The Microeconomic Foundations of Aggregate Production Functions

David Bagaee and Emmanuel Farhi

UCLA Harvard

Harvard, 2019

Aggregate Production Functions

- Aggregate production functions pervasive in modern macro.
- Reduced-form macro attributes treated as structural objects: marginal products, factor demands, elasticities of substitution, bias of technical change.
- Microfoundations needed:
 - reduced-form macro attributes from structural micro parameters (easier to estimate, more stable),
 - · macro impact of micro phenomena,
 - micro consequences of aggregate phenomena.
- More and more pressing given newly available data sets with high levels of granularity and sources of variation.
- No satisfactory general theory to date.

Aggregate Consumption Functions

- Contrast with tremendous progress on microfoundations of aggregate consumption functions in last 20 years:
 - heterogeneous agents models,
 - nonlinear aggregation over and dynamics of distributions.
- Different theory needed for aggregate production functions:
 - multiple sectors and intermediate goods (gross vs. value added),
 - nonlinear networks and input-output linkages.

Goal

- General microfoundations for aggregate production functions.
- Arbitrary number of sectors and factors.
- Arbitrary network or input-output linkages.
- Arbitrary pattern of micro-elasticities.
- Arbitrary CRS and DRS (and some IRS).
- Arbitrary set of frictions or distortions.
- Further generalizations (see Conclusion).

Research Agenda

- Baqaee-Farhi (17): "The Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem".
- Baqaee-Farhi (18a): "Productivity and Misallocation in General Equilibrium".
- Baqaee-Farhi (18b): "Macroeconomics with Heterogenous Agents and Input Output Linkages".
- Baqaee-Farhi (19): "Networks, Barriers, and Trade".

...

Related Literature

- Literature related to Cambridge-Cambridge controversy (see references in Cohen-Harcourt 03).
- Literature deriving Cobb-Douglas aggregate production functions from Pareto distribution of techniques at micro or aggregate level: Houthakker (55), Jones (05), Boehm-Oberfield (18)...
- Literature on nested CES models: Kremer (93), Jones (11,13),
 Oberfield-Raval (14), Rognlie (15)...
- Literature on production networks: Long-Plosser (83), Jovanovic (87), Drulauf (93), Scheninkman-Woodford (94), Horvath (98), Dupor (99), Carvalho (10), Gabaix (11), Forrester et al. (11), Acemoglu et al. (12), Di Giovanni et al. (14), Atalay (16), Bigio-Lao (16), Baqaee (16a,b), Grassi (17), Carvalho-Grassi (17), Baqaee-Farhi (17a,17b), ...

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions
Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium Macro Impact of Oil Shocks Baumol's Cost Disease and Long-Run Growth

Cambridge-Cambridge Controversy

[T]he production function has been a powerful instrument of miseducation. The student of economic theory is taught to write Y = F(K, L) where L is a quantity of labour, K a quantity of capital and Y a rate of output of commodities. He is instructed to [...] measure L in man-hours of labour: he is told something about the index-number problem involved in choosing a unit of output; and then he is hurried on [...], in the hope that he will forget to ask in what units K is measured. Before ever he does ask, he has become a professor, and so sloppy habits of thought are handed on from one generation to the next.

- Joan Robinson (1953)
- Solow, Samuelson, Hahn, Bliss vs. Robinson, Sraffa, Pasinetti,...
- Many aspects: theoretical, methodological, ideological.

Samuelson's Three Key Parables of Capital Theory

- Aggregate production function with two factors Y = F(K, L).
- Samuelson's three key "parables" of neoclassical writings:
 - rate of interest determined by technical property $r = F_K$,
 - 2 diminishing returns to capital $(K/Y)(\underline{r})$,
 - **3** distribution of income via relative scarcity of factors (r/w)(K/L).
- Dependent on interpretation of capital as physical quantity, breaks down with heterogeneous capital goods (cannot be aggregated in physical units, must be aggregated in valuations units).

Re-switching and Capital-Reversing

- Samuelson (1966): re-switching / capital-reversing example.
- Use "Austrian" circulating-capital model (Hayek, Böhm-Bawerk).
- Two techniques to produce at t:
 - Invest two units of labor in t-2, combine with six units at t,
 - 2 Invest seven units of labor in t-1.
- (2) dominates with high r since delays expensive.
- (2) dominates with low r: lower total labor requirement (7 vs. 8).
- (1) dominates with intermediate r.
- Reswitching leads to violation of parables (capital reversing).

