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B Generalization of Section 3.2 to Multiple Goods

For the example is Section 3.2, the economy with extreme complementarity θ = 0 has Y =

A/a, where 1/a is the sales to output ratio in steady-state. Therefore, in this example, although
Hulten’s approximation fails in log terms, Hulten’s theorem is globally accurate in linear
terms. In other words, our examples so far may suggest that extreme complementarities
can only have outsized effects, in linear terms, if we restrict the movement of labor across
industries.

However, this impression is false. To see this, consider a slightly more complex exam-
ple where we generalize the example above by allowing multiple industries. Aggregate
consumption is Cobb-Douglas across goods with equal weights (bi = 1/N). Each good is
produced using labor and the good itself as an intermediate input. We assume full labor
reallocation/constant returns to scale. We have

Y =
∏

i

c1/N
i ,

and

yi = yiAi

ωil

(
li

li

) θi−1
θi

+ (1ωil)
(

xi

xi

) θi−1
θi


θi
θi−1

,

with
yi = ci + xi,

and perfect reallocation of labor. Then we have the following.
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Figure 1: Aggregate output for the Leontief case θi ≈ 0 with two industries.

Proposition 1. Consider the model described above. Then

1 −
1
ρ ji

= (θi − 1)
( 1
ωil
− 1

)
,

and
d log ξ
d log Ai

=
1
N

(θi − 1)
( 1
ωil
− 1

)
.

In Figure 1 we plot output as a function of TFP shocks in linear terms. As promised,
this economy features strong aggregate complementarities in the sense that a negative TFP
shock can cause a drastic reduction in output even in linear terms, despite the fact that labor
can be costlessly reallocated across sectors. This happens because, in equilibrium, a negative
shock to industry i does not result in more labor being allocated to production in industry
i. This follows from the fact that consumption has a Cobb-Douglas form, and so the income
and substitution effects from a shock to i offset each other. Since no new labor is allocated
to i, if i faces a low structural elasticity of substitution θi ≈ 0, its output falls dramatically in
response to a negative shock. This can then have a large effect on aggregate consumption.
Of course, Cobb-Douglas consumption is simply a clean way to illustrate this intuition. If
the structural elasticity of substitution in consumption where less than unity (θ0 < 1), then
these effects would be even further amplified.
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Proof of Proposition 1. First, consider

max
xi

yi − xi,

which has the first-order condition

xi = yi(1 − ωil)θi

(
Aiyi

xi

)θi−1

= yi(1 − ωil)A
θi−1
i ,

where we use the fact that Xi = yi(1−ωil). Substitute this into the production function for yi

to get

yi =
Aiyia

θi/(θi−1)li/li(
1 − (1 − a)Aθi−1

i

) θi
θi−1

.

Substitute this into ci = yi − xi to get

ci =
Aiyia

θi/(θi−1)li/li(
1 − (1 − a)Aθi−1

i

) 1
θi−1

.

Substitute these into the utility function to get aggregate consumption when labor cannot be
reallocated. To get aggregate consumption when labor is reallocated, maximize aggregate
the non-reallocative solution with respect to li:

Y

Y
=


N∑
i

b
θ0

i

 Aiyia
θi
θi−1

i /li

(1 − (1 − ωil)A
θi−1
i )

1
θi−1


θ0−1

1
θ0−1

l.

�

C Adjustment Costs in the Quantitative Model

In this section, we explain how to extend the quantitative model of Section 6.1 to allow for
adjustment costs. For each composite intermediate input, we allow for the possibility that
there are adjustment costs, indexed by κ ≥ 0, in adjusting the quantity of the input compared
to its steady-state value:

X̂i = Xi

1 −
κ
2

(
Xi

Xi

− 1
)2 ,
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where Xi are units of good i purchased and X̂i are the units of good i actually used. When
κ = 0, there are no adjustment costs.

Introducing adjustment costs increases the volatility of the Domar weights. For the
model with adjustment costs, we choose the value of the adjustment cost parameter κ so
that, given the microecononomic elasticities of substitution, the model matches the volatility
of the Domar weights at an annual frequency (when the model already overshoots without
adjustment costs, we set them to zero). We then keep the same value of κ when we move
quadrennial frequency. By picking a suitable value for κ, even the model with fully mobile
labor can match the volatility of the Domar weights. We report these results in Table II. In-
terestingly, once we pick κ to match the volatility of Domar weights at annual frequency, the
model also roughly matches the volatility of the Domar weights at a quadrennial frequency.
The results are consistent with what we found in Table I of the paper. In the final column of
Table II we also report the value of resources destroyed by the adjustment cost directly

∆ = E
(∑

i pi(Xi − X̂i)
GDP

)
.

