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Abstract

This paper is a normative investigation of the theoretical and quantitative properties of

optimal capital taxation in the neoclassical growth model with aggregate shocks and incomplete

markets. The model features a representative-agent economy with linear taxes on labor and

capital. I first allow the government to trade only a real risk-free bond. Taxes on capital are set

one period in advance, reflecting inertia in tax codes and preventing replication of the complete-

markets allocation. Optimal policy has the following features: labor taxes fluctuate very little;

capital taxes are volatile and feature a positive (negative) spike after a negative (positive)

shock to the government budget; and capital taxes average to roughly zero across periods. I

then consider the implications of allowing the government to trade capital. Optimality calls

for a large short position.

1 Introduction

This paper is a normative investigation of optimal capital taxation in the representative-agent

neoclassical growth model with uncertainty. The government finances its expenditures by levying

linear taxes on labor and capital and issuing risk-free debt. In such environments it has been well

known since the work of Judd (1992) and Chari, Christiano, and Kehoe (1994) that, even though the

government cannot issue state-contingent debt, state-contingent capital taxes give the government

enough instruments to perfectly insulate its budget from aggregate shocks and thereby implement

the complete-markets Ramsey outcome. In quantitative versions of such economies, optimal policy

has three salient features: (i) labor taxes fluctuate very little; (ii) within-period state-contingent
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capital taxes vary considerably across states; and (iii) within-period averages across states of state-

contingent capital taxes are small–in other words, the intertemporal wedge is small.1

I explore theoretically and quantitatively how these results are altered when the government can

avail itself of only a limited number of instruments to hedge its budget against aggregate shocks,

so that markets are truly incomplete; in other words, the complete-markets Ramsey outcome is not

attainable. This is important because the large variations of state-contingent capital taxes within

a period that are necessary to replicate the complete-markets Ramsey outcome are unlikely to be

available. Indeed, such flexible capital taxes run counter to the observed sluggishness of fiscal policy,

which probably originates in the administrative and political process that governs adjustments in

taxes. In order to capture inertia in fiscal policy, I therefore impose severe restrictions on capital

taxes: they must be set one period in advance and for one period.2

For my quantitative investigation, I calibrate the model to the U.S. economy and use log balanced

growth preferences. In simulations, the period length is more than a mere accounting convention;

it controls two important parameters at the same time: the amount of time during which capital

taxes are fixed and the maturity of debt. Numerical tractability requires varying both together with

the period length, so I perform two sets of simulations: a one-year simulation, which combines a

flexible capital tax with short debt maturity; and a five-year simulation, which combines sluggish

capital taxes with longer debt maturity.

I find that claim (i) is robust to the form of market incompleteness that I impose: labor taxes

are very smooth. In both the one-year and the five-year simulations, the standard deviation of

labor taxes is below 2% The government is successful at spreading the burden of labor taxation

across states and dates in order to minimize the corresponding distortions. This is reflected in the

relatively small welfare losses over the complete-markets Ramsey outcome, which amount to 009%

of average consumption.

I show numerically that, across periods, capital taxes are very volatile, take both positive and

negative values, and average out to a small number. Moreover, they display little persistence. The

standard deviation of capital taxes decreases sharply with the period length: it is about 54% for

the one-year simulation but only about 11% for the five-year simulation. Average capital taxes are

below 5% in absolute value. There is an important difference between these results and claims (ii)

and (iii). According to these properties, within a period, capital taxes should be very volatile across

states and average out to a small number. As a result, the intertemporal wedge should be small in

1The intertemporal wedge is the wedge between agents’ intertemporal rate of substitution and the marginal rate

of transformation. Chari, Christiano and Kehoe (1994) also use the term “ex ante capital tax rate”. In their model,

the intertemporal wedge is given by the within period average across states of state-contingent capital taxes, with

weights given by the product of the marginal utility of consumption and the marginal product of capital in each

state. The reason why the government can implement the complete-markets Ramsey outcome with state-contigent

capital taxes is that the government can vary capital taxes across states of the world within a period while keeping

the intertemporal wedge constant. This endows the government with enough degrees of freedom to perfectly shift

the tax burden across states and to replicate the complete-markets outcome as long as long as it can also trade a

risk-free bond.
2Without state-contingent capital taxes, the distinction between the intertemporal wedge, ex ante capital taxes,

and capital taxes disappears. In my model these are equivalent concepts.

2



any given period.3 In contrast, in my model, the intertemporal wedge is large in absolute value in

some periods.

Some intuition for these results can be provided through an exact theoretical decomposition of

capital taxes into two terms with distinct interpretations: a “hedging” term and an “intertemporal”

term.4 The hedging term, which would be zero under complete markets, balances two effects from

increased capital taxes in anticipation of a shock. First is the direct effect in the form of increased

revenues in proportion to the marginal product of capital. Second is an opposing indirect effect

through the adjustment of capital: lower capital accumulation reduces the revenues from labor

and capital taxes. The hedging benefits of capital taxation depend only on the covariance of these

two effects with the government’s need for funds across realizations of the shock. In the baseline

case where the production function (gross of depreciation) is Cobb—Douglas and depreciation is

deductible, I show theoretically that these two effects exactly cancel out so that the hedging term

is equal to zero. This baseline case turns out to be a good benchmark: in my simulations, the

hedging term is always smaller than 1% The behavior of capital taxes is therefore dominated by

the intertemporal term.

This intertemporal term arises from the possibility of manipulating interest rates. Capital taxes

have a positive (negative) spike in the period following a bad (good) shock that negatively (posi-

tively) affects the government budget. This helps buffer the impact of the shock on the government

budget by lowering (increasing) the interest rate on debt issued in that period and increasing (low-

ering) total tax revenues. It is important that these responses are anticipated. For example, a

planned one-time increase in capital taxes in the period after a bad shock increases consumption

and decreases marginal utility in the period of the shock. As a consequence, before the shock,

interest rates increase and the government is forced to lower capital taxes. The result is a stabiliza-

tion of the government budget: the debt burden is increased if the bad shock does not materialize

and decreased if it does. However, this benefit must be weighed against the distortionary costs

imposed on the economy. When the period length is increased, two effects combine to mitigate

spikes in capital taxes. First, a smaller positive (negative) spike in capital taxes after a bad (good)

shock is required to achieve a given reduction (increase) in the debt burden because this tax rate is

imposed for a longer time. Second, the associated distortionary costs increase because consumption

is distorted for a longer time. When preferences are quasi-linear, interest rates are pinned down by

the discount factor and cannot be manipulated. In this case, the intertemporal term is zero.5 More

3With log balanced growth preferences, the intertemporal wedge is actually exactly zero at the complete markets

Ramsey outcome. This is true more generally when preferences feature constant relative risk aversion and are

separable between consumption and leisure.
4This decomposition applies only when debt is away from its lower and upper limits. If these debt limits are

binding then a third, “debt limits”, term arises that imparts a role to capital taxes in relaxing the debt limits.
5One might think that even though the interest rate is fixed, the increase (decrease) in total tax revenues resulting

from a positive (negative) spike on capital following a bad (good) shock still helps buffer the impact of shocks on the

budget of the government. To understand why this does not occur, note that the increase in tax revenues incorporates

the offsetting effects resulting from the negative impact on capital accumulation: a lower capital tax base and lower

revenues from labor taxation. With an infinite intertemporal elasticity of substitution, these offsetting effects are

strong enough to neutralize the direct effect of increased capital taxes on tax revenues.
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generally, I am able to extend a theoretical result proved by Zhu (1992) in the context of complete

markets; I show that in a stationary equilibrium, the intertemporal term is either zero or takes both

signs with positive probability.

I then explore how optimal policy is affected when the government is allowed to trade capital.

Preventing the government from trading capital is without loss of generality under complete mar-

kets. But in environments with incomplete markets, this arbitrary restriction regains bite. Trading

capital provides the government with a powerful instrument for hedging aggregate shocks. Indeed,

when preferences are quasi-linear and government expenditure shocks are the only disturbance in

the economy, I show theoretically that except in the initial period, the government can perfectly

approximate the complete-markets Ramsey outcome by taking a large position in capital, counter-

balanced by an equally large opposite position in the risk-free bond. Outside of this benchmark

case, government expenditure shocks tend to call for a long position, whereas productivity shocks

typically require a short position. The latter follows because low productivity shocks result in low

returns to capital and high government need for funds. Hedging the government budget therefore

requires a short position. In my calibration, productivity shocks dwarf government expenditure

shocks and so the optimal position is short. The magnitude of the short position is very large but

decreases with the period length: 400% of the capital stock in the one-year simulation and 150% of

the capital stock in the five-year simulation.6

I also characterize the optimal holdings of capital by the government in a more general portfolio

problem with additional assets. I derive the government’s optimal liability structure in a unified

framework that resembles the Consumption Capital Asset Pricing Model (CCAPM).

Related literature. An extensive literature on capital taxation with complete markets has

emerged from the celebrated zero—capital tax result established by Chamley (1986) and Judd (1985)

who showed that, in all steady states of the deterministic economy, taxes on capital are optimally

set to zero. This paper adds to this literature by studying the case of incomplete markets.

This paper contributes to the literature pioneered by Barro (1979) on fiscal policy under incom-

plete markets. Barro considers a deterministic, partial equilibrium environment and associates an

exogenous convex deadweight cost to taxation. Variations in the deadweight cost are detrimental;

taxes should be smoothed across time. Tax smoothing by the government leads both debt and taxes

to move permanently after shocks to present and future government expenditures. Generalizations

of this insight to explicitly stochastic models yield a random walk component for taxes and public

debt. Most closely related to this paper is the one by Aiyagari et al. (2002) henceforth AMSS, who

study fiscal policy in general equilibrium under incomplete markets in a version of the no-capital

economy of Lucas and Stokey (1983) with only risk-free debt. AMSS demonstrate that debt and

labor taxes inherit a unit root component. I show that this result is robust to the introduction of

capital, capital taxation, and a more general asset structure.