Re-switching and Capital-Reversing

Aftermath

- "Pathology illuminates healthy physiology [...] If this causes
 headaches for those nostalgic for the old time parables of
 neoclassical writing, we must remind ourselves that scholars are
 not born to live an easy existence."
 - Samuelson (1966).
- Solow's "High-brow", "middle-brow", "low-brow" answers.
- "Solow, in the interest of empirical measurements and approximation, has been willing occasionally to drop his rigorous insistence upon a complex-heterogeneous capital model; instead, by heroic abstraction, has [...] estimated a single production function for society and has had a tremendous influence [...]. One might almost say that there are two Solows: the orthodox priest of the MIT school and the busman on a holiday who operates brilliantly and without inhibitions in the rough-and-ready realm of empirical heuristics." Samuelson (1962)

Aftermath

- Aggregate production functions not well founded in theory.
- Disagreement on curiosity vs. deep problem.
- Keeps being used for empirics.
- After short detour of "general equilibrium" approach (Bliss, Hahn), RBC revolution leads to quasi-universal adoption of aggregate production functions and neglect of controversies.
- Focus of macro profession shifts from "heterogeneity and aggregation" to "dynamics and expectations".

Our Starting Point

- Pick up quest abandoned after Cambridge-Cambridge controversy.
- Move away from question of factor aggregation by allowing for many disaggregated factors.
- General characterization of aggregate production functions.

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions
Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium Macro Impact of Oil Shocks Baumol's Cost Disease and Long-Run Growth

General Setup

- General nested CES economy.
- Arbitrary number of sectors, factors, and input-output linkages.
- Arbitrary pattern of elasticities.
- Assume CRS (can handle DRS and some IRS with fixed factors).
- Can handle joint production.
- Shocks to sectoral productivity and factor supply or prices.

Networks and Input-Output

- "Relabel" each CES nest to be a new sector with elasticity ε_i .
- Input-output matrix

$$\Omega_{ij} = \frac{p_j x_{ij}}{p_i y_i}.$$

Leontief inverse

$$\Psi = (I - \Omega)^{-1} = \sum_{n=0}^{\infty} \Omega^n.$$

- Ω_{ij} and Ψ_{ij} direct and total reliance of i on j.
- Domar weights $\lambda_i = b' \Psi_{(i)}$. Write Λ_f instead of λ_f for factor.

Aggregate Production Function

Aggregate production function

$$Y(A_1,\ldots,A_n,L_1,\ldots,L_Q)$$

defined from maximization planning problem of choosing allocation of factors, intermediate and final goods, to maximize quantity of output bundle, subject to resource constraints.

- Characterization:
 - first order: marginal products of factors, aggregate TFP,
 - second order: elasticities of substitution, bias of technical change, nonlinearities.
- Most (but not only) useful for economies with inelastic factors.

Aggregate Cost Function

Aggregate cost function

$$C(A_1,\ldots,A_n,r_1,\ldots,r_Q)$$

defined from minimization planning problem of choosing allocation of factors, intermediate and final goods, to minimize cost of a unit of output bundle, subject to resource constraints.

- Characterization:
 - first order: factor demands, aggregate TFP,
 - second order: elasticities of substitution, bias of technical change, nonlinearities.
- Most (but not only) useful for economies with elastic factors.

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions
Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium Macro Impact of Oil Shocks Baumol's Cost Disease and Long-Run Growth

First Order: Aggregate Production and Cost Functions

Hulten (1978)'s theorem (macro envelope condition):

$$\frac{d \log Y}{d \log L_f} = \Lambda_f \quad , \frac{d \log Y}{d \log A_i} = \lambda_i,$$

$$\frac{d \log C}{d \log r_f} = \Lambda_f \quad , \frac{d \log C}{d \log A_i} = -\lambda_i.$$

- Marginal products, factor demands, macro impact of micro shocks.
- Shares as sufficient statistics.
- Irrelevance of: network, returns to scale, micro-elasticities,...

