
A Online Appendix: Proofs and Details for Static Model in Sec-

tions 2-3

A.1 Proof of Proposition 1

We have already proved that the conditions in the proposition are necessary for an allocation to-
gether with prices to form part of an equilibrium with complete markets. We now need to establish
these conditions are sufficient. The proof is constructive. Start with an allocation together with
prices that satisfy these conditions. We choose wages W i(s) to satisfy the labor-leisure condition
(5) for each i ∈ I and s ∈ S. Given some set of state prices Q(s), we pick portfolio taxes τi

D(s)
to satisfy the risk sharing condition (3) for each i ∈ I and s ∈ S. Note a first dimension of inde-
terminacy here: we can always multiply state prices Q(s) and portfolio taxes 1 + τi

D(s) by some
arbitrary common function λ(s) of s. We then pick labor taxes τi

L to satisfy the price setting equation
(6). Finally, for a given set of ex-post fiscal transfers T̂i(s) that satisfy the country budget constraint∫

Q(s)T̂i(s)π(s)ds =
∫

Q(s)
[
PT(s)(Ci

T(s)− Ei
T(s))

]
π(s) and the condition that aggregate net inter-

national transfers are zero in every state (8), we compute transfers to households Ti(s) using the
government budget constraint (7). We can then compute the required portfolio positions Di(s) us-
ing the ex-post household budget constraint (2). These choices guarantee that the ex-ante household
budget constraint (1) is verified. Note a second dimension of indeterminacy, as we have some degree
of freedom in choosing ex-post fiscal transfers T̂i(s).

A.2 Proof of Proposition 2

We have already proved that the conditions in the proposition are necessary for an allocation to-
gether with prices to form part of an equilibrium with complete markets. We now need to establish
these conditions are sufficient. The proof is constructive. Start with an allocation together with
prices that satisfy these conditions. We choose wages W i(s) to satisfy the labor-leisure condition (5)
for each i ∈ I and s ∈ S. We then pick labor taxes τi

L to satisfy the prices setting equation (12). We
choose transfers Ti(s) to satisfy the household budget constraint (11). We then choose ex-post fiscal
transfers T̂i(s) to satisfy the government budget constraint (13). We can verify that these choices
satisfy (8).

A.3 Price Setting with Constant Elasticity of Substitution

We have

1−
∫

τi(s)Ui
CNT

(s)Ci
NT(s)π(s)ds∫

Ui
CNT

(s)Ci
NT(s)π(s)ds

=
1

1 + τi
L

ε− 1
ε

.
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We can rewrite the first-order condition for Pi
NT as

∫ αi
p(s)

αi(s)
pi(s) αi(s)Ci

T(s)
1

pi(s)
Ui

CT
(s) τi(s)π(s) ds = 0.

If
αi

p(s)
αi(s) pi(s) is constant then this implies that

∫
Ci

NT(s)Ui
CNT

(s) τi(s)π(s) ds = 0.

Thus in this case 1
1+τi

L

ε−1
ε = 1 or τi

L = −1/ε.

A.4 Proof of Proposition 7

Consider an equilibrium such that τi(s) 6= 0 for some i ∈ I, s ∈ S. Assume, towards a contradiction,
that the allocation is constrained Pareto efficient.

We consider two cases in turn. First, suppose that Vi
CT
(s) = Ui

CT
(s)(1 + αi(s)

pi(s)τi(s)) < 0 for some
set Ω ⊂ I× S of positive measure of countries and states. Define the sections Ω(s) = {i : (i, s) ∈ Ω}.
Then there exists a perturbation that for each s ∈ S : (a) lowers Ci

T(s) for i ∈ Ω(s) and improves wel-
fare Vi(s); (b) increases Ci

T(s) for i /∈ Ω(s) and improves welfare Vi(s); and (c) satisfies the resource
constraint

∫
Ci

T(s)di =
∫

Ei
T(s)di. This perturbation is feasible and creates a Pareto improvement, a

contradiction.
Next, consider the case where 1 + αi(s)

pi(s)τi(s) ≥ 0 for all i ∈ I, s ∈ S. For each state s consider

ranking countries by their weighted labor wedge αi(s)
pi(s)τi(s). By Proposition 6 it must be that