This paper is also related to literature studying the optimal liability structure of the government

6Section 6 contains a thorough discussion of this normative result. There, I explain that the prescription of large

asset positions is a feature shared by many existing models of government portfolio choice. I give intuition for the

role of the period length. I also discuss natural additions to the model that would mitigate these asset positions.
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under incomplete markets. The foundational paper is Bohn (1990) who considers a stochastic

version of Barro’s model with risk-neutral consumers. The literature on the optimal portfolio

of the government under incomplete markets has focused entirely on Bohn’s model, maintaining

the assumption of risk neutrality and adopting an ad hoc deadweight cost for taxes. The model

presented here provides microfoundations for Bohn’s findings, and I also analyze explicitly the

situation where consumers are risk averse.

Angeletos (2002) and Buera and Nicolini (2004) consider economies without capital and where

the government can trade only risk-free debt with multiple maturities. They show that the gov-

ernment can generically replicate the complete-markets Ramsey outcome if the number of traded

maturities is greater than the cardinality of the state space of the stochastic disturbance in the

economy. Shin (2007) points out that fewer maturities might suffice to implement the complete-

markets Ramsey outcome if the government actively managed its portfolio: dynamic completeness

is enough.7 These papers characterize the optimal maturity structure of government debt when the

complete-markets Ramsey outcome is achievable, and they find that the optimal portfolio typically

involves very large positions of opposite signs for different maturities.8 The large capital positions

called for by my model are reminiscent of their finding. However, an important difference is that I

explore the optimal liability structure of the government in a setting where the complete-markets

Ramsey outcome cannot be implemented.

From a methodological perspective, this paper builds on Kydland and Prescott (1980) and

Werning (2005) Previous approaches of optimal policy in incomplete-markets model either adopted

a Lagrangian approach (as in AMSS) or developed a recursive representation by incorporating some

multipliers in the state space (a method developed by Marcet and Marimon, 1998). My recursive

representation of the Ramsey problem has four state variables, which are directly related to the

allocation: the present value of government liabilities, capital, past marginal utility, and the state

of the Markov shock process.

The rest of the paper is organized as follows. Section 2 introduces the economic environment

and sets up the Ramsey problem. Section 3 develops a recursive representation. Section 4 presents

the properties of debt and taxes in the case of quasi-linear preferences; I analyze the general case in

Section 5 In Section 6 examines capital ownership by the government and characterizes the optimal

liability structure of the government. Section 7 contains the numerical analysis.

7A branch of this literature studies imperfect competition and price stickiness. Schmitt-Grohé and Uribe (2004)

and Siu (2004) analyze optimal monetary and fiscal policy in quantitative models with nominal bonds and sticky

prices but not capital. In this context they find that, for reasonable degrees of price stickiness, optimal inflation

displays little volatility. Correia, Nicolini, and Teles (2008) point out that, in such environments, if state-contingent

consumption taxes are allowed then the complete-markets Ramsey outcome with flexible prices is always attainable.
8Buera and Nicolini (2004) find that in a calibrated version of the US economy with a simple four state process,

the government is required to swap bonds of different maturities on the order of a few hundred times total GDP in

each period. In Shin (2007)  the Markov structure of shocks is such that dynamic trading of short-term debt and

a perpetuity are enough to replicate the complete-markets outcome; the optimal positions are still very large (four

times GDP) but smaller that in Buera and Nicolini (2004).
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2 The Economy

The model is a neoclassical, stochastic production economy. The economy is populated by a con-

tinuum of identical, infinite-lived individuals and a government. Time is discrete, indexed by

 ∈ {0 1 }. The exogenous stochastic disturbances in period  are summarized by a discrete

random variable  ∈ S ≡ {1 2  }: the state at date . I let  ≡ {0 1  } ∈ S denote the
history of events at date  I assume that  follows a Markov process with transition density  (

0|)
and initial distribution 0 =  (·|−1).
In each period , the economy has two goods: a consumption capital good and labor. Households

have access to an identical CRS (for constant returns to scale) technology for transforming capital

−1 and labor  into output via the production function −1 +  (−1  ). This formulation

allows for capital depreciation, which is subsumed by the production function  (−1  ). The

production function is smooth in (−1 ) and satisfies the standard Inada conditions. Notice that

this formulation incorporates a stochastic productivity shock. Output can be used for private con-

sumption , government consumption , and new capital . Throughout, I will take government

consumption  = () to be an exogenously specified government expenditure shock. Hence the

resource constraints in the economy are

 +  +  ≤  (−1  ) + −1 ∀ ≥ 0 and ∀ ∈ S (1)

Households rank consumption and labor streams according to

E−1
∞X
=0

(  ) (2)

where  ∈ (0 1) and where  is smooth and concave in ( ), increasing in consumption, decreasing
in labor, and satisfies the standard Inada conditions. Note that this formulation incorporates a

stochastic preference shock.

The government raises all revenues through a tax on labor income   and a tax on capital income

 . Except for taxes on capital 

 , the time- component of the decisions of the households and

the government are functions of the history of shocks  until  In contrast, I assume that taxes on

capital are predetermined: the government makes decisions on  one period in advance. Hence 



is a function of the history of shocks −1 up to  − 1 (see the end of this section for a thorough
discussion of the assumption that taxes on capital are set one period in advance). The capital stock

0 is inelastic and so provides a nondistortionary source of revenue to the government. In order to

limit the amount of revenues the government can extract at no cost, I assume that the date-0 tax

rate on capital 0 is exogenously fixed.

Incomplete markets and debt limits. Households and the government borrow and lend

only in the form of one-period risk-free bonds paying interest . The government budget and debt

limit constraints are as follows:
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(1 + )−1 ≤   +  ( (−1  )− ) +  ∀ ≥ 0 and ∀ ∈ S; (3)

( (  ) ) ≤ (  ) ≤( (  ) ) ∀ ≥ 0 and ∀ ∈ S (4)

Here  is the amount of government debt outstanding at date  and  is the wage rate.

Remark 1 With this formulation, the base for the tax on capital is  (−1  ) − . Since

depreciation is subsumed by  (−1  ), capital depreciation is assumed to be deductible. This is

meant to capture the fact that, in practice, most tax codes make for amortization allowances.

When (3) holds with strict inequality, I let the difference between the right-hand side and

the left-hand side be a nonnegative level of lump-sum transfers  to the households. The lower

debt limit ( (  ) ) and the upper debt limit ( (  ) ) in (4) influence the

optimal government plan. In full generality, I allow the debt limits to depend on the capital stock

of the economy and the current marginal utility of consumption. Alternative possible settings for

( (  ) ) and ( (  ) ) are discussed later. Observe that I define debt and

asset limits on (  ) instead of on . This is natural given my definition of debt:  is the

amount of debt issued at the end of period . The quantity (  ) is therefore just debt

weighted by the state price density.

The representative household operates a firm and supplies and hires labor at wage  on a com-

petitive market.9 The household’s problem is to choose stochastic processes {    −1 −1}≥0
that are measurable with respect to  and maximize (2) subject to the sequence of budget con-

straints

 +  ≤ (1−  ) + (1−  )( (−1 

  )− 


 ) + −1 −  + (1 + )−1 +  (5)

taking initial debt −1 initial capital −1 wages, interest rates, and taxes {  

 


 }≥0 as given.

The labor market clears if {}≥0 =
©

ª
≥0. The household also faces debt limits analogous to (4),

which I assume are less stringent than those faced by the government. Therefore, in equilibrium,

the household’s problem always has an interior solution. The household’s first-order conditions

require that two Euler equations hold (one for the risk-free rate and the other for the net return

on capital) as well as a labor—leisure arbitrage condition and the condition that labor be paid its

marginal product:

1 = (1 + )E

½

+1



¾
∀ ≥ 0 and ∀ ∈ S; (6)

1 = E

½

+1


[1 + (1−  )+1]

¾
∀ ≥ 0 and ∀ ∈ S; (7)

  = 1 +



∀ ≥ 0 and ∀ ∈ S; (8)

9Giving the firms to consumers is just one of the many equivalent ways of resolving the indeterminacy of the

objective of competitive firms under incomplete markets.
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 = (−1 

  ) ∀ ≥ 0 and ∀ ∈ S (9)

Remark 2 Note for future reference that under CRS, the first-order condition  = (−1   )

implies that  (−1   )−

 = −1(−1   ). Revenues from capital taxation can be written

as  −1(−1   ).

Definition 1 Given −1, 0, −1, 0, and a stochastic process {}≥0, a feasible allocation is a
stochastic process {  −1}≥0 satisfying the resource constraints (1) such that its time- elements
are measurable with respect to . A risk-free rate process {}≥0, a wage process {}≥0, and
a government policy {    }≥0 are sets of stochastic processes such that , 


 and  are

measurable with respect to  and both  and  are measurable with respect to 
−1.

Definition 2 Given −1, 0, −1, 0, and a stochastic process {}, a competitive equilibrium is

a feasible allocation, a risk-free rate process, a wage process, and a government policy such that (a)

{   −1 −1}≥0 solves the household’s optimization problem and (b) the government budget

constraints (3) and (4) are satisfied.10 An allocation {  −1}≥0 that is part of a competitive
equilibrium is a competitive equilibrium allocation.

Definition 3 The Ramsey problem is to maximize consumer welfare (2) over the set of compet-

itive equilibria. A Ramsey outcome is a competitive equilibrium that attains the maximum.

Discussion: Debt limits. By analogy with AMSS, I shall study two kinds of debt limits:

natural and ad hoc. Natural debt limits amount to requiring that debt be less than the maximum

debt that could be repaid almost surely. Following AMSS, a debt or asset limit is ad hoc if it is more

stringent than the natural one. In this model, natural debt limits–which depend on the capital

stock  in the economy–are in general difficult to compute. But as mentioned previously, it is

easy to see that they are of the form( (  ) ) ≤ (  ) ≤

( (  ) ).

Requiring debt limits to be weakly tighter than the natural ones rules out Ponzi schemes.

