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 We consider a dynamic Mirrlees economy in a life-cycle context and study the optimal insurance
 arrangement. Individual productivity evolves as a Markov process and is private information. We use a
 first-order approach in discrete and continuous time and obtain novel theoretical and numerical results. Our

 main contribution is a formula describing the dynamics for the labour-income tax rate. When productivity
 is an AR(1) our formula resembles an AR(1) with a trend where: (i) the auto-regressive coefficient equals

 that of productivity; (ii) the trend term equals the covariance productivity with consumption growth divided

 by the Frisch elasticity of labour; and (iii) the innovations in the tax rate are the negative of consumption

 growth. The last property implies a form of short-run regressivity. Our simulations illustrate these results

 and deliver some novel insights. The average labour tax rises from 0% to 37% over 40 years, whereas the
 average tax on savings falls from 12% to 0% at retirement. We compare the second best solution to simple
 history-independent tax systems, calibrated to mimic these average tax rates. We find that age-dependent
 taxes capture a sizable fraction of the welfare gains. In this way, our theoretical results provide insights
 into simple tax systems. •

 Key words'. Optimal taxation

 JEL Codes: H21,H31

 1. INTRODUCTION

 To a twenty-five-year-old entering the labour market, the landscape must feel full of uncertainties.
 Will they land a good job relatively quickly or will they initially bounce from one job to another
 in search of a good match? What opportunities for on-the-job training and other forms of skill
 accumulation be they find? How well will they take advantage of these opportunities? Just how
 good are they? How high will they rise? Will they advance steadily within a firm or industry, or
 be laid off and have to reinvent themselves elsewhere? For all these reasons, young workers must

 find it challenging to predict how much they will be making at, say, age fifty. More generally,
 they face significant uncertainty in their lifetime earnings which is slowly resolved over time.

 This article investigates the optimal design of a tax system that efficiently shares these risks.
 With a few notable exceptions, since Mirrlees (1971), optimal tax theory has mostly worked with
 a static model that treats heterogeneity and uncertainty symmetrically, since redistribution can be
 seen as insurance behind the "veil of ignorance". More recently, there has been growing interest

 596

This content downloaded from 140.247.212.188 on Tue, 28 Mar 2017 18:38:03 UTC
All use subject to http://about.jstor.org/terms



 FARHI & WERNING INSURANCE AND TAXATION OVER THE LIFE CYCLE 597

 in the special role of uncertainty and insurance. To date, this more dynamic approach has focused
 on savings distortions, or considered special cases, such as two periods or i.i.d. shocks.1 Little
 is known in more realistic settings about the pattern of labour-income taxes when uncertainty is
 gradually revealed over time.

 This article aims to fill this gap and address the following questions. How are the lessons for
 labour-income taxes from the static models (e.g. Mirrlees, 1971; Diamond, 1998; Saez, 2001;
 Werning, 2007b) altered in a dynamic context? How is taxation with an insurance motive different

 from the redistributive motive? Does the insurance arrangement imply a tax systems that is
 progressive or regressive? How does the fully optimal tax system compare to simpler systems?
 Are the welfare gains from a more elaborate system large? What lessons can we draw from the
 optimal tax structure for simpler tax systems?

 We adapt the standard dynamic Mirrleesian framework to a life-cycle context. In our model,
 agents live for T years. They work and consume for Te years and then retire, just consuming, for
 the remaining Tr - T - Te periods. During their working years, labour supply in efficiency units
 is the product of work effort and productivity. An agent's productivity evolves as a persistent
 Markov process. Both effort and productivity are privately observed by the agent. The planner
 controls consumption and output, but cannot observe productivity nor work effort. Due to this
 private information, allocations must be incentive compatible. We study constrained efficient
 allocations and characterize the implicit marginal taxes or wedges implied by the allocation.

 A direct attack on this problem is largely intractable, but we show that both theoretical and
 numerical progress can be made by using a first-order approach. A similar approach has proven
 useful in moral-hazard contexts with unobservable savings (see, for example, Werning (2002)).
 Kapička (2008) spells out the first-order approach for a Mirrleesian setting, which we implement
 here. The basic idea is to relax the problem by imposing only local incentive constraints. Unlike
 the original problem, the relaxed problem has a simple recursive structure that makes it tractable.

 One can then check whether the solution to the relaxed problem is incentive compatible, and,
 hence, a solution to the original problem. We find it useful to work in both discrete and continuous
 time.

 Our theoretical results are summarized by a novel formula for the dynamics of the labour
 wedge z L,t- Although we derive the formula for a general stochastic process for productivity, it
 is most easily explained in the case where the logarithm of productivity follows an AR(1) with
 coefficient of mean-reversion p:

 log0/+i = piogOt + ( 1 - p)'og0 + st+i .

 We require utility to be additively separable between consumption and labour and an isoelastic
 disutility function for labour. We then obtain

 E' I" i TL t+l - TT - Ñ! = + O Cov' (l°z9t+ 1 - -ir - •

 The first term captures mean-reversion and is simply the past labour wedge weighted by the
 coefficient of mean-reversion p in productivity. In this sense, the labour wedge inherits its
 degree of mean reversion from the stochastic process for productivity. The second term is zero
 if productivity or consumption are predictable. In this case, if p = 1, the formula specializes
 to a case of perfect tax smoothing: the labour wedge remains constant between periods t and

 1. See for example, Diamond and Mirrlees (1978); Farhi and Werning (2008b); Goloso ' et al. (2003);
 Golosov et al. (2006); Albanesi and Sleet (2006).
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 598 REVIEW OF ECONOMIC STUDIES

 t- hl. If instead p < 1, then the labour wedge reverts to zero at rate p. When productivity and
 consumption are not predictable and are positively correlated, the second term on the right-hand
 side is positive, contributing to higher average taxes. Intuitively, uncertainty in consumption
 creates a role for insurance, delivered by larger taxes. The covariance captures the marginal
 benefit of more insurance. The marginal cost depends on the elasticity of labour, which explains
 the role of the Frisch elasticity e.

 In continuous time we confirm these results and also derive a tighter characterization.
 Consider a continuous-time limit where productivity is a Brownian diffusion: d'ogOt = - (1 -

 p)(logfy - 'ogQ)dt+GtdWt, so that p controls the degree of mean reversion as above. We show

 that in the limit, the process {yz^-} with

 rf(T5fc) = [_a"'>)T^7^j+(i"+1)Cov'(ii,oge"'i(i;i3))]'"

 The drift in the continuous time (the terms multiplying dt ) is the exact counterpart of the discrete-

 time expectation formula above. The new result here is that the innovations to the labour wedge
 are related one to one with innovations in the marginal utility of consumption. Economically,
 this result describes a form of regressivity. When productivity rises, consumption rises, so the
 marginal utility of consumption falls and the labour wedge must then fall by the same amount,
 at least in the short run. This induces a negative short-run relation between productivity and
 the labour wedge. This regressive taxation result is novel and due to the dynamic aspects of our
 model. In a static optimal taxation settings with a Utilitarian welfare function no general results on
 regressive or progressive taxation are available, since the optimal tax schedule depends delicately
 on the skill distribution (Mirrlees, 1971; Diamond, 1998; Saez, 2001).

 Finally, we extend the well-known zero-taxation result at the top and bottom of the productivity

 distribution. If the conditional distribution for productivity has a fixed support and labour is not
 zero, then the labour wedge is zero at both extremes, just as in the static Mirrlees model. However,
 in our dynamic model, a moving support may be more natural, with the top and bottom, Qt(0t-')

 and 0_t(0t- ' ), being functions of the previous period's productivity, 0t- ' . With a moving support,
 we establish that the labour wedge is no longer zero at the top and bottom. An interesting example

 is when productivity is a geometric random walk, and innovations have a bounded support, the
 extremes 0t(6t-') and 0_t(6t-') move proportionally with 0t~'. In this case, the labour wedge
 at the top must be below the previous period's labour wedge. The reverse is true at the bottom:
 the labour wedge must be higher than in the previous period. This result is consistent with the
 short-run regressivity discussed in the previous paragraph. Note, however, that no limit argument
 is required.

 For our numerical exploration, we adopt a random walk for productivity. This choice is
 motivated by two considerations. First, the evidence in Storesletten et al. (2004) points to a near
 random walk for labour earnings, which requires a near random walk for productivity. Second,
 by focusing on a random walk we are considering the opposite end of the spectrum of the well
 explored i.i.d. case (Albanesi and Sleet, 2006). Our findings both serve to illustrate our theoretical
 results and provide novel insights. In addition, although our numerical work is based the discrete-
 time version of the model, with a period modelled as a year, the simulations show that our
 continuous-time results provides excellent explanations for our findings.

 We find that the average labour wedge starts near zero and increases over time, asymptoting to
 around 37% precisely at retirement. The intertemporal wedge displays the opposite pattern, with
 its average starting around 0.6%, corresponding to a 12% tax on net interest, and falling to zero at
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 FARHI & WERNING INSURANCE AND TAXATION OVER THE LIFE CYCLE 599

 retirement. Both results are easily explained by our theoretical formula. As retirement approaches
 the variance of consumption growth falls to zero, for standard consumption smoothing reasons.
 Our formulas then indicate that the labour wedge will rise over time and asymptote at retirement
 and that the intertemporal wedge will reach zero at retirement.

 Our tax system comes out to be slightly regressive in the sense that marginal tax rates are
 higher for agents with currently low productivity shocks. Our short-run regressivity result seems
 to explain at least part of this regressivity. In terms of average tax rates the optimal tax system
 is progressive, the present value of taxes paid relative income is increasing in productivity. This
 captures the insurance nature of the solution.

 The second-best allocation we have characterized can be implemented with taxes, but, as is
 well known, it requires relatively elaborate, history-dependent tax instruments. We investigate
 how our results translate to simpler systems that are restricted to being history independent. Do
 our theoretical results provide guidance for such real-world tax systems? We find that they do. In
 fact, the second best turns out to be unexpectedly informative in the design of simpler policies.

 Specifically, we compute the equilibrium with history-independent linear taxes on labour
 and capital income, and consider both age-dependent and age-independent taxes. When age-
 dependent linear taxes are allowed, the optimal tax rates come out to be indistinguishable from
 the average rate for each age group from the fully optimal (history dependent) marginal tax rates.

 Surprisingly, the welfare loss of such a system, relative to the fully optimal one, is minuscule -
 around 0.15% of lifetime consumption. In this way, our theoretical results do provide guidance
 for more restrictive tax systems.

 We then solve for optimal age-independent linear tax rates. We find that welfare losses are more

 significant, around 0.3% of lifetime consumption. Thus, age-dependent tax rates are important.
 Second, when linear taxes are age independent, the optimal tax on capital is essentially zero,
 despite the fact that these are positive in the full optimum, or in the system that allows for age-
 dependent taxes. This can be explained by the fact that a linear subsidy on capital helps imitate
 the missing age-dependent linear taxes on labour: with a subsidy on savings, income earned,
 and saved in early periods count for more at retirement. This new effect cancels the desire for
 a positive linear tax on capital. This provides an interesting force that contrasts the conclusions
 in Erosa and Gervais (2002). Their model is a deterministic life-cycle model and found positive
 taxes on capital when restricting to age-independent taxes.

 1.1. Related literature

 Our article contributes to the optimal taxation literature based on models with private information
 (see Goloso vetai, 2006, and the references therein). The case where shocks are i.i.d. has
 been extensively studied [see, for example, Albanesi and Sleet (2006) and more recently
 Ales and Maziero (2009)]. Outside of the i.i.d. case few undertake a quantitative analysis.
 Persistent shocks significantly complicate the analysis. As emphasized by Fernandes and Phelan
 (2000), the efficient allocations have a recursive structure, but the dimensionality of the state is
 proportional to the number of possible shock values, severely limiting the possibilities for realistic
 numerical analyses.2,3

 2. Two exceptions are Golosov and Tsyvinski (2006) for disability insurance and Shimer and Werning (2008) for
 unemployment insurance. In both cases, the nature of the stochastic process for shocks allows for a low dimensional
 recursive formulation that is numerically tractable.

 3. See also Battaglini and Coate (2008). See as well Tchistyi (2006) and Battaglini (2005) for applications in a
 non-taxation context.
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 600 REVIEW OF ECONOMIC STUDIES

 This article continues our efforts to quantify dynamic Mirrleesian models using more realistic
 assumptions about uncertainty. In Farhi and Werning (2008a) and Farhi and Werning (2009), our
 strategy was to focus on the welfare gains from savings distortions. We presented a simple
 method to do so, which allowed us to consider rich stochastic processes and was tractable
 enough to apply in general equilibrium settings, which proved to be important. However, these
 papers do not attempt anything regarding labour wedges, which are the main focus of the present
 article.

