · λπ · ζ̃ · d log ME = PEd log PE(
ζ̃∗ · λπ · ζ̃

)−1 (
ζ̃∗ · λπ · d logλπ − PEd log PE

)
= d log ME

ζ̃ ·
(
ζ̃∗ · λπ · ζ̃

)−1 (
ζ̃∗ · λπ · d logλπ − PEd log PE

)
= d log M,

where ζ̃∗is the adjoint operator. Define

d log λ̂π = ζ̃ ·
(
ζ̃∗ · λπ · ζ̃

)−1
ζ̃∗ · λπ · d logλπ

Hence, the forward equation becomes

d log P(i, j) =

s(i, j) · (1 − εi)d log
µi(θ)
Ai(θ)

+ (1 − εi)
∑

j

Ωi jd log P(i, j)

 (84)

+
(
εis(i, j) ·

(
d logλi(θ) − d log Mi(θ)

))
− s(i, j) ·

[
(δi j − 1)d log M j

]
(85)

=

s(i, j) · (1 − εi)d log
µi(θ)
Ai(θ)

+ (1 − εi)
∑

j

Ωi jd log P(i, j)

 (86)

+
(
εis(i, j) ·

(
d logλi(θ) − d logλπ(θ) + ζ̃ ·

(
ζ̃∗ · λπ · ζ̃

)−1
ζ̃∗ · λπ · λE ·Ω

Ed log P(i, j)
))

99



− s(i, j) · (δi j − 1)d logλπ(θ) −
[
s(i, j) · (δi j − 1)

]
ζ̃ ·

(
ζ̃∗ · λπ · ζ̃

)−1
ζ̃∗ · λπ · λE ·Ω

Ed log P(i, j)

(87)

This is a linear system in d log P(i, j). Group (i, j) together and write this linear system as
aN2

× 1 vector, with an appropriately defined ΨF,then we have

d log P(l,m) =
∑

i j

ΨF(lm, i j)
(
s(i, j) · (1 − εi)d log

µi(θ)
Ai(θ)

+ εis(i, j) ·
(
d logλi(θ) − d log λ̂π(θ)

))
−

∑
i j

ΨF(lm, i j)
(
s(i, j) · (δi j − 1)d log λ̂π(θ)

)
.

This is the generalization to Theorem 3 and Proposition 3, showing that those results
survive generalization.

Next, to pin down d logλ, we need an analogue to the backward equations.

yi(θ) =
∑

j

∫
x ji(θ′, θ)M j(θ′)M j(θ′)dθ′ + ci(θ′). (88)

λi(θ) = Mi(θ)pi(θ)yi(θ)

= Mi(θ)pi(θ)
∑

j

∫
x ji(θ′, θ)M j(θ′)dθ′.

Define

σ ji = −
Υ′

(
y ji(θ)

y ji

)
−

y ji(θ)
y ji

Υ′′
(

y ji(θ)
y ji

) , (89)

where y ji(θ) =
∫

x ji(θ′, θ)M j(θ′)dθ′ and y ji is defined implicitly via 1 =
∫

Υ ji

(
y ji(θ)

y ji

)
M j(θ)dθ.

Intuitively, because of homotheticity, we can assume that an intermediary purchases y ji

and sells it at marginal cost to all θ types in industry j. The quantity purchased by the
intermediary from firm θ′ in industry i is y ji(θ′) and the total output of the intermediary
is y ji.

The variable σ ji is the price-elasticity of residual demand.

−d log δi j =

∫ (
Υ′

(
yi j(θ)

yi j

)
yi j(θ)

yi j
M j(θ)

)  yij(θ)

yij
Υ′′

( yij(θ)

yij

)
Υ′

( yij(θ)

yij

) d log
(

yi j(θ)
yi j

)
+ d log

yi j(θ)
yi j

+ d log M j(θ)

 dθ

∫
Υ′

(
yi j(θ)

yi j

)
yi j(θ)

yi j
M j(θ)dθ.
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=

∫ (
p j(θ)
δi jP(i, j)

yi j(θ)
yi j

M j(θ)
) [(

1 − 1
σ ji(θ)

)
d log

(
yi j(θ)

yi j

)
+ d log M j(θ)

]
dθ∫ p j(θ)

δi jP(i, j)
yi j(θ)

yi j
M j(θ)dθ.