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions
Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium Macro Impact of Oil Shocks Baumol's Cost Disease and Long-Run Growth

Second Order: Roadmap

- Propagation equations for shocks to factors or sectors.
- Apply to get Hessians of aggregate production and cost functions.
- Macro impact of micro shocks.
- Macro elasticities of substitution.
- Maco bias of technical change.
- Start with aggregate cost function (easier).

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions

Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium Macro Impact of Oil Shocks Baumol's Cost Disease and Long-Run Growth

Propagation Equations with Elastic Factors

$$\begin{split} \mathrm{d}\Lambda_f &= \sum_j (\theta_j - 1) \lambda_j Cov_{\Omega^{(j)}} (\sum_k \Psi_{(k)} \, \mathrm{d}\log A_k - \sum_g \Psi_{(g)} \, \mathrm{d}\log r_g, \Psi_{(f)}), \\ \mathrm{d}\lambda_i &= \sum_i (\theta_j - 1) \lambda_j Cov_{\Omega^{(j)}} (\sum_k \Psi_{(k)} \, \mathrm{d}\log A_k - \sum_g \Psi_{(g)} \, \mathrm{d}\log r_g, \Psi_{(i)}). \end{split}$$

Shocks propagate downstream.

Explaining Covariance Operator: Ex. Shock $d \log r_g > 0$

$$\mathrm{d}\Lambda_f = -\sum_j (\theta_j - 1)\lambda_j \underbrace{Cov_{\Omega^{(j)}}(\Psi_{(g)} \, \mathrm{d}\log r_g, \Psi_{(f)})}_{}.$$

- Ψ_{ig} : exposure of i to g.
- Ψ_{if} : exposure of i to f.

Hessian of Aggregate Cost Function

Characterization of Hessian of aggregate cost function:

$$\frac{\mathrm{d}^2 \log C}{\mathrm{d} \log r_f \, \mathrm{d} \log r_g} = \frac{\mathrm{d} \Lambda_f}{\mathrm{d} \log r_g},$$

$$\frac{\mathrm{d}^2 \log C}{\mathrm{d} \log A_i \, \mathrm{d} \log A_j} = -\frac{\mathrm{d} \lambda_i}{\mathrm{d} \log A_j},$$

$$\frac{\mathrm{d}^2 \log C}{\mathrm{d} \log r_f \, \mathrm{d} \log A_i} = \frac{\mathrm{d} \Lambda_f}{\mathrm{d} \log A_i}.$$

- Summarizes same information as propagation equations.
- Sufficient statistics: network, returns to scale, micro-elasticities.

Macro Impact of Micro Shocks

First- and second-order macro impact of micro shocks:

$$\frac{\partial \log C}{\partial \log A_i} = -\lambda_i,$$

and

$$\frac{\mathrm{d}^2 \log C}{\mathrm{d} \log A_i \mathrm{d} \log A_j} = -\frac{\mathrm{d} \lambda_i}{\mathrm{d} \log A_j}.$$

- Nonlinearities.
- Comovement.
- Macro moments: standard deviation, skewness, kurtosis.

"Universal" Energy Example

- Two factors: electricity and labor.
- Downstream sectors use electricity and labor with elasticity $\varepsilon <$ 1.
- ullet Final demand uses downstreams sectors with elasticity $\sigma\gg arepsilon$

$$\frac{\mathrm{d}^2 \log C}{\mathrm{d} \log r_E^2} = -\frac{\mathrm{d} \Lambda_E}{\mathrm{d} \log r_E} = -\Lambda_E \left[(\varepsilon - 1) (1 - \frac{N}{M} \Lambda_E) + (\sigma - 1) \Lambda_E (\frac{N}{M} - 1) \right].$$

Macro Elasticities of Substitution

Definition of macro Morishima Elasticity of Substitution (MES):

$$\sigma_{fg}^C = -\frac{\mathrm{d}\log(L_f/L_g)}{\mathrm{d}\log(r_f/r_g)},$$

where $L_f = dC/dr_f$.

• More convenient to compute as:

$$1 - \sigma_{fg}^C = \frac{\mathrm{d}\log(\Lambda_f/\Lambda_g)}{\mathrm{d}\log(r_f/r_g)}.$$

Advantage of MES vs. Other Notions

- Measure of curvature of isoquants or ease of substitution.
- Sufficient statistic for effect on relative factor shares of changes in relative factor prices.
- Log derivative of quantity ratio w.r.t. price ratio.
- "Works" for CES: constant MES if and only if CES.