Discussion: Measurability assumption for  . It has been known since the work of Judd

(1992) and Chari, Christiano and Kehoe (1994) that, with state-contingent taxes on capital, the

complete-markets Ramsey outcome can be implemented even when the government can only trade a

one-period risk-free bond.11 The reason is that investment depends only on a within-period average

across states of state-contingent capital taxes and not on how the tax is spread across states within

a period. The government can use this to its advantage by adjusting taxes on capital to hedge its

burden across states without distorting capital, thereby replicating the complete-markets Ramsey

outcome.

10This definition imposes labor market clearing because the second and third arguments in {   −1 −1}≥0
are equal. Similarly, bond market clearing is automatically imposed.
11With complete markets, taxes on capital are indeterminate. In fact, the complete-markets Ramsey outcome can

be implemented either with state-contingent debt and taxes on capital set one period in advance or with only a

risk-free bond but flexible taxes on capital.
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Inertia in fiscal policy–captured here by the assumption that taxes must be set one period in

advance and for one period–restricts the state-contingency of capital taxes, prevents replication of

the complete-markets Ramsey outcome, and requires analyzing optimal taxes on capital in a truly

incomplete-markets environment.

In contrast, no such restriction is placed on labor taxes, because they are not the focus of this

paper. One may wonder whether this asymmetric treatment of labor and capital taxes doesn’t

bias the results in favor of labor taxation. In fact, most of the insights that I derive would still

be valid if additional restrictions were put on labor taxes. The exact results depend, of course, on

the particular form of these restrictions. If, for example, the production function is Cobb—Douglas

(with or without depreciation), then the formulas (23) and (24) for taxes on capital are still valid

when taxes on labor are also restricted to be set one period in advance. In this case, capital can be

factored out from the additional restrictions imposed on the planing problem.

Discussion: Specific form of market incompleteness. The assumptions that I have made

require studying an incomplete-markets economy. But there are many different ways to deviate

from complete markets, by imposing enough joint restrictions on the set of assets that can be

traded by the government as well as on the state contingency of capital taxes. This raises two

related questions. First, are the restrictions that I have chosen relevant? Second, are the insights

that I derive likely to generalize to other incomplete-markets settings?

I believe that the restrictions chosen for this paper are both natural and realistic. Indeed, inertia

in fiscal policy is often mentioned in policy debates and contrasted with the flexibility of monetary

policy. The assumption that only one maturity of debt is traded by the government is somewhat

less realistic (as governments typically trade bonds corresponding to a set of different maturities)

but is often made for analytical convenience and numerical tractability in studies (e.g., AMSS) of

incomplete markets. This assumption is relaxed in Section 6 where I allow the government to trade

an arbitrarily richer set of state-contingent assets.12

In addition, it should be noted that many of the insights derived here would be valid in many

different incomplete-markets environments. For example, Propositions 1 and 2 can be shown to

apply under many different asset structures. This includes more extreme forms of market incom-

pleteness, when the government is not allowed to issue debt and must balance its budget in every

period, and also milder forms of market incompleteness, when the government can trade a large but

incomplete set of state-contingent assets including capital.

3 A Recursive Representation for the Ramsey Problem

The following lemma gives necessary and sufficient conditions for competitive equilibria.

12The setup developed here doesn’t actually allow for the government to trade debt of different maturities, since

the assets that the government can trade have exogenously specified payoffs. However, it can be shown (at the cost

of additional notation and analysis that is beyond the scope of this paper) that the results of Propositions 1 2 and

3–as well as the results of Section 6–still apply if the government is allowed to trade debt of different maturities.
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Lemma 1 A feasible allocation {  −1}≥0 together with a risk-free rate process {}≥0, a wage
process {}≥0, and a government policy {    }≥0 constitute a competitive equilibrium if and

only if (1) and (3) hold with equality and (4), (6), (7), (8), and (9) hold with  =  .

Notation. I use prime variable to denote next-period variables and variables with a minus

subscript to denote last-period variables. I denote the possible states of the random shock in the

current period by  and write  for any function (   ) in state . For example, I use 

to denote the marginal utility (  ) in state  and use  to denote output  (  ) in state

. I use E {|−} to denote the expectation
P

∈S (|−) of a function  of the current state

 of the Markov process conditional on the state of the Markov process in the previous period being

−. Hence, I make a slight abuse of notation in that  denotes both a particular state of the Markov

process and a random variable with probability distribution  (|−) conditional on the state of the
Markov process in the previous period being −.

State variables. With this notation in hand, I can describe the recursive representation that

I develop for the Ramsey problem (from  = 1 onward). It uses four state variables: the value

of the capital stock  inherited from the previous period; the value of government debt from the

previous period ; the marginal utility of consumption in the previous period  ≡ (− − −);

and the state of the Markov process in the previous period −. This recursive approach is useful

for developing intuition, simplifies calculations, and facilitates numerical simulations. The Bellman

equation satisfied by the value function of the Ramsey problem can be written as follows.

Bellman equation 1.

 (   −) = max
{00 }

E { +  (0 
0
   )|−} (10)

subject to

(1 + )E {|−} = 

E
©
[1 + (1− )]|−

ª
= 

  = 1 +




∀ ∈ S

(1 + )+  ≤   +  + 0 ∀ ∈ S

 +  + 0 ≤  +  ∀ ∈ S

(0  ) ≤ 
0
 ≤(0  ) ∀ ∈ S

Six constraints are imposed on the problem and in the following order: (i) the risk-free rate

satisfies the usual Euler equation; (ii) the net return on capital satisfies the usual Euler equation;

(iii) agents equalize their marginal rates of substitution between leisure and consumption to the

net real wage; (iv) the budget constraint of the government is satisfied in each state  ∈ S; (v) the
resource constraint is satisfied in each state  ∈ S; and (vi) the amount of government debt issued
in each state  ∈ S satisfies the debt and asset limits.
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The initial period must be treated in isolation. There, marginal utility of consumption in the

previous period is not defined. One can think of the problem at date  = 0, given (  −) =

(−1 −1 −1), as maximizing the right hand side of (10) subject to all six constraints listed above

except the first two constraints, which are replaced by  = 0 and  = 0.

It will prove convenient to replace  by a new state variable ̃ =  representing debt weighted by

the state price density The corresponding value function is ̃ ( ̃  −) =  (   −). In order

to write the Bellman equation satisfied by ̃ , I first rearrange the constraints. The first constraint

is used to substitute  and the third to replace  ; the fourth constraint is multiplied by (  ).

Bellman equation 2.

̃ ( ̃  −) = max
{0̃0}

E
n
 + ̃ (0 ̃

0
  )|−

o
(11)

subject to

E
©
[1 + (1− )]|−

ª
=  (12)

̃


E {|−} +  ≤  +  +  + ̃0 ∀ ∈ S (13)

 +  + 0 ≤  +  ∀ ∈ S (14)

(0  ) ≤ ̃0 ≤(0  ) ∀ ∈ S (15)

The constraint set in (11) is not convex. As a result, first-order conditions are necessary but not

sufficient for characterizing the solution. The lack of convexity also considerably complicates the

task of establishing differentiability of the value function ̃ , which is required to characterize the

solution by a set of necessary first-order conditions.

All the properties of Ramsey outcomes that I derive can be established either by using a La-

grangian approach or by expanding the Bellman equation (11) over two periods bypassing the latter

technical difficulty but at the cost of heavier notation (and thus less intuition). I therefore proceed

with the assumption that the value function ̃ is differentiable in ( ̃ ), which is the case in all

my simulations.

4 The Quasi-Linear Case

The problem simplifies drastically when preferences are quasi-linear. In this section I assume that

(  ) = +( ), where  is a smooth, decreasing, and concave function. I also assume that

 0(0) =∞ in order for labor supply to be interior, and I allow for negative consumption.

Two state variables, ̃ (which is equal to  in this case), and −, are now sufficient to describe

the state of the economy. Intuitively, the reasons for this simplification are twofold. The first reason

is that  is now fixed and equal to 1; it can therefore be dropped as a state variable The second

reason is that, since intertemporal prices are fixed, I can perform a change of timing in the recursive

approach: the optimal investment in capital  can now be viewed as being chosen simultaneously
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with the tax rate on capital . As a consequence, the state variable  can be treated as a control

variable. To see this formally, note that the objective function (2) of the Ramsey problem can be

written as follows, using the resource constraint to substitute  (−1  ) +  − +1 −  for :

E−1
∞X
=0

[ + −1 −  −  +]

This expression can be rearranged to yield

1


0 + E−1

∞X
=0


∙
 + −1

µ
1− 1



¶
−  +

¸


The idea is to write down a new value function ̃ (̃ −) for the per-period objective function given

by +(1−1)− +. The relationship between this new value function and the one defined

in (11) is ̃ (̃ −) = max ̃ ( ̃ 1 −) − . The value function ̃ (̃ −) satisfies the following

Bellman equation.

Bellman equation 3.

̃ (̃ −) = max
{̃0}

E
½
 + 

µ
1− 1



¶
−  + + ̃ (̃0 )|−

¾
(16)

subject to

E
©
[1 + (1− )]|−

ª
= 1 (17)

̃
1


+  ≤  +  +  + ̃0 ∀ ∈ S (18)

 ≤ ̃0 ≤ ∀ ∈ S (19)

Observe that, with quasi-linear preferences, natural debt limits are independent of the capital stock

and marginal utility is constant: (  ) = 
 and 


(  ) = 



  Consistent with this

property, fixed debt debt limits  and  are imposed in (16).
13

4.1 Stochastic Properties of Ramsey Outcomes

In order to derive the first-order conditions necessary for optimality in (16), I attach the multipliers

 to (17),  to (18), and 2 and 1 to the two constraints in (19). The multiplier  is a function

of ̃ and −, whereas , 1, and 2 are functions of ̃, −, and .

The envelope condition is

̃(̃ −) = −E{|−} (20)

and the first-order condition for ̃0 is

̃(̃
0
 ) = − + 1 − 2 (21)

13These debt limits can be tighter than the natural ones, but are restricted to be independent of 

12



Equation (21) shows that, away from the debt limits, the multiplier  can be interpreted as

the marginal value of a unit reduction in debt–in other words, the government’s marginal need

for funds. At the optimum, this coincides with the marginal cost of increasing taxes in order to

generate one unit of government revenues.