= s(i, j) ·
[(

1 −
1

σ ji(θ)

)
d log

(
yi j(θ)

yi j

)
+ d log M j(θ)

]
(90)

d log
(

yi j(θ)
yi j

)
= d log(Υ′)−1

ji

(
pi(θ)
δ jiP( j, i)

)
(91)

Hence

d log
(

yi j(θ)
yi j

)
= σi j(θ)

(
d log pi(θ) − d log δ ji − d log P( j, i)

)
. (92)

Use this in

λi(θ) = Mi(θ)pi(θ)yi(θ)

= Mi(θ)pi(θ)
∑

j

y ji(Υ′)−1
i j

(
pi(θ)
δ jiP( j, i)

)
,

where the final line follows from homotheticity. Hence

d logλi(θ) = d log Mi(θ) + d log pi(θ) +
∑

j

y ji(θ)
y ji

(
σ ji(θ)

(
d log pi(θ) − d log δ ji − d log P( j, i)

))
+

∑
j

y ji(θ)
y ji

d log y ji. (93)

Next, use

y ji =
1 − ε j

µ̄ j

ΩF
jiλ j

P( j, i)
(94)

coupled with
ΩF

jid log ΩF
ji = (1 − θ j)Cov j(d log P( j,m), I(i)) (95)

to get

d log y ji = −d log µ̄ j + (1 − θ j)Cov j(d log P( j,m), I(i)) + d logλ j − d log P( j, i), (96)

where

µ̄ j =

∫ λi(θ)Mi(θ)∫
λi(θ)Mi(θ)dθ

1
µi(θ)

dθ

−1

, (97)
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so

− d log µ̄i =

∫
λi(θ)Mi(θ)∫
λi(θ)Mi(θ)dθ

1
µi(θ)

[
−d logµi(θ) + d logλi(θ) + d log Mi(θ) − d logλi

]
dθ

(98)
Finally, use the fact that

λi =
∑

j

1 − ε j

µ̄ j
ΩF

jiλ j +
∑

j

ΩE
jiλE, j (99)

to get

dλi =
∑

j

dλ j
1 − ε j

µ̄ j
ΩF

ji −

∑
j

λ j

µ̄ j
(1 − ε j)ΩF

jid log µ̄ j +
∑

j

λ j

µ̄ j
(1 − ε j)ΩF

jid log ΩF
ji +

∑
j

dλE, jΩ
E
ji.

(100)
Equations (87), (90), (93), (95), (96), (98), (100) jointly complete the characterization.

F.1.2 Relaxing DRS

Suppose that

Y = MiAi fi

({
xi j

}
j

)
, (101)

where we do not impose homotheticity on fi. Define

λY = PY = µYλy

λy = pyM

λπ =
1
µY

(
1 −

1 − ε
µ

)
λY

which implies that

d logλπ = −d logµY
−

1−ε
µ(

1 − 1−ε
µ

) [
d log(1 − ε) − d logµ

]
+ d logλ

d log M = d log λ̂π − d log P̂

P = µY dC
dY

= µY
C/Y

d log P = d logµY + d log p
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d log p = d logµ − d log(1 − ε) − d log yi + ΩFd log P +
∂ logCi

∂ log yi

(
d log yi − d log Ai

)
= d logµ − d log(1 − ε) − d log yi + ΩFd log P +

1
1 − ε

(
d log yi − d log Ai

)
= d logµ − d log(1 − ε) + ΩFd log P +

ε
1 − ε

(
d logλ − d log p − d log M −

1
ε

d log Ai

)
d log p = (1 − ε)d logµ − (1 − ε)d log(1 − ε) + (1 − ε)ΩFd log P + ε

(
d logλ − d log M

)
− d log A

d log P = d logµY + d log p

= d logµY +
[
(1 − ε)d logµ + dε + (1 − ε)ΩFd log P + ε

(
d logλ − d log M

)
− d log A

]
= d logµY + (1 − ε)d logµ + dε + (1 − ε)ΩFd log P

+ ε
(
d logλ − d log λ̂π + d log P̂

)
− d log A

(I −ΩF)d log P = d logµY + (1 − ε)d logµ + ε
(
d logλ + d log ε − d log λ̂π

)
− d log A

This last equation generalizes the forward equations in Proposition 3.
To get the backward equation, assuming some separability, we can write

fi

({
xi j

}
j

)
= fi(qi), (102)

where qi is CRS function of inputs. We can write

Ωi j =
MiP jxi j

PiYi
=

P jxi j

µYpiyi
=

P jxi j

µYµy
i (1 − εi)µ

q
i mciqi

=
1

µiµY
i

1
1 − εi

p jxi j

mciqi

d log Ωi j = −d logµiµ
Y
i + d logγi − d log (1 − εi) + d log

(
p jxi j

mciqi

)

