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We develop a theory of optimal estate taxation in a model where bequest inequality is
driven by differences in parental altruism. We show that a wide range of results are pos-
sible, from positive taxes to subsidies, depending on redistributive objectives implicit in
the cardinal specification of utility and social welfare functions. We propose a normal-
ization that is helpful in classifying these different possibilities. We isolate cases where
the optimal policy bans negative bequests and taxes positive bequests, features present in
most advanced countries.

1 Introduction

Many people’s ideas about estate taxes take the perspective of children, and build on the
intuition that inheritances are pure luck—after all, children do nothing to deserve their
parents—to conclude that bequests should be redistributed away to help level the playing
field.

However, taking the perspective of parents, one can make a powerful argument against
estate taxation on the grounds of fairness. This case is eloquently articulated in the form
of a parable by Mankiw (2006):

Consider the story of twin brothers – Spendthrift Sam and Frugal Frank.
Each starts a dot-com after college and sells the business a few years later,
accumulating a $10 million nest egg. Sam then lives the high life, enjoying ex-
pensive vacations and throwing lavish parties. Frank, meanwhile, lives more
modestly. He keeps his fortune invested in the economy, where it finances
capital accumulation, new technologies, and economic growth. He wants to
leave most of his money to his children, grandchildren, nephews, and nieces.

∗We thank Ali Shourideh and Stefanie Stantcheva for useful comments and suggestions. Lucas Manuelli
provided valuable research assistance.
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Now ask yourself: Which millionaire should pay higher taxes?... What
principle of social justice says that Frank should be penalized for his frugality?
None that I know of.

In this paper, we offer a theory of estate taxation that reconciles these two philosophies.
We analyze a model where parents with different degrees of altruism consume and leave
bequests to their offspring. Altruism is private information, giving rise to a tradeoff be-
tween equality of opportunity for newborns and incentives for altruistic parents. We
consider a wide class of social welfare functions and characterize both optimal nonlinear
and linear estate tax systems.

In Farhi and Werning (2010) we formulated a similar optimal tax problem by tak-
ing a canonical Mirrleesian tax model—where skill differences are the only source of
heterogeneity—and adding a bequest decision. In the model of that paper, more pro-
ductive parents earn more, consume more and bequeath more.

Instead, in this paper we depart from the canonical optimal tax model, abstracting
from parental earnings inequality to focus instead on differences in the degree of altru-
ism.1 Our main goal is to isolate what this different source for bequest inequality implies
for estate taxation.

We find that optimal estate taxes depend crucially on redistributive objectives. Dif-
ferent welfare criteria lead to results ranging from taxes to subsidies. We identify a few
useful benchmarks. First, optimal estate taxes are zero when no direct weight is placed on
children and when parents welfare is summarized by a Utilitarian criterion using a nor-
malization of utility (Proposition 1). This formalizes Mankiw’s intuition. Second, when
the Utilitarian criterion is augmented with a positive weight on children’s welfare, subsi-
dies on estates emerge (Proposition 2). Finally, a clear cut case for positive taxes on estates
is possible when one adopts a more extreme preference for equality of opportunity of
children. With a Rawlsian maximin criterion optimal policy taxes positive bequests and
bans negative ones (Proposition 4). These two properties are consistent with most actual
tax codes, providing one possible justification for their use. We provide both results for
nonlinear taxes (Propositions 1–4) and results for linear taxes (Propositions 5–9).

1Piketty and Saez (2012) present a model with both altruism and productivity differences and study
optimal linear taxes on savings/bequests. Our results suggest that altruism heterogeneity coupled with
their choice of welfare functions may be key to understanding the simulations with positive and negative
marginal tax rates that they report.
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2 The Model

There are two generations, parents born at t = 0 and children born at t = 1; each living
for one period. Parents are altruistic and each has exactly one offspring. There is a storage
technology between periods with constant return R. Parents are heterogenous. A parent
of type θ has strictly quasi-concave preferences represented by the utility function

Up(c0, c1; θ),

where Up is increasing, strictly concave and twice differentiable in (c0, c1; θ).2 The type
θ is distributed in the population according to a continuous density f (θ) on the interval
[θ, θ]. We make the following standard single-crossing condition assumption.

Assumption 1. The parent’s utility function Up satisfies

∂

∂θ

(
Up

c1(c0, c1; θ)

Up
c0(c0, c1; θ)

)
> 0.

Higher types are more altruistic; lower types more selfish. Single crossing is an as-
sumption about ordinal preferences, not cardinal utility. It will be useful to make a nor-
malization regarding cardinal utility. Define the indirect utility function

Vp(I, R; θ) ≡ max
c0,c1

Up(c0, c1; θ) s.t. c0 +
1
R

c1 = I.

Assumption 2. The parent’s utility function Up is such that marginal utility is constant without
redistribution

Vp
I (I, R; θ) = Vp

I (I, R; θ′) for all θ, θ′, and I.

Assumption 2 amounts to a renormalization of cardinal utility, that does not change
ordinal preferences (see the appendix for details). Nevertheless, it will prove useful to
categorize different cases and results.

We maintain Assumptions 1 and 2 throughout the paper. For a few results we need
the following additional assumption.

Assumption 3. The parent’s utility function Up satisfies

Up
c0,θ(c0, c1; θ) ≤ 0 and Up

c1,θ(c0, c1; θ) ≥ 0.

2With a few additional assumptions, any strictly quasi concave function can be monotonically trans-
formed into a strictly concave utility function, see e.g. Connell and Rasmusen (2012).
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Assumption 3 implies the single crossing condition in Assumption 1. A simple exam-
ple satisfying all three assumptions is Up(c0, c1; θ) = (1− θ) log(c0) + θ log(c1).

We will employ a weighted Utilitarian criterion

ˆ
(λθUp(c0(θ), c1(θ); θ) + αθUc(c1(θ))) f (θ)dθ,

where λθ is the weight on a parent of type θ, αθ is the weight on a child with parent of
type θ and Uc is increasing, concave and differentiable. There are two interpretations of
these weights. First, by varying the weights across types and generations one traces out
the Pareto frontier. Under this interpretation we adopt the ordinal preferences of parents
and children and simply place flexible weights on different members of society; cardinal
utility is irrelevant. A second interpretation, especially for λθ, is possible if we imagine
evaluating expected utility behind the veil of uncertainty, before θ is realized. In this case,
we interpret cardinal utility for parents to be λθUp(c0, c1; θ). Observed consumption-
savings behavior only identifies ordinal, not cardinal, utility.3 Thus, flexible weights λθ, αθ

are required to consider a wide range of different tastes for redistribution or specifications
of cardinal utility.