Combining equations (20) and (21), and using −, 1− , and 2− to denote the corresponding

multipliers in the previous period, I obtain the following martingale equation:

− = E{|−}+ 1− − 2−  (22)

In the rest of this section, I will often abuse notation by switching from recursive to sequential

notation. Away from the debt-limits, − = E{|−}. In sequential notation, the process {}
which indexes both the government’s marginal need for funds as well as the marginal cost of taxation,

is a positive martingale. This reflects the desire to smooth distortionary taxes across states and

time. The tax-smoothing intuition has been familiar in incomplete-markets environments since the

work of Barro (1979) and AMSS. Under complete-markets, a similar Bellman equation would hold

but  would be constant and not a mere martingale.

Equation (21) also shows that debt ̃ is a nonlinear function of − + 1 − 2 and  The

policy functions {  } associated with (16) imply that ,  and   are functions of ̃−1, −1,

and , and that −1 and  are functions of ̃−1 and −1. This martingale component results from

the incompleteness of markets. If markets were complete, then debt and taxes would depend only

on  and −1; they would hence inherit the serial correlation properties of the Markov process {}
as in Lucas and Stokey (1983).

4.2 Taxes on Capital

By manipulating the first-order conditions, it is possible to derive a formula to characterize taxes

on capital for  ≥ 1:

 =

E{−(1−)|−}
E{|−}

1 +
E{|−}
E{|−}

∙
Cov{ |−}
E{|−} − Cov{ |−}

E{|−}
¸
 (23)

There are three terms on the right-and side of this equation. The first term has as its numerator

the inverse of the elasticity E{−(1 − )|−}E{|−} of capital  to taxes on capital .
This inverse elasticity factor is standard in the taxation literature. The higher the elasticity, the

lower the absolute value of the tax rate.

The second term Cov{ |−}E{|−} represents the direct effect of an increase in :
it relaxes the budget constraint of the government (18) in state  in proportion to the tax base 

of  The more  is correlated with  the higher the optimal 
, since revenues from capital

taxes are higher in states where the need for funds is higher.

The third term −Cov{ |−}E{|−} reflects the indirect effect of an increase in
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. In each state  ∈ S, increasing  affects investment  and hence the capital tax base 

and the revenues from labor taxation  + . How adverse these effects are depends on the

correlation between  and 
14 The higher the correlation, the lower is 

Equation (23) makes clear that the government uses capital taxes only to smooth its need for

funds across states–a stark difference with labor taxes. At the complete-markets Ramsey outcome,

(23) still holds but  is constant across states, so 
 = 0 This can be seen as a particular case of the

classical uniform taxation result of Atkinson and Stilgitz (1972) transposed to this Ramsey setup by

Zhu (1992) and by Chari, Christiano and Kehoe (1994) which holds more generally for preferences

that exhibit constant relative risk aversion (CRRA) and are separable between consumption and

leisure. As the following proposition shows, this zero-tax result carries through in a particular case.

Proposition 1 If  is Cobb—Douglas, then  = 0 for all  ≥ 1

Proof. Suppose that  (  ) = ()1− Then  = (− 1)()−11− = (− 1)

This implies that E{|−} = E{|−} and hence that

Cov{ |−}
E{|−} =

Cov{ |−}
E{|−} 

By (24) implies  = 0 Since (24) applies from  = 1 onward, it follows that  = 0 for all  ≥ 1
For the Cobb—Douglas benchmark, taxes on capital are zero starting in period 1 on. At  = 0

the hedging benefits from the direct effect of a marginal increase in  are exactly offset by the

marginal hedging cost from the indirect effect through the reduction in the capital tax base and the

reduction in labor tax revenues.

Remark 3 Depreciation is subsumed by the function  Proposition 1 applies to the case where net

output (net of depreciation) can be written as a Cobb—Douglas function of capital labor. Moreover,

it is assumed that depreciation is deductible. If depreciation is not deductible then it can be shown

that capital taxes  are equal to zero for all  ≥ 1 when gross output (gross of depreciation) can be
written as a Cobb—Douglas function of capital and labor.

Remark 4 Equation (23) and Proposition 1 would still hold under many different asset structures.

This includes more extreme forms of market incompleteness, when the government is not allowed

to issue debt and must balance its budget in every period, and also milder forms of market incom-

pleteness, when the government can trade more assets as in Section 6.

Apart from the Cobb—Douglas case, the sign of  is ambiguous: it may be optimal to tax or to

subsidize capital. The sign of  will in general depend on how productivity and preference shocks

interact with government expenditure shocks as well as on the particular functional form of the

production function. Sharp theoretical results are difficult to obtain, because nonconvexities in (16)

considerably complicate the task of establishing how  covaries with 

14The formula makes use of the CRS assumption to replace  by −
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When the production function is not Cobb—Douglas, optimal capital taxes are persistent. This

might come as a surprise in light of the Chamley—Judd result. This fact reflects the dependence of

the government’s hedging needs on the level of public debt, which has a random walk component.

When public debt is low, the government is free to raise debt when confronted with an adverse

shock; debt is then a good shock absorber. In contrast, when public debt is close to the debt limit,

the ability of the government to shift the tax burden to the future is limited. Hedging through

capital taxes is then more attractive.

However, it is important to emphasize that these deviations from Proposition 1 turn out to be

quantitatively small so that the baseline Cobb—Douglas case is a good benchmark. The numerical

simulations that I have performed show that when the model is calibrated to the U.S. economy,

taxes on capital are very small (less than 1%) when preferences are quasi-linear.15

4.3 Long-Run Behavior

The long-run behavior of Ramsey outcomes is similar to AMSS. I refer the reader to that paper for

an extensive discussion and only sketch the main properties in this section.

The difference between natural and ad hoc debt limits is marked. Under natural asset limits,

the multiplier 2 is zero throughout. The natural asset limit −
 is the amount of assets that

allows the government to withstand any sequence of shocks with zero taxes. It makes no sense for

the government to accumulate more assets than −
  If favorable shocks cause government assets

to grow beyond −
  then it is optimal for the government to pay back the difference to consumers

via a lump-sum rebate. In this case, (22) becomes

− = E{|−}+ 1−

and so the stochastic process {} is a nonnegative supermartingale. Then, by the supermartingale
convergence theorem (see Loève 1977),  converges almost surely to a nonnegative random variable.

As in AMSS, there are two possibilities as follows:

(i) If the Markov process {}≥0 has an absorbing state, then  can converge to a strictly

positive value;  converges when  enters the absorbing state. From then on, labor taxes are

constant and capital taxes are zero.

(ii) If the Markov process {}≥0 is ergodic, if ̃ is concave in ̃ and if that the policy functions

in (16) are continuous, then  converges almost surely to zero (see Lemma 2 below). In that case,

taxes  and 

 converge to their respective first-best levels 


 = 0 and 


 = 0 In the limit, the level

of government assets converges in state  to −
  the level of assets sufficient to finance the worst

possible sequence of shocks forever from interest earnings. A technical assumption is necessary

to rule out nongeneric cases where the planner is able to achieve the complete-markets Ramsey

outcome.

15In the interest of space, these simulations are not included in the paper.
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Assumption 1 For any ( ) such that   
  the complete-markets Ramsey outcome with initial

condition ( ) is not a competitive equilibrium with incomplete markets.

Lemma 2 Consider the case of natural debt and asset limits. Assume that Assumption 1 holds,

that the Markov process {}≥0 is ergodic, that the value function ̃ is continuously differentiable

and strictly concave in ̃ and that the policy functions in (16) are continuous Then  converges

to zero almost surely.

When the lower debt limit is more stringent than the natural one, convergence to the first-best

can be ruled out. In that case, the lower debt limit occasionally binds. The result is a nonnegative

multiplier 2 in (22), and {} ceases to be a supermartingale. This fundamentally alters the
limiting behavior of the model in the case where the Markov process {}≥0 has a unique invariant
distribution. In particular, rather than converging almost surely,  continues to fluctuate randomly.

Away from the debt limits,  behaves like a martingale, and capital taxes do not converge to zero

If, in addition, the range of the policy functions ̃0 can be restricted to a compact set, then one can

prove the existence of an invariant distribution for government debt.

5 The General Case

When preferences are not quasi-linear, the possibility of manipulating interest rates brings about

another motive for taxing capital.

5.1 Stochastic Properties of Ramsey Outcomes

I attach the multipliers  to (12),  to (13), 2 and 1 to the two constraints in (15), and  to

(14). The first-order condition for ̃0 is then

̃(
0
 ̃

0
  ) = − + 1 − 2

As in the case of quasi-linear preferences, away from debt limits the multiplier  represents the

marginal value of a reduction in debt, and it can be interpreted as the marginal need for funds of

the government or the marginal cost of taxation.

Using the envelope condition for ̃, one can derive a martingale equation similar to (22):

− =
E{|−}
E{|−} + 1− − 2−

Away from the debt limits, the multiplier  is a now a risk-adjusted martingale. As in the quasi-

linear case,  would be constant with complete-markets and not a mere martingale. More generally,

the stochastic properties of Ramsey outcomes are similar to those discussed in the quasi-linear

example; the analysis is only made more difficult by the need to keep track of two extra state

variables.
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5.2 Taxes on Capital

Capital taxes  can be decomposed as the sum of a “hedging” term, an “intertemporal” term, and

a “debt-limits” term:

 =  ( ̃  −) +  ( ̃  −) +  ( ̃  −) (24)

This decomposition is useful for three different but related reasons. First, each of these terms has

a distinct interpretation. Second, these terms are equal to zero under special configurations of

different sets of parameters.16 Third, these terms have different long-run stochastic properties (see

Proposition 3). The expressions given next for these three terms are valid from  = 1 onward.