 Versions of the first-order approach on which we rely in this article have been studied
 in other papers. Werning (2002) introduced this approach in a moral-hazard setting with
 unobservable savings to study optimal unemployment insurance with free-savings. Pavan et al.
 (2009) characterize necessary and sufficient conditions for the first-order approach in very
 general dynamic environment. Williams (2008) studies a continuous-time economy with hidden
 income that follows a Brownian motion. Garrett and Pavan (2010) use a first-order approach to
 study managerial compensation. Kapička (2008) spells out the first-order approach for a general
 Mirrleesian setting with persistent productivity shocks. He also simulates a simple example to
 illustrate the approach.4

 Fukushima (2010) performs a numerical study of an overlapping generations economy, where
 each generation looks much like the ones in our model. He considers a special class of Markov
 chains with two discrete shocks that allow for a low dimensional representation of the state
 space. For a planning problem that seeks to maximize steady-state utility, he reports substantial
 welfare gains of the optimal tax system over a system combining a flat tax and an exemption.
 Golosov et al. (2010) use a first-order approach to study a life-cycle economy with two periods
 and persistent shocks. The goal of their paper is to calibrate the distribution of shocks in both
 periods using the observed distribution of incomes, as Saez (2001) did for a single period in a
 static setting.5

 An important implication of our results is that with persistent productivity shocks, labour taxes
 should on average increase with age. Our theoretical formula provides the underpinnings for this
 observation as well as insights into its origin; our numerical simulation explores its quantitative
 importance. This aspect of our contribution connects with a prior contributions focusing on the
 benefits of age-dependent taxes.6 Most closely related to our article are Kremer (2002) and
 Weinzierl (2008). Kremer (2002) emphasized the potential benefits of age-dependent labour
 taxation, noting that the wage distribution is likely to become more dispersed with age and
 conjectured that labour taxes should generally rise depend on age. Weinzierl (2008) provides a
 more comprehensive treatment. He calibrates two- and three-period Mirrlees models. Like us, he
 finds important welfare gains from age-dependent taxes.

 2. THE INSURANCE PROBLEM

 This section first describes the economic environment and its planning problem. We then explain
 our first-order approach to solving this problem.

 4. See also Abraham and Pavoni (2008), Jarque (2008), and Kocherlakota (2004).
 5. Both Kapička (2008) and Golosov et al. (2010) rely on exponential utility and special shock specifications to

 make the problem tractable, by reducing the number of state variables.
 6. Erosa and Gervais (2002) analyse age-dependent linear labour taxation in Ramsey setting. In their model,

 optimal linear labour-income taxes are indexed on age because the elasticity of labour supply varies, endogenously, with
 age.
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 FARHI & WERNING INSURANCE AND TAXATION OVER THE LIFE CYCLE 601

 2. 1 . The environment and planning problem

 2.1.1. Preferences, uncertainty, and information. The economy is populated by a
 continuum of agents who live for T periods. Their ex-ante utility is

 T

 t= l

 Here ct represents consumption, yt represents efficiency units of labour, and 0ř € 0 = [0 , 0] is a
 state variable with conditional density /ř(0ř |0ř_ ' ). This state affects preferences over consumption
 and labour in efficiency units and can capture both taste and productivity fluctuations. In particular,

 an important case is when ut(c,y;6) = ut(c,y/6 ), for some utility function u'c,n ), defined over
 consumption and labour effort; then y - Qn and 0 can be interpreted as productivity.

 We allow the utility function and the density to depend on the period t to be able to incorporate
 life-cycle considerations. For example, an economy where agents work for Te periods and then
 retire for Tr periods can be captured by setting u(c,y/6) for í<Te and w(c, 0) for Te<í<T.

 The realization of the state 0t for all t = 1 , 2, ..., T is privately observed by the agent. Without
 loss of generality, we initialize 0o to some arbitrary value. Note that this does not constrain in
 any way the initial density fl(-'Oo).

 More explicitly, an allocation is {c,;y} = {c(0ř),. y(0ř)} and utility is

 T

 ua^yi^j^ß'-1 f u'(c(e'),y(0'); 0,)/'(6>,|6>ř_i)/'_1 (6>,_i |0,_2)- • -fX(0' '6o)de,d9t-' • • -dd' .
 t= 1 J

 2.1.2. Technical assumptions. We make the following assumptions on the utility
 and density functions. The utility function is assumed to be bounded, twice continuously
 differentiable. Moreover we assume that the partial derivative UQ(c,y,0) is bounded, so that
 'ug(c,y'0)' <b for some ¿?eR+.

 To simplify, we start with the full support assumption that/ř(0'|0)>O for all 0,0/G0. We
 relax this assumption in Section 3.3. We assume that the density function has a continuously
 differentiable derivative g/(0/|0) = 3/ř(0/|0)/30 with respect to its second argument. Moreover,

 this function is bounded, so that |^ř(0/|0)| < A for some A € M+.

 2.1.3. Incentive compatibility. By the revelation principle, without loss of generality,
 we can focus on direct mechanisms, where agents make reports rte@ regarding 9t. For any
 reporting strategy o = {ař(0ř)} we have an implied history of reports <jt(6t) = (a' (0q), . . . , crtiO1)).
 Let E denote the set of all reporting strategies a.

 Consider an allocation {e, jy}. Let w(0ř) denote the equilibrium continuation utility after history
 0', defined as the unique solution to

 w(ô')=u' j w(9',et+i)ft+l(et+ļ'et)d0t+l, (i)
 for all / = 1 , . . . , T with w(0^+1 ) = 0. For any strategy o e E, let continuation utility wa (0ř) solve

 wa(e')=u'(c(<jt(e')),y(crt(e'));dt)+ß j wa (e' ,et+])ft+i (et+ļ'et)det+u

 with wcr(0T+i) = 0.

This content downloaded from 140.247.212.188 on Tue, 28 Mar 2017 18:38:03 UTC
All use subject to http://about.jstor.org/terms



 602 REVIEW OF ECONOMIC STUDIES

 We say that an allocation {c,,y} is incentive compatible if and only if

 w(0ł) > wa (0ř),

 for all 0t. That is, an allocation is incentive compatible if truth telling, a* = {or*(0')} with cr*(0t) =
 0t , is optimal. Let IC denote the set of all incentive compatible allocations {c,y}?

 2.1.4. Planning problem. To keep things simple, we work in partial equilibrium, that
 is, assuming a linear technology that converts labour into consumption goods one for one and a
 linear storage technology with gross rate of return q~x (and a net rate of return equal to q~x - 1).
 This allows us to study the contracting problem for a single cohort in isolation. The relevant cost
 of an allocation is then its expected net present value:

 T

 J [ (c(e,)-y(et))f'(0t'et-l)-fl(Oi'eo)det-del. t= 1 J

 An allocation {c*, y*} is efficient if there is no other incentive compatible allocation {c,y} with
 ř/({c,j})> ř/({c*,y*}) and ^/({c,j})<^({c*,j*}), with at least one strict inequality. Efficient
 allocations solve the following program:

 ^*(v) = min^({c,j})
 {c,y}

 s.t. U({c,y})>v

 {c,y}elC.

 2.2. A recursive first-order approach

 In this section, we lay down our first-order approach, and explain how it leads to a relaxed version

 of the planning problem. Such an approach is standard in static setting, but many papers also use
 a similar approach in dynamic contexts, e.g. Werning (2002), Kapička (2008), Williams (2008),
 and Pavan et al. (2009).

 2.2.1. A necessary condition. A strategy ta = ( ato ) where at

 wa (r',0t) =u' (c (a' (r' ,91)) ,y(a' (ö')); @t)+ß J wa (6' ,6t+')ft+X (ôt+' '0,)d6t+ļ.

 We now derive a necessary condition for incentive compatibility. Fix a history . Consider a
 deviation strategy or indexed by r e 0 with the property

 ařr(0'-U)=r,

 <rí(e'-l,ê}=6, è i-e,.

 7. Our notion here of incentive compatibility is stronger than the ex-ante optimality of truth telling (ex-ante
 incentive compatibility). We are also requiring the ex-post optimality, after any history of shocks and reports, of subsequent

 truth telling (ex-post incentive compatibility). This is without loss of generality. To see this note that ex-ante incentive
 compatibility implies ex-post incentive compatibility almost everywhere. Then, note that one can always insist on ex-post
 incentive compatibility on the remaining set of measure zero histories, without any effect on welfare for the agent or costs

 for the planner.
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 FARHI & WERNING INSURANCE AND TAXATION OVER THE LIFE CYCLE 603

 Thus, the agent reports truthfully until 0 then report r in period t. We do not need to specify the

 reporting strategy thereafter, it may or may not involve truth telling. Continuation utility solves

 W' (e') = u' (cfo'-1 ,r) ;Ö,) +ß ļ w°r (öf+1)/'+1 (0ř+i 'et)d9t+ļ .

 Due to the Markov property,

 war 1 , et , e,+ 1 ) = w°r (e'~ 1 , r , e,+ļ ) .

 Incentive compatibility requires

 w(6ł) =maxw°rr ( 0 ').

 Equivalently,

 w{9') =max {«' , r) ,y (ó'"1 , r) ; 9t) +ßj W* (V"1 , r,0,+i)/'+1 (e,+i 'e,)d6t+i ļ .
 (2)

 Recall that we have defined gt(0f'6) = dft(6''0)/d0. An envelope condition then suggests that

 ±w(0')=u'd(c(ff'),y(0');9t) + ß f w(et+i)g'+l (0t+l'dt)d6t+l,

 or its integral version

 w (e1) = f' (u<9 (c (e'-'- 1 , ët' , y (e'- 1 , ët' -, ē,'
 - (3)

 +ß ļ »(e'-KštA+^g'^ķ+i^de^dē,.

 Let I~C denote the set of allocations {c, y] that satisfy equation (3) for all 0t where {w} is defined
 by equation (1). This suggests that these conditions are necessary for incentive compatibility. The
 next lemma, proved in the Appendix, states this formally.8

 Lemmai. Suppose {c,;y} is incentive compatible , so that [c,y]eIC and define {w} using
 equation (1). Then equation (3) holds for all 6f , so that {c,y} e IC. In other words , IC ç/C.

 2.2.2. The relaxed planning problem. We now define a relaxed planning problem,
 replacing the incentive compatibility conditions with the necessary conditions for incentive
 compatibility:

 /T(v) = min^({c,y})
 {c,y}

 s.t. U({c,y})>v

 {c,y}eIC.

 8. Pavan et al. (2009) derive a related, but different, necessary condition in a more general setting.
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 604 REVIEW OF ECONOMIC STUDIES

 2.2.3. A Bellman equation. We now consider a family of related problems that admit
 a recursive representation. For expositional purposes, it will prove useful to rewrite conditions
 (l)-(3) for a given period t as follows:

 W (e1) = ul (c (0ř) , J (e1) ; Ot) + ß V (0ř) (4)

 (5)

 v (e'- 1 ) = f w (e')f' (ôt'dt_ i ) de, (6)

 a(0'-')= j w{9t)gt(et'et-x)det. (7)
 As is standard in the literature on optimal control, the differential equation (5) should be interpreted

 as shorthand for its integral version.
 As we shall see next, the new variables v(0r) and A (#') will serve as state variables. For any

 date t and past history 0'-1, consider the continuation problem that minimizes the remaining
 discounted expected costs while taking as given some previous values for v(0'_1) and A(0'-1)
 as given; denote these values by v and A, respectively. The optimization is subject to all the
 remaining necessary conditions for incentive compatibility. Formally, define

 T

 K(v, A,05_i,s)=min¿y~s í (c(0ř) -y^))/1 (0t'Ot-i)'~fs (Os'9s-i)d0r -d0s,
 t=s J

 where the minimization is over continuation plans {c,j, w, v, A}t>s subject to v(05-1) = v,
 A(05_1) = A and equations (4)-(7) for t>s. Note that once one conditions on the past shock
 6s-', the entire history of shocks 05-1 is superfluous because of our assumption that {0} is a
 Markov process.

 This problem is recursive with Bellman equation

 K-(v,A,0_,f) = min j {c(9)-ym+qK(v(e),A(e),e,t+l)}f,(e'd-)dd (8)

 subject to

 w(6) = u,{c(0),y(O)'O)+ßv(9)

 w(0)=u'd(c(.e),y(.ey,e)+ßA(e)

 for all 0 e 0 and

 v= j w(6)ft(e'e-)de

 A = J w(9)g'(0'0-)d0.

 These constraints are the recursive counterparts of equations (4)-(7), taking into account that we
 can drop the time subscript t and the dependence on history 0ř_1 .
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 FARHI & WERNING INSURANCE AND TAXATION OVER THE LIFE CYCLE 605

 Finally, note that the relaxed problem defined earlier can be recovered by setting t = 1 and
 treating A as a free variable:

 ff(v) = mintf(v,A,fy,l).
 A

 Thus, we can solve the relaxed problem by solving the Bellman equation and then performing a
 simple minimization to initialize A. Optimal plans can then be constructed iterating on the policy
 functions obtained from the Bellman equation.

 Note that the Bellman equation embeds, in each period's iteration t- 1,2, T, an optimal
 control problem across current productivity types 0 with two integral constraints. To see this, use
 the first constraint to substitute out v(0) = - w'(c(0),;y(0);0)). We can then think of the
 state variable as w(0) and the controls as c(0 ), y(0 ), and A(0). The two integral constraints can
 be included in the objective with respective Lagrange multipliers. The problem thus transformed
 then fits into a standard optimal control problem where the initial states w(0) is free. Thus, we
 decouple the full optimization into a sequence of optimal control problems, each one comparable
 to those in static optimal taxation settings, as pioneered by Mirrlees (1971).

 2.2.4. Verifying IC. Suppose that a solution to the relaxed planning problem has been
 computed. Then this also represents a solution to the original planning problem if and only if the
 proposed allocation is incentive compatible.

 One approach is to seek sufficient conditions that guarantee that the solution to the relaxed
 problem is incentive compatible. In static settings this has proved fruitful. In particular, in the
 Mirrlees model a single-crossing assumption on the utility function together with monotonicity of

 the allocation provide such conditions. Unfortunately, we know of no general sufficient conditions

 for the dynamic case that would be useful in our context.9 A practical alternative, is to solve the
 relaxed problem and then verify the incentive compatibility directly. We discuss next how this
 can be done, exploiting the recursive nature of the solution.