With αθ constant, the curvature of Uc captures a preference for equality of children’s
consumption. We also want to consider a welfare function with extreme egalitarian pref-
erences for children. To this end, we combine a weighted utilitarian criterion for parents’
welfare,

´
λθUp(c0(θ), c1(θ); θ) f (θ)dθ, with a Rawlsian maximin criterion for children’s

welfare,
min

θ
Uc(c1(θ)).

This delivers the same implications as the weighted-Utilitarian criterion for some appro-
priate endogenous weights αθ.

We assume each parent’s θ type is private information. This makes the first best un-
available and creates a tradeoff between redistribution and incentives. We follow both a
Mirrleesian approach, with no exogenous restrictions on policy instruments beyond those
implied by private information, and a Ramsey approach with restricted taxes.

3 Nonlinear Taxation

We begin with the Mirrleesian approach, without arbitrary restrictions on tax instru-
ments, by studying the mechanism design problem that incorporates the incentive con-

3See Lockwood and Weinzierl (2012) for an application of this principle to the taxation of labor.
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straints. Similar to Mirrlees (1971), the optimum can be implemented with a nonlinear
tax of bequests. Parents are subject to the budget constraints

c0 + B + T(B) = I0 (1)

c1 = I1 + RB (2)

where T is a nonlinear tax on bequests. At points where T is differentiable, the marginal
tax rate on bequests equals the implicit marginal tax rate on estates T′

(
c1(θ)−I1

R

)
= τ(θ),

defined by (1 + τ(θ))Up
c0(c0(θ), c1(θ); θ) ≡ RUp

c1(c0(θ), c1(θ); θ). Next we characterize the
optimal allocation and the associated implicit marginal tax rate.

3.1 A Weighted Utilitarian Objective

The dual planning problem we study is

min
c0,c1,v

ˆ (
c0(θ) +

1
R

c1(θ)

)
f (θ)dθ, (3)

subject to c1(θ) monotone increasing and

v(θ) = Up(c0(θ), c1(θ); θ), (4)

v̇(θ) = Up
θ (c0(θ), c1(θ); θ), (5)

ˆ
(λθUp(c0(θ), c1(θ); θ) + αθUc(c1(θ))) f (θ)dθ ≥ V. (6)

This problem minimizes the resources required to achieve a certain level of welfare sub-
ject to incentive compatibility. The second constraint is the envelope condition which,
together with the monotonicity condition, is necessary and sufficient for incentive com-
patibility (see e.g. Milgrom and Segal, 2002).

Our first results focus on cases with no weight on children’s welfare.

Proposition 1. Suppose that Assumptions 1 and 2 hold, and that there is no weight on children
αθ = 0. Then (a) if λθ is constant the optimum coincides with the first best and estate taxes are
zero, τ(θ) = 0; (b) if λθ is decreasing and in addition Assumption 3 holds, then marginal estate
taxes are positive τ(θ) ≥ 0; and (c) if λθ is increasing and in addition Assumption 3 holds, then
marginal estate taxes are negative, τ(θ) ≤ 0.

When the weight on parents, λθ, is constant, the first-best allocation is incentive com-
patible and, hence, optimal. This sets up an important benchmark where bequests are not
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taxed. It formalizes the parable by Mankiw (2006) cited in the Introduction.
In contrast, when weights λθ are decreasing, favoring selfish parents, this creates a

force for positive taxation of estates. The reverse is true when weights λθ are increasing,
favoring altruistic parents, leading to a subsidy on estates. These results emphasizes that
ordinal preferences cannot settle the sign of estate taxes, which depends crucially on the
weights λθ. The specification of cardinal utility or social welfare functions is crucial.

We now analyze the case where we allow for arbitrary weights on children. In the
appendix we show that at points where the monotonicity constraint is not binding the
implicit marginal tax rate on estates equals

τ(θ) = −ναθRUc
c1
(θ)− ν

µ(θ)

f (θ)
RUc

c1
(θ)

(
Up

θ,c1
(θ)

Up
c1(θ)

−
Up

θ,c0
(θ)

Up
c0(θ)

)
, (7)

where ν > 0 is the multiplier on the promise keeping constraint (6) and µ(θ) is the co-
state variable associated with (5), satisfying µ(θ) = µ(θ) = 0. This formula is equivalent
to the one in Farhi and Werning (2010), except for the term involving µ(θ).

Proposition 2. Suppose that Assumptions 1 and 2 hold. Suppose no bunching at the extremes.
Then (a) marginal tax rates are negative at the extremes τ(θ) < 0, τ(θ) < 0; (b) if αθ is constant
or decreasing then τ(θ) < τ(θ).

These result indicates that, unless we place zero weight on children, a force for sub-
sidies is always present. It also highlights a force for progressive taxation, in the sense
of a rising marginal tax rate. Both features are in line with the main results in Farhi and
Werning (2010). Indeed, there are parental weights that lead to exactly the same formula
as in this canonical tax model. These parental weights are precisely those such that the
first best is incentive compatible so that µ(θ) = 0.

Proposition 3. For constant weights on children αθ = α ≥ 0, there exists parental weights λθ

such that τ(θ) = −ναθRUc
c1
(θ) for all θ.

Numerical Illustration. Figure 1 collects a few illustrative examples, using logarithmic
utility Up(c0, c1; θ) = (1− θ) log(c0) + θ log(c1), Uc(c1) = log(c1) and a uniform distribu-
tion for θ over [0.1, 0.9].

The first panel in Figure 1 has constant positive weights on both parents and children.
Proposition 2 leads us to expect negative tax rates near the extremes. In this example, tax
rates remain negative throughout and are increasing in most of the range. This outcome
is essentially as in Farhi and Werning (2010).
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The second panel puts no weight on children, but assumes a decreasing weight on
parents λθ. Tax rates are positive throughout, as expected from Proposition 1 part (b).
The third panel combines this decreasing λθ with a constant and positive weight αθ; tax
rates are negative near the extremes, but positive over an interior interval.