In all cases, the amount of resources destroyed directly by the adjustment costs are not large
enough to mechanically drive the reductions in average aggregate output. For example,
whereas at quadrennial frequency, the reduction in expected log aggregate output is around
1.5% − 0.5% ≈ 1.0%, the value of the resources destroyed by the adjustment costs are less
than 0.5%.

D Additional Tables and Figures
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(σ, θ, ε, κ, t) Mean Std Skewness Ex-Kurtosis σλ ∆

No reallocation

(0.9, 0.5, 0.001 , 0, 1) -0.0034 0.012 -0.18 0.1 0.115 0

(0.9, 0.5, 0.001 , 0 , 4) -0.0187 0.030 -1.11 3.6 0.267 0

(0.9, 0.6, 0.2, 2, 1) -0.0033 0.011 -0.27 0.21 0.124 0.0007

(0.9, 0.6, 0.2, 2, 4) -0.0152 0.028 -0.63 1.57 0.286 0.0046

Full reallocation

(0.9, 0.5, 0.001, 3, 1) -0.0031 0.012 -0.25 0.26 0.124 0.0006

(0.9, 0.5, 0.001, 3, 4) -0.0166 0.030 -0.98 2.47 0.279 0.0046

(0.9, 0.6, 0.2, 4, 1) -0.0026 0.011 -0.23 0.23 0.129 0.0004

(0.9, 0.6, 0.2, 4, 4) -0.0140 0.029 -0.75 1.05 0.291 0.0028

Table II: Simulated and estimated moments for the model with adjustment costs. The
simulated moments are calculated from 10,000 draws. The parameter t measures the length
of the time interval for the shocks: annual and quadrennial. Finally, the column ∆ is the
share of lost resources.
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Mean Std Skewness Ex-Kurtosis

No reallocation, Annual -0.0031 0.011 -0.16 0.1
No reallocation, Quadrennial -0.0173 0.027 -0.60 1.0
Full Reallocation, Annual -0.0021 0.011 -0.09 0.0
Full Reallocation, Quadrennial -0.0110 0.026 -0.25 0.1