The hedging term. The hedging term  ( ̃  −) is given by

E{−(1−)|−}
E{|−}

E{ 


|−}
E{|−} +

E{|−}
E{|−}

∙
Cov{ |−}
E{|−} − Cov{ |−}

E{|−}
¸


This term reflects the hedging motive discussed in the previous section and would be equal to zero

if markets were complete or if the Markov shock were in an absorbing state. Two differences with

(23) should be emphasized: first, the formula is adjusted for risk via ; second, the multiplier

 on the resource constraint (14) appears (in the quasi-linear case,  = 1). When risk aversion

is introduced, the stochastic process {}≥0 represents the intertemporal prices the government
would be willing to pay for additional resources at different dates. The process

©


ª
≥0

converts these prices in consumption-equivalent units. The presence of  is natural because taxes

on capital affect capital accumulation and hence available resources.

Proposition 2 If  is Cobb—Douglas, then  
 = 0 for  ≥ 1.

Proof. As noted in the proof of Proposition 1, in the Cobb—Douglas case we have  =

( − 1) This implies that E{|−} = {|−} and hence
that

Cov{ |−}
E{|−} =

Cov{ |−}
{|−} 

This shows, as in the proof of Proposition 1 that  = 0 for all  ≥ 1
As with quasi-linear preferences, the deviations from Proposition 2 when the production function

is not Cobb—Douglas turn out to be quantitatively small so that the baseline Cobb—Douglas case

provides a good benchmark. In my numerical simulations with log balanced growth preferences in

Section 7, the hedging term is always very small (below 1%). Note that the two remarks (Remarks 3

16The hedging term  is equal to zero for  ≥ 1 when the production function is Cobb—Douglas or when markets
are complete. The intertemporal   is equal to zero for  ≥ 2 if preferences are of the form (  ) = (1−−1)(1−
)+( ) and if markets are complete. The intertemporal term   is zero for  ≥ 1 under quasi-linear preferences.
The debt-limits term   away from the debt limits or if the debt limits do not depend on  (as is the case for natural

debt limits with quasi-linear preferences).
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and 4) that follow Proposition 1 for the quasi-linear case also apply to Proposition 2 for the general

case.

The intertemporal term. The intertemporal term  ( ̃  −) is given by

−
E

[1+(1−)]





−−



|−


E{|−}
E{ 


|−}

E{|−} +
E{|−}
E{|−}



Here − is the multiplier on the resource constraint in the previous period. The formula calls for

subsidizing capital between  and + 1 when resources are expected to be scarcer at + 1 than at

–that is, when +1+1 is expected to be larger on average than –especially if the net

marginal product of capital 1 + (1 − +1)+1 or marginal utility +1 is positively correlated

with +1+1 This term reflects the possibility of manipulating interest rates. A one-time tax

capital tax in the period after a bad shock that negatively affects the government budget lowers the

interest rate the government must pay on debt issued in that period, increases total tax revenues,

and helps smooth the burden of taxation.17 In order for consumers to accept this lower interest

rate, consumption must be temporarily increased (and investment correspondingly reduced) in the

period when the shock hits the economy and decreased afterwards. As a result, the multiplier

 tends to be higher in the period when the shock hits than in the following periods. The

opposite occurs after a good shock that positively affects the government budget (there tends to be

a one-time capital subsidy in the period after the shock).

It is important that these responses are anticipated. For example, a planned one-time increase in

capital taxes in the period after a bad shock increases consumption and decreases marginal utility

in the period of the shock. As a consequence, before the shock, interest rates increase and the

government is forced to lower capital taxes. The result is a stabilization of the government budget:

the debt burden is increased if the bad shock does not materialize, and decreased if it does. Of

course, this stabilization benefit has to be weighed against the distortionary costs imposed on the

economy.18 All in all, in contrast to labor taxes, capital taxes are used not so much to raise revenues

on average, but rather to help absorb the variations in present and future government surpluses.

When preferences are quasi-linear, this motive for capital taxation disappears:  = 1

for  ≥ 0 and the intertemporal term is equal to zero from  = 1 onward.19 In contrast, in the

17Here the increase in tax revenues incorporates the offsetting effects resulting from the negative impact on capital

accumulation: a lower capital tax base and lower revenues from labor taxation.
18This perturbation argument illustrates the trade-off faced by the government when considering a planned increase

in capital taxes following a bad shock. As always with such arguments, different choices are possible for the margins

along which one decides to perturb the allocation. For example, another way to illustrate the aforementioned trade-

off is as follows. The government now keeps the interest before the shock unaffected by holding constant expected

marginal utility in the period of the shock. It compensates the decrease in marginal utility resulting from the increase

in capital taxes after a bad shock with an increase in marginal utility brought about by a decrease in capital taxes

if the bad shock does not occur. As in the perturbation argument presented in the text, the result is an increased

debt burden if the bad shock does not materialize and a decreased debt burden if it does.
19Not only are interest rates fixed, but also a one-time tax capital tax after a bad shock does not increase total

tax revenues. Because the intertemporal elasticity of substitution is infinite, the offsetting effects resulting from the
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simulations presented in Section 7 with log balanced growth preferences, the behavior of capital

taxes is completely dominated by the intertemporal term. The spikes in capital taxes following

aggregate shocks turn out to be large.

This formula (24) for  is valid at the complete-markets Ramsey outcome; the only difference is

that  is constant. When state-contingent capital taxes 

 and one-period risk-free debt are used

to implement the complete-markets Ramsey outcome, equation (24) describes the within-period

average E{|−}E{|−} of capital taxes (i.e. the intertemporal wedge). Even then,
  is not equal to zero in general.

The well-known instance of a zero intertermporal wedge at the complete-markets Ramsey out-

come is when preferences are CRRA and separable between consumption and leisure: (  ) =

(1− − 1) (1− ) +( ) In this case,  = 1−  is constant along the optimal path from

 = 1 onward, and hence the intertemporal term is equal to zero from period 2 onward. In the

implementation of the complete-markets Ramsey outcome with state-contingent capital taxes and

no state-contingent debt, the government is able to completely hedge its budget against aggregate

shocks by setting a positive (negative) state-contingent capital tax  in state  when a bad (good)

shock to the government budget hits and imposing E{|−} = 0 so that the intertemporal
wedge is zero in every period. In the absence of state-contingent capital taxes and state-contingent

debt, this nondistortionary form of hedging is no longer available. The multiplier  is not

constant at the Ramsey outcome and   is not equal to zero: the government imposes distortions

on the economy by taxing (subsidizing) capital in the period after a bad (good) shock to its budget.

It is possible to give a theoretical characterization of   along the lines of Zhu (1992) The only

difference between the environment considered there and the one in this paper is that Zhu assumes

that the complete-markets Ramsey outcome is achievable. He proves that, under some regularity

conditions, if the Ramsey outcome converges to a stationary equilibrium then the intertemporal

wedge either (a) is equal to zero with probability one or (b) takes both positive and negative

values with positive probability. Proposition 3 shows that these insights generalize to the case of

incomplete markets for the intertemporal term  : at a stationary equilibrium,   cannot be always

positive or always negative. The assumptions that follow adapt Zhu’s regularity conditions to the

environment of my model.

Definition 4 The Ramsey outcome is a stationary equilibrium if the stochastic process  =

{ ̃  } is a stationary, ergodic, first-order Markov process on a compact set ∞–that is,

if there exists a probability measure ∞ on a compact set ∞ such that, for all  and for any

measurable set  Pr{ ∈ } = ∞{} and lim→∞Pr{+ ∈ |} = ∞{}

Assumption 2 The policy functions in (11), including the multipliers, are continuous. For every

closed set  ⊆ ∞ and   0 Pr{ ∈ |0 = } is continuous in 

Assumption 3 ∞{1 + (1− )  0} = 1.
negative impact on capital accumulation are strong enough to neutralize the direct effect of increased capital taxes

on tax revenues.
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Proposition 3 Suppose that the Ramsey outcome is a stationary equilibrium and that Assumptions

2 and 3 hold. Then either (a) ∞ { 
 = 0} = 1 or (b) ∞ { 

  0}  0 and ∞ { 
  0}  0

The debt-limits term. The debt-limits term  ( ̃  −) is equal to zero unless either the

maximum or minimum debt limit in the previous period is binding. When this occurs, it imparts

to capital taxes the role of relaxing debt limits. This term is given by

2−


−−
1−


−
E{|−}

E{ 


|−}
E{|−} +

E{|−}
E{|−}



For example, if the maximum debt limit is increasing in the economy’s capital stock, then it is

optimal to subsidize capital when the maximum limit is binding in order to allow for more more

debt. This term is zero if the imposed debt limits do not depend on capital, as is the case for the

natural debt limits if preferences are quasi-linear.20 In the general case however, natural debt limits

do depend on the capital stock and so the term   will be sometimes non-zero.

6 Capital Ownership

So far, I have restricted the government to trading only a risk-free bond with consumers. Prohibiting

the government from trading capital is without loss of generality under complete markets. But with

incomplete markets, this arbitrary restriction regains bite. Allowing the government to trade capital

enables the government to hedge its budget against aggregate shocks.

Remark 5 Trading capital can also be interpreted as allowing the government to tax capital excess

returns. This form of nonlinear capital taxation is nondistortionary and offers the same hedging

benefits as a position in capital combined with an opposite position in the risk-free bond.

6.1 The Optimal Structure of Government Liabilities

Along with capital, I introduce a set of additional assets. For every state − of the Markov process in

the previous period, these assets are indexed by  ∈ I−  The payoffs of these assets
©
−
   ∈ I−

ª
are exogenously specified, and I assume that they are in zero net supply. The government and

consumers can trade three kinds of assets: (i) a risk-free bond; (ii) capital, an asset whose return

in state  is 1 + (1 − ); and (iii) #I− assets as just described. Generically, if the number

of traded assets is less than the number of shocks, then markets are truly incomplete and the

complete-markets Ramsey outcome is not attainable. I will maintain this assumption throughout.

The planning problem is still recursive with the same state variables , ̃,  and −, where

̃ should now be interpreted as the value of the government’s net liabilities. Denote government

20Because natural debt limits are independent of capital with quasi-linear preferences, in Section 4 I considered

only the case of exogenous debt limits and so   = 0, which would not have been the case had I allowed debt limits

to depend on capital.
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holdings of asset  ∈ I− by  and the government holdings of capital by . The value function

satisfies a modified version of (11).