3.2 A Rawlsian Criterion for Children

We now evaluate the welfare of children using a Rawlsian criterion. This amounts to
studying the same planning problem in (3)–(6) with the additional constraint

Uc(c1(θ)) ≥ u.

Define θ∗ to be the highest value of θ for which this constraint holds with equality. For
high enough u we have θ∗ > θ. All types θ ∈ [θ, θ∗] are bunched, so the implicit marginal
tax τ(θ) is increasing in θ by single crossing. Thus, τ(θ) ≤ τ(θ∗) for all θ ≤ θ∗. Indeed, it
is possible that τ(θ) < 0 for some θ < θ∗ even if τ(θ) ≥ 0 for θ ≥ θ∗. We now show that,
indeed, tax rates are positive above θ∗.

Proposition 4. Suppose Assumptions 1, 2 and 3 hold. Suppose further that λθ is constant and
that c1 is a normal good. Then marginal taxes are positive τ(θ) ≥ 0 for θ ≥ θ∗ and strictly
positive over a positive measure of θ.

Even though the weight on parents is constant, the optimum involves positive taxa-
tion wherever the Rawlsian constraint is slack. Intuitively, children with bequests above
the minimum do not contribute towards the maximin criterion, so they are taxed to redis-
tribute towards the poorest children, as well as their selfish parents, who may otherwise
be hurt by the imposition to improve their children’s welfare. The implicit marginal tax
rate at the bottom may or may not be negative, but it is positive for θ ≥ θ∗. Given Propo-
sition 1 part (a), positive taxes can be entirely attributed to placing a positive weight on
children.4 The second panel in Figure 2 illustrates this result. In this example, the implicit
tax in the bunching region indeed becomes negative for low enough θ.

The optimal allocation has bunching below θ∗, so the tax schedule T must feature a
kink, with marginal tax rates jumping upward. Indeed, it may require a marginal subsidy,
coming from the left. A simple alternative implementation can avoid this by imposing
the same budget constraints (1)–(2) but adding the constraint that B ≥ B.5 By a suitable

4Formula (7) can still be applied with endogenous positive weights on children αθ that are decreasing in
θ and are zero for all θ > θ∗; the costate µ(θ) negative and zero at the extremes.

5This implementation is natural because it highlights that the optimal allocation will typically feature
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choice of lump-sum transfers, determining I0 and I1, we can normalize B = 0. The tax
code then only imposes positive marginal tax rates, but negative implicit taxes may be
generated by the borrowing constraint, B ≥ 0. Strictly positive taxes and the outlawing
of negative bequests are common features of policy across developed countries.

4 Linear Taxes and Limits to Borrowing

We now restrict estate taxes to be linear. The planner taxes bequests at a constant rate τ,
balancing its budget with a lump-sum tax (or transfer). We also consider the imposition
of constraints on borrowing that limit parents from passing on debt to their children. To
keep things simple, we start by discussing the logarithmic utility case. We then provide
tax formulas for general preferences.

4.1 A Weighted Utilitarian Objective

We first consider the case with the weighted Utilitarian criterion and no borrowing lim-
its. The planning problem, stated in the online appendix, is relatively straightforward
and maximizes our welfare criterion subject to the resource constraint. The first-order
conditions deliver a useful tax formula.

Proposition 5. Assume logarithmic utility Up(c0, c1; θ) = (1− θ) log(c0)+ θ log(c1), Uc(c1) =

log(c1). The optimal linear estate tax is given by

τ

1 + τ
= −ν

I

Cov(θ,λθ+αθ)´
θ(1−θ) f (θ)dθ

+
´

αθ(1−θ) f (θ)dθ´
θ(1−θ) f (θ)dθ

1 + Var(θ)´
θ(1−θ) f (θ)dθ

.

The numerator is the sum of a Ramsey covariance term and a Pigouvian average term.
The term in the denominator is a Ramsey adjustment.6 Roughly speaking, the Ramsey
terms reflect the costs and benefits of redistribution across dynasties, while the Pigouvian
term reflects the value of redistribution from parents to children. The Pigouvian term has
a corrective nature because when social welfare places direct weight on children, parents
necessarily undervalue bequests. When αθ = 0, the Pigouvian term vanishes, leaving

parents below θ∗ bunched to satisfy the Rawlsian constraint Uc(c1(θ)) ≥ u. These same allocation could be
obtained with an appropriate kink in the T function, typically requiring a sufficiently high subsidy rate to
the left of the bunching point.

6This adjustment term encapsulates the impact on tax revenues of the income effect associated with a
marginal tax change.
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only the Ramsey terms and the formula specializes to a version of the many-person Ram-
sey tax problem of Diamond (1975).

The Ramsey covariance term in the numerator may be positive or negative and neatly
highlights the importance of the weights λθ and αθ. The Pigouvian average term in the
numerator is always negative or zero, providing a force for a subsidy as long as children
have positive weight. The Ramsey adjustment term in the denominator only scales taxes
proportionately but does not affect their sign.

If both weights are constant then the covariance term is zero and the second term
takes over. If we further assume that αθ = 0 then the optimal tax is zero, τ = 0, in line
with Proposition 1 part (a); if, on the contrary, we place a positive and constant weight on
children the optimal tax is a subsidy: τ < 0. This linear tax result is consistent with the
nonlinear results on negative marginal tax rates at the extremes in Proposition 2.

When αθ and λθ are not constant the covariance term is not zero and a decreasing
weights provide a force for a tax. Whether or not the optimal tax is positive or negative
depends on the net effect of the two terms in the numerator.

This formula can be generalized away from logarithmic utility. We define the after tax
interest rate R̃ = R

1+τ , the uncompensated demand functions c0(I, R̃, θ) and c1(I, R̃, θ) ,
the compensated elasticity εc1,R̃(I, R̃, θ) of c1 to the after tax interest rate R̃, the indirect
utility function Vp(I, R̃, θ), and W(I, R̃, θ) = λθVp(I, R̃, θ) + αθUc(c1(I, R̃, θ))).

Proposition 6. For general preferences, the optimal linear estate tax is given by

τ

1 + τ
= −ν

Cov(c1(θ),WI(θ))´
εc1,R̃(θ)c1(θ) f (θ)dθ

+ R̃
´

αθUc
c1
(θ)εc1,R̃(θ)c1(θ) f (θ)dθ´

εc1,R̃(θ)c1(θ) f (θ)dθ

1 + 1
R̃

Cov(c1(θ),c1,I(θ))´
εc1,R̃(θ)c1(θ) f (θ)dθ

.