Table III: Moments of log output estimated from 50, 000 draws using the second order Taylor
approximation with the benchmark elasticities (σ, θ, ε) = (0.9, 0.5, 0.001). This is the version
of the model with no adjustment costs κ = 0.
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Figure 2: The effect of TFP shocks to the “oil and gas” industry and the construction industry.
Construction has a bigger sales share, but “oil and gas” is more important for large negative
shocks. This graph shows that the ranking of which industry is more important is not
monotonic in the size of the shock.
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(σ, θ, ε) Mean Std Skew Ex-Kurtosis σλ
(0.8, 0.5, 0.001) -0.0023 0.011 -0.06 0.0 0.074
(0.9, 0.5, 0.001) -0.0022 0.011 -0.08 0.0 0.069
(0.99, 0.5, 0.001) -0.0021 0.011 -0.07 0.0 0.065
(0.8, 0.5, 0.2) -0.0020 0.011 -0.07 0.0 0.066
(0.9, 0.5, 0.2) -0.0020 0.011 -0.08 0.0 0.062
(0.99, 0.5, 0.2) -0.0019 0.011 -0.06 0.0 0.058
(0.8, 0.5, 0.99) -0.0014 0.011 -0.02 0.0 0.044
(0.9, 0.5, 0.99) -0.0013 0.011 -0.03 0.0 0.040
(0.99, 0.5, 0.99) -0.0013 0.011 -0.02 0.0 0.036
(0.8, 0.4, 0.001) -0.0023 0.011 -0.08 0.0 0.079
(0.9, 0.4, 0.001) -0.0022 0.011 -0.06 0.0 0.075
(0.99, 0.4, 0.001) -0.0022 0.011 -0.07 0.0 0.071
(0.8, 0.4, 0.2) -0.0021 0.011 -0.06 0.0 0.073
(0.9, 0.4, 0.2) -0.0021 0.011 -0.08 0.0 0.068
(0.99, 0.4, 0.2) -0.0020 0.011 -0.07 0.0 0.064
(0.8, 0.4, 0.99) -0.0013 0.011 -0.04 0.0 0.052
(0.9, 0.4, 0.99) -0.0014 0.011 -0.04 0.0 0.047
(0.99, 0.4, 0.99) -0.0013 0.011 -0.01 0.0 0.044
(0.8, 0.6, 0.001) -0.0022 0.011 -0.06 0.0 0.068
(0.9, 0.6, 0.001) -0.0021 0.011 -0.08 0.0 0.063
(0.99, 0.6, 0.001) -0.0020 0.011 -0.07 0.0 0.059
(0.8, 0.6, 0.2) -0.0021 0.011 -0.05 0.0 0.061
(0.9, 0.6, 0.2) -0.0020 0.011 -0.05 0.0 0.056
(0.99, 0.6, 0.2) -0.0020 0.011 -0.04 0.0 0.052
(0.8, 0.6, 0.99) -0.0014 0.011 -0.02 0.0 0.037
(0.9, 0.6, 0.99) -0.0013 0.011 -0.02 0.0 0.033
(0.99, 0.6, 0.99) -0.0013 0.011 -0.01 0.0 0.029
(0.8, 0.99, 0.001) -0.0022 0.011 -0.09 0.0 0.052
(0.9, 0.99, 0.001) -0.0020 0.011 -0.05 0.0 0.047
(0.99, 0.99, 0.001) -0.0021 0.011 -0.06 0.0 0.044
(0.8, 0.99, 0.2) -0.0021 0.011 -0.04 0.0 0.043
(0.9, 0.99, 0.2) -0.0019 0.011 -0.05 0.0 0.039
(0.99, 0.99, 0.2) -0.0018 0.011 -0.04 0.0 0.035
(0.8, 0.99, 0.99) -0.0013 0.011 -0.03 0.0 0.011
(0.9, 0.99, 0.99) -0.0013 0.011 -0.02 0.0 0.006
(0.99, 0.99, 0.99) -0.0013 0.011 0.01 0.0 0.001

Table IV: Annual Shocks, Model with full reallocation and no adjustment costs.
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(σ, θ, ε) Mean Std Skew Ex-Kurtosis σλ
(0.8, 0.5, 0.001) -0.0112 0.026 -0.31 0.3 0.178
(0.9, 0.5, 0.001) -0.0113 0.026 -0.28 0.4 0.176
(0.99, 0.5, 0.001) -0.0107 0.026 -0.27 0.3 0.163
(0.8, 0.5, 0.2) -0.0102 0.026 -0.25 0.2 0.162
(0.9, 0.5, 0.2) -0.0101 0.026 -0.23 0.1 0.152
(0.99, 0.5, 0.2) -0.0098 0.026 -0.22 0.2 0.144
(0.8, 0.5, 0.99) -0.0070 0.025 -0.09 0.0 0.113
(0.9, 0.5, 0.99) -0.0066 0.025 -0.09 0.1 0.103
(0.99, 0.5, 0.99) -0.0064 0.025 -0.09 0.0 0.095
(0.8, 0.4, 0.001) -0.0116 0.026 -0.32 0.3 0.228
(0.9, 0.4, 0.001) -0.0110 0.026 -0.32 0.3 0.228
(0.99, 0.4, 0.001) -0.0107 0.026 -0.27 0.3 0.212
(0.8, 0.4, 0.2) -0.0106 0.026 -0.27 0.3 0.201
(0.9, 0.4, 0.2) -0.0104 0.026 -0.24 0.2 0.195
(0.99, 0.4, 0.2) -0.0097 0.026 -0.25 0.2 0.173
(0.8, 0.4, 0.99) -0.0072 0.025 -0.09 0.0 0.134
(0.9, 0.4, 0.99) -0.0070 0.025 -0.09 0.0 0.125
(0.99, 0.4, 0.99) -0.0067 0.025 -0.08 0.0 0.117
(0.8, 0.6, 0.001) -0.0112 0.026 -0.26 0.2 0.159
(0.9, 0.6, 0.001) -0.0108 0.026 -0.27 0.3 0.149
(0.99, 0.6, 0.001) -0.0105 0.026 -0.26 0.2 0.140
(0.8, 0.6, 0.2) -0.0102 0.026 -0.23 0.2 0.143
(0.9, 0.6, 0.2) -0.0100 0.026 -0.23 0.2 0.133
(0.99, 0.6, 0.2) -0.0096 0.026 -0.20 0.1 0.123
(0.8, 0.6, 0.99) -0.0071 0.025 -0.07 0.0 0.093
(0.9, 0.6, 0.99) -0.0066 0.025 -0.06 0.0 0.083
(0.99, 0.6, 0.99) -0.0064 0.025 -0.06 0.0 0.075
(0.8, 0.99, 0.001) -0.0106 0.026 -0.20 0.1 0.112
(0.9, 0.99, 0.001) -0.0104 0.026 -0.19 0.1 0.103
(0.99, 0.99, 0.001) -0.0101 0.026 -0.19 0.1 0.096
(0.8, 0.99, 0.2) -0.0100 0.025 -0.15 0.1 0.093
(0.9, 0.99, 0.2) -0.0095 0.026 -0.14 0.1 0.085
(0.99, 0.99, 0.2) -0.0091 0.026 -0.13 0.1 0.078
(0.8, 0.99, 0.99) -0.0064 0.025 -0.02 0.0 0.024
(0.9, 0.99, 0.99) -0.0062 0.025 -0.01 0.0 0.013
(0.99, 0.99, 0.99) -0.0058 0.025 0.01 0.0 0.003