Denote the super-elasticity by ∂2 log fi
∂ log q2

i
= κi. Then we can write

d(1 − εi) = κi

(
d logλq

i − d log pq
i

)
= d logλq

i − d logλy
i . (103)

Hence,
dε = dλy

i − dλq
i (104)

and
d logλq

i =
1

κi − 1

(
κid log pq

i − d logλy
i

)
. (105)

Hence

d log Ωi j = −d logµiµ
Y
i − κi

(
d logλq

i − d log pq
i

)
+ d log

(
p jxi j

mciqi

)
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= −d logµiµ
Y
i −

κi

1 − εi

( 1
κi − 1

(
κid log pq

i − d logλy
i

)
− d log pq

i

)
+ d log

(
p jxi j

mciqi

)
= −d logµiµ

Y
i −

κi

1 − εi

( 1
κi − 1

(
κid log pq

i − d logλy
i

)
− d log pq

i

)
+ (1 − θi)Covi(d log P, I(i))

= −d logµiµ
Y
i −

κi

1 − εi

1
κi − 1

(
d log pq

i − d logλy
i

)
+ (1 − θi)Covi(d log P, I(i))

= −d logµiµ
Y
i −

κi

1 − εi

1
κi − 1

∑
j

Ωi jP j − d logλy
i

 + (1 − θi)Covi(d log P, I(i))

Finally, combine this with

dλy′ = dλy′Ω + λy′dΩ + dλEΩE (106)

to pin down the backward equations, which is the equivalent of Proposition 4.

F.2 Variable Factor Supply

Suppose the supply of each factor f ∈ F is given by

L f = G f (w f/P0,Y) = G f (w f Y,Y). (107)

and letζ f = ∂ log G f/∂ log w f be the Marshallian price elasticity of supply and∂ log G f/∂ log Y =

γ f . Hence, ζ f − γ f is the income elasticity of supply. Here, to make the notation more
familiar, we refer to the quantity of each factor f by L f and the price of the factor by w f .
We consider perturbations to d logµ and d log A. So

d log P =
1 − ε
γ

d logµ − d log A +

(
1 −

1 − ε
γ

)
d logλY +

(1 − ε)
γ

µqΩVd log P

+
ε
γ
ζ̃′(ζ̃λπζ̃′)−1

(
λEΩEd log P

)
−
ε
γ

d log λ̂π

+
(1 − ε)
γ

µqΩV
F

d log w,

Now use the fact that

d log w f = d logλ f − ζ f d log w f − γ f d log Y,

d log w =
1

1 + ζ f
d logλ f −

γ f

1 + ζ f
d log Y.
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d logλπ +

1 −
1 − εi

µq
iµ

y
i

−1

d logµY
i −

1 −
1 − εi

µq
iµ

y
i

1
1 − εi

µq
iµ

y
i

(
d logµ

)
= d logλi (108)

Hence

d log P =
1 − ε
γ

d logµ − d log A +

(
1 −

1 − ε
γ

)
d logλY +

(1 − ε)
γ

µqΩVd log P

+
ε
γ
ζ̃′(ζ̃λπζ̃′)−1

(
λEΩEd log P

)
−
ε
γ

d log λ̂π

+
(1 − ε)
γ

µqΩV
F

[
1

1 + ζ f
d logλF −

γ f

1 + ζ f
d log Y

]
,

d log P = ΨF

[
1 − ε
γ

d logµ − d log A +

(
1 −

1 − ε
γ

)
d logλY

−
ε
γ

d log λ̂π

]
+ ΨF

[
(1 − ε)
γ

µqΩV
F

[
1

1 + ζ f
d logλF −

γ f

1 + ζ f
d log Y

]]
= ΨF

[
1 − ε
γ

d logµ − d log A +

(
1 −

1 − ε
γ

) (
d logλY

− d log λ̂π
)]

+ ΨF

[(
1 −

1
γ

)
d log λ̂π

]
+ ΨF

[
(1 − ε)
γ

µqΩV
F

[
1

1 + ζ f
d logλF −

γ f

1 + ζ f
d log Y

]]
.