The formula takes the form of a ratio as in the logarithmic utility case, with similar
terms in the numerator and denominator. The formula highlights the role of the interest
rate elasticity of bequests. Basically, the Ramsey terms are hit by the inverse of the elas-
ticity of bequests while the Pigouvian term is not. More precisely, the Pigouvian term
is a weighted average, and the interest rate elasticity of bequests only affects the corre-
sponding weights. In this sense, the inverse-elasticity rule applies to the Ramsey terms
as in Diamond (1975), but not to the Pigouvian term. Indeed, the average Pigouvian term
is best thought as representing a Pigouvian motive for taxation. And to a large extent,
Pigouvian taxes do not depend on elasticities.
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4.2 A Rawlsian Criterion for Children

We now evaluate children’s welfare according to a Rawlsian maximin criterion, exactly
as in Section 3.2. In addition to a linear tax on bequests we provide the planner with one
additional instrument: a minimum bequest requirement B. As in Section 3.2, appropriate
intergenerational transfers allow us to normalize and set B = 0, so we can interpret this
as a constraint that outlaws parents passing on debt to their children. We assume that the
Rawlsian constraint is binding, which is the case for high enough u.

Proposition 7. Assume logarithmic utility Up(c0, c1; θ) = (1 − θ) log(c0) + θ log(c1) and
Uc(c1) = log(c1). Suppose λθ is constant and that children’s welfare is evaluated by a Rawlsian
maximin criterion. Then the optimum is such that the tax rate is strictly positive τ > 0 and a
borrowing constraint is strictly binding for some agents.

The optimum features a tax coupled with a borrowing limit.7 This result is a linear
counterpart to the nonlinear conclusions in Proposition 4. The economic logic is similar:
the revenue from a positive tax is used to improve the welfare of the poorest children, as
well as the welfare of parents that are hurt by the imposition of the borrowing constraint.

Proposition 7 requires logarithmic utility. We now provide a more general related local
result. Although it does not fully settle the sign, this result does suggest that positive
estate taxes may be optimal for a wide class of preferences.

Proposition 8. Suppose λθ is constant and that children’s welfare is evaluated by a Rawlsian
maximin criterion. Suppose that Assumptions 1 and 2 hold. In addition, assume that c1 is a
normal good. There exists a positive tax τ > 0 that improves on the no-intervention equilibrium
with τ = 0.

We also provide an optimal tax formula for general preferences. We need to adapt
the definitions of the demand functions, the indirect utility function and the interest rate
elasticity of bequests to incorporate a borrowing constraint (see the online appendix).

Proposition 9. For general preferences, the optimal tax rate is given by

τ

1 + τ
= −ν

Cov(c1(θ),λθVp
I (θ))´

εc1,R̃(θ)c1(θ) f (θ)dθ

1 + 1
R̃

Cov(c1(θ),c1,I(θ))´
εc1,R̃(θ)c1(θ) f (θ)dθ

.

This optimal tax formula features only Ramsey terms and no Pigouvian term: the
Pigouvian motive for taxation is addressed entirely by the borrowing constraint.

7If λθ is decreasing in θ, there is an additional force for a tax.
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5 Conclusions

We have singled out one case where optimal policy takes a simple form: a ban on negative
bequests and a positive tax on positive ones. These properties are features of tax codes in
most developed economies. However, this result applies to a particular, albeit defensible,
combination of welfare criteria (maximin for children) and cardinal normalizations. The
conclusions are sensitive to the form of redistributive tastes, embedded in assumptions on
the cardinality of utility and social welfare functions, as well as the source of the inequal-
ity in bequests, such as altruism heterogeneity versus parental earnings heterogeneity.
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Figure 1: Optimal implicit marginal estate tax rates τ(θ) as a function of θ for the weighted
Utilitarian case. The Pareto weights λθ and αθ are as follows: λθ = 1 and αθ = 0.02 (first
panel), λθ =

e−θ

E[e−θ ]
and αθ = 0 (second panel) and λθ =

e−θ

E[e−θ ]
and αθ = 0.02 (third panel).
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Figure 2: Optimal implicit marginal estate tax rates τ(θ) as a function of θ with a Rawlsian
criterion for generation 1. The Pareto weights λθ are as follows: λθ = e−θ

E[e−θ ]
(first panel),

and λθ = 1 (second panel). The dashed portion coincides with values θ for which the bor-
rowing constraint is binding (θ ≤ θ∗). For these values, the implicit marginal tax rate τ(θ)
is lower than the explicit marginal tax rate τ(θ∗) that agents face in the implementation
with a nonlinear tax and a borrowing limit, reflecting the binding borrowing constraint.
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A Appendix

A.1 Proof of No Ordinal Restrictions in Assumption 2

Note that Assumption 2 is not required to hold at all levels of the gross interest rate, only
the technological rate of return R, i.e. the return on storage without taxation.

Start with concave preferences U(c0, c1; θ) that satisfy Assumption 1. We construct
a renormalization of preferences by applying the transformation f g(U(c0, c1; θ); θ). This
renormalization ensures that Assumption 2 holds, and preserves concavity.

The functions f g(V; θ) are constructed as follows. Fix θ∗. For any function g, for all I
and θ, define f g(V; θ) by

f g
V(V(I, R; θ); θ)VI(I, R; θ) = g′(V(I, R; θ∗))VI(I, R; θ∗),

or
f g
V(V(I, R; θ); θ) = g′(V(I, R; θ∗))

VI(I, R; θ∗)
VI(I, R; θ)

.

We can pick g so that f g
V(V; θ) is decreasing in V for each θ so that concavity is preserved.

A.2 Proof of Proposition 1

Case (a) is immediate. We now prove case (b); case (c) is symmetric. Define C0(c1, v; θ) as
v = Up(C0(c1, v; θ), c1; θ). The planning problem is

min
ˆ (

C0(c1(θ), v(θ); θ) +
1
R

c1(θ)

)
f (θ)dθ

subject to c1 non-decreasing and

v̇(θ) = Up
θ (C0(c1(θ), v(θ); θ), c1(θ); θ),

ˆ
λθv(θ) f (θ)dθ ≥ V.