Characterization of Macro Elasticities of Substitution

$$\sigma_{\mathit{fg}}^{\mathit{C}} = \sum_{\mathit{j}} \theta_{\mathit{j}} \lambda_{\mathit{j}} \mathit{Cov}_{\Omega^{(\mathit{j})}} (\Psi_{(g)}, \Psi_{(g)} / \Lambda_{\mathit{g}} - \Psi_{(\mathit{f})} / \Lambda_{\mathit{f}}),$$

where

$$\sum_{j} \lambda_{j} Cov_{\Omega^{(j)}} (\Psi_{(g)}, \Psi_{(g)}/\Lambda_{g} - \Psi_{(f)}/\Lambda_{f}) = 1.$$

- General properties:
 - non-symmetry $\sigma_{ta}^{\it C} \neq \sigma_{at}^{\it C}$ in general,
 - σ_{fq}^{C} weighted average of all θ_{j} , weights functions of network,
 - $\sigma_{fg}^{C} = \theta$ if uniform micro-elasticities $\theta_{j} = \theta$ (network irrelevance).

"Universal" Energy Example (Hicksian)

- Two factors: electricity and labor.
- Downstream sectors use electricity and labor with elasticity $\varepsilon < 1$.
- ullet Final demand uses downstreams sectors with elasticity $\sigma\gg arepsilon$

$$\sigma_{EL}^{C} = 1 - \frac{\mathrm{d} \log (\Lambda_E/\Lambda_L)}{\mathrm{d} \log (r_E/r_L)} = \sigma \frac{\left(\frac{N}{M} - 1\right)\Lambda_E}{1 - \Lambda_E} + \varepsilon \frac{1 - \frac{N}{M}\Lambda_E}{1 - \Lambda_E}.$$

Macro Bias of Technical Change

Definition:

$$B_{fgk}^{C} = \frac{d \log(\Lambda_f/\Lambda_g)}{d \log A_k} = \frac{d \log(L_f/L_g)}{d \log A_k}.$$

Characterization:

$$B_{fgk}^{C} = \sum_{j} (\theta_{j} - 1) \lambda_{j} Cov_{\Omega^{(j)}} (\Psi_{(k)}, \Psi_{(f)} / \Lambda_{f} - \Psi_{(g)} / \Lambda_{g}).$$

No network-irrelevance result.

Capital-Biased Technical Change in a Task-Based Model

- Inspired by Acemoglu-Restrepo (17).
- CES aggregator over set of tasks with elasticity θ_D .
- Task i is CES of capital and labor with shares ω_{iK} and ω_{iL} and elasticity θ_{KL} .
- Micro capital-biased technical change in k.
- Macro capital bias:

$$B_{KLkK}^{C} = (\theta_{KL} - 1)\lambda_{k} \frac{\omega_{kK}}{\Lambda_{K}} \frac{\omega_{kL}}{\Lambda_{l}} + (\theta_{D} - 1)\lambda_{k} \frac{\omega_{kK}}{\Lambda_{K}} (1 - \frac{\omega_{kL}}{\Lambda_{l}}).$$

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions

Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium Macro Impact of Oil Shocks Baumol's Cost Disease and Long-Run Growth

Propagation Equations with Inelastic Factors

$$\begin{split} \mathrm{d}\,\Lambda_f &= \sum_j (\theta_j - 1) \lambda_j \textit{Cov}_{\Omega^{(j)}} \big(\sum_k \Psi_{(k)} \, \mathrm{d}\log A_k + \sum_g \Psi_g \, \mathrm{d}\log L_g, \Psi_{(f)} \big) \\ &- \sum_j (\theta_j - 1) \lambda_j \textit{Cov}_{\Omega^{(j)}} \big(\sum_g \Psi_{(g)} \frac{1}{\Lambda_g} \, \mathrm{d}\Lambda_g, \Psi_{(f)} \big), \end{split}$$

$$\begin{split} \mathrm{d}\,\lambda_i &= \sum_j (\theta_j - 1) \lambda_j Cov_{\Omega^{(j)}} \big(\sum_k \Psi_{(k)} \, \mathrm{d}\log A_k + \sum_g \Psi_g \, \mathrm{d}\log L_g, \Psi_{(i)} \big) \\ &- \sum_j (\theta_j - 1) \lambda_j Cov_{\Omega^{(j)}} \big(\sum_g \Psi_{(g)} \frac{1}{\Lambda_g} \, \mathrm{d}\Lambda_g, \Psi_{(i)} \big). \end{split}$$

- Shocks propagate downstream and upstream.
- Need to solve a linear system, i.e. invert a matrix.