 The solution to the Bellman equation (8) yields policy functions c(0) = gc(v, A , 0_ , 0 , t), y(0) =
 gy(v, A,0_,0,f), w(0) = gw(v, A,0_,0,ř), v(0) = gv(v, A,0_,0,O, and A(0)=gA(v, A,0_,0,f).
 An agent takes these functions as given and solves an optimal reporting problem that can be
 represented by another Bellman equation:

 V (v, A , r- , 0 , t) - max ļ u* (gc (v, A ,r-,r,t),gy (v, A , r_ , r, t) , 0)

 +ß j v(gv(v,A,r_Ir,ř),gA(v,A,r_,r,ř),r,0/,ř+iyi+1(0'|0)ť/e/1.

 Here r_ and r represent the previous and current report, respectively, whereas 0 is the current
 true shock. The agent must condition on the previous report r_ because the allocation depends
 on this report. That is under the direct mechanism the previous report is taken as truthful of the
 previous true shock.

 9. Pavan et al. (2009) work with a general dynamic model and offer some conditions that ensure incentive
 compatibility of allocations that satisfy the necessary first-order conditions for incentive compatibility. However, their
 result requires making assumptions on exogeneous primitives and also verifying conditions on the endogenous allocation.
 Unfortunately, in our context their result does not offer any advantage compared to checking incentive compatibility
 directly, in the way we describe below. In other words, verifying the conditions on the allocation required for their result
 is just as onerous as verifying incentive compatibility.
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 If the utility the agent can achieve coincides with the utility the planner had intended, so that

 V(v,A,r_AO=Sw(v,A,r_,0,O,

 holds for all v, A , r_ , 0, and t , then truth telling is always optimal. Thus, the solution to the relaxed

 problem is incentive compatible, i.e. it solves the original planning problem.
 Indeed, this verification does not require solving for the value function V. Instead, we can

 simply verify that

 0 e argmax{í/(gc(v, A , r_ , r, t ), gy(v, A ,r-,rj),0)
 r

 +ß j gw(.0',gv(v,A,r-,r,t),gA(v,A,r-,r,t),r,t+l)ft+l(ů''e)d0', (9)
 holds for all v, A , r_ , 0, and t.

 2.2.5. Initial heterogeneity and redistribution. We have interpreted the planning
 problem as involving a single agent facing uncertainty. Under this interpretation, the planner
 problem is purely about social insurance and not about redistribution. However, it is simple to
 add initial heterogeneity and consider redistribution.

 The simplest way to model heterogeneity is to reinterpret the first shock 0' . Instead of thinking

 of the value of 0' as the realization of uncertainty, we now interpret 6' as indexing some initial
 hidden characteristic of an agent. The agent is not alive before the realization of 0' and faces
 uncertainty only regarding future shocks 62, Recall that we allow the density to depend
 flexibly on the period t , so that fl(0''Oo) could accomodate any initial desired dispersion in
 productivitity types.

 If the social welfare function is Utilitarian, then the analysis requires no change: insurance
 behind the veil of ignorance and utilitarian redistribution are equivalent. Formally, the social
 welfare in this case coincides with the expected utility calculation when 0' is interpreted as
 uncertainty. Both integrate utility over 0' using the density/1. Thus, the planning problem at
 t=l remains unchanged.

 However, when it comes to redistribution, a Utilitarian welfare function is a special case.
 Indeed, we can allow for any social welfare function, or, more generally, characterize the entire
 set of constrained Pareto-efficient allocations. This does require treating the planning problem
 in the initial period t= 1 differently. It turns out that this only affects the optimal allocation at
 t= 1, as well as the optimal values for the endogenous state variables vi(#i) and Ai(#i). These
 values for v'(0') and Ai(0i) are inherited at t = 2 by the planner, but given these values, the
 problem from t = 2 onwards remains unchanged. Thus, the dynamics for the allocation and taxes
 for t = 2, 3, . . . remains unchanged.

 Formally, at t = 1 Pareto optima solve the cost minimization problem

 min j {c{fi' ) -y(ßi)+qK{v{ß' ), A(6»ļ ), 6' , 'Oo)d0'
 subject to

 w{ex)=u'c(ex),y(exy,ex)+ßv(ßx)>w(e')

 w(0,) = M¿(c(0i);y(0i);0,)+J8A(01))

 for all 0' € 0. Here the function w(-) parameterizes the position on the Pareto frontier. Note that
 from t = 2 onward the planning problem is characterized by the same Bellman equations described
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 above. Thus, our results about the dynamics of ct,yt,vt , and Ař, and hence the dynamics of the
 implied marginal taxes, which is are our focus, are preserved.

 3. OPTIMALITY CONDITIONS

 Given an allocation {c,_y}, and a history , define the intertemporal wedge

 T (e') = i_£

 ßfii+i(c(0,+1),y(e'+1),9,+l)f'+l(dt+l'0,)det+i

 and the labour wedge

 In this section, we characterize these wedges for allocations that solve Programs IC and FOA.

 3.1. A positive intertemporal wedge

 Our first result restates the well-known inverse Euler condition. This result requires utility from
 consumption to be separable from the disutility of labour.

 Assumption 1. For every ř>0, the utility function wř(c,;y,0) is separable so that there exists
 functions ič and hi such that u 1 ( c,y , 0) = ut(c)- /r (y, 0).

 Proposition 1. Suppose that Assumption 1 holds and that {c, jy} solves the original planning
 problem or the relaxed planning problem. Then for every t> 1 and history 0ř_1, the following
 Inverse Euler equation holds

 M'-"(c(0'-i)) = ßf ù"(c(e'))f>

 and the intertemporal wedge satisfies

 [f[ù"(c(d'))]-lf'(et'0l_l)detYl
 XK{e )_1 fù"(c(d'))f(et'et_i)det ' (10)

 Note that this result holds for any allocation that solves both the original or the relaxed planning
 problem and for any stochastic process for idiosyncratic shocks {0}. Applying Jensen's inequality

 to the second equation implies that the intertemporal wedge r k (#ř_1) is positive. In other words,
 positive savings distortions are present at the constrained optimum.

 3.2. Labour wedge dynamics: tax smoothing and mean reversion

 We now seek optimality conditions for the labour wedge for the relaxed planning problem. As
 explained above, if the solution of the relaxed planning problem satisfies the original constraints,
 then it also solves the original planning problem. There are both cases where the solutions of
 the two planning problems coincide and cases where they do not. We do not attempt to provide
 necessary or sufficient conditions on primitives for it to be the case. Instead we tightly characterize

This content downloaded from 140.247.212.188 on Tue, 28 Mar 2017 18:38:03 UTC
All use subject to http://about.jstor.org/terms



 608 REVIEW OF ECONOMIC STUDIES

 the behaviour of the labour wedge for the relaxed planning problem. In Section 6, we solve the
 relaxed planning problem numerically for a number of empirically relevant parametrizations, and
 verify numerically that our solution indeed satisfies the original constraints, and is hence also the
 solution of the original planning problem.

 We derive a set of formulas for the evolution of labour wedges over time. We derive one such
 formula for each weighting functions tt(0/), linking the period t- 1 labour wedge r l(0í_1) and a
 conditional expectation as of t - 1 of the period t labour wedge r¿(0') weighted by the weighting
 function n(6t). Taken together, these formulas conveniently encode not on only the evolution of
 labour wedges over time from t - 1 to ř, but also across the different possible realizations of 0t at
 t. In Section 4, we proceed in continuous time with Brownian diffusions. There, the analogue of
 our formulas for different weighting functions is a stochastic differential equation for the labour

 wedge.
 The following isoelastic assumption is useful for this purpose. It has been used to prove perfect

 tax-smoothing results by Werning (2007a).

 Assumption 2. Assumption 1 holds and the disutility of work is isoelastic hf (y, 0) = (ic/a ) (y/0)a
 with K >0 and a>'.

 We then have the following proposition.

 Proposition 2. Suppose that Assumptions 1 and 2 hold, and that {c,j} solves the relaxed
 planning problem. Consider a function i r(0), let 11(0) be a primitive of n(0)/Q and let
 0řn(0ř_ i)= / FI(0ř)/ř (0t'0t-')d0t. Then the labour wedge satisfies the following equation for
 every t> 1 and history 0'-1

 f TL(0t) q wř-1/(c(0ř_1)) tí .
 / f q
 J l-rL(0')č «ř/(c(0ř)) / / u

 i («'"') . - ììf'loio Me rui <"> = . J ¡¡"('(D')) - Me rui <">
 These formulas show that a weighted conditional expectation of the labour wedge r ¿ (0ř) is a

 function of the previous period's labour wedge r ¿ (0ř_1). Different weighting functions 7t(0) lead
 to different weighted expectations. The fact that equation (11) holds for every possible weighting
 function 7t(0t) imposes restrictions on the stochastic process {

 The weighting function n (0) = 1 with n (0) = log(0) is of particular interest and gives us an
 easily interpretable formula for the evolution of expected labour wedges r ¿ (0ř) conditional on a

 history 0ř_1.

 10. In particular, for any 6* e ©, one can apply this formula with a sequence of functions nn'e (9) that converges
 to a Dirac distribution n at 0*. The corresponding sequence Tln'9*(0) converges to a weighted Heaviside function n at

 6* given by 1{ć>>ć>*}- The corresponding formula for 9*=0t gives us

 q xL(e') 1 Mö'_l) 1 0I- 1 /«V
 ~ß 1 - ti (d') û"(c(0')) ~ 1 - Tl(0'_i) û'-i'(c(0'-1)) 6, /'(0,10,-1)
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 Corollary 1. Suppose that Assumptions 1 and 2 hold , and that {c,y} solves the relaxed planning
 problem. Then the labour wedge satisfies the following equation for every t> 1 and history 0ř_1

 f rL(e<) qû'-u(c{e'-1))
 J i-zL(e')ß «"(c(0')) ' '

 T^~') 0 d<iï*(et- 1) /,ioc(0)rgfif"1/(c(g,~')) i]f(o'c Ad9 (12) (12)
 ~l-t ¿(Ö'-1) 0 dQt-' +aylo8(0i) ß û"(c(0<)) Ad9 (12) (12)

 To understand the role of (0ř_i)/úř0ř_i in equation (12), consider the generalized
 geometric AR(1) process:

 log (0t) = p log (0ř_ i ) + §t + £7 ,

 where {0/} is a deterministic sequence for the unconditional mean of 6t, and et are independent

 draws from a distribution /e,ř(£ř,0ř_1), normalized so that f etf€,t(et,0t~i)det=0. Then

 (p]og (0ř_ 1 ) = p log (0,_ 1 ) + 6t so that

 dOt- 1

 For this AR(1) specification, equation (12) can be written more compactly as

 ^ I z^t q Mř_1/(c,_i)1 „ /, q m'-'/(c,_1)'
 ^ Ef- 1 -¡ 1 -¡ 1 -TL,t ß u"(ct ) . =p-¡ 1 - y ß u"(ct) J

 Proposition 1 implies that

 rgy-"(cy_i)ļ
 ' 1 ß û"(ct)

 so the term (^/^)Mř_1/(cř_i)/íiř/(Q) on the left-hand side of equation (13) represents a change
 of measure.

 Thus, we have a formula for the conditional expectation of t¿j/( 1 - under a risk-adjusted
 probability measure. On the right-hand side, r¿^_i/(l - r¿?í_i) is weighted by the coefficient
 of mean-reversion p. In this sense, {r¿/(l - r¿)} inherits its degree of mean reversion from the
 stochastic process for productivity. The second term provides a drift for {r¿/(l - r¿)}.

 It is useful to first consider the special cases where the drift is zero, which occurs when
 consumption at t is predictable at t- 1, so that Varř_i (ct) = 0. This would be the case if the
 productivity level 0t were predictable at t - 1 , so that Var,_ 1 ( 0t ) = 0. In this case, if p = 1 equation

 (13) implies that the labour wedge remains constant between periods t- 1 and ř, a form of perfect
 tax smoothing. When p < 1 the labour wedge reverts to zero at rate p.u

 This result incorporates elements of tax smoothing and mean reversion. It can be compared
 to the tax smoothing results that have been derived in the context of Ramsey models where

 11. These special cases are consistent with the results in Werning (2007a), who studied a model where agent's
 private types are fixed (similar to Var,_i (0,) = O here). Productivity may still vary for each type, due to changes in
 inequality or aggregate shocks. At the optimum, the tax rate is constant with respect to aggregate shocks to productivity,
 but is an increasing function of the current degree of inequality. This relates to the analysis here, since when p < 1 and
 Var,_i (0t)=0 we have a decreasing pattern for inequality and the tax rate.
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 the government must finance a given stream of expenditures with taxes on labour and these
 taxes are exogenously restricted to be linear. These papers emphasize the importance of the
 completeness of markets. With complete markets, taxes inherit the serial correlation property of
 the shocks (Lucas and Stokey, 1983), whereas with incomplete markets, taxes inherit a random
 walk component (Barro, 1 979; Aiyagari et al. , 2002). Our model is quite different. In particular, no
 exogenous restriction on tax instruments is imposed, and distortionary taxes arise endogenously
 out of a desire to provide social insurance. Our tax-smoothing formula has both differences and
 similarities with the corresponding results in the Ramsey literature. An important difference is
 that it applies to the marginal tax rate faced by a given individual in response to idiosyncratic
 shocks versus aggregate tax rates in response to aggregate shocks. An interesting similarity with
 Lucas and Stokey (1983) is that taxes inherit the serial correlation of the shocks.