We study the relaxed planning problem

min
ˆ (

C0(c1(θ), v(θ); θ) +
1
R

c1(θ)

)
f (θ)dθ
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subject to c1 non-decreasing and

v̇(θ) = Up
θ (C0(c1(θ), v(θ); θ), c1(θ); θ) + r(θ),

r(θ) ≥ 0,ˆ
λθv(θ) f (θ)dθ ≥ V.

The original problem imposes r(θ) = 0 for all θ, but here we allow for r(θ) ≥ 0. Our
first goal is to show that an interior solution to the relaxed problem features r(θ) = 0 and,
thus, coincide with the original planning problem.

Adapting Theorem 3.1 in Hellwig (2009) we form the Hamiltonian

H = λθv f (θ)− γ

(
C0(c1, v; θ) +

1
R

c1

)
f (θ) + µ(Up

θ (C0(c1, v; θ), c1, θ) + r) + χq

where γ should be thought of the inverse of the multiplier ν on the promise keeping
constraint. We obtain the following necessary conditions for an interior optimum:

χ̇(θ) = γ
1
R

f (θ) + γ f (θ)C0,c1(θ)− µ(θ)
(

Up
θ,c0

(θ)C0,c1(θ) + Up
θ,c1

(θ)
)

,

µ̇(θ) = −λθ f (θ) + γ f (θ)C0,v(θ)− µ(θ)Up
θ,c0

(θ)C0,v(θ),

µ(θ) = µ(θ̄) = χ(θ) = χ(θ̄) = 0,

µ(θ) ≤ 0 µ(θ)r(θ) = 0,

χ(θ) ≤ 0,ˆ
χ(θ)dc1(θ) = 0.

The relaxed problem solves the original problem. To show that a solution to the
relaxed problem features r(θ) = 0 and, thus, coincide with the original planning problem,
we argue by contradiction. Thus, assume that r(θ) > 0 on a positive measure of points θ.

We claim that if we can find a set E of positive measure such that for all θ ∈ E we have

r(θ) > 0,

µ(θ) = 0,

µ̇(θ) = 0,
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and c1(·) strictly increasing at θ then we are done. First we show that we can find such
a set under the assumption that r(θ) > 0 on a set of positive measure. Let E be a set
of positive measure on which r(θ) > 0. Then by the necessary conditions we know
that µ(θ) = 0 on E. Since µ, v, χ are all absolutely continuous they are differentiable
almost everywhere. Thus we can assume without loss of generality that µ, χ and v are all
differentiable on E. Since µ(θ) ≤ 0 we know that µ̇(θ) = 0 on E. If we have that c1(θ) is
strictly increasing on a positive measure subset of E then we are done. Thus suppose not,
so that c1 is not strictly increasing at almost every of E. Without loss of generality we can
suppose that c1 is not strictly increasing at every point of E. In other words given θ ∈ E
we can choose ε small enough so that c1(θ− ε) = c1(θ + ε). Now by our preliminary fact
we know that E contains an accumulation point, call it θ0. By the preceding argument
there exists an ε > 0 so that c1 is constant on the interval (θ0 − ε, θ0 + ε). Let c1 = c1(θ0).
Now since Uc0 > 0 and v is differentiable at θ0 the implicit function theorem says that
c0(θ) defined by

v(θ) = Up(c0(θ), c1; θ)

is differentiable at θ0. Then

v̇(θ0) = Up
c1(c0(θ0), c1; θ)ċ0(θ0) + Up

θ (c0(θ0), c1; θ).

We also know that

v̇(θ0) = Up
θ (c0(θ0), c1; θ) + r(θ0) > Up

θ (c0(θ0), c1; θ).

Since r(θ0) > 0. Since UP
c0
> 0 this implies that ċ0(θ0) > 0. Since θ0 is an accumulation

point of E there exists a sequence θn ∈ E with θn → θ0. We can further suppose that we
have either θn ↗ θ0 or θn ↘ θ0. We take the case θn ↗ θ0. Using the fact that for all θ ∈ E
we have µ(θ) = µ̇(θ) = 0 we have that

γ = λ(θ)Up
c0(c0(θ), c1(θ); θ).

Using the fact that ċ0(θ0) > 0 we know that for all large enough n we have c0(θn) < c0(θ0)

and c1(θn) = c1(θ). But then using the concavity of the utility function, the fact that
Up

c0,θ < 0 and λθ is decreasing we see that

γ = λθ0Up
c0(c0(θ0), c1(θ0); θ0),

≤ λθ0Up
c0(c0(θ0), c1(θ0); θn),
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< λθ0Up
c0(c0(θn), c1(θn); θn),

≤ λθnUp
c0(c0(θn), c1(θn); θn),

which is a contradiction. Thus on the original set E we must have had a positive measure
set of points A such that c1 was strictly increasing at these points. Consider the new set
E′ = E ∩ A which also has positive measure. Then for all θ ∈ E′ we have that

r(θ) > 0,

µ(θ) = 0,

µ̇(θ) = 0,

the function c1(θ) is strictly increasing and µ, v, χ are all differentiable. Since c1 is increas-
ing at θ we know that we must have χ(θ) = 0. But since χ is differentiable at θ and
χ(θ) = 0 and χ ≤ 0 it must be that χ̇(θ) = 0.

From here onwards we restrict to points θ ∈ E′. Using the fact that µ(θ) = µ̇(θ) =

χ̇(θ) = 0 tells us that
−λθ f (θ) + γC0,v(θ) f (θ) = 0.

and
γ

1
R

f (θ) + γ f (θ)C0,c1(θ) = 0.