Table V: Quadrennial Shocks, model with full reallocation and no adjustment costs.
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(σ, θ, ε) Mean Std Skew Ex-Kurtosis σλ
(0.8, 0.5, 0.001) -0.0036 0.011 -0.23 0.2 0.128
(0.9, 0.5, 0.001) -0.0034 0.012 -0.18 0.1 0.115
(0.99, 0.5, 0.001) -0.0032 0.011 -0.20 0.1 0.104
(0.8, 0.5, 0.2) -0.0026 0.011 -0.13 0.1 0.079
(0.9, 0.5, 0.2) -0.0026 0.011 -0.11 0.0 0.070
(0.99, 0.5, 0.2) -0.0025 0.011 -0.13 0.0 0.063
(0.8, 0.5, 0.99) -0.0014 0.011 -0.01 0.0 0.018
(0.9, 0.5, 0.99) -0.0014 0.011 -0.01 0.0 0.014
(0.99, 0.5, 0.99) -0.0012 0.011 -0.01 0.0 0.011
(0.8, 0.4, 0.001) -0.0039 0.012 -0.23 0.2 0.137
(0.9, 0.4, 0.001) -0.0035 0.011 -0.21 0.2 0.123
(0.8, 0.4, 0.2) -0.0028 0.011 -0.14 0.1 0.082
(0.9, 0.4, 0.2) -0.0026 0.011 -0.12 0.1 0.073
(0.99, 0.4, 0.2) -0.0030 0.011 0.15 5.9 0.065
(0.8, 0.4, 0.99) -0.0015 0.011 -0.05 0.0 0.020
(0.9, 0.4, 0.99) -0.0013 0.011 -0.05 0.0 0.016
(0.99, 0.4, 0.99) -0.0014 0.011 -0.04 0.0 0.014
(0.8, 0.6, 0.001) -0.0034 0.011 -0.20 0.1 0.122
(0.9, 0.6, 0.001) -0.0032 0.011 -0.20 0.1 0.109
(0.99, 0.6, 0.001) -0.0030 0.011 -0.14 0.1 0.098
(0.8, 0.6, 0.2) -0.0026 0.011 -0.12 0.0 0.077
(0.9, 0.6, 0.2) -0.0024 0.011 -0.11 0.1 0.068
(0.99, 0.6, 0.2) -0.0023 0.011 -0.10 0.0 0.061
(0.8, 0.6, 0.99) -0.0015 0.011 -0.05 0.0 0.016
(0.9, 0.6, 0.99) -0.0013 0.011 0.00 0.0 0.011
(0.99, 0.6, 0.99) -0.0013 0.011 -0.02 0.0 0.009
(0.8, 0.99, 0.001) -0.0030 0.011 -0.15 0.1 0.107
(0.9, 0.99, 0.001) -0.0028 0.011 -0.13 0.1 0.095
(0.99, 0.99, 0.001) -0.0027 0.011 -0.11 0.1 0.086
(0.8, 0.99, 0.2) -0.0026 0.011 -0.11 0.0 0.072
(0.9, 0.99, 0.2) -0.0024 0.011 -0.09 0.0 0.063
(0.99, 0.99, 0.2) -0.0022 0.011 -0.07 0.0 0.056
(0.8, 0.99, 0.99) -0.0014 0.011 -0.01 0.0 0.010
(0.9, 0.99, 0.99) -0.0013 0.011 -0.01 0.0 0.005
(0.99, 0.99, 0.99) -0.0011 0.011 0.00 0.0 0.001