Bellman equation 20.

̃ ( ̃  −) = max
{0̃0}

E{ + ̃ (0 ̃
0
  )|−} (25)

subject to

E
©
[1 + (1− )]|−

ª
=  (26)

E
©


−
 |−

ª
=  (27)X

∈I−



µ
−
 − 

E {|−}
¶
 + 

µ
1 + (1− ) − 

E {|−}
¶


+̃


E {|−} +  ≤  +  +  + ̃0 ∀ ∈ S (28)

 +  + 0 ≤  +  ∀ ∈ S (29)

(0  ) ≤ ̃0 ≤(0  ) ∀ ∈ S (30)

It is convenient to label the risk-free rate as

− ≡ 

E {|−}  (31)

There are two differences between (11) and (25). First, there is now one Euler equation for each

additional asset (27). The second difference is in the budget constraint of the government (28),

where the total liability that the government must repay or refinance in state  is now

X
∈I−

(
−
 −−) + (1 +

¡
1− 

¢
 −−) +

̃


−

Hence the government faces a nontrivial portfolio decision: it must choose not only the level but

also the composition of its liabilities.

Assuming that an interior solution exists and that debt limits do not bind in state −, the

following set of first-order conditions characterize the optimal asset and liability structure of the

government:

E {−|−} = − (32)

E
©

£
1 +

¡
1− 

¢


¤
|−

ª
= −  (33)

E
©
−

 |−
ª
= −  (34)

These equations form the government counterpart of the standard CCAPM Euler equations (31),

(26), and (27). The difference is that the marginal utilities  and  are now replaced by 
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and −, incorporating the marginal need for funds of the government. The result is a simple

framework for characterizing the optimal portfolio of the government.21 These equations could also

be used to perform tests for the optimality of that portfolio’s composition.

Remark 6 The results on capital taxation still hold when more traded assets are introduced. In

particular, taxes are still given by (24). The only difference is in the hedging term where the elasticity

of capital to the tax rate must be replaced by: E{−( − )(1− )|−}E{|−}.

Turning to the initial conditions, the Ramsey problem now requires specifying initial portfolio

holdings −1 and {−1}∈−1 together with (−1 0 −1 

0). Given the solution to (25), the prob-

lem of the inital period can be treated exactly as explained in Section 3 for the case where the

government can only trade a short-term risk-free bond.

6.2 The Quasi-Linear Case

When preferences are quasi-linear, the planning problem is recursive with state variables ̃ and −.

The value function satisfies a modified version of (25) that is analogous to (16).

Bellman equation 30.22

̃ (̃ −) = max
{̃0}

E
½
 + 

µ
1− 1



¶
−  + ̃ (̃0 )|−

¾
(35)

subject to

E
©
[1 + (1− )]|−

ª
= 1 (36)X

∈I−
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 − 1



¶
+

µ
1 + (1− ) − 1



¶
+̃
1


+ ≤ ++

+̃
0
 ∀ ∈ S

(37)

 ≤ ̃0 ≤ ∀ ∈ S (38)

An extreme benchmark. The case where government expenditure shocks are the only dis-

turbance in the economy provides a useful benchmark. Consider the Ramsey problem with initial

21This framework can be used to shed some light on capital budgeting rules for the government. Imagine that the

government considers whether to undertake a small (marginal) public investment project which requires investing 

at some date  where the state is − The payoff of the investment project in period +1 is given by  in state is 

If the return  of the investment project is not spanned by assets traded by the government, then the standard

capital budgeting prescription of the CCAPM is altered. The risk-adjusted interest rate that should be used to

discount the cash flows of the project is

− − Cov{ ( + )|−}
E {( + )|−}



The government should therefore use a lower interest rate than predicted by the CCAPM–the CCAPM risk-

adjusted interest rate can be derived from the formula above by replacing + by 1–for investment projects

that are likely to pay out relatively well in times of stress for public finances.
22With quasi-linear preferences, the constraints in (27) become exogenous necessary conditions for an equilibrium–

E
n


−
 |−

o
= 1 for all  ∈ S–which can be dropped from the maximization.
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conditions given by (̃−1 0 −1 0) and (−1 {−1}∈−1 ). The initial period is special and

the problem can be solved in two steps. First, solve the continuation Ramsey problem–by solv-

ing the Bellman equation (35)–over the set of continuation allocations of competitive equilibria

{0  0  0−1}≥1 after all possible realizations of the state 0 in period 0 and value of net government
liabilities ̃0 (0), where 0 ≡ (̃0 (0)  0).23 Second, solve the problem of the initial period to find

{0 (0)  0 (0)}0∈S and {̃0 (0)}0∈S, given that the continuation utility is given by ̃ (̃0 (0)  0).

The supremum of the continuation Ramsey problem is actually not attained when markets are

incomplete; Proposition 4 below shows how to construct a sequence of competitive equilibrium

continuation allocations with welfare limiting to the supremum. These competitive equilibrium

continuation allocations can then be combined with initial period choices for {0 (0)  0 (0)}0∈S to
form competitive equilibrium allocations that approximate the supremum in the Ramsey problem.

Let {0  
0
  

0
−1}≥1 be the continuation allocation of the complete-markets Ramsey outcome:

it is obtained recursively from the policy functions in (35) when the matrix of returns of the

additional assets that can be traded by the government has full range. Let ̃ (̃0 (0)  0) be the

corresponding value function and let {̃0−1}≥1 be the corresponding process for the value of net
government liabilities. Clearly, welfare is higher under complete markets so that ̃ (̃0 (0)  0) ≤
̃ (̃0 (0)  0) The following proposition shows that this inequality actually holds as an equality.

Proposition 4 Assume that preferences are quasi-linear, that there are government expenditure

shocks but neither productivity shocks nor preference shocks, and that the government can trade cap-

ital in addition to short-term bonds. Then, there exists a set of competitive equilibrium continuation

allocations {0  
0
  

0
−1 }≥1 indexed by the government’s holding of capital  and the starting

point 0, such that (a) the corresponding process for the value of net government liabilities coin-

cides with that of the continuation of the complete-markets Ramsey outcome {̃ 0−1 }≥1 = {̃0−1}≥1
and (b) the limit of these continuation allocations when || → ∞ is the continuation allocation

{0  
0
  

0
−1}≥1 of the complete-markets Ramsey outcome starting at 0.

The intuition for this proposition is that in the absence of productivity and preference shocks, the

continuation of the complete-markets Ramsey outcome features constant labor. Hence the return

on capital is risk-free: capital and the risk-free bond are perfectly colinear assets. By commanding

small deviations from the constant-level labor supply of the complete-markets Ramsey outcome,

the government can align the variations of the return on capital with its need for funds. By taking

extreme positions in capital that are compensated by opposite positions on the risk-free bond,

the government can then leverage these variations and smooth perfectly its need for funds across

states. By doing this in every state and date, the government can thus perfectly approximate the

continuation of the complete-markets Ramsey outcome for  ≥ 1. This logic does not apply in

period 0: the initial portfolio is an input of the Ramsey problem.24

23These continuation allocations would coincide with the full solution to the Ramsey problem if one were to adopt

the timeless perspective introduced by Woodford (1999).
24Moreover, it is generically not the case that E−1
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1 +
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ª
= 1 + 0 at the complete-markets Ramsey

outcome: capital and the risk-free bond are not perfectly colinear assets in the initial period.
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A comparison with Bohn (1990). Equations (32), (33), and (34) take a very simple form.

To facilitate comparison with Bohn (1990), I express the corresponding conditions in an “excess

return” format:

E
©
[1 + (1− ) −]|−

ª
= 0 (39)

E
©
[−

 −]|−
ª
= 0 (40)

where  ≡ 1 is the risk-free rate. These equations can be compared to the results in Bohn

(1990). Building on Barro (1979) Bohn considers an environment with incomplete markets, no

capital, risk-neutral consumers, and where the government must finance an exogenous stream of

expenditures using distortionary taxes. Taxes –defined at the ratio of tax revenues to GDP–are

assumed to impose an ad hoc increasing convex deadweight cost (). Bohn derives the following

formula for the return of any traded asset −
 :

E
©
[−

 −]0( )|−
ª
= 0 (41)

Equation (40) can be seen as a microfounded version of (41). Some differences are worth noting.

In particular, it is not generally true in my model that  is a function of 

 and 


 or even of tax rev-

enues, as a perfect analogy with (41) would require. Suppose that, instead of assuming an exogenous

process for government expenditures, there exists a standard utility for government expenditures

( ) In this case, the first-order condition for government expenditures is ( )− 1 = ; 

is then a function of  and . Even if one were to assume that ( ) is independent of  this

discussion suggests that a nonlinear function of government expenditures ()− 1 is better suited
for approximating the marginal cost of public funds than is an increasing function of taxes or tax

revenues 0( ) as in (41). The logic is straightforward: the marginal distortionary cost of taxation,

which cannot in general be expressed as a simple function of tax rates or tax revenues, is equal to

the marginal benefit of government expenditures ()− 1 at a Ramsey outcome.
Discussion: Large government capital positions. The theoretical result of Proposition 4–

that the optimal capital position of the government is infinite–is extreme. However, the simulations

of Section 7 illustrate numerically that it generalizes in a milder form to reasonably calibrated

environments with productivity shocks and preferences that are not quasi-linear. There I show

that, in a business cycle calibration with government expenditure shocks and productivity shocks,

the optimal capital position of the government is large and negative (a short position of more than

100% is required in all simulations).

The optimality of extreme positions is not particular to my model. Indeed, it is reminiscent of

the findings of Angeletos (2002) and Buera and Nicolini (2004)  Both contributions analyze how

the government can use different maturities of risk-free debt to implement the complete-markets

Ramsey outcome. They find that, generically, if the number of maturities is larger than the number

of shocks, then the complete-markets Ramsey outcome can be implemented. However, very large

positions in the different maturities are typically required.
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Even though a substantial fraction of the welfare gains from optimally trading capital can be

reached with smaller positions, these large capital positions put strain on some features of the model.