Rearranging and using the definition of C0(c1, v; θ), these two equations are equivalent to

γ = λθUp
c0(c0(θ), c1(θ); θ), (8)

R =
Up

c0(c0(θ), c1(θ); θ)

Up
c1(c0(θ), c1(θ); θ)

. (9)

The second equation tells us that we can write

v(θ) = Vp(I(θ), R, θ)

for some I(θ) since c0(θ) and c1(θ) are chosen as they would be in the parent’s optimal
problem. Now we claim that I(θ) is decreasing on E′. This follows from the fact that

γ

λ(θ)
= Up

c0(c0(θ), c1(θ); θ) = Vp
I (I(θ), R; θ)

and the fact that V is concave and λ is decreasing. Since E′ has positive measure it con-
tains a limit point θ. Suppose that there exists a sequence θn ∈ E with θn ↘ θ. The case

16



θn ↗ θ is symmetric. Then since v is differentiable at θ we know that

v̇(θ) = lim
n→∞

v(θn)− v(θ)
θn − θ

since V is differentiable in I and θ we see that

v(θn)− v(θ) = Vp(I(θn), R; θn)−Vp(I(θ), R; θ)

= Vp
I (I(θ), R; θ)(I(θn)− I(θ)) + Vp

θ (I(θ), R; θ)(θn − θ) + ε(θn − θ)

where the ε(θn − θ) is a second order error term so that ε(θn−θ)
θn−θ → 0. Thus

v̇(θ) = lim
n→∞

Vp
I (I(θ), R; θ)(I(θn)− I(θ)) + Vp

θ (I(θ), R; θ)(θn − θ)

θn − θ

= Vp
θ (I(θ), R; θ) + Vp

I (I(θ), R; θ) · lim
n→∞

(I(θn)− I(θ))
θn − θ

≤ Vp
θ (I(θ), R; θ)

since I(θn)− I(θ) ≤ 0. Thus we see that v̇(θ) ≤ Vp
θ (I(θ), R; θ). But since

v̇(θ) = Vp
θ (I(θ), R; θ) + r(θ) = Up

c0(c0(θ), c1(θ); θ) + r(θ)

and r(θ) > 0 we have a contradiction. Thus it must have been that r = 0 almost surely
so that the solution to the relaxed problem coincides with the solution to the original
problem.

The relaxed problem features positive taxes. In the proof, we will make repeated use
of the fact that over an interval where there is bunching, the tax rate τ is increasing. This
is a direct consequence of the single crossing condition in Assumption 1.

Since µ, v, χ are all absolutely continuous they are differentiable almost everywhere.
Thus there is a full measure set Ω of θ such that µ, χ and v are all differentiable. Consider
θ ∈ Ω.

Suppose that c1 is strictly increasing at θ. Then χ(θ) = χ̇(θ) = 0, and we get using
equation 11 together with the fact that µ(θ) ≤ 0 and single crossing that τ(θ) ≥ 0.

Now suppose that c1 is not strictly increasing at θ. Consider the greatest interval
around θ over which c1 is constant. Then the tax rate τ is increasing over this interval
so that it is comprised between its limit values at the bounds θl and θh of the interval.

If θl > θ, then the function c1 must be strictly increasing at θl so that τ(θl) ≥ 0. If c1
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is continuous at θl, then so are c0 and τ. We can conclude that τ(θ) ≥ 0. Suppose now
that c1 is not continuous at θl. If limθ̃→θ+l

τ(θ̃) ≥ 0, then we have τ(θ) ≥ 0. Otherwise
limθ̃→θ+l

τ(θ̃) < 0, from which we derive a contradiction by constructing a new allo-
cation that satisfies the constraints of the relaxed planning problem but achieves lower
cost. We first construct a new allocation (ĉ0, ĉ1) which coincides with the old one ex-
cept at points θ̃ ∈ (θl, θh) such that τ(θ̃) < 0, in which case we pick (ĉ0(θ̃), ĉ1(θ̃)) so that

Up(ĉ0(θ̃), ĉ1(θ̃); θ̃) = Up(c0(θ̃), c1(θ̃); θ̃) and R =
Up

c0 (ĉ0(θ̃),ĉ1(θ̃);θ̃)

Up
c1 (ĉ0(θ̃),ĉ1(θ̃);θ̃)

so that τ̂(θ̃) = 0. Then de-

fine an ironed version of this allocation by setting ˆ̂c1(θ̃) = ĉ1(φ(θ̃)) and ˆ̂c0(θ̃) = ĉ0(φ(θ̃))

where φ(θ̃) = arg maxθ̃′<θ̃ ĉ1(θ̃
′). Then this allocation satisfies the constraints of the re-

laxed planning problem but has a lower cost.
Suppose now that θl = θ. We have χ(θ) = 0. Then for every ε > 0, we can find θ̃ε in

[θ, θ + ε) ∩Ω, such that χ̇(θ̃) ≤ 0. Because limε→0 χ(θ̃ε) = 0, we conclude using equation
(10) that limε→0τ(θ̃ε) ≥ 0. Since τ is increasing on (θ, θh), this allows us to conclude that
τ(θ) ≥ limε→0τ(θ̃ε) ≥ 0.

A.3 Derivation of Optimal Tax Formula and Proposition 2

Define C0(c1, v; θ) as v = Up(C0(c1, v; θ), c1; θ). We have C0,c1 = −
Up

c1
Up

c0
, and C0,v = 1

Up
c0

. We

adapt Theorem 3.1 in Hellwig (2009). We form the Hamiltonian

H = (λθv + αθUc(c1)) f (θ)− γ

(
C0(c1, v; θ) +

1
R

c1

)
f (θ) + µUp

θ (C0(c1, v; θ), c1, θ) + χq

We have the following necessary conditions:

χ̇(θ) = −αθUc
c1
(θ) f (θ) + γ

1
R

f (θ) + γ f (θ)C0,c1(θ)− µ(θ)
(

Up
θ,c0

(θ)C0,c1(θ) + Up
θ,c1

(θ)
)

,

µ̇(θ) = −λθ f (θ) + γ f (θ)C0,v(θ)− µ(θ)Up
θ,c0

(θ)C0,v(θ),

µ(θ) = µ(θ̄) = χ(θ) = χ(θ̄) = 0,

χ(θ) ≤ 0,

and the complementary slackness condition

ˆ
χ(θ)dc1(θ) = 0.
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Using the definition for

τ(θ) = R
Up

c1(θ)

Up
c0(θ)

− 1

we can rewrite the first equation as

γτ(θ) = −R
χ̇(θ)

f (θ)
− αθRUc

c1
(θ)− µ(θ)

f (θ)
RUc

c1
(θ)

(
Up

θ,c1
(θ)

Up
c1(θ)

−
Up

θ,c0
(θ)

Up
c0(θ)

)
. (10)

The result in Proposition 2 follows immediately from the fact that µ(θ) is zero at the
extremes. As long as c1(θ) is strictly increasing, then we have χ(θ) = 0 and χ̇(θ) = 0 so
that using γ = 1

ν , we have

τ(θ) = −ναθRUc
c1
(θ)− ν

µ(θ)

f (θ)
RUc

c1
(θ)

(
Up

θ,c1
(θ)

Up
c1(θ)

−
Up

θ,c0
(θ)

Up
c0(θ)

)
. (11)

A.4 Proof of Proposition 3

We fix the weights αθ, and solve the following system

γ
1

Up
c0(θ)

= −αθ

Uc
c1
(θ)

Up
c1(θ)

+ γ
1
R

1
Up

c1(θ)
, (12)

Up(θ) = v(θ), (13)

Up
θ (θ) = v̇(θ). (14)

Given v(θ), equations 12 and 13 pin down c0(θ) and c1(θ). Equation 14 can then be seen
as a differential equation in v(θ).