 The drift is positive whenever Varř_i(0ř)>O provided that consumption is increasing in
 productivity. Compared to the case with Var,_i (0ř)=O, the additional shocks to productivity
 create an additional motive for insurance. This pushes the labour wedge up. Interestingly, the
 size of the drift is precisely the covariance of the log of productivity with the inverse growth rate

 in marginal utility, divided by I /a = e/(l +€), where e is the Frisch elasticity of labour supply.
 The covariance captures the benefit of added insurance, since it depends on the variability of
 consumption as well as on the degree of risk aversion. Insurance comes at the cost of lower
 incentives for work. This effect is stronger the more elastic is labour supply, explaining the role
 of the Frisch elasticity.

 Returning to the more general statement in Proposition 2, equation (11) shares many
 ingredients with equation (12). Note however that, in general,

 / J "y (ģ(t>')) " * (<w' ("' ft"
 will not equal one, so that in contrast with equation (12), the right-hand side cannot be interpreted
 as a risk-adjusted conditional expectation of the labour wedge in period t. Another important

 case is ti ißt) = ( ß /q)uv (c (O1)) /wř~ ìf ( c ( 0 ř~ 1 )) , so that equation (11) provides a formula for the
 unadjusted conditional expectation for 1 - r^). The corresponding expression is somewhat
 more involved than equations (12) and (13). Rather than develop the expression here, we present
 its neater continuous-time counterpart in Section 4.

 Equations (11) and (12) hold for any allocation that solves the relaxed planning problem.
 They do not necessarily hold for an allocation that solves the original planning problem when
 the two programs do not coincide. Nevertheless, we are able to show that Proposition 2 applies
 with a particular function n to any allocation that solves the original planning problem under the
 following assumption.

 Assumption 3. The process {0} is a geometric random walk. That is , the growth rate 0t/0t-' is
 independent of the history 0t~i.

 Proposition 3. Suppose that Assumptions 1, 2, and 3 hold, and that {c,j} solves the original
 planning problem. Then the labour wedge satisfies equation (11 )for every t> 1 and history 0t~ 1
 with 7t(0) = 0~a.

 The proof proceeds by constructing a class of perturbations of the solution of the original
 planning problem that satisfy all the constraints, and exploiting the condition that their associated
 resource cost is higher. These perturbation operate at a given history 0t~ 1 , increasing y (6^ 1 ) and
 decreasing y(@t) for all successor nodes in such a way that the perturbed allocation is incentive
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 compatible and delivers the same utility as the original allocation. The construction of these
 perturbations relies heavily on Assumptions 1, 2, and 3.

 It is interesting to compare Propositions 2 and 3. Unlike Proposition 2, Proposition 3
 characterizes the solution of the original planning problem even when it does not coincide
 with the solution of the relaxed planning problem. It places fewer restrictions on the process

 { ¿7 } since it only applies for a particular weighting function. One way to understand this
 is as follows. Optimality conditions can be obtained by perturbation arguments: one constructs
 perturbations that preserves the constraint set of the planning problem and exploit the fact that
 these perturbations can only increase the objective function to derive first-order conditions. The
 space of perturbations that preserve incentive compatibility and utility is smaller than the set of
 perturbations that preserve local incentive compatibility and utility. As a result, the solution of the

 original planning problem is in general characterized by fewer first-order conditions and more
 constraints than the solution of the relaxed planning problem, except when these two solutions
 coincide. Note also that Proposition 2 holds for all stochastic processes, and can actually be
 extended to general preferences (see Section 5). This is not the case of Proposition 3 which
 makes crucial use of Assumptions 1, 2, and 3.

 3.3. Labour wedge at the top and bottom

 We now look at the labour wedge for the two extreme realizations of 0t, top and bottom and
 generalize the results obtained by Mirrlees (1971) in a static setting to our dynamic environment.
 As we shall see, when the support for current productivity is independent of previous productivity
 then standard zero-distortion results apply. However, it is important to consider the more general

 case of a moving support, where the upper and lower bounds, 0t (fy-i) and 0_t (0t~') vary with

 6t- 1, with G = [0,0] such that [0_t(0t-'),0t(0t-')]c.Q for all t and 0t-'. We assume these
 functions are differentiable and have bounded derivatives. For short, we often simply write 0t

 and 0_t leaving the dependence on 0t-' implicit.
 The only modification to Program FOA is that A now incorporates two terms to capture the

 movements in the support:

 a= f w(6)g'(0,0-)d6+^-w(ē!)ft <*v~ (ē,'e-)~^~w{et)ft dtf- (0,|0_). J 0,(0-) <*v~ dtf-

 Intuitively, this is simply the envelope condition using Leibniz's rule. More formally, there are
 two equivalent ways of approaching the moving support case to justify this necessary condition.
 First, one can define allocations only for the set of histories that are consistent with the moving

 support, restricting reports in the same way. That is, consumption and labour c(0l) and y(0{) are
 defined for histories Bl with the property that 0S e [0¿(0S- 1 ), 0S(0S- 1 )] for all 5 = 1 , 2, . . . , t. Reports

 are also restricted to satisfy rs e [0y(r5_ i ), 0s{rs- ' )] for all s = 1 , 2, . . . , t. This restriction can make
 one-shot deviations impossible, invalidating our original derivation of the first-order necessary
 condition. However, in the Appendix we rederive this condition under this restriction using a
 different set of deviations.

 The second way of proceeding is simpler. Without loss of generality one can work with an
 extended allocation, which specifies consumption and labour for all histories 0l e ©ř. One then
 proceeds as in the full support case, imposing incentive compatibility after any history 0f e ©'
 including those that lie outside the moving support. This is without loss of generality because
 we can always perform the extension by assigning bundles for consumption and labour that were
 already offered. Thus, it does not impose any additional constraints, nor does it affect the planning
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 problem. Using this extended-allocation approach, the derivation of our necessary condition is
 valid.

 Propositions 1, 2, and 3 extend without modification to the case of moving support.

 Proposition 4. Consider an interior allocation that solves the relaxed planning problem:

 i. if for a history 0ř_1 , dOt/dOt-' =d6_t/dOt-' =0, then

 T L{9,-'9t) _ TLjO'-Ki,)
 '-TL(e'-'et) i -rL(e'-l,et) '

 ii. suppose that Assumptions 1 and 2 hold , then for every history

 TL^'KÖt) _ TL^"1) ßut,(c(dt~l90t))e- dēt
 i - TL (e' - : 1 , ēt) ~ i - tl (t 9 1 ) q îé- [f (c (e' - ■ 1 )) 57 ¿0,- i '

 fiátř(c(et~l,e4))e^ dot
 ^-TL(0f~l,0t) l-r¿(0'_1) <7 úí-1/(c(0í-1)) 0ř 0ř6>ř_i

 With a fixed support, the no-distortion results from the static model derived by Mirrlees
 (1971) extend to our dynamic setting. However, when the support is not fixed the labour wedge
 after an extreme realization is the product of the labour wedge in the previous period times the
 growth rate of marginal utility, and the elasticity of the corresponding bound of the support with
 respect to 0t-'. For example, in the case where {0} is a geometric random walk with bounded
 innovations, the elasticity of the bounds with respect to 0t-' is equal to one. In this case, provided

 that consumption c(0ř~ 1 , 0t) is increasing in 0ti the Inverse Euler equation implies: 1 , 0t) <

 tl (#ř_1) ^ tl (0ř_1 , 0,). The fact that the tax rate may go both up or down illustrates a form of
 tax smoothing.

 4. A CONTINUOUS-TIME APPROACH

 In this section, we formulate the relaxed planning problem in continuous time and tackle it
 using continuous-time stochastic control. There are several advantages to this continuous-time
 approach. First, Ito calculus provides an elegant counterpart to the set of formulas derived in
 Section 3. Second, we establish a new result. We show that in continuous-time innovations in
 the labour wedge are negatively correlated with innovations in consumption. In economic terms,
 this implies a form of short-term regressivity.

 4.1. A roadmap

 We first explain how to set things up in continuous time by taking a limit of our discrete-time
 model. We assume that productivity follows a geometric Brownian diffusion with drift. We
 then set up the planning problem as a stochastic control problem. To do this, we derive the
 laws of motions for the endogenous state variables vt and At as a function of a set of control
 variables: consumption, ct, output^, and a new variable a^,t representing the sensitivity of At to
 productivity shocks. The cost function K(vt , A t,6tlt) solves a Hamilton-Jacobi-Bellman (HJB).
 Its first-order conditions allow us derive results for the optimum.
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 4.2. The continuous-time model

 Our approach here is to take the continuous-time limit of the discrete-time model.12 Let r be the
 length of a period. Instead of indexing periods by t = 1 , 2, 3 . . . we now take t = r, 2r, 3r, . . . . We
 assume that 9t+T is log normally distributed so that

 logflm ~N (loge, +n'°ë (et),o¡) . (14)
 We set the parameters of our model to scale as follows with r:

 ß-e~pT , q = e~pT , ixt°ê(et) = z íít{Ot)-^etô} ,ot=ôt«Jr, (15)

 for some constants p >0, some function of time and productivity fit(Qt) and some function of
 time at. To adjust the scale, we multiply utility and cost by the period length r. To simplify, we
 assume here that q = ß. This can be easily generalized to separate the two.

 The definition for /¿ļog contains an adjustment term - r to ensure that Eř[0ř+r] =

 ßteTP<t(0t )# Thus? jjit(0t) can be interpreted as the (instantaneous) conditional expected growth
 rate in productivity, per unit of time. In the limit as r - ► 0, it is well known that there exists
 a Brownian motion Wt such that the stochastic process {0} converges to the continuous-time
 Brownian diffusion with deterministic volatility:

 ^p-=ßt(et)dd,+ötdwt, (16)
 "t

 where {W} is a Brownian motion, jxt is a function of current productivity 0t which controls
 the drift of productivity, at is deterministic function of time which determines the volatility of
 productivity. Equivalently, expressed in logs,

 d'ogd, =ill°ë(et)det +ôtdwt,

 where ßl°s(0t) = /x,(0;) - 'e,a}.
 To formulate the relaxed planning problem in continuous time, we need to determine the

 laws of motions for vt and Ař which incorporate our first-order necessary condition for incentive
 compatibility. This is summarized in the following lemma.

 Lemma 2. There exists a process {<ja} such that the state variables {v, A} satisfy the following
 stochastic differential equations:

 dvt = pvfdt - u*dt + 0t AtôtdWt , (17)

 17 1 - /i dPlt°ë'
 d At= 1 p-ßt-Of - /i J Af-Kfl-cTA.fOf dt + cr&jcrtdWt. (18)

 Since vt is the present value of utility it follows that dvt = pvtdt - ^dt-^ayjatdWt for some
 process {av}. The lemma does two things. First, it provides the drift for {A}. Second, it shows
 that the volatility crV J must be 9t A/. Intuitively, this follows from the continuous-time limit of our

 first-order necessary condition for incentive compatibility w(0) = z0ute-j- ßß A(0), noting that
 r - ► 0 and ß -> 1 .

 1 2. It is also possible to start with the model in continuous time and derive the relevant first-order approach versions
 of the incentive constraints from scratch.
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 4.3. A HJB equation

 Having re-expressed the constraints in the relaxed planning problem as stochastic differential
 equations for the state variables, we can write the HJB equation for the cost function K ( vt , A t,0t,t).

 The states are (vř, A with laws of motion given by equations (17), (18), and (16). The
 controls are {ct,yt,v&,t)- The HJB equation is (suppressing the state (vř, A t,0t,t) for notational
 convenience)

 [ct -yt]+Kv [pvt - u '] H- K& - Ar - 0t~jg~) A' - w#]

 +Ko6tíit+Kt + -Kvvof A^a^ -h A + -^AAOrl,Â2

 + -KßßO^ä^ -h^yĄ^AiCTA,/^2 +KvqO? At^o +KA$$t(J & jćr? ļ.

 4.4. Optimality conditions

 It will prove convenient to introduce the dual variables of ( vt , At) : X(vt ,At,6t,t) = Kv(vt,At,6t,t)
 and y(vti Atl0tJ) = K&(vt, At,Ot,t). Economically, these variables represent the marginal
 increase of the cost function when promised utility vt or At are marginally increased. As we
 show below, there exists a simple invariant mapping between these dual variables and easily
 interpretable features of the allocation: the marginal utility of consumption uv(ct) and the labour
 wedge īL,t .

 Proposition 5. Suppose that Assumptions 1 and 2 hold , and that productivity evolves according
 to equation (16). Then :

 i. There exists a function ox{vt, At,Ot,t) such that the stochastic processes for {X} and {y}
 verify the following stochastic differential equations

 d-h=aKtÒ,dWt (19)
 A t

 dyt= -0th(yx,t0f+i^t+0t^Ķ-^Yt dt+Y,âtdW,, (20)
 with yo = 0.

 ii. Consumption ct and output yt can be computed as follows:

 1 , 1 0t _ Yt
 u»{ct) ' an uv(ct) hf'(yt/0t) _ 01 et'

 iii. The labour and intertemporal wedges , r L,t and r K,t, can be computed as follows:

 *L,t Yt 1 and , 2 ;l 2
 1 - *L,t *-t 0t

 Part (i) may be used as follows. If the functions X(vt,At,9t,t) and y(vt. A,,9tj) can be inverted
 for (vt, At), then an alternative state space is (Xt, In this case, we can write ox(Xt,y,,dtJ).
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 Equations (19) and (20) then provide the evolution of these alternative state variables. Part (ii)
 and (iii) then offer a way to compute the allocation and wedges as a function of ytl0tj).

 An interesting feature of this alternative parametrization of the state space is the existence of
 a sufficient statistic, the volatility process {ax}. This volatility controls how much innovations to
 productivity are passed through to consumption. It can therefore be thought of as a local proxy for

 the amount of insurance that is provided at the optimal allocation. Higher values for o'it provide
 more incentives at the expense of insurance. Section 6 exploits the fundamental role of {cr^} to
 interpret our numerical findings.