Extending Definitions and Characterizations

- Hessian.
- Macro impact of micro shocks.
- Macro elasticities of substitution between factors (MES).
- Macro bias of technical change.

"Universal" Energy Example

- Two factors: electricity and labor.
- Downstream sectors use electricity and labor with elasticity $\varepsilon < 1$.
- Final demand uses downstreams sectors with elasticity $\sigma \gg \varepsilon$.

$$\frac{\mathrm{d}^2\log Y}{\mathrm{d}\log E^2} = \frac{\mathrm{d}\Lambda_E}{\mathrm{d}\log E^2} = \Lambda_E \frac{(\varepsilon-1)(1-\frac{N}{M}\Lambda_E) + (\sigma-1)\Lambda_E(\frac{N}{M}-1)}{1+(\sigma-1)\frac{(\frac{N}{M}-1)\Lambda_E}{1-\Lambda_E} + (\varepsilon-1)\frac{(1-\frac{N}{M}\Lambda_E)}{1-\Lambda_E}}$$

"Universal" Energy Example (Hicksian)

- Two factors: electricity and labor.
- ullet Downstream sectors use electricity and labor with elasticity arepsilon < 1.
- ullet Final demand uses downstreams sectors with elasticity $\sigma\gg arepsilon$

$$\sigma_{EL}^F = \frac{1}{1 - \frac{\mathrm{d}\log(\Lambda_E/\Lambda_L)}{\mathrm{d}\log(E/L)}} = \sigma\frac{\left(\frac{N}{M} - 1\right)\Lambda_E}{1 - \Lambda_E} + \varepsilon\frac{1 - \frac{N}{M}\Lambda_E}{1 - \Lambda_E}.$$

Capital-Biased Technical Change in a Task-Based Model

- Inspired by Acemoglu-Restrepo (17).
- Cobb-Douglas output aggregator over set of tasks.
- Task i is CES of capital and labor with shares ω_{iK} and ω_{iL} and elasticity θ_{KL} .
- Effects of capital-biased technical change in task k:

$$\frac{d \log w_L}{d \log A_{kK}} = \lambda_k \omega_{kK} \frac{1 + (\theta_{KL} - 1) \sum_i \lambda_i \left(\frac{\omega_{iL}}{\Lambda_L} - \frac{\omega_{kL}}{\Lambda_L}\right) \frac{\omega_{iK}}{\Lambda_K}}{1 + (\theta_{KL} - 1) \sum_i \lambda_i \frac{\omega_{iL}}{\Lambda_L} \frac{\omega_{iL}}{\Lambda_K}}.$$

- Can get decrease in labor share and decrease in real wage from capital-biased technical change.
- Impossible with usual aggregate production function approach.

Back to Cambridge-Cambridge Controversy

• Use formalism to capture Samuelson's reswitching example.

Figure: Reswitching Economy as a Network

Back to Cambridge-Cambridge Controversy

- Use formalism to capture Samuelson's reswitching example.
- Controversy as debate on relevance of network.

Figure: Smoothed Version of Samuelson Economy

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions
Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium Macro Impact of Oil Shocks Baumol's Cost Disease and Long-Run Growth

Beyond CES

- Can extend results to general non-CES functional forms.
- Input-output substitution operator generalizes input-output covariance operator.

Separating Production from Final Demand

- Can separate production from final demand via "aggregate distance function".
- Allows to combine analysis with heterogeneous agents or non-homothetic final demand.

Sub-Aggregate Production Functions

- Can get sub-aggregate production functions for "islands".
- More generally, can get sub-aggregate distance function.