If the solution of this system is such that c1(θ) is increasing in θ, then the corresponding
allocation is incentive compatible, and solves the planning problem for parental weights
λθ given by

γ
1

Up
c0(θ)

= λθ.

For αθ = α constant, we know that the allocation is incentive compatible. Indeed the al-
location can be constructed by confronting agents with a nonlinear tax on bequests given
by

T′
(

c1 − I1

R

)
= −ναRUc

c1
(c1).

The bequest tax T is convex, and hence the resulting budget set is concave. The corre-
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sponding allocation is incentive compatible by construction.

A.5 Proof of Proposition 4

The planning problem is (normalizing λθ = 1)

min
ˆ (

C0(c1(θ), v(θ); θ) +
1
R

c1(θ)

)
f (θ)dθ

subject to c1 non-decreasing and
c1(θ) ≥ c,

v̇(θ) = Up
θ (C0(c1(θ), v(θ); θ), c1(θ); θ),
ˆ

v(θ)dF(θ) ≥ V.

As in the proof of Proposition 1, we study the relaxed planning problem

min
ˆ (

C0(c1(θ), v(θ); θ) +
1
R

c1(θ)

)
f (θ)dθ

subject to c1 non-decreasing and
c1(θ) ≥ c,

v̇(θ) = Up
θ (C0(c1(θ), v(θ); θ), c1(θ); θ) + r(θ),

r(θ) ≥ 0,ˆ
v(θ)dF(θ) ≥ V.

The original problem imposes r(θ) = 0 for all θ, but here we allow for r(θ) ≥ 0. The
necessary conditions can be derived by adapting Theorem 3.1 in Hellwig (2009). Indeed,
his setup explicitly allows for a constraint such as c1(θ) ≥ c.

We claim that a solution to the relaxed problem must feature r(θ) = 0 and, thus, coin-
cide with the original planning problem. The proof of this claim is essentially identical to
that laid out in the proof of Proposition 1. The presence of the new constraint c1(θ) ≥ c
does not change the key arguments involved. Indeed, the necessary conditions are iden-
tical except that χ(θ) is not required to be zero.

Following the proof of Proposition 1 it follows immediately that τ(θ) ≥ 0 for all θ ≥
θ∗. Finally we can use Proposition 8 to conclude that we cannot have τ(θ) = 0 almost
surely for θ ≥ θ∗.
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A.6 Proof of Proposition 5

The proposition is a direct application of Proposition 6 specialized to the logarithmic util-
ity case.

A.7 Proof of Proposition 6

We define the after-tax interest rate R̃ = R
1+τ . The planning problem is8

min
ˆ (

c0(I, R̃, θ) +
1
R

c1(I, R̃, θ)

)
f (θ)dθ

subject to ˆ (
λθVp(I, R̃, θ) + αθUc(c1(I, R̃, θ))

)
f (θ)dθ ≥ V,

where c0(I, R̃, θ) and c1(I, R̃, θ) are the uncompensated demand functions and Vp(I, R̃, θ)

is the indirect utility function. We denote by W(I, R̃, θ) = λθVp(I, R̃, θ)+ αθUc(c1(I, R̃, θ))).
Finally we denote by cc

0(u, R̃; θ) and cc
1(u, R̃; θ) the compensated demand functions, and

by εc1,R̃(I, R̃, θ) the compensated elasticity of c1 to the after tax interest rate R̃.
We now proceed to prove Proposition 6. We use

c0,I(θ) +
1
R̃

c1,I(θ) = 1,

c0,R̃(θ) +
1
R̃

c1,R̃(θ)−
1

R̃2
c1(θ) = 0,

c1,R̃(θ) = cc
1,R̃(θ) +

1
R̃2

c1(θ)c1,I(θ),

c0,R̃(θ) = cc
0,R̃(θ) +

1
R̃2

c1(θ)c0,I(θ),

Vp
R̃(θ) =

1
R̃2

Vp
I (θ)c1(θ).

We find
ˆ [(

1
R
− 1

R̃

)
c1,R̃(θ) +

1
R̃2

c1(θ)
(
1− νVp

I (θ)
)
− αθνUc

c1
(θ)c1,R̃(θ)

]
f (θ)dθ = 0,

8If αθ = 0 this case amounts to a many-person Ramsey tax problem, as in Diamond (1975).
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(
1
R̃
− 1

R

)
=

´ [ 1
R̃2 c1(θ)

(
1− νVp

I (θ)
)
− αθνUc

c1
(θ)c1,R̃(θ)

]
f (θ)dθ´

c1,R̃(θ) f (θ)dθ
.

Similarly, we have

ˆ [
1 +

(
1
R
− 1

R̃

)
c1,I(θ)− νVp

I (θ)− αθνUc
c1
(θ)c1,I(θ)

]
f (θ)dθ = 0,

(
1
R̃
− 1

R

)
=

´ [
1− νVp

I (θ)− αθνUc
c1
(θ)c1,I(θ)

]
f (θ)dθ´

c1,I(θ) f (θ)dθ
.

After some manipulations, we get

1
R
− 1

R̃
=

ν
R̃2 Cov (c1(θ), WI(θ)) +

´
αθνUc

c1
(θ)cc

1,R̃(θ) f (θ)dθ´
cc

1,R̃(θ) f (θ)dθ + 1
R̃2 Cov (c1(θ), c1,I(θ))

,

which can be transformed into

τ

1 + τ
= −νR̃

1
R̃2 Cov (c1(θ), WI(θ)) +

´
αθUc

c1
(θ)cc

1,R̃(θ) f (θ)dθ´
cc

1,R̃(θ) f (θ)dθ + 1
R̃2 Cov (c1(θ), c1,I(θ))

,

and finally

τ

1 + τ
= −ν

Cov(c1(θ),WI(θ))´
εc1,R̃(θ)c1(θ) f (θ)dθ

+ R̃
´

αθUc
c1
(θ)εc1,R̃(θ)c1(θ) f (θ)dθ´

εc1,R̃(θ)c1(θ) f (θ)dθ

1 + 1
R̃

Cov(c1(θ),c1,I(θ))´
εc1,R̃(θ)c1(θ) f (θ)dθ

.