 Combining parts (i) and (iii) and using Ito's lemma leads to the following corollary.

 Corollary 2. Suppose that Assumptions 1 and 2 hold , and that productivity evolves according
 to equation (16). Then the labour wedge verifies the following stochastic differential equation

 d(x, Xlt i= h . TL'' 0, +aXtox tôf dt. (21)
 V 1 -*L,tJ . 1-T L,t dd,

 This lemma shows that the process is a diffusion with a particular drift and no

 volatility. The drift matches its discrete-time counterpart, formula ( 1 2). The first-term captures the

 tax smoothing and mean reverting forces. The second term is an expression for the instantaneous
 covariance between lo g0t and Xt scaled by a - just as in the discrete-time case.

 Interestingly, in continuous time, we get the additional result that this diffusion has zero
 instantaneous volatility (i.e. there is no dWt term in equation (21)). This implies that the realized
 paths are of bounded variation (a.s.). This means that the paths vary much less than those for
 productivity {0}. To draw out more economic implications of this result, apply Ito's lemma using
 (19) and (21) to obtain:

 d i XL ' ) = i de +aax-'^ dt+ i i XLt 'ktj ^ i -*L,t de i i -tí.,, 'ktj

 This shows explicitly how the innovations in the labour wedge must be perfectly mirrored by
 those in the marginal utility of consumption ut,(ct) = ^i . This induces a negative instananeous
 covariance between consumption and the labour wedge. Economically, this represents a form of
 regressivity, in that good productivity shocks raise consumption and lower the labour wedge, at
 least in the short run.

 Our regressivity result contrasts with the absence of such results in static settings. As is well
 understood, the skill distribution is key in shaping the tax schedule in the static model (Mirrlees,
 1971; Diamond, 1998; Saez, 2001). In contrast, in our dynamic model, the regressivity result
 holds with virtually no restrictions for a large class of productivity processes.

 It is important to emphasize what our regressivity result does and does not say. Over short
 enough horizons, it guarantees a negative conditional correlation between consumption and the
 labour wedge. However, this may not translate into a negative correlation over longer horizons.
 This depends on the evolution of the drift terms in our forumla. In particular, the endogenous
 volatility term o'it may vary endogenously and play a central role. We investigate these dynamics
 more explicitly in Section 6.

 Finally, note that using part (iii) in Proposition 5, we can solve for the volatility o'it in terms

 of the intertemporal wedge, o'yt= . We can then use this to rewrite these last two equations
 in terms of the labour and intertemporal wedges. In this way, optimality can be seen as imposing
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 616 REVIEW OF ECONOMIC STUDIES

 a joint restriction on the labour and intertemporal distortions:

 dl- .( TL,t ' r *L,, a dßl°S ^2 "L, , XU , .( i'
 dl- '1 -TL,tJ 1-T L,t de at 1 -TL,t 'X,J

 5. GENERAL PREFERENCES

 In this section, we investigate what can be said for general utility functions u'c,y, 0). In particular,
 we want to allow for non-separabilities between consumption and leisure, and also allow for an
 elasticity of labour supply that varies over the life cycle. Both of these features have been argued
 by some authors (see, e.g., Saez, 2002; Conesa et al ., 2009) to be important to think labour and
 capital taxation.

 It is well known that when consumption and labour are not additively separable, the Inverse
 Euler equation does not hold. Actually, even when there is no additional uncertainty between t - 1
 and ř, so that the Euler and the Inverse Euler equation coincide, the Euler equation might not hold.
 As is well known, with non-separable preferences, the no capital tax result of Atkinson and Stiglitz

 (1976) does not hold. The reason for this is that income and productivity now directly affect the
 intertemporal rate of substitution for consumption. Taxing or subsidizing capital therefore helps
 separating types. Saez (2002) argues that these non-separabilities are relevant in practice. In
 particular, he suggests that poor agents have a lower propensity to save, and shows in that context
 that optimal capital taxes are positive. These forces also upset the Inverse Euler equation when
 there is additional uncertainty between t- 1 and t.

 Conesa et al. (2009) argue that the elasticity of labour supply falls over the life cycle. To
 capture that, they use preferences that are isoelastic over leisure (instead of labour). This implies
 that labour supply is more elastic when labour is low. Since labour decreases over the life cycle,
 labour supply is more elastic for older agents. This produces a force for decreasing labour taxes
 with age. Conesa et al. (2009) make the additional point that if age-dependent taxes are not
 available, then capital taxes emerge as a partial substitute.

 Recall that the expenditure function Cř(j,M,0) is the inverse of «'(•,)>, 0 ). Define

 -°cv9 Cy>w>0)
 r]t(y,w,d)=--

 C'y(y,w,0 )

 Since Cy = - Uy/u'c = 'MRSt' = l - is the marginal rate of substitution, r/; represents the
 elastiticity • It plays a key role below. Note that in the separable isoelastic utility
 case (Assumptions 1-2) that we studied above, this elasticity is constant with rjt(y,w,0)=a.

 5.1. Discrete time

 In order to generalize equation (12), we need to introduce the dual of the variable v (O') defined
 by

 BKv(v(e'),A(e'),et,t+i).
 At an optimum, we have the martingale relation

 W~l)=ļ ļ
 When utility is separable - Assumption 1 holds - we have ^X(0t)=-¡jr^rj. The martingale
 relation then directly implies the Inverse Euler equation. This simple link between A,(0ř) and
 t4(#0 no longer holds when preferences are not separable.
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 FARHI & WERNING INSURANCE AND TAXATION OVER THE LIFE CYCLE 617

 Below we adopt the shorthand notation of writing xt(0t) for any function xt(c(6t)iy(0t),Ot)
 (see rjt and u lc below).

 Proposition 6. Suppose that {c,y} solves the relaxed planning problem. Then the labour wedge
 satisfies the following equation for every t> 1 and history 0l~x

 r i rL(e') i t ¿(a'-') d<jf*(dt- Q
 J 11,(0') i-zL(e<)ß u'c(e') f ( A ' l' ' /7,-1(0'-') 1-0.(0'-') ' 1 do,- 1

 +utc(e,-i)X(e'-i) ļ 'og(et) f (e,'et-x)det. (23)

 This proposition generalizes equation (12). The martingale relation satisfied by Á(#ř) implies
 that we can rewrite the second term on the right-hand side of equation (23) as a covariance:
 Covř_i(log(0ř), We could also generalize equation (11) along the exact same lines.

 There are two important differences between equations (12) and (23). First, we have already

 noted that unless utility is separable, we no longer have ^ X(Ot)= utĻty As a result, ¡^7) *s no

 longer a martingale and, in contrast with equation (12), the term ^ „;(#/) cannot be interpreted
 as a change of measure.

 Second, i-TlVo replaces When Assumptions 1 and 2 hold, rjt=a , we can
 multiply through by a, as in equation (12). Otherwise, the general equation indicates that changes
 in the elasticity should affect the labour wedge. To elaborate on this point, it will prove convenient
 to specialize the discussion to a class of generalized isoelastic preferences for which equation
 (23) takes a simpler form.

 Assumption 4. For every t > 0, there exists functions u1 , u* , and constants Kt> 0, at > 1, such

 that u* (c,y,6) = ut ^ur (c) - &

 For this class of preferences, we have r}t(y,w,6)=at.

 Corollary 3. Suppose that Assumption 4 holds and that {c,j} solves the relaxed planning
 problem. Then the labour wedge satisfies the following equation for every t > 1 and history
 0r-l

 f TL(0') q u'c(e'~l) ft (0 ' ,0 ' 'dc ' c
 J 1-T l{Q') ß "c(ö') ' ,0 ' ' a,_i l-rí,(0ř_1) c ' dO,-i

 +atutc(et~i)X(01-1) ļ iog(dt) f(et'd,-i)det. (24)

 Recall that 1 /(at - 1) is the the Frisch elasticity of labour supply. This formula makes clear
 that both the level at and the growth rate matter. A higher growth rate of at increase the

 , , log (Q '
 auto-regressive coefficient 1 % ' of the labour wedge. This is a manifestation of a
 standard inverse elasticity principle: labour is taxed more in periods in which it is less elastic. A
 high level of at also increases the drift term. This is because when labour is less elastic, increases
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 618 REVIEW OF ECONOMIC STUDIES

 in uncertainty lead to larger increases in taxes - the marginal cost of increasing taxes is lower,
 although the marginal benefit of increasing taxes is unchanged.

 5.2. Continuous time

 Our continuous-time analysis can also be extended to general preferences. In particular, we can
 generalize equation (25).

 Proposition 7. Suppose that productivity evolves according to equation (16). Then the labour
 wedge satisfies the following stochastic differential equation

 J *L,t 1 1' |~ „2 rit 1 1^A!°8~L
 d'- i V i - *L,t u'cT]t / i - *L,t u'c m de,

 This expression is the continuous-time analogue of equation (23). Note that our no-volatility

 result generalizes: the stochastic process 1 A Ł ^ » - has zero instantaneous volatility so that its A Ł L,t Wç » If

 realized paths will vary much less than those for productivity {0}, in the sense that they are (a.s.)
 of bounded variation. Equation (25) takes a simple and illuminating form when preferences are
 in the generalized isoelastic class defined by Assumption 4.

 Corollary 4. Suppose that Assumption 4 holds and that productivity evolves according to
 equation (16). Then the labour wedge satisfies the following stochastic differential equation :

 *L,t 1' , -2, XU 1 (adp}°g 1 dař'1
 d I ļ '1 ļ - T L,tu'c) 1 -TL,tu'c' j d9, a, dt J

 Equation (26) clearly illustrates the impact of a time- varying at (and hence a time- varying

 Frisch elasticity of labour supply). The growth rate ~ ^ increases the auto-regressive coefficient

 and the level at increases the drift of 'l^Lt ¡¡r- The intuition is similar to the one given above for
 the discrete-time case.

 We can also derive a generalization of equation (22):

 TL-< ^'_r , _ -2, T^t 1 (a d¡j}°& 1 TL,t lJín
 d'-

 V 1 - ?L,t / t^t 1 -?L,t Uc 7 ' döt Oit dt 7~ J I X-TLjU*.

 This shows explicitly how innovations in the labour wedge must be perfectly mirrored by those
 in the marginal utility of consumption uĻ

 6. THE MODEL AT WORK: A NUMERICAL SOLUTION

 In this section we parametrize the model and solve it numerically. This serves to illustrate some
 of our theoretical results, but also leads to some new insights. We verify numerically that the
 solution of the relaxed planning problem satisfies the constraints of the original planning problem.
 Therefore, the solution that we characterize is the solution of the original planning problem.
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 6.1. A Life-cycle economy

 Agents live for T = 60 years, working for 40 years and then retiring for 20 years. Their period
 utility function is

 with a > 1 and k >0 during working years t= 1,2, ...,40 and

 log(c,)

 during retirement ř = 41,42, ...,60. We set a = 3 implying a Frisch elasticity for labour of 0.5,
 and k - 1. We set the agent's and planner's discount factors equal to each other at q = ß= 0.95.

 A fundamental primitive in our exercise is the stochastic process for productivity. Most
 empirical studies estimate an AR(1) plus white noise, where the white noise is sometimes
 interpreted as measurement error. Typically, the coefficien of auto-correlation is estimated to
 be very close to one. We therefore adopt a geometric random walk:

 0t = et0t- 1,

 with log£~Af(- ^-,<r2).13 Akey parameter is the degree of uncertainty a2. Empirical estimates
 vary quite substantially, due to differences in methodologies, econometric specifications, and
 data sets. Typically, this number is estimated by matching the increase in the cross-sectional
 variance of wages or earnings in a given cohort as this cohort ages. The estimate for a2 depends
 on whether time fixed effects (smaller estimates) or cohort fixed effects (larger estimates) are
 imposed, and on the time period (larger estimates in the 1980's). Using time fixed effects over the
 period 1967-2005, Heathcote, Perri, and Violante (2010) find a2 =0.00625 for the wages of male
 individuals. Using cohort fixed effects over the period 1967-1996, Heathcote et al. (2005) find
 a2 = 0.0095 for the wages of male individuals. Using cohort fixed effects over the period 1980-
 1996, Storesletten et al. (2004) find a2 - 0.0161 for household earnings. Instead of trying to settle
 on one particular estimate to base our numerical exploration, we performed three calibrations
 based on these three value for â2: a low risk calibration with a2 =0.00625, a medium risk
 calibration with <r 2 = 0.0095 and a high risk calibration with a2 = 0.0161. In the figures and
 discussions below, to avoid repetition, we focus on the medium risk calibration, but the qualitative
 results are similar and our two tables offer the quantitative conclusions for all three calibrations.

 The value function satisfies

 K(v,A,6-,t) = 6-K(v - (l+ß-'

 This holds because if {ct,yt} is feasible given (v, A,0_) and has cost k , then, due to
 balanced growth preferences, it follows that {0Q,0yř} is feasible given (v+(l+/H

 /?r-ř)log0,0-1 A,00_) and costs (j>k. Setting 0 = 1 /0- then yields the desired property for
 K. A similar homogeneity condition holds for the policy functions. These properties reduce the
 dimensionality of our problem.

 After computing policy functions, we iterate on them to produce a Montecarlo simulation
 with 1 million agents evolving through periods t=l,29.Ě.,T. For any given v' , we initialize Aļ
 at t = 1 to minimize cost

 Aļ e argininovi, A, 1, 1).
 A

 We set the initial value for utility vi so that the resulting cost is zero, K(v' , Aļ , 1, 1) = 0.