Frictions and Distortions

- Characterizing aggregate production and cost functions harder:
 - shares no longer sufficient statistics for aggregate production and cost functions to the first order,
 - need shares, input-output matrix, micro elasticities, and distortions.
- Aggregate production and cost functions less useful:
 - first derivatives divorced from shares,
 - second derivatives divorced from elasticities of shares to shocks.
- Propagation equations robust instead to characterize elasticities
 of shares and get: marginal products, factor demands, macro
 impact of micro shocks, macro elasticities of substitution, macro
 bias of technical change.

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions
Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium

Macro Impact of Oil Shocks
Baumol's Cost Disease and Long-Run Growth

Capital Skill Complementarity and Skill Premium

- Krusell et al. (00) study impact of declining price of equipment investment goods on skill premium in presence of capital-skill complementarities.
- Nested CES aggregate production function with elasticities motivated in part by micro-evidence:
 - 0.67 between skilled labor and equipment capital (inner nest),
 - 1.67 between unskilled labor and aggregate of skilled labor and equipment capital (outer nest).
- Revisit in calibrated disaggregated model with 66 sectors and input-output linkages:
 - same value added micro-elasticities between factors as above.
 - 0.5 elasticity between value added and intermediates,
 - 0.1 elasticity across intermediates,
 - 0.9 elasticity across sectors in consumption.

Macro Elasticities of Substitution

	Production Function			Cost Function				
Capital Non-college College	Capital - 1.04 0.67	Non-college 1.67 – 1.67	College 0.67 0.89		Capital Non-college College	Capital - 1.26 0.67	Non-college 1.67 – 1.67	College 0.67 1.09

Table: MESs between factors in the aggregate production function and in the aggregate cost function for the aggregate model.

Production Function			Cost Function					
Capital	Capital _	Non-college 1.43	College 0.69		Capital	Capital _	Non-college	College 0.72
Non-college	0.94	-	0.94		Non-college	1.09	-	1.09
College	0.66	1.59	_		College	0.64	1.54	_

Table: MESs between factors in the aggregate production function and in the aggregate cost function for the disaggregated model.

Equipment Capital Shock and Skill Premium

	Capital	Non-college	College
Aggregate model	0.05	0.07	-0.13
Disaggregated Model	0.06	0.03	-0.12

Table: The (log point) change in factor income shares in response to the shock $d \log K = -0.37$ in the aggregated and disaggregated model, reversing the effects of the equipment capital shock.

Change in skill premium

$$\left(\frac{1}{\sigma_{HK}} - \frac{1}{\sigma_{LK}}\right) \times d\log K = \left(\frac{d\log \Lambda_H}{d\log K} - \frac{d\log \Lambda_L}{d\log K}\right) \times d\log K,$$

is -0.20 log points in aggregate model vs. -0.16 log points in disaggregated model (20% lower).

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions
Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium Macro Impact of Oil Shocks
Baumol's Cost Disease and Long-Run Growth

Macro Impact of Oil vs. Retail Shocks

 Macro impact of micro shocks in calibrated disaggregated model with 66 sectors and input-output linkages.

Nonlinear Impact of Oil Shocks

Figure: Global expenditures on crude oil as a fraction of world GDP.

- First-order effect: $1.8\% \times -13\% \approx -0.2\%$.
- Second-order effect: $\frac{1}{2}(1.8\% + 7.6\%) \times -13\% \approx -0.6\%$.

Outline

Cambridge-Cambridge Controversy

Setup

First Order

Second Order

Aggregate Cost Functions
Aggregate Production Functions

Extensions

Applications

Capital Skill Complementarity and Skill Premium Macro Impact of Oil Shocks

Baumol's Cost Disease and Long-Run Growth

Baumol's Cost Disease and U.S. TFP Growth

Figure: Cumulative change in *TFP*: nonlinear (actual), first-order approximation, and second-order approximation.

Baumol's cost disease reduced U.S. aggregate TFP growth by 20 percentage points.

Conclusion

- Pick up where Cambridge-Cambridge controversy left.
- General microfoundations for aggregate production functions.
- Many applications.
- Research agenda:
 - Baqaee-Farhi (17,18a,b,19),
 - ongoing...IRS, entry, exit,
 - ongoing...explicit IO models of market structure,
 - active and exciting area!