This is the counterpart to the forward equations of Proposition 3 when factor supply is
elastic.

Defining ε = 1 and γ = 1 for factors, and γ = 0 and ζ=0 for non-factors. Hence we can
combine to write the aggregation equation of Theorem 3 as

d log Y = −λF

[
1 − ε
γ

d logµ − d log A
]

− λF

[(
1 −

1 − ε
γ

) ( 1
1 + ζ

d logλπ −
γ

1 + ζ
d log Y − d log λ̂π

)
−

(
1 −

1
γ

)
d log λ̂π

]
.

The backward equations are unchanged relative to ones in Proposition 4.

Appendix G Intuition for Markup/Wedge Shocks

We briefly discuss markup/wedge shocks in Theorem 3. We consider a univariate markup
shock d logµi or a univariate wedge shock d logµY

i . For simplicity, we only treat the case
where entry into i is directed, so that entrants in market i are from a single type and cannot
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enter in any other market. It is then more convenient to rewrite Theorem 3 as

d log Y = −λF
i

1 − εi

γi

µi − 1
µi − (1 − εi)

d logµi − λ
F
i

1
γ

d logµY
i

−

∑
j∈N

λF
j

(
1 −

1 − ε j

γ j

) (
d logλB

j −
̂d logλB

j

)
+

∑
j∈N

λF
j

1
γ j
− 1

 ̂d logλB
j .

We have broken down changes in rents into changes in profit margins and changes in
sales. This is because markups/wedge shocks directly affect the former but not the latter.
The second line is the indirect effect of markup/wedge shocks operating through changes
in market sizes. It takes the same form as in the case of productivity shocks where profit
margins are constant, and has the same intuition.

The first line is the direct effect of markup/wedge shocks, holding market sizes constant.
Consider first a univariate markup increase d logµi > 0 with d logµY

i = 0. Intuitively, there
are countervailing effects on final-demand prices. On the one hand the markup increase
raises the price of market good i by increasing the gap between price and marginal cost of
individual producers . On the other hand, it also raises the profitability of i, encourages
entry, and hence reduces the price of market good i through love for variety. The overall
direct effect of the markup increase depends on the balance of these two effects, which
ultimately depends on whether there is too much or too little entry to begin with. When
µi < 1 (µi > 1) there is too little (too much) entry to begin with, and so the direct effect of
the markup increase is positive (negative). When µi = 1, entry is efficient, and there is no
direct effect of the markup increase on entry. Next consider a univariate increase in the
output wedge d logµY

i > 0 with d logµi = 0. The direct effect of the wedge shock is an
increase in final-demand prices, which, in this case, is not counterbalanced by an increase
in entry.

Appendix H Intervening in a Cobb-Douglas Example

To make this intuition even more concrete, we consider the example in Figure 6. For
this economy, consumption goods can either be produced directly using labor or they
can be produced via a two-step supply chain. In addition, we have λB

L = 1 and λF
L =

λB
1/γ1 + λB

2 (1/γ2 + 1/γ3 − 1).
An entry subsidy extracts labor from the rest of the economy and funnels it into entry

in market i. This adjustment comes about via an increase in the price of labor. The effect
of a dollar spent subsidizing entry in 1 is −(1/λB

E,1) d log Y/d logµY
E,1 = (1/γ1 − λF

L), where
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HH1 2

L 3
Yi = (Miyi)

1
γi , yi = l1/γi

i (i ∈ {1, 3}),

y2 = (Y3/M2)1/γ2 , Mi =
λπ,i
wL
,

L =
∑

i∈{1,3}

Mili +

3∑
i=1

Mi, Y = Yλ
B
1

1 Yλ
B
2

2 .

Figure 6: The solid and dashed arrows represent the flow of resources for production and
for entry. The sole factor for this economy is indexed by L.

the first term is the benefits from increased entry into 1 and the second term is the cost
of having less resources for the rest of the economy. Similarly, the effect of a dollar spent
subsidizing entry in 2 is −(1/λB

E,2) d log Y/d logµY
E,2 = 1/γ2 − λF

L. Finally, the effect of a
dollar spent subsidizing entry in 3 is −(1/λB

E,3) d log Y/d logµY
E,3 = 1/(γ2γ3) − λF

L. This
means that subsidizing 3 dominates subsidizing 2, and subsidizing the supply chain is
beneficial as long as cumulated increasing returns are stronger in the longer supply chain
1/γ2 + 1/γ3 − 1 > 1/γ1. It is then optimal to subsidize entry upstream of complex supply
chains.