Most importantly, my model takes a simplistic view of asset valuation. The return on capital in the

model is much less volatile than stock returns in the data.25 As a result, large leveraged positions

are required to achieve meaningful state contigencies in portfolio returns. If the government were

able to take a position in the stock market and if stock market returns were more volatile in my

model (but still negatively correlated with the need for funds of the government), then smaller short

stock market positions would be sufficient to deliver the same welfare gains.

It is also possible that the differences between the normative properties emphasized here and

actual government behavior are especially severe along the dimension of capital ownership. The

assumption of a benevolent government with full commitment appears strong given these large

capital positions. In practice, political economy considerations might blur the picture and reduce

the appeal of large trading positions by the government.

At the very least, the results in this section point to a cost of partial government ownership

of the capital stock that is overlooked. In addition to the often mentioned costs stemming from

poor management of the corresponding assets, positive capital ownership by the government is bad

fiscal hedging policy. In my simulations, the optimal capital position of the government is large and

negative, so it follows that a zero government position in capital is better than a positive one.26

7 Numerical Simulations

7.1 Numerical method and parameter values

Calibration. I consider the same parameters and functional forms as Chari, Christiano, and Kehoe

(1994). Preferences are given by ( ) = (1− ) log() +  log(1− ) Technology is described by a

production function  (   ) = (exp(+ ̃))1− −  which incorporates two kinds of labor-

augmenting technological change: the variable  captures deterministic growth; and the variable ̃

is a zero-mean technological shock that follows a two-state Markov chain with mean ̄ standard

deviation  and autocorrelation . Government expenditures are given by  =  exp( + ̃)

where  is a constant and ̃ follows a two-state Markov chain with mean ̄, standard deviation 

and autocorrelation . In my baseline calibration, a period corresponds to a year and  = 075

 = 098  = 034  = 0016  = 007  = 089  = 007  = 081 and  = 004. I impose

fixed debt limits = −02

and = 


 where 


is the mean across states of the

first-best level of GDP that would occur if the state were absorbing. Notice that in the absence of

shocks, the economy has a balanced growth path along which consumption, capital and government

25This is partly due to the absence of capital gains in my setup (the relative price of installed capital is always

equal to one in the absence of adjustment costs). Also, I have only analyzed standard balanced growth preferences

with reasonable degrees of risk aversion. Incorporating adjustment costs, habits or long-run risk elements in the

model is beyond the scope of this paper.
26This is difficult to prove theoretically because the constraint set in (25) is not concave, but I have checked

numerically that it holds in my simulations.
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spending grow at rate  and labor is constant. All the variables reported here are de-trended by

removing the corresponding deterministic trend.

Period length. I analyze two series of simulations: one where the period length is one year,

and another where the period length is five years. I adjust  and  so that they are they keep the

same values per unit of time. I adjust the stochastic processes so that the size and the persistence

(per unit of time) of the shocks are the same in the two simulations: in the five-year simulation,

the values of the states of the two-state Markov chains are left unchanged and the probabilities

in the transition matrix are adjusted so that the persistence of the shocks (per unit of time) is

unchanged.27

In this setup, there are two fundamental reasons why the period length is more than a mere

accounting convention. First, it indexes the sluggishness of capital taxes: the time during which

capital taxes are held constant as well as the lag after which they can react to information. This

matters because capital taxes have a spike after a transition and then revert to a small number;

the period length puts a lower bound on the duration of the spike (and of the corresponding

distortion imposed on the economy). Second it represents the maturity of government debt. To

see why this is important, consider the following thought experiment: an economy with some

outstanding government debt coupons experiences a Markov transition to an absorbing state; the

transition negatively affects the government budget. As explained in Section 5, the positive spike

in capital taxes that follows the transition helps reduce the debt burden by generating tax revenues

and by temporarily lowering interest rates. The shorter the maturity of debt, the stronger the

buffering effect from the latter channel (temporarily low interest rates). Indeed, given a path of

labor tax revenues, a temporary reduction in interest rates raises both the net present value of

coupon payments and the net present value of labor tax revenues. The latter increases more than

the former, helping to buffer the impact of the shock, when coupon payments are front-loaded (and

labor tax revenues are back-loaded).

Ideally, one would want to have the ability to vary the maturity of debt and the level of inertia in

capital taxes independently. One would also like to maintain the possibility of making predictions

for the yearly properties of the allocation in the five-year calibration. Unfortunately, this would

require the introduction of several additional state variables, at the cost of numerical tractability.28

Numerical method. I solve Bellman equations (11) and (25). The state space is restricted

to be rectangular and bounded. I check numerically that enlarging the rectangle doesn’t alter the

results. I approximate the value function with cubic splines and use a value iteration algorithm.

27Buera and Nicolini (2004) also investigate the role of the period length with a similar adjustment. See the first

simulations in Section 3 of their paper and their Table 1.
28A case which remains tractable is that of a perpetuitiy. However, a perpetuitiy is unappealing because the typical

maturity of U.S. public debt is much shorter (around five years).
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7.2 Results

Because I use log balanced growth preferences, the intertemporal wedge would be exactly zero

if state-contingent debt or state-contingent capital taxes were available; all the deviations of the

intertemporal wedge from zero can therefore be attributed to the unavailability of such instruments.

Moreover, in all the simulations below, the hedging term is always smaller than 1% so that capital

taxes are completely dominated by the intertemporal term.29

Three simulation segments. In Figure 2, I plot a segment of a simulation of the model with

a period length of one year and with government expenditure shocks only. I refer to the low (high)

government expenditures state as the good (bad) state corresponding to  = 1 ( = 2). There are

two transitions: from the good state to the bad state and then back to the good state. This delimits

three phases.

I begin by focusing on the first transition (from the good state to the bad state). In the period

following the transition, capital taxes have a large spike: they jump from −9% to 150%, then fall to
9%, and stay almost constant at that level until the next transition. The interest rate is about 21%

before the transition. It drops to −1% in the period following the transition, then goes back to 19%
and stays almost constant at that level. A consequence is that marginal utility of consumption is

considerably lower in the period of the transition than in the following periods. Because this effect is

anticipated, before the transition, the interest rate is lower and the government is forced to decrease

capital taxes. As explained in Section 5, the spike in capital taxes helps absorb the bad shock by

increasing tax revenues and decreasing the interest rate on debt.

The labor tax is lowered in the period of the transition from 289% to 273%. This counteracts

the negative wealth effect on labor supply from the lower marginal utility of consumption in that

period. In the periods after the transition, labor taxes are then slightly higher than before the

transition–a manifestation of their martingale component. The result is a rather smooth path for

labor starting at the transition. Observe also that all along the sample path, the variations in labor

taxes are extremely small in comparison to the variations in capital taxes.

Debt increases in the period of the transition because of the drop in tax revenues and the increase

in government expenditures, but decreases sharply in the period following the transition as a result

of the drop in interest rates and the increase in tax revenues brought about by the spike in capital

taxes.

Turning now to the second transition (from the bad state to the good state), observe that the

effects are almost symmetric. In particular, there is a large negative spike in capital taxes in the

period following the transition.

During a phase when government expenditures are high, debt and labor taxes gradually increase:

in every period, the absence of a transition to a low government expenditures state is bad news for

the government budget. The opposite occurs during a phase when government expenditures are

low. This is another illustration of the martingale component in labor taxes.

29With respect to Proposition 2 the hedging term does not always equal to zero because I have assumed a

production function such that output gross of depreciation is Cobb—Douglas and depreciation is deductible.

27



Figure 3 displays the result of a similar experiment with productivity shocks only. I now refer

to the high (low) productivity state as the good (bad) state. Similar effects are at work, and in

particular, capital taxes have a large positive (negative) spike following a transition from the good

state to the bad state.

All in all, this discussion highlights the very different roles of labor and capital taxes: in contrast

to labor taxes, capital taxes are not used to raise revenues on average but rather to help buffer the

impact of shocks on the government budget.

In Figure 4, I return to a model with government expenditure shocks only, and explore the

consequences of increasing the period length to five years. The most notable feature is the large

mitigation of the spikes in capital taxes that occur just after the transitions–by a factor of 65

from 150% in the one-year simulation to 23% in the five-year simulation. Capital taxes are also

smaller in absolute value in the phases between two transitions. Although I do not display the

corresponding figure, a similar mitigation of capital taxes occurs when the period length is increased

in the model with productivity shocks only. When the period length is increased, two effects

contribute prominently to the mitigation of the spikes in capital taxes. First, a smaller positive

(negative) spike in capital taxes is required to achieve a given reduction (increase) in the debt

burden following a shock that negatively (positively) affects the government budget, because this

tax rate is imposed for a longer time. Second, the distortionary costs associated with spikes in

capital taxes increase because consumption is distorted for a longer time. A powerful illustration

of this logic is the continuous-time limit where the period length is taken to zero: the government

can attain the welfare of the complete-markets Ramsey outcome by combining (a) infinite capital

taxes (subsidies) during an infinitesimal period of time following a transition from a good (bad)

state to a bad (good) state and (b) bounded capital subsidies (taxes) in between transitions when

the economy is in the good (bad) state.30

The full simulation. Table 1 summarizes the statistical properties of capital and labor taxes in

the calibrated economy when the government cannot trade capital. Figure 1 displays the frequency

distributions of labor and capital taxes at the stationary equilibrium of the economy.