Table VI: Annual Shocks, model with no labor reallocation and no adjustment costs.
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(σ, θ, ε) Mean Std Skew Ex-Kurtosis σλ
(0.8, 0.5, 0.001) -0.0202 0.031 -1.26 4.5 0.297
(0.9, 0.5, 0.001) -0.0187 0.030 -1.11 3.6 0.267
(0.8, 0.5, 0.2) -0.0139 0.028 -0.58 1.1 0.180
(0.9, 0.5, 0.2) -0.0133 0.027 -0.52 0.9 0.160
(0.99, 0.5, 0.2) -0.0176 0.024 -0.66 1.3 0.138
(0.8, 0.5, 0.99) -0.0073 0.025 -0.09 0.0 0.041
(0.9, 0.5, 0.99) -0.0068 0.025 -0.07 0.0 0.033
(0.99, 0.5, 0.99) -0.0068 0.025 -0.09 0.0 0.027
(0.8, 0.4, 0.001) -0.0217 0.032 -1.40 5.3 0.320
(0.9, 0.4, 0.001) -0.0201 0.031 -1.30 4.8 0.287
(0.8, 0.4, 0.2) -0.0146 0.028 -0.67 1.4 0.187
(0.9, 0.4, 0.2) -0.0137 0.028 -0.59 1.1 0.167
(0.8, 0.4, 0.99) -0.0075 0.025 -0.13 0.0 0.048
(0.9, 0.4, 0.99) -0.0069 0.025 -0.10 0.0 0.039
(0.99, 0.4, 0.99) -0.0069 0.025 -0.09 0.0 0.034
(0.8, 0.6, 0.001) -0.0188 0.030 -0.99 2.5 0.281
(0.9, 0.6, 0.001) -0.0176 0.029 -0.90 2.2 0.253
(0.99, 0.6, 0.001) -0.0163 0.028 -0.65 1.0 0.229
(0.8, 0.6, 0.2) -0.0136 0.027 -0.49 0.7 0.175
(0.9, 0.6, 0.2) -0.0129 0.027 -0.44 0.7 0.154
(0.99, 0.6, 0.2) -0.0128 0.026 -0.50 0.6 0.138
(0.8, 0.6, 0.99) -0.0070 0.025 -0.08 0.0 0.036
(0.9, 0.6, 0.99) -0.0066 0.025 -0.08 0.0 0.027
(0.99, 0.6, 0.99) -0.0067 0.025 -0.09 0.1 0.021
(0.8, 0.99, 0.001) -0.0163 0.028 -0.64 1.1 0.246
(0.9, 0.99, 0.001) -0.0153 0.028 -0.58 0.9 0.221
(0.99, 0.99, 0.001) -0.0145 0.027 -0.53 0.8 0.200
(0.8, 0.99, 0.2) -0.0128 0.026 -0.40 0.4 0.162
(0.9, 0.99, 0.2) -0.0120 0.026 -0.35 0.3 0.143
(0.99, 0.99, 0.2) -0.0114 0.026 -0.29 0.3 0.127
(0.8, 0.99, 0.99) -0.0066 0.025 -0.01 0.0 0.021
(0.9, 0.99, 0.99) -0.0061 0.025 -0.03 0.0 0.011
(0.99, 0.99, 0.99) -0.0057 0.025 0.00 0.0 0.002

Table VII: Quadrennial Shocks, model with no reallocation and no adjustment costs.
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E Macro Moment Approximations

The notes in this section were prepared with the assistance of a research assistant Chang
He. Let output be Y(A), where A is the N × 1 vector of productivity parameters. Suppose
that A is distributed according to a multivariate normal distribution, and that the elements
of A are independent. Let Y∗(A) be the second-order Taylor approximation of Y around the
mean vector of A.