A.8 Proof of Proposition 7

We apply Proposition 9 to the logarithimic utility case to prove Proposition 7. We have

c1(I, R̃, θ) = min(IR̃θ, exp(u)),

λθVp(I, R̃, u, θ) =

{
λθ

[
(1− θ) log

(
I − exp(u)

R̃

)
+ θu

]
if IR̃θ ≤ exp(u),

λθ

[
log I + (1− θ) log(1− θ) + θ log(R̃θ)

]
if IR̃θ ≥ exp(u),

so that

λθVp
I (I, R̃, u, θ) =


λθ(1−θ)

I− exp(u)
R̃

if IR̃θ ≤ exp(u),

λθ
I if IR̃θ ≥ exp(u).
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Note that for IR̃θ ≤ exp(u), we have

λθ(1− θ)

I − exp(u)
R̃

=
λθ(1− θ)R̃

IR̃(1− θ) + IR̃θ − exp(u)
=

λθ

I + IR̃θ−exp(u)
R̃(1−θ)

>
λθ

I
,

and IR̃θ−exp(u)
R̃(1−θ)

is negative and increasing in θ. Hence Cov(c1(θ), Vp
I (θ)) is negative even

when λθ is constant. Also, c1,I(θ) = R̃θ for θ ≥ exp(u)
IR̃ and 0 otherwise. Thus, both c1(θ)

and c1,I(θ) are increasing in θ, implying that Cov (c1(θ), c1,I(θ)) ≥ 0.

A.9 Proof of Proposition 8

We first show that Vp
I (I, R, u; θ) is higher for types such that the constraint Uc(c1(I, R, u; θ)) =

u binds. Let Cc
1 be the inverse function of Uc. We have

Vp(I, R, u; θ) = max U(I − 1
R

c1, c1)

subject to
c1 ≥ Cc

1(u).

The FOC implies that
Uc1

Uc0

≤ 1
R

,

with an equality if c1(I, R, u; θ) > Cc
1(u), i.e. if θ > θ∗. Consider θ < θ∗ so that c1(I, R, u; θ) =

Cc
1(u). We have

Vp
I (I, R, u; θ) = Up

c0(I − 1
R

Cc
1(u), Cc

1(u)).

Hence
Uc

c1

d
du

Vp
I = − 1

R
Up

c0,c0 + Up
c0,c1 ,

where we have omitted the arguments for brevity.

Since
Up

c1
Up

c0
≤ 1

R and Up
c0,c0 ≤ 0, we get

Uc
c1

d
du

Vp
I ≥ −

Up
c1

Up
c0

Up
c0,c0 + Up

c0,c1 ≥ 0,

where the second inequality follows from the assumption that c1 is a normal good. Hence
d

du Vp
I ≥ 0. Using the fact then when u is low enough, the constraint Uc(c1(I, R, u; θ)) = u

ceases to bind and then Vp
I (I, R, u; θ) is independent of θ, we conclude that Vp

I (I, R, u; θ)
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is higher for types such that the constraint Uc(c1(I, R, u; θ)) = u binds.
We now use this observation to prove that a small positive tax is beneficial. We find it

easier to work in the prime where we maximize welfare subject to a resource constraint
rather than in the dual. Imagine that we change R to R + dR. To satisfy the resource
constraint, we need to change I to I + dI, where dI = − dR

R2

´
c1(I, R, u; θ) f (θ)dθ. The

change in welfare is given by

dW =

ˆ
λθ(V

p
R(θ)dR + Vp

I (θ)dI) f (θ)dθ,

which using Vp
R = c1

R2 Vp
I , we can rewrite as

dW =

ˆ
λθ(c1(θ)V

p
I (θ)

dR
R2 −VI(θ)

dR
R2

ˆ
c1(θ

′) f (θ′)dθ′) f (θ)dθ,

or
dW =

dR
R2

ˆ
λθ(c1(θ)V

p
I (θ)−Vp

I (θ)

ˆ
c1(θ

′) f (θ′)dθ′) f (θ)dθ,

which when λθ = λ̄ is constant, can be rewritten as

dW =
dR
R2 λ̄Cov(c1(θ), Vp

I (θ)).

Our previous result shows that Cov(c1(θ), Vp
I (θ)) < 0, assuming normality of good c1.

We conclude that starting with no tax, a small positive tax increases welfare.

A.10 Proof of Proposition 9

The planning problem is

min
ˆ (

c0(I, R̃, u, θ) +
1
R

c1(I, R̃, u, θ)

)
f (θ)dθ

subject to ˆ
λθVp(I, R̃, u, θ) f (θ)dθ ≥ V,

where we have defined u = Uc(RB) and Vp(I, R̃, u, θ) = maxc0,c1 Up(c0, c1; θ) subject
to c0 +

c1
R̃ ≤ I and Uc(c1(θ)) ≥ u, with demands c0(I, R̃, u, θ) and c1(I, R̃, u, θ). The

dual problem minc0,c1

(
c0 +

c1
R̃

)
subject to U = Up(c0, c1; θ) and Uc(c1(θ)) ≥ u gives

associated compensated demands cc
0(U, R̃, u, θ) and cc

1(U, R̃, u, θ), and by εc1,R̃(I, R̃, θ) the
compensated elasticity of c1 to the after tax interest rate R̃.
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The proof of Proposition 9 follows exactly the same steps as that of Proposition 6.
Indeed, this follows from the fact that the Slutsky relations between uncompensated and
compensated demands are still valid cc

1,R̃ = − c1
R̃2 c1,I + c1,R̃.9

9Indeed using a variation of dI and dR̃ such that VI
dI
dR̃ + VR̃ = 0, we get cc

1,R̃ = −VR̃
VI

c1,I + c1,R̃, with
VR̃
VI

= c1
R̃2 .
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