Starting at the monopolistically competitive equilibrium, a reduction in the markup
of 1 has no effect on aggregate output since it leads to offsetting effects on the price of 1
from the reduction in the prices of individual producers and the increase in entry. The
same goes for a reduction in the markup of 3. By contrast, a reduction in the markup
of 2 is beneficial, since it allows 3 to expand −(1/λB

2 ) d log Y/d logµq
2 = (1/γ2)(1/γ3 − 1).

Therefore, as long as there is increasing returns to scale 1/γ3 > 1 in market 3, markup
reductions should be targeted downstream to market 2. It is then optimal to reduce
markup downstream of complex supply chains.

Appendix I Sectoral Models

For any sectoral model with heterogeneous firms in each sector, there is an isomorphic
companion sectoral model with homogenous firms in each sector. The companion model
assumes that all firms in a given sector I are identical with productivity shifter AI and
markup µI defined by

AI =
µI
µ
I

∑
i∈I

λ
I,B
i

(
Ai/Ai

µi/µi

) 1−ε
I

ε
I


ε
I

1−ε
I

and µI =
1∑

i∈I λ
I,B
i

1
µi

,
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where for each i ∈ I, we define λB
I

=
∑

j∈I λ
B
j and λI,Bi = λB

i /λ
B
I
. Here we remind the

reader that we use overlines to signal initial values when there is an ambiguity but we
drop them when there is none. We denote by Y̌ the aggregate output in the companion
model without heterogeneity within sectors.

If Y denotes aggregate output in a sectoral model with heterogeneity, we denote by Y̌
denote aggregate output in the companion model without heterogeneity.

Proposition 7 (Sectoral Aggregation). For any sectoral model with within-sector heterogeneity,
the nonlinear response ∆ log Y of aggregate output to shocks to productivities and markups is
equal to the nonlinear response ∆ log Y̌ of aggregate output to shocks to sectoral productivities and
markups in the companion model with no within-sector heterogeneity.

The outer-elasticity γI, which distinguishes models with IRS from those with DRS, is
not relevant to how we aggregate firms within the sector since neither AI nor µI depend
on γI.

To break this problem into a within-sector and cross-sector problem, in vector notation,
write

d log Y = d log Y̌ =
∑
I

d log Y̌
d log AI

d log AI +
∑
I

d log Y̌
d log(µI, µY

I
)

d log(µI, µY
I
).

We now differentiate a second time and evaluate the second derivative at the efficient
marginal-pricing equilibrium. We use the fact that at the efficient point d log AI = 0 and,
from the envelope theorem, that d log Y̌/d logµI = 0, we get a simpler expression for the
loss function L = −(1/2)d2 log Y̌ using

d2 log Y̌ =
∑
I

d log Y̌
d log AI

d2 log AI

+
∑
I,J

d log(µI, µY
I
)′

d2 log Y̌
d log(µI, µY

I
) d log(µJ , µY

J
)

d log(µJ , µY
J

), (109)

where d log Y̌/d log AI = λB
I
(1− εI) by Theorem 2. This expression can then be combined

with the following lemma.
Using Lemma 5 below, it becomes apparent that: the first term in the loss function

captures misallocation arising from distortions in relative producer sizes driven by the
dispersion of markups/wedges within sectors; the second term captures misallocation
arising from distortions in entry within sectors and relatives sizes across sectors arising
driven by the levels of markups. The losses increase with the returns to scale and go to
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infinity in the constant-returns limit where εI goes to zero.

Lemma 5. At the efficient marginal-cost pricing equilibrium, changes in sectoral markups and
productivities in the companion model are related to changes in markups/wedges in the original
model according to

d logµI = EλI,B
(
d logµ

)
, d log AI = 0, and d2 log AI =

1
εI

VarλI,B
(
d logµ

)
,

where these expressions denote within-sector weighted expectations and variances of the changes
in markups/wedges d logµi in the original model, with weights given by the within-sectoral sales
share distribution λI,Bi .
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