Both in the one-year and in the five-year simulations, labor taxes are smooth–their standard

deviation is less than 2%–persistent–their coefficient of autocorrelation is above 085 per period–

and average out to about 28%. In contrast, capital taxes are volatile–their standard deviation is

54% in the one-year calibration and 11% in the five-year calibration–hardly display any persistence,

and average out to a small number (below 5% in absolute value).31 The standard deviation of capital

taxes decreases sharply with the period length. The intuition for these results is transparent from

the discussion above. The welfare gains from completing markets are small: 009% of lifetime

consumption. This confirms the findings of AMSS for business cycle calibrations.32

30When the period length is taken to zero, the spikes in marginal utility, which occur during an infinitesimal period

of time following Markov transitions, remain bounded. This explains why capital taxes and subsidies in between

transitions remain bounded.
31The absence of persistence can be seen almost algebraically: capital taxes are governed by a difference term

 − − which tends to remove the unit root component in 
32The magnitude of the welfare gains is well understood from AMSS. It depends on the size and persistence of the
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Allowing the government to trade capital. For an economy with only two government

expenditure shocks and a one-year period length, the government can replicate the complete-markets

Ramsey outcome with a capital ownership of about 2300% of 

33 This position drops to 680% of



when the period length is extended to five years.34 For an economy with only two productivity

shocks and a one-year period length, the government can replicate the complete-markets Ramsey

outcome with a capital ownership of about −400% of 

 This position moves to −157% of 



when the period length is extended to five years. With both government expenditure shocks and

productivity shocks, the optimal position is almost identical to the one that prevails with only

productivity shocks. This is because, in this calibration, productivity shocks are the dominant

source of variation in the government need for funds.

That a short position is required is easily understood, since the marginal product of capital

correlates positively with productivity shocks and hence with government revenues. The magnitude

of the position follows because capital is strongly colinear with risk-free debt. A large leveraged

position–short in capital and long in the risk-free bond–is required to provide the government

with a state-contingent source of revenues that matches the desired variations in present and future

government surpluses. An intuition for the reduction in the optimal position as the period length is

increased is as follows. In the anticipation of a shock, the government seeks to transfer wealth from

bad states to good states in the next period. As the length of the period is increased, the impact of

the shock on present and future government surpluses is unchanged and so the size of the desired

wealth transfers across states is the same. However, a unit position, long in the bond and short

in capital, implies earning a longer-term interest rate for a longer time and paying the marginal

product of capital for a longer time, which magnifies the differences in total realized returns across

states over a period. A smaller position is therefore required to achieve a given transfer of wealth

across states.

8 Conclusion

Refining the normative prescriptions of this paper would require developing a more realistic model

for investment–incorporating adjustment costs and time to build–and asset valuation. It would

also be interesting to move away from the representative-agent framework used here.35 Unobservable

agent heterogeneity together with the government’s concern for redistribution would provide an

endogenous reason for the use of distortionary taxes. Finally, the large capital positions called

shocks, the curvature of the utility function, and the debt limits.
33The optimal positions reported here are the average optimal positions in the stationary equilibrium. They turn

out to be quite stable.
34Buera and Nicolini (2004) find similar effects of the period length on the size of the positions in a portfolio of

bonds with different maturities.
35Shin (2006) makes an interesting step in that direction. He studies the asymptotic behavior of government

debt in a Ramsey model with heterogenous agents and no capital. Shin explores the balancing act between the tax

smoothing—induced desire to build a buffer stock of assets for the government and the precautionary savings motive

of the agents.
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for by the model put strain on the assumption of a benevolent government with full commitment.

In this light, incorporating relevant political economy constraints into Ramsey models of optimal

taxation appears as a promising research avenue. I leave this for future work.

9 Appendix

Proof of Lemma 1 The consumer’s problem is a convex program. The first-order conditions (6),

(7), and (8) as well as (5) holding with equality are necessary and sufficient for an optimum in the

consumer’s problem. It is straightforward to see that, if (1) holds with equality, then the fact that

(3) holds with equality implies that (5) holds with equality–a version of Walras’ law. ¥
Proof of Lemma 2 It is clear that e is decreasing in e Because e is differentiable, this is

equivalent to e ≤ 0 Because e = − + 1 it follows that  − 1 ≥ 0
Under natural debt limits, (22) becomes − = E{|−}+1− which can be rewritten as −−

1− = E{ − 1|−}+ E{1|−}. This proves that {e}≥1 is a nonnegative supermartingale.
Therefore, by the supermartingale convergence theorem (see Loève 1977), e converges almost
surely to a finite nonnegative random variable e∞. Let S be the unique ergodic set of {}≥0
Consider, for every  ∈ S the random sets  = {  = } Let (−1) = −1 and, for all  ≥ 0
define the sequence of random numbers () = inf{  (−1)  = } Because e is continuously
differentiable and strictly concave, this implies that there are finite random variable e∞ such that

{e()}≥0 converges to e∞ for every  ∈ S Because policy functions in (16) are continuous, this
implies that every point {e}∈S in the support of {e∞}∈S is such that, for every states  and
− in the unique ergodic set of {}≥0, we have e0(e−  −) = e and e(e ) = e−(e−  −)
Hence by starting at such a point (e ) the planner can implement the complete-markets Ramsey
outcome. By Assumption 1, this is possible only if e = −

 for all  ¥
Proof of Proposition 3 The proof closely follows Zhu (1992); more details can be found there.

First note that 2  0 if and only if

E−1
n
[1 + (1− )]




o
E−1 {[1 + (1− )]} 

−1
−1



2  0 if and only if

E−1
n
[1 + (1− )]




o
E−1 {[1 + (1− )]} 

−1
−1



and 2 = 0 if and only if

E−1
n
[1 + (1− )]




o
E−1 {[1 + (1− )]} =

−1
−1



Use  to denote
£
1 +

¡
1− 

¢


¤
 and use  to denote  Since the policy functions

in (11) are continuous, it follows that  and  are continuous functions () and () of  =
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{ ̃  } Call (0 ) the transition function. Let Υ be the operator mapping the space of

continuous functions of  into itself defined by:

Υ()() ≡
R
(0)(0)(0 )R

(0)(0 )


Observe that 2()  0 if and only if Υ()()  () 2()  0 if and only if Υ()()  () and

2() = 0 if and only if Υ()() = () Thus the sign of 2 is entirely determined by the sign of

Υ()− 

Suppose ∞{Υ()() ≤ ()} = 1 Let  ≡ max{ ∞{() ≥ } = 1} Define  = {

() ≥ Υ()},  = { Pr{() ≥ |0 = } = 1}  =
∞\
=0

 and  =

∞∞\
=0=0

 Then , ,

 and  are closed and also ∞{} = ∞{} = 1 Hence ∩ is closed and ∞{∩} = 1 By
definition of  there exists  ∈ ∩ such that () =  This implies Pr{() = |0 = } = 1 By
the ergodicity of  

∞{() = } = lim→∞ Pr{() = |0 = } = 1 Hence ∞{() = } = 1
Similarly ∞{Υ()() ≥ ()} = 1 implies that ∞{() = } = 1 where  ≡ inf{ ∞{() ≤
} = 1} ¥
Proof of Proposition 4 For all  ≥ 0 let 0 = (0 1  ) where 0 is fixed throughout

the proof.The continuation allocation {0  
0
  

0
−1}≥1 has the following properties: 0 (0) =


0
0 (

00) for all  ≥ 1 0 ≥ 1 and (0  00); ̃0 (0) = ̃
0
 (

00), and 
0
 (0) = 

0
0 (

00)

for all  ≥ 0 0 ≥ 0 and (0 00). Moreover, capital taxes are zero in every period  ≥ 1. Define


0
 (0) ≡ e0−1 (

−10)  +  ()−e0 (0) for all  ≥ 1 and 0.

Let ( ) ≡ +  denote labor tax revenues. In every period, set capital taxes to zero, the

government holdings of capital to , and the government holdings of the additional assets  to

zero. For every  ≥ 0 and 0 solve the following system in 0 (0) and {0+1 (
0 +1)}+1∈S:X

+1∈S
(

 0


¡
0

¢
 
0
+1

¡
0  +1

¢
) (+1 ) =

X
+1∈S


0
+1

¡
0 +1

¢
 (+1 )

and for all +1 ∈ S,

1 + (
0


¡
0

¢
 
 0
+1

¡
0 +1

¢
)− 1


+

(
0
 (0)  

 0
+1 (

0  +1))


=


0
+1 (

0 +1)




Observe that these equations imply
P

+1∈S 
h
1 + (

0
 (0)  

0
+1 (

0  +1))
i
 (+1 ) =

1. For all  ≥ 1 and 0 , define 
0
 (0) = 

0
−1 (

−10) +  (
0
−1 (

−10)  0 (0)) −


 (

0) −  (). The continuation allocation {0  
0
  

0
 }≥0 is a competitive equilib-

rium continuation allocation. The corresponding process for the value of net government lia-

bilities satisfies {̃0−1 }≥1 = {̃0−1}≥1. For all  ≥ 1 and 0 , the limit when || → ∞ of

(
 0
 (0)  

0
 (0)  

 0
−1 (

−10)) is (0 (0)  
0
 (0)  

0
−1 (

0)).¥
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10 Figures and Tables

Table 1: Summary statistics

One-year period length Five-year period length

Mean of labor taxes 284% 276%

Standard deviation of labor taxes 18% 19%

Per-period autocorrelation of labor taxes 085 096

Mean of capital taxes 37% 06%

Standard deviation of capital taxes 538% 111%

Per-period autocorrelation of capital taxes 004 011

Figure 1: Frequency distributions of capital and labor taxes in the model with a period length of one year (top

pannel) and five years (bottom pannel). The distributions were generated from a simulation with 10000 periods.
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Figure 2: Simulated observations from the model with government expenditure shocks only and a one-year period

length. The high (low) government expenditure state is  = 2 ( = 1). The x-axis indexes time (in periods). The

number of periods during two transitions is set at its average value. The vertical lines indicate the periods when a

transition occurs.

Figure 3: Simulated observations from the model with productivity shocks only and a one year period length. The

low (high) productivity state is  = 2 ( = 1). The x-axis indexes time (in periods). The number of periods during

two transitions is set at its average value. The vertical lines indicate the periods when a transition occurs.
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Figure 4: Simulated observations from the model with government expenditure shocks only and a five-year period

length. The high (low) government expenditure state is  = 2 ( = 1). The x-axis indexes time (in periods). The

number of periods during two transitions is set at its average value. The vertical lines indicate the periods when a

transition occurs.
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