 13. For our numerical simulation, we truncate the normal distribution: the density of loge is proportional to the
 density of the normal over a finite interval [e, ē].
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 620 REVIEW OF ECONOMIC STUDIES

 6.2. Two benchmarks

 Before discussing the results of our simulations, it is useful to consider two benchmark allocations,

 those corresponding to autarky and the first best.
 Consider first an autarkic situation, where there are no taxes. Agents can consume their

 own production. They can neither borrow nor save. Thus, they solve the static maximization:
 ma Xyu(y,y' 0). With logarithmic utility, or more generally with balanced growth preferences, this
 implies ct =yt = Ofñ for some constant level of work effort, defined by the solution to uc(ñ, ñ; 1) =

 -Uy(ñ,ñ; 1 ). Consumption and output are geometric random walks: ct = ect- 1 and yt = eyt- 1 . The
 labour wedge is zero and the intertemporal wedge is a positive constant equal to'-Rq='-Rß>
 0, where /? = ß-l(E^)-1. 14

 Consider next the first-best planning problem given by

 T T

 maxEo VVcny,;#,) s.t. Eo 5~V(c,-;y,)<e,
 {c'yl tí ZÍ

 for some constant ć e R, representing outside resources available to the planner. The optimum
 features perfect insurance, with constant consumption ct = c and

 / 1 '¿T «
 »-y / 1 « ■

 so that output increases with productivity. Both the labour and intertemporal wedges are zero.

 6.3. Findings from simulation

 Within each period t , we compute the average in the cross section for a number of variables of
 interest, such as consumption, output, and the labour and intertemporal wedges. During retirement

 each agent's consumption is constant, while output and wedges are zero. Thus, we focus on the
 working periods t = 1 , 2, . . . , 40.

 Although our simulations are for the discrete-time model, with a period representing a year,
 our results from the continuous-time version turn out to provide an excellent explanation for our

 findings. In particular, Proposition 5 shows that the optimum is summarized by the volatility
 process {o^}, since this determines the laws of motion for wedges, consumption, and output.
 With logarithmic utility, the instantaneous variance of consumption growth is given by aļ ta2.
 Figure 1(b) plots the average variance of consumption growth in our simulation Var/[c/+i/c/].

 This is the discrete-time counterpart of o2 ta2.
 As the figure shows, the average variance of consumption growth falls over time and reaches

 zero at retirement. There are two key forces at play. First, as retirement nears, productivity
 shocks have a smaller effect on the present value of earnings, since they affect earnings for fewer

 periods. Since consumption is smoothed over the entire lifetime, including retirement, the impact
 of shocks on consumption falls, and approaches zero at retirement. This is the usual permanent

 14. Alternatively, in the case with no retirement, this allocation can also be sustained as an equilibrium where
 q = R~l (instead of q = ß) and agents can freely save and borrow. The intertemporal wedge in this latter case is zero. This
 serves to make the point that the sign of the intertemporal wedge is somewhat uninteresting, because it depends on the
 value of various parameters, including q. Another way to proceed is to define autarky as allowing agents to borrow and
 save at rate q, in which case all wedges are zero by definition, but, unless there is no retirement and q=R~l , we would
 be unable to solve the equilibrium in closed form.
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 Figure 1

 Average wedges over time, (a) Average labour wedge over time, (b) Intertemporal wedge and variance of consumption

 growth over time - both series are indistinguishable to the naked eye

 income mechanism. Indeed, this property would be present at an equilibrium with no taxes and
 free-savings. Second, as we show below, the labour wedge is increasing over time. This provides
 increased insurance, in the sense of lowering the effect of productivity shocks on net earnings.

 The decreasing pattern towards zero in the average variance of consumption growth will be
 key in understanding a number of results presented below.

 Turning to the wedges, panel (a) in Figure 1 shows that the labour wedge starts near zero and
 increases over time, asymptoting around 37% at retirement. Panel (b) displays the intertemporal
 wedge, which displays the reverse pattern. It is decreasing over time, starting around 0.6% - which
 represents an implicit tax on net interest of around 12% - and falling to zero at retirement.15 Both
 of these findings are easily explained by our theoretical results, together with the behaviour of
 the average variance of consumption growth.

 As shown in equations (13) and (21), when p = l, the expected change in the labour tax
 is proportional to the covariance of consumption growth with the log of productivity, which is
 positive, in order to provide incentives. This explains the increasing pattern in the average wedge.

 The covariance equals o'ito2 in the continuous-time limit. Then, since o2to2 decreases over

 time to zero, so does o'yto2, explaining the asymptote in the labõur wedge at retirement.
 As for the intertemporal wedge, equation (10) implies that it is increasing in the uncertainty

 of consumption growth, in the sense that a mean-preserving spread leads to an increase in the
 wedge. In the continuous-time limit the intertemporal wedge equals the variance of consumption

 growth: tk,ì=ct2 fò2. Indeed, although panel (b) plots both the variance of consumption growth
 and the intertemporal wedge, the two are indistinguishable to the naked eye. More generally,
 while we simulate the discrete-time version of the model, with a period representing a year, the
 continuous-time formulas turn out to provide excellent approximations for our findings.

 Figure 2 shows the evolution over time for the cross-sectional means and variances of the
 allocation. Panel (a) shows that average consumption is perfectly flat. This is expected given the
 Inverse Euler condition, which with logarithmic utility is (q/ß)Et- ' [ct] = ct- ' . Output, on the
 other hand, is mostly decreasing, consistent with the increasing pattern in the labour wedgeģ16

 15. To put these magnitudes in perspective, recall that the intertemporal wedge represents an implicit tax on the
 gross rate of return to savings. In this interpretation, agents perceive a gross interest of (1 - r*,ř)(l +r) instead of (1 +r),
 where l+r=q~l . An equivalent reduction in the gross interest rate can be obtained by an implicit tax f K,t on net interest
 r given by 1 +(1 - f K,t)r. Setting, 1+(1 - fjp,ř)r=(l - rjr,ř)(l+r) gives îjc,t = In our case, ^=0.95, so that
 i±£«I«20.
 r r

 16. Note that average output can also be affected by the increasing dispersion in productivity. For example, m a
 first-best solution, output would be proportional to 0"~l. When a <2 this function is concave inducing a decreasing
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 Figure 2

 Statistics for optimal allocation over time, (a) Average for output (declining line) and consumption (constant line) over

 time, (b) Variance of output (top line), productivity (middle line) and consumption (bottom line) over time

 Figure 3

 Scatter plot of r versus at /=20 and /=40

 Panel (b) shows the cross-sectional variance for consumption, productivity, and output. The
 variance of productivity grows, by assumption, linearly. The variance of output is higher and
 grows in a convex manner. The variance of consumption, on the other hand, it lower than the
 variance of productivity and grows in a concave manner. For reference, note that in autarky, with
 no taxes and no savings, since c=y~0, the variance for consumption, output, and productivity
 are equal to each other. At the other end of the spectrum, the first-best solution has zero variance

 in consumption and since yt~0ta~l . The variance for output is higher than that of productivity
 and grows in a convex manner. The planner's solution, in contrast, partially insures productivity
 shocks and lies between these two benchmarks.

 The degree of insurance is nicely illustrated by the lower variance of consumption, relative
 to that of output and productivity. Over time, the variance for consumption rises, and does so in
 a concave fashion. Recall that consumption is a martingale, which implies that inequality must
 rise. As we discussed above, over time the variance in consumption growth falls and reaches zero
 at retirement, explaining the concave shape.

 Figure 3 illustrates the intertemporal labour wedge formula by showing scatter plots of the
 current labour wedge against the previous period's labour wedge. In period t =20, the average

 pattern. The reverse is true when a > 2. In our case a =2 so the increasing dispersion in productivity would not have
 an effect on average output at the first-best solution. An autarkic solution, without taxes and where agents consume
 their current output (i.e. with no savings or with q set at a level that induces no savings), would feature constant output
 regardless of the value of a.
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 Figure 4

 Scatter plot of il¿¿, ag3"18* u'(ct-') for t= 20

 Figure 5

 History dependence and insurance, (a) Scatter plot of versus 0t at í =20. (b) Scatter plot of <fct versus

 relationship is close to linear with a slope near one and lies above the 45 degree line. Both of
 these properties are consistent with our formula in equation (13). The average tax in the current
 period lies slightly above the previous period's, illustrating the positive drift in taxes.

 In the last working period, t = 40, the scatter plot shows an almost perfect relationship between
 the previous tax and the current one, with a slope of one. Taxes on labour are almost perfectly
 smoothed near retirement. Recall that the variance of consumption growth drops to zero as
 retirement approaches. This explains why the average relationship is essentially the 45° line. The
 reason there is no dispersion around the average relationship is an implication of the results in
 Section 4 that show that unpredictable changes in the labour wedge are related to unpredictable
 changes in marginal utility. Near retirement, consumption becomes almost perfectly predictable,
 so the labour wedge does as well.

 To illustrate this point further, Figure 4 plots ^Ltu'(ct) against u'(ct-') for t= 20.
 The average relationship is slightly above the 45° line and the dispersion around this relationship
 is minimal. This illustrates the results in Section 4, that there is no instantaneous volatility

 in In other words, unpredictable changes in the labour wedge {y^-} are entirely

 explained by unpredictable changes in the reciprocal of marginal utility {¡^}.
 Figure 5(a) plots the current period's labour wedge t lj against the productivity 6t for period

 f =20. On average, tax rates are higher for agents with low productivity. In this sense, the tax
 system is regressive. What accounts for this finding? In a static setting, it is well known that
 the pattern of taxes is dependent, among other things, on the distribution of productivity shocks
 (Diamond, 1998; Saez, 2001). We have assumed a log-normal distribution for the productivity
 shocks. In our dynamic context, however, it is less obvious whether this particular choices is
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 responsible for the regressive pattern we find. Indeed, the results in Section 4 point towards a
 negative correlation between the labour wedge and productivity, at least in the short run.

 The figure also shows that, for any given level of current productivity, there is significant
 dispersion in the labour wedge. If the labour wedge were solely a function of current productivity,
 then there would be no dispersion. Thus, this dispersion illustrates the history dependence in
 the labour wedge. Recall that the allocation and wedges depend on the history of shocks as
 summarized by our two state variables v and A.

 It is important to keep in mind, that a history-independent tax system, with a fixed non-
 linear tax schedule that allows for savings, can also produces a history-dependent labour wedge.
 The history of productivity shocks affects savings decisions. The accumulated wealth, in turn,
 affects the current labour choice, determining the position, and marginal tax rate, along the fixed
 non-linear tax schedule.

 Figure 5(b) gets at a measure of the overall degree of insurance by plotting the realized
 present value of consumption against the present value of output Ylt=ļgt~lyt in
 the simulation. Without taxes there is no insurance and <í~^ct would vary one for one with

 Insurance makes the present value of consumption Ylī=' (łt~ict vary less than one

 for one with the present value of income The scatter shows that at the optimum
 there is a near linear relationship, with a slope around 0.67. For reference, a linear tax with a rate
 of 33% would produce an exact linear relationship with this slope.

 We have performed some comparative statics and welfare analysis which we report briefly
 now.

 With a2 =0.0061 or a2 =0.0161, the results show the same qualitative patterns as the
 benchmark. Quantitatively, both the labour and intertemporal wedges are lower with a 2 = 0.006 1 ,
 with the labour wedge peaking at 30% and the intertemporal wedge starting at 0.45% - which
 represents an implicit tax on net interest of around 9%. With lower uncertainty the optimum
 features lower insurance and distortions. These results are consistent with our formulas, which

 stress the role that the degree of uncertainty, captured by <r, has in determining both the labour

 and intertemporal wedges. Conversely, both the labour and intertemporal wedges are higher with
 a2 = 0.0161, with the labour wedge peaking at 40% and the intertemporal wedge starting at
 1% - which represents an implicit tax on net interest of around 17%.

 6.4. Labour wedge dynamics : an impulse response

 The scatter of the labour wedge at t against the labour wedge at t - 1 shown above illustrates the
 average short-run dynamics implied by our formula. Here, we wish to zoom in more and see how
 these dynamics play out over longer horizons. To this end, we follow an agent with a productivity
 realization given by et=F~l( 1/2) for i/ 20 and £20 = ^-1 (0.95). We compare this to an agent
 with st = F~x( 1/2) for all t= 1,2, ...,40. We plot the evolution of the labour wedge, and other
 variables, for these two agents. The difference can be interpreted as the impulse response to a
 shock at t - 20.

 Figure 6 shows the evolution of the wedges for these two realizations. Without a shock, the
 wedges behaves similarly to the averages shown in Figure 1 . In contrast, with the shock, we see a
 downward jump on impact in the labour wedge (consumption, not shown, jumps upward). After
 the shock, the labour wedge displays a higher rate of growth. In the figure, the labour wedge
 remains below the path for the no-shock scenario. This feature is not general: we have found that
 for other values of Ào, the path with a shock may jump below but eventually cross and overtake
 the path without a shock. The higher growth rate in the labour wedge may be enough to over come
 the initial jump downward. But why does the labour wedge grow faster after a shock? Panel (b)
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 Figure 6

 Impulse response to shock at ř= 20. (a) Labour wedge over time, (b) Intertemporal wedge over time

 TABLE 1

 Welfare gains over free-savings, no-tax equilibrium

 a2 =0.0061 <y2 =0.0095 <r2 =0.0161

 Second-best (%) 0.86 1.56 3.43

 displays a partial answer: the intertemporal wedge jumps up on impact, due to an increase in
 the variance of consumption growth. Our formulas indicate that this increases the drift term in
 the labour wedge. Why does the variance of consumption growth rise? Intuitively, due to partial
 insurance, the shock raises consumption by less than productivity. As a result, the agent becomes
 poorer, relatively speaking, and, hence, more susceptible to the fluctuations in productivity.