Second-order Taylor Approximation

Let µA denote the mean vector of A. The second-order Taylor expansion of Y(A) is:

Y∗(A) = Y(µA) +

N∑
i=1

∂Y(µA)
∂Ai

(Ai − µAi) +
1
2

N∑
i=1

N∑
j=1

∂2Y(µA)
∂Ai∂A j

(Ai − µAi)(A j − µA j).

We introduce the following abbreviations:

Yi =
∂Y(µA)
∂Ai

, Yi j =
∂2Y(µA)
∂Ai∂A j

,

µAi =

∫
∞

−∞

Ai fA(Ai)dAi µAi,k =

∫
∞

−∞

(Ai − µAi)
k fA(Ai)dAi,

µAi,A j

∫
∞

−∞

∫
∞

−∞

(Ai − µAi)(A j − µA j) fA(Ai,A j)dAidA j,

where fA is the density function of A.

Mean Value Approximation

Let µY∗ be the mean value approximation of Y(A). We have:

µY∗ = E[Y∗(A)] =

∫
∞

−∞

Y∗(A) fA(A)dA,

=

∫
∞

−∞

[
Y(µA) +

N∑
i=1

Yi(Ai − µAi) +
1
2

N∑
i=1

N∑
j=1

Yi j(Ai − µAi)(A j − µA j)
]

fA(A)dA,

= Y(µA) +
1
2

N∑
i=1

N∑
j=1

Yi jµAi,A j .
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Expanding the quadratic and since elements of A are independent, we get

µY∗ = Y(µA) +
1
2

N∑
i=1

YiiµAi,2.

Variance Approximation

Let σ2
Y∗ be the variance approximation of Y(A).

σ2
Y∗ = E

([
Y∗(A) − Y(µA)

]2)
= E

(
Y∗2(A)

)
− Y2(µA),

=

∫
∞

−∞

[
Y(µA) +

N∑
i=1

Yi(Ai − µAi) +
1
2

N∑
i=1

N∑
j=1

Yi j(Ai − µAi)(A j − µA j)
]2

fA(A)dA − µ2
Y∗ .

Since elements of A are independent, we get

σ2
Y∗ =

N∑
i=1

Y2
i µAi,2 + Y2(µA) − µ2

Y∗ + Y(µA)
N∑

i=1

YiiµAi,2 +

N∑
i=1

YiYiiµAi,3

+
1
4

N∑
i=1

Y2
iiµAi,4 +

1
2

N∑
i=1

N∑
j=i+1

YiiY j jµAi,2µA j,2 +

N∑
i=1

N∑
j=i+1

Y2
i jµAi,2µA j,2.

Skewness Approximation

Let νY∗ be the skewness approximation of Y(A). By definition, νY∗ = µY∗,3/σ3
Y∗ .

Use the definition of skewness, and that
∫
∞

−∞
Y∗2(A) fA(A)dA = σ2

Y∗ + µ2
Y∗ , we have

µY∗,3 = E
([

Y∗(A) − Y(µA)
]3)

=

∫
∞

−∞

[
Y∗(A) − Y(µA)

]3
fA(A)dA,

=

∫
∞

−∞

Y∗3(A) fA(A)dA − 3µY∗σ2
Y∗ − µ

3
Y∗ ,

=

∫
∞

−∞

[
Y(µA) +

N∑
i=1

Yi(Ai − µAi) +
1
2

N∑
i=1

N∑
j=1

Yi j(Ai − µAi)(A j − µA j)
]3

fA(A)dA − 3µY∗σ2
Y∗ − µ

3
Y∗ .

Simplifying the equation above and use the fact that the elements of A are independent,
we have:

µY∗,3 =

N∑
i=1

Yi
3µAi,3 + Y3(µA) +

3
2

Y2(µA)
N∑

i=1

YiiµAi,2 + 3Y(µA)
N∑

i=1

Y2
i µAi,2 + 3Y(µA)