 6.5. Welfare

 We now compute the welfare gains relative to a situation with no taxes. Our baseline is a market
 equilibrium without taxes, where agents can save and borrow freely in a risk-free asset with rate of
 return q~l. This allocation is easily solved backwards starting at retirement by using the agent's
 first-order conditions, with zero wedges, and the budget constraints.

 In Table 1, we report the welfare gains for the second best, the solution to the relaxed planning

 problem. The numbers represent the constant percentage increase, at all dates and histories, in
 the baseline consumption required to achieve the same utility as the alternative allocation. The
 first column corresponds to our benchmark value for the conditional variance of productivity
 <72, whereas the second and third report simulations with a lower value and a higher value,
 respectively. As expected, the welfare gains increase with <r2.

 6.6. Comparison with simple policies

 The second best requires sophisticated history-dependent taxes. If these are not available, how
 do our results inform us about simpler, history-independent ones? In welfare terms, how well can
 simpler policies do? These are the questions we explore next

 To this end, we consider history-independent taxes. To simplify the analysis and aid the
 interpretation, we further restrict taxes to be linear. Since the second best features an important
 age pattern for taxes, we consider both age-dependent and age-independent taxes.

 Optimizing over age-dependent taxes is not very tractable numerically, due to the large number
 of tax variables and the cost of computing the equilibrium for each tax arrangement. In this case,
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 TABLE 2

 Welfare from simple tax policies: history -independent ( linear ) but possibly age-dependent taxes

 a2 =0.0061 Ò2 =0.095 a2 =0.0161

 Age-dependent and zk (%) 0.71 1.47 3.30
 Age-dependent r¿, and r/ř = 0 (%) 0.66 1.38 3.16
 Age-dependent age-independent (%) 0.70 1.46 3.29
 age-independent and xk (%) 0.54 1.14 2.71

 instead of optimizing, we take a hint from the second-best to formulate a sensible choice: we
 set the tax rates at each age to their cross-sectional averages in the second-best. In contrast, with
 age-independent taxes there are just two variables, so the problem is numerically tractable. In this
 case, we compute the optimal age-independent tax rates. There are also intermediate cases, such
 as age-dependent taxes on labour combined with an age-independent capital tax. In this case,
 we set the labour tax rates to the corresponding cross-sectional averages in the second-best, but
 optimize over the constant capital tax rate.

 Table 2 reports the welfare gains over the zero-tax allocation of various simple policies. These
 are comparable to the numbers in Table 1. Although we perform the exercises for three values of
 a, since the findings are qualitatively similar in both cases, we will focus our discussion on our
 benchmark reported in the middle column.

 The first row reports welfare for an age-dependent linear tax system, where tax rates at each
 age are set to the cross-sectional average obtained from the second-best simulation. It is surprising
 just how well this relatively simple policy performs. It delivers a welfare gain of 1 .47% in lifetime
 consumption, compared to the 1.56% obtained by the second best. Remarkably, age-dependent
 linear taxes deliver 95% of the welfare gains of the second-best.

 It is worth repeating that we have not optimized over the age-dependent tax rates. Instead,
 the tax rates are taken to be the cross-sectional average from the second-best simulation, as in
 Figure 2. Of course, the fact that welfare comes out to be very close to that of the second best,
 suggests that this policy is very close to being optimal within the set of simple age-dependent
 tax policies.17 We think this illustrates that our characterization of the second best, theoretical
 and numerical, provides not only useful insights, but can also deliver detailed and surprisingly
 accurate guidance for simpler tax systems.

 Although our age-dependent policy is constructed to mimic the second best as much as
 possible, it lacks history dependence. In particular, it cannot implement the short-term regressivity
 property which we found to be optimal. At least for this simulation, it appears that history
 dependence is not crucial for welfare. At present, we do not know how robust this conclusion is.

 As the second row indicates, preserving age-dependent linear labour taxes but setting capital
 taxes to zero delivers a welfare gain of 1 .38%. The difference of 0.09% represents the gains from
 taxing capital. This magnitude is in line with Farhi and Werning (2008a, b), who find relatively
 modest gains, especially when incorporating general equilibrium effects which are absent here.

 The third row maintains the same age-dependent labour tax, but allows for a non-zero,
 age-independent tax on capital. This improves welfare to 1.46%, very close to the welfare
 obtained by age-dependent labour and capital taxes of 1 .47% from the first row. The optimal age-
 independent intertemporal wedge is 0.27% (corresponding to tax rate of 5.40% on the net interest).
 Interestingly, this is close to the average wedge across ages from the second-best simulation, as
 displayed in Figure 1.

 17. Other findings discussed below imply that the shape of the age-dependent tax does affect welfare.
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 The last row reports welfare for the simplest tax system we consider: age-independent linear
 labour and capital taxes. The optimal age-independent linear tax on labour is equal to 21.74%,
 quite close to the average across ages found in the second best simulation, or the calculation
 behind panel (b) in Figure 5. This simplest of tax systems delivers welfare of 1 . 14%. Comparing
 this to the first row, we see that the cost of imposing an age-independent tax system is roughly
 0.33% of lifetime consumption.

 Not reported in the table is the fact that the optimal age-independent tax on capital comes out
 to be minuscule: an intertemporal wedge of 0.068%, corresponding to a tax rate of around 1 .36%
 on net interest. Given this, the cost of imposing a zero tax on capital constraint are minuscule,
 below 0.00 1 % of lifetime consumption. Interestingly, taxing capital does not appear to be optimal
 unless the labour tax is somewhat sophisticated and features either age-dependence or the richer
 history-dependence of the second best.

 With an age-dependent labour tax, an age-independent tax on capital provides modest but
 non-negligible benefits, equal to 0.08%. However, the addition of an age-dependent capital tax
 provides little extra benefit, equal to 0.01% of lifetime consumption. In contrast, age-dependent
 taxes on labour provide a sizable improvement of 0.33% over the completely age-independent
 tax system. Allowing for age-dependent labour taxes is more important in this simulation than
 allowing for age-dependent capital taxes.

 Why is the optimal age-independent tax on capital significant when labour taxes are age-
 dependent, yet minuscule when labour taxes are age independent? There are two forces at play.
 The first pushes for a positive tax on capital to get closer to the Inverse Euler condition. This
 force is clearly at play in the second best, but also appears to be present in the simpler tax systems

 (rows 1-3 in the table). The second force occurs only when when labour taxes cannot be age
 dependent (row 4). The reason is that a capital subsidy could help mimic an increasing age profile
 of labour taxes. Intuitively, labour-income earned earlier in life, whereas taxed at the same rate
 as later in life, has the benefit that, when saved, it accrues a higher interest rate from the capital

 subsidy. This sort of mimicking effect is explained in Erosa and Gervais (2002) for a Ramsey
 framework.18 When we allow for age-dependent labour taxes, the second force is absent leading
 to a positive tax on capital. When the labour tax cannot depend on age, both forces are present
 and roughly cancel each other out, resulting in a practically zero tax on capital.

 7. CONCLUSION

 In this article, we consider a dynamic Mirrlees economy in a life-cycle context and study the
 optimal insurance arrangement. Individual productivity evolves as a general Markov process and
 is private information. We allow for a very general class of preferences. We use a first-order
 approach in discrete and continuous time and obtain novel theoretical and numerical results.

 Our main contribution is a formula describing the dynamics for the labour-income tax rate.
 When productivity is an AR(1) our formula resembles an AR(1) with a trend. The auto-regressive
 coefficient equals that of productivity. The trend term equals the covariance productivity with
 consumption growth divided by the Frisch elasticity of labour. The innovations in the tax rate are
 the negative of consumption growth. The last property implies a form of short-run regressivity.

 18. They assume no uncertainty, so that the age-dependence of the desire path of labour taxes is entirely driven by
 the age-dependence of the Frisch elasticity of labour supply. In our simulation, instead, the Frisch elasticity of labour
 supply is constant, and it is the information structure that is responsible for the age-dependence of desired labour taxes,

 which is increasing. Restricting labour taxes to be age-independent calls for a mimicking capital subsidy. Instead, they
 focus on a specification where the elasticity of the disutility of labour varies, with a functional form that can lead to the
 reverse case, with decreasing labour taxes or a positive tax on capital to mimic them.
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 Our simulations illustrate these results and deliver some novel insights. The average labour
 tax rises from 0% to 37% over 40 years, whereas the average tax on savings falls from 12% to 0%
 at retirement. We compare the second best solution to simple history-independent tax systems,
 calibrated to mimic these average tax rates. We find that age-dependent taxes capture a sizable
 fraction of the welfare gains. Hence, it seems that numerically, the history dependence of taxes
 that are required to implement the full optimum is not an important feature in terms of welfare.
 Moreover, our simulations emphasize that from a welfare perspective, labour taxes play a more
 important role than capital taxes (setting capital taxes to zero does not lead to a large deterioration
 of welfare).

 In future work, we plan to enrich the model to incorporate important life-cycle considerations

 that are absent in our present model: human capital accumulation, endogenous retirement, a more
 realistic life-cycle profile of earnings, etc. We also plan to continue our numerical explorations
 by thoroughly investigating the quantiative comparative statics of our model with respect to the
 stochastic process of earnings, preference parameters, and tastes for initial redistribution.

 APPENDIX

 Proof of Lemma 1. Define

 j wie'-' ,r,el+i)f'+l (e<+i'õ,)de,+l.
 We argue that the derivative of M exists and can be computed by differentiating under the integral. Since u is bounded,
 w is bounded. This implies that the derivative of the integrand, w(0'-1 ,r,0t+')gt+l(0t+ļ '0t), is bounded. It then follows
 that M is differentiate and

 M'(ě,)= J w(e'-[,r,8,+')g'+l(e,+i'õ,)del+i.
 Note that M' is bounded.

 All the conditions for Theorem 2 in Milgrom and Segal (2002) are satisfied for the maximization problem in
 equation (2) and the result follows. ||

 Proof of Proposition 1. Consider an allocation {c,y} that solves Program IC or Program FOA. Then consider a history
 0ł~l and a neighbourhood |0'_1 - 0'-1 1 < e of this history where | • | is the sup norm. Consider the following perturbed

 allocation }• Define for every 0/_1 such that |0ř_1 - 0'-1 '<e,

 o)-* «»'D-'-
 H'-|(ös(Ö'-1))=«'-,(C(Ö'-1))+^,

 and for every other 0s

 ùs(cs(9s))=ùs(cs(9s)).
 Finally for every 9s, define

 The perturbed allocation {c,y} satisfies all the constraints (of either Program IC or Program FOA). A necessary
 condition for the initial allocation {c,;y} to be optimal is that it be the least cost allocation among the class of allocations

 { c5 , J'0 } indexed by S. This implies that

 dV{c8,ys'
 d8

 which can be rewritten as

 ß f
 V"'- s'-'lïsû'-i'icH?'-1 7-7 ))

 û"(c(ô'j) V ' V ! ' >
 Dividing by ij^-i_^-i|<e/í_1 (õt-''Õt-^...f° (ÕQ'Õ-'^d9t-'...dêo and taking the limit when e^O yields
 the result. ||
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 Proof of Proposition 2. We tackle the Bellman equation satisfied by the relaxed planning problem using optimal control.

 Define Cl(y,u,0 ) denote the expenditure function - the inverse of the utility function for consumption ur(-,y,0). We first

 rewrite this Bellman equation as follows:

 Af(v, A,ö_,<) = min j {C'(y(0),wm-ßv(0),6)-y(6)+q J K(v(,9),A(ô),e',t+lif'+l(d''6)d6''f'(6'e-)de, (A.l)

 v = J w(6)f'(6'e-)dd,

 A = 1 w(e)g'(O'0-)d$,

 w(O)=u'e{C'(ymM0)-ßvm,O),y(e),e)+ßA(d).

 To clarify the origins of the results, we first only make Assumption 1 . Then we introduce Assumption 2 in the proof

 only when it is needed. We attach multipliers À and y on the first and second constraints. The Envelope conditions can
 be written as

 Kv (v, A ,9-,t) = X and K& (v, A , 0_ , t) = y.

 In line with these identities, we write

 ÁTv(v(0),A(0),0,r+l) = À(0) and ffA(v(0),A(0),0,i+l) = y(0).

 We denote by /¿(0) the co-state variable associated with w(0). We then form the corresponding Hamiltonian:

 [C'(ym,wm-ßv(0),0)-y(O)]f'(O'O-)+q[J (e'^de^ (6'6-)
 +'[v-w(e)f'(8'e-)'+Y[A-wmg,(e'o-)'+ßW)[u'e{ci(ym,w(ß)-ßV(e),e),ym,e)+ß&m}-

 The boundary conditions are
 lim /¿(0) = Oand lim /x(0) = 0. (A.2)
 6 1-*0

 The law of motion for the co-state /x(0) is

 de .«"(C(ö)) Yf'(ß'd-)/
 The first-order conditions for A(0), v(0), and >>(0) can be rearranged as follows:

 _jm_=_±vm ' (A4)
 0/'(0|0_) ß 0 '

 = (A'5)

 and

 hy(y(0),0)' ß(0) r , , ^
 (A-6)

 Using equation (A.5) to replace À by (ß/q) (1/m'-1'(c_)) in equation (A.3), and integrating and using equation (A.2) we
 get

 0= J i' I Mr/(c(0)) ul -<-V, (c_ ) ''m0-)d6, J J I Mr/(c(0)) q ul -<-V, (c_ ) J

 which provides another proof of Proposition I .

 These first-order conditions generalize the first-order conditions of the static Mirrlees model. Indeed, using the
 expression for the labour wedge, equation (A.6) can be rewritten as

 tl(9)=^[-V(y(i).«)].
 This equation relates the labour wedge distortion to the co-state /¿(0) and the cross-partial hyo(y{9),Q). It is familiar from
 the static Mirrlees model. The labour wedge is positive when the incentive constraints bind downwards and when higher
 types have a lower marginal disutility of labour income than lower types.

 Equation (A.3) is the evolution equation for the co-state /¿(0) and is also familiar from the static Mirrlees model.
 Indeed the exact same equation holds in the static Mirrlees model, with y= 0. Combining it with equation (A.5) and the
 Inverse Euler equation, it implies that in the static Mirrlees model, the derivative of the co-state ļi(0) is positive for low
 0 and negative for high 0, which together with the boundary conditions (A.2) ensures that r ¿(0) is always positive.

This content downloaded from 140.247.212.188 on Tue, 28 Mar 2017 18:38:03 UTC
All use subject to http://about.jstor.org/terms



 630 REVIEW OF ECONOMIC STUDIES

 A key difference between our dynamic model and the static Mirrlees model is that we can have y ^ 0. Indeed equation
 (A.4) shows that the value of y is (negatively) related to the past value of the co-state.

 We now make Assumption 2 and manipulate these first-order conditions to obtain formulas describing the evolution
 of labour wedges. Actually, we derive a whole set of such formulas, one per weighting functions n(6). The formulas
 corresponding to different weighting functions conveniently encode not on only the evolution of labour wedges over
 time, but also across states.

 We can simplify equation (A.6) as follows:

 ,(*> H*r
 1 ù"(c(0)) aef'(9'0-)U (C(6)> û"(cm ' (A'7)

 Replacing the expression for the labour wedge in this last condition, and multiplying both sides by 7r(0), we get

 Integrating by parts this equality, we get

 +a J f n(0)[- l«"(c(ö)) - ! J l«"(c(ö)) -

 =a J f n (©) y l«"(c(ö)) - í J (©) y l«"(c(ö)) -

 where we have used the fact that

 dôn(0-) f
 dôn(0-) ^ = J f n(e)gt(G' 0-)d0.

 Now note that

 *L(0) 1 p(0) 01 aqy(°)
 '-TL(e)ù»(c(6))~aef(e'e-)~ 01 ß e '

 so that we also have

 1 ±Y_
 i -t¿_ «'-"(c_) aßeJ

 Similarly we have
 P 1
 q Mi-1/(c_)

 This implies that

 I tl(0) ù"(c(0)) df,9ie dd=a J i n WL 0 r J l-xL(0)ß ù"(c(0)) df,9ie J WL ß à"(cm y l-r¿_ de-
 This proves Proposition 2. ||

 Proof of Proposition 3. The proof is very similar to that of Proposition 1. Define

 X=f (e.-i/e.rfmo.-üde,.

 The idea is to consider a history 0'-1, a neighbourhood |0'_1 -0t~l'<e of this history, and the following perturbed

 allocation {čá,Já}. Define for every 6t~x such that |0'_1 -0t~l'<e,

 mr-m'-T

 and for every other 6s

 ?(?)=/(<?).
 Finally for every 6s, define

 čs(0s)=c(es).
 It is easy to see that the perturbed allocation is incentive compatible and delivers the same utility as the original allocation.

 As in the proof of Proposition 1, a necessary condition for the initial allocation {c,y} to solve Program IC is that it be
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 the least cost allocation among the class of allocations { ě5 , y 5 } indexed by <5. The limit of the corresponding first-order
 condition when e goes to zero delivers

 r rL(0') q y-"(c(g'-')) / 0, y ' rL(e-') f(0.'afl(c,c f 1 ļ)de
 J '-xLmß q û»(c(e>)) U+J y ' i-T l(o'~1) J f(0.'afl(c,c 'oi+ì ) f 1 ļ)de '

 J ß û"(c(«')) JU+i/
 This completes the proof. ||

 A. DERIVATION OF NECESSARY CONDITION FOR INCENTIVE

 COMPATIBILITY WITH MOVING SUPPORT

 In this Appendix, we reconsider the case with a moving support for productivity and provide an alternative derivation of
 the same necessary condition for incentive compatibility. In the text we justified the same necessary condition by arguing

 that one can, without loss of generality, consider mechanisms that allow any report in ©, regardless of past reports.
 Instead, here, we assume the agent is confronted with a direct mechanism that restricts reports to Ite in the support implied

 by the previous period's report, so that rt e [#,(>,_ i),#ř(r,_i)]. This restriction implies that the agent may not be able to

 tell the truth after a lie, i.e. we may have 6t £ [0,(r,_i),0,(rr_i)] with positive probability if rt~ '
 To proceed it is useful to have a more forward-looking and recursive notation for reporting strategies. After any

 history of reports and true shocks (r'_1,0ř) the agent must make current and future reports. Thus, a strategy requires
 specifying the current report and the strategy for the next period, as a function of the new shock realization $t+ļ . Note that

 the current report must lie in the support implied by the previous report rt-' . We denote the set of all possible reporting

 strategies by Ž,(r,_i). Note that this set only depends on the previous period's report rt-', and not on past reports r'~ 2
 or the history of true productivity 6l .

 A strategy can be written recursively as

 <5> = (>>>»$/) € ¿/(ff-i)»

 where rt e [0,(r,_i),0,(/v_i)] and St : ©-» Ēt+'(rt) is a measurable function which determines the continuation strategy
 <7,+i as a function of 6t+ 1 . Starting in the last period and working backwards one can use this relation to define %{rt~' )
 for all nodes.

 Consider an allocation {c,;y}. At any node (r'~ 1 , 6l), given strategy ãt = ( rt , St ) e %{rt~ ' ), we can consider the agent's

 continuation utility. Note that this utility is independent of 6{~l , but does depend on the history of reports rř_1 and current

 productivity 0t and satisfies the following recursive relation:

 /•0ř+i(0ř)

 W(r'-' 0,;č, ) = «'«/-', r,),y(r'-'r,);0,)+/3 / w((r'-' , r,), 6»,+1 ; Sr(öi+1
 Jtt+X (Ot)

 with w(rT ,0T+l;ör+') = 0.

 Define the truth-telling strategy &* is defined as rt = 0t and S(6t+' ) = a*+ 1 for all 0t+ 1 . This strategy is always available
 if rř_ i =0t- 1 . Denote continuation utility along the equilibrium with truth telling as

 With this notation for strategies our notion of incentive compatibility is

 w(6') > w(e'-'e,-ã,) Vã, 6 ±,(ß,-i ),

 for all histories O'. Equivalently

 pdt+i(Ot)
 w(e'-|,Ö,;ä;>= max {«'(c(e'-1,r,),y(0'-1,r,);ö,) + /5 / W((e-1 ,ri),el+';S,(0l+l))f+'0,+iW,)d0,+ii-

 (rí (#f_ļ )

 Recall that we have defined gt(6''0) = dft(6''0)/d0. An envelope condition then suggests that

 o r9t+'(0t) aE _
 - -w(0')=u'e(c^')MO');O,)+ß / w(0'+,)g'+'0l+M)dô,+i + -^w(e' ,e,+M))f'+l _
 àVt J0,+'(0t) d&t

 ~^vv(ö''^+|(ö'))/'+l &+i(ą)|0')
 The corresponding integral version can be derived formally using the results of Milgrom and Segal (2002) exactly as in
 the proof of 1 .
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 Proof of Proposition 4. We use optimal control to analyse the modified version of Bellman equation (A.l):
 /•0,(0-)

 tf(v,A,6L,f) = min / {C'O i9),w(9)~ ßv(9),9)-y(9)
 J 0,(0-)

 fOt+' (0)
 +q / K{v{e)^{G),e'jĄ-')ftJt'e''e)dG']ft{e'e-)de, (a.8)

 J 0,^(0)

 rÕ,(0-)

 v= / w(0)f(e'0.)de,
 J 0,(0-)

 pdt(0-) Jā ¿a

 a= J / pdt(0-) w($)g'(e,e-)de+- d&- (ē,'e-)- -^-w(e,)f uv- ¿a J 0,(0-) d&- uv-

 W(0) = 4 (Ciyie), w(9) - ßv(9),9),y(9), 0) + ßA(6).

 We attach multipliers À and y on the first and second constraints; we denote by ß(9) the co-state variable associated
 with w (9); and we then form the corresponding Hamiltonian. The Envelope conditions can be written as

 Kv(v, A,0-,t) = k and K& (v, A,9-,t) = y.

 In line with these identities, we write

 Kv(v(9),A(9),9,t+l) = X(9) and K&{v{9),A(9),9,t+') = y{9).

 The boundary conditions for the co-state variable are

 lim = -JL2z.É2l
 e™ lim 0,f'(Õ,'0-) = 0-0, d0-'

 lim ß (g,) =
 e^ē' 0/'(Ì4 lö-) 0-0, d0-'

 The first-order condition for >>(#) can be rearranged as follows:

 *l(0) _ fJL(0) 1 OCne
 1-r L(0)~ 0/'(0|6L) Cu Cn '

 where for short, the argument (y(9),w(9) - ßv(9),9) of the function is omitted. Combining the last three
 equations immediately yields part (i) of the proposition.

 Turning to part (ii), we now make Assumptions 1 and 2. We can then simplify the first-order condition for ;y(0) as

 tl(0) ß,t> /mx fi(0)
 1 -tl(0) " q" <C( /mx )]0f'(0 '0-)'

 Combining this with the first-order condition for A (9)

 ß(0) _ qy(0)
 0f'(0'0-) ß e

 yields
 tl(0) y(0)~S,

 1-r l(0) e
 These conditions also hold in the previous period

 T~~ - = - (c-)-
 1 - XL- 9-

 Together with the boundary conditions, this yields

 l-rL(ē,) q V V "0J'<fi,'0-)

 Y ß ( iE ''
 = -a -

 9- q u [C v v n 9t d9-

 tL- ß ù*' (c(9t)) 9- d0t
 1 -tl- q w'_1'(c_) 9t d9-

 A similar calculation yields

 = *L- ß (cfe)) 0- d0 ,
 1-Tife) 1-* L- q Û'~v(c-) 0, d0-'
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 B. A USEFUL LEMMA

 Lemma 3. Suppose that

 , H^))'
 f'(9 |0_) =

 dot>J2jl
 where fit (0-) is an arbitrary function of 6- and at is a constant. Then

 6-fe_ (0|Ö_) = - +Ö_ ^ j ( Qfe (ö|ö_)+/'(e|ö_)).
 Proof of Lemma 2. We start with A,. Integrate A , =/ wt+rg{ (6t+T'0t)d0t+T by parts, using Lemma 3 to obtain an
 expression for g{ ( 0t+T '0t). Using ßt ( 0t ) = x{jlt ( 6t ) - we obtain

 0,A,= j [e,+ru'e+z+e-^e,+īA,+T]ļi+0,T^pjf'(el+z'9,)del+ī.
 This implies that in the continuous-time limit, we can write

 , - log ~

 d(0, A,) = P-9<Ą Y ( 0tA,)-0,u'e+aA,,ô,0,dW„

 for some function &aj of the state variables (v,, A t,0t,t). Applying Ito's lemma, we infer that {A} solves the following
 stochastic differential equation:

 " ( dp}° g '
 dAt= Ip-frt-Ot-j^JAt-UQ-CTAsât dt+crAytàtdWt,

 where cta,/ =õ"A,r - A,.

 Turning now to vt, note that the definition of v, as the net present value of utility implies that {v} solves a differential

 equation of the form dvt = pvtdt - u'dt+GvjGfdWf for some crVi,. Finally, in the continuous-time limit, the constraint

 w(0) = r9ute+ß0A(0) simply amounts to the requirement that the sensitivity of continuation utility to productivity
 changes be av r = 0tAt. Therefore, {v} solves the following differential equation:

 dvt = pvtdt - u* dt+6tAtòtdWt. ||

 Proof of Proposition 5. The first-order conditions for ct, yt, and in the HJB equation can be written as

 u',(c,y

 *L,t _ Yt_ J_
 aXt0ť

 Ka -Kv&0tAt-6tK&0
 (JA,t=

 *AA

 Applying Ito's lemma to kt=Kv(vt,At,6t,t), and differentiating the HJB equation with respect to v, (using the
 Envelope theorem) immediately yields that the drift term of Xt is equal to zero. Hence, kt is a martingale. We can
 therefore write

 dX{ - {Kvv0f A¡ + Kv a <J A ,t KVQOf^cifdWt .

 Using the first-order condition for we obtain

 - =<rk,t<rtdWt,
 At

 where

 _ 1 Í KvvKaa-K^a KA-9tKAe
 v',t _ - - I - dtAt + KvA

 A.v y ^AA ^AA J
 Applying Ito's lemma to yt =KA(vt, At,9t, t), and differentiating the HJB equation with respect to At (using the Envelope
 theorem) yields that the drift term of yt is equal to

 - ^Kvv0f Ata? -'-KvA6to A + KveO}à? - + $/• ^ ^ K/^dt,
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 which using the definition of y,, the first-order condition for <ta,i and the expression for ctx.i. we get

 -e'tokJó}dt+ +et j Ytdt.
 Similarly, the volatility term of yt is given by

 (K&v6tAt -'-K&o6t)âtdWt,

 which using the first-order condition for a ^,t, we can rewrite this as

 YtCtdWt.

 Hence we have

 i / ¿û!og'
 dyt = -0tktak,tä;+lßt+0t-^-'yt i dt + yt(JtdWt. ||
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