N∑
i=1

YiYiiµAi,3
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+
3
4

N−2∑
i=1

N−1∑
j=i+1

N∑
k= j+1

YiiY j jYkkµAi,2µA j,2µAk,2 +
3
2

N−1∑
i=1

N∑
j=i+1

YiiYi jY j jµAi,3µA j,3

+
3
8

N∑
i=1

N∑
j=1
j,i

YiiY2
j jµAi,2µA j,4 +

1
8

N∑
i=1

Y2
iiµAi,6 +

3
2

N∑
i=1

N∑
j=1
j,i

Y2
i Yi jµAi,2µA j,2

+
3
2

N∑
i=1

Y2
i YiiµAi,4 +

3
2

Y(µA)
N−1∑
i=1

N∑
j=i+1

YiiY j jµAi,2µA j,2 +
3
4

Y(µA)
N∑

i=1

Y2
iiµAi,4

+
3
2

N∑
i=1

N∑
j=1
j,i

YiYiiY j jµAi,3µA j,2 +
3
4

N∑
i=1

YiY2
iiµAi,5

+
3
2

N∑
i=1

N−1∑
j=1
j,i

N∑
k= j+1

k,i

YiiY2
jkµAi,2µA j,2µAk,2 +

9
4

N−2∑
i=1

N−1∑
j=i+1

N∑
k= j+1

Yi jYikY jkµAi,2µA j,2µAk,2

+

N−1∑
i=1

N∑
j=i+1

Y3
i jµAi,3µA j,3 +

3
2

N∑
i=1

N∑
j=1
j,i

Y2
i jY j jµAi,2µA j,4 + 6

N−1∑
i=1

N∑
j=i+1

YiY jYi jµAi,2µA j,2

+ 3Y(µA)
N−1∑
i=1

N∑
j=i+1

Y2
i jµAi,2µA j,2 + 3

N∑
i=1

N∑
j=1
j,i

YiYi jY j jµAi,2µA j,3 + 3
N∑

i=1

N∑
j=1
j,i

YiY2
i jµAi,3µA j,2

− 3µY∗σ2
Y∗ − µ

3
Y∗ .

We can then use the expression of σ2
Y∗ from previous to compute νY∗ = µY∗,3/σ3

Y∗ .

F Relation to ACR

Arkolakis, Costinot, and Rodrı́guez-Clare (2012), henceforth ACR, consider an open-economy
model with no intermediate inputs and a single factor of production per country. They im-
pose some macro-level restrictions, and prove a powerful characterization of the gains from
trade. Namely, they assume that (1) trade is balanced, (2) profits are a constant share of
revenues, and (3) import demand system is CES. Using these assumptions, they show that
the gains from trade, as measured by the change in real income associated with going to
autarky, is given by the reciprocal of the domestic expenditure share raised to the reciprocal
of the trade elasticity. The ACR result, and its generalizations (summarized in Costinot and
Rodriguez-Clare, 2014), suggest that one can quantify the gains from trade without needing
to directly estimate the size of the trade shock.

In Baqaee and Farhi (2019), we show how under certain conditions, changes in iceberg
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trade costs in an open-economy model can be recast as productivity shocks in an associated
closed-economy model. This then allows us to use our results to study the second-order
effects of trade shocks. For simplicity, we work with a one-factor model (like ACR), but
these results can be extended to the case of multiple factors. We also restrict ourselves to
nested-CES economies in standard form.

We start by associating a fictitious nested-CES domestic closed-economy model to the true
nested-CES open-economy model, both in standard form. The closed economy has the same
set C of domestic producers as the open economy and the same elasticities of substitution,
but its input-output matrix Ωc

i j ≡ Ωi j/(
∑

k∈C Ωik) is different because each domestic producer
only sources from other domestic producers, and not from foreign producers, where C
denotes the set of domestic producers.

We show that effects on domestic welfare of a change in trade costs in the true open-
economy model are identical to the effects on aggregate output of a set of productivity shocks
(λic/λic)1/(1−θi), where λic is the domestic cost share of producer i and λic is its steady-state
value. It is straightforward to leverage our results to characterize the effects of these shocks
up to the second order. Only in some special cases resembling those underpinning our
network-irrelevance result in Corollary 1, can a global expression be derived. The baseline
ACR specification falls in this category: it has a single sector and no intermediate goods. In
this case λc = 1 and we get Yc/Y

c
= (λc/λc)1/(1−θ), where λc is the domestic cost share and λc

is its steady-state value.
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