1 + αi(s)
pi(s)τi(s)

1 + αi′ (s)
pi′ (s)

τi′(s)
=

1 + αi(s)
pi(s)τi(s′)

1 + αi′ (s)
pi′ (s)

τi′(s′)

for all i, i′, s and s′. This implies that the ranking must be the same in all states s. It follows that there
is a country i∗ that is at top of the ranking for all states s, i.e. i∗ ∈ ∩s∈S arg maxi∈I

αi(s)
pi(s)τi(s). Propo-

sition 5 then implies that this country has a positive labor wedge: τi∗(s) ≥ 0 for all s. Proposition 4
then implies that τi∗(s) = 0 for all s. Therefore we have that τi(s) ≤ 0 for all i ∈ I, s ∈ S. Proposition
5 then implies that actually τi(s) = 0 for all i ∈ I, s ∈ S.
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B Online Appendix: Extensions for Static Model in Sections 2-3

B.1 Sticky Wages

In order to have a well defined wage setting problem we assume that labor services are produced by
combining a variety of differentiated labor inputs according to the constant returns CES technology

Ni(s) =
(∫ 1

0
Ni,h(s)1− 1

εw dh
) 1

1− 1
εw .

The rest of the technology is as before. We assume that in each country there is a continuum of
workers h ∈ [0, 1], each supplying a particular variety h ∈ [0, 1] with preferences∫

Ui(Ci,h
NT(s), Ci,h

T (s), Ni,h(s); s)π(s)ds.

The budget constraints are the same as before∫
Di,h(s)Q(s)π(s)ds ≤ 0,

Pi
NT(s)C

i,h
NT(s) + PT(s)C

i,h
T (s) ≤ (1− τi

L)W
i,hNi,h(s)

+ PT(s)Ei
T(s) + Πi(s) + Ti(s) + (1 + τi

D(s))Di,h(s),

except that the wage W i,h is now specific to each worker h but independent of s because wages
are set in advance of the realization of the state s. Note that prices of non-traded goods are now
state-contingent. For convenience, we now assume that the worker pays for the labor tax; firms are
untaxed.

Workers set their own wages W i,h taking into account that in each state of the world s labor
demand is given by Ni(s)(W i,h/W i)−εw where W i = (

∫
(W i,h)1−εw dh)1/(1−εw) is the wage index for

labor services. In a symmetric equilibrium, all workers set the same wage W i,h = W i, and consume
and work the same so that Ci,h

NT(s) = Ci
NT(s), Ci,h

T (s) = Ci
T(s) and Ni,h(s) = Ni(s). The wage W i is

given by

W i =
1

1− τi
L

εw

εw − 1

∫
−Ni(s)Ui

N(s)π(s)ds∫ Ui
CNT

(s)

Pi
NT(s)

Ni(s)π(s)ds
.

All varieties sell at the same price so that Pi,j
NT(s) = Pi

NT(s). This price is given by

Pi
NT(s) =

ε

ε− 1
W i

Ai(s)
.

All the results that we derived in the version of the model with sticky prices carry through with
no modification to this specification with sticky wages. In particular, Propositions 1–12 are still
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valid. However, the corresponding allocations can be different than under sticky prices if there are
productivity shocks.

B.2 Limited Commitment

Explicit or implicit insurance (risk sharing) arrangements inevitably raise concerns of incentives.
We have abstracted from these considerations, not because we believe them to be unimportant, but
in order to isolate the effects that our aggregate demand externality has on optimal risk sharing.
Modeling limits to insurance due to incentive problems requires making specific choices about the
underlying shocks, the asymmetry of information, the available monitoring technologies, or the type
of commitment problem, etc. Although the possibilities are vast and exploring them all is beyond
the scope of this paper, we believe the main insights of our analysis would carry over.43

In the online appendix B.3, we analyze an example with moral hazard. Here instead, we develop
an example with limited commitment. Consider the implementation with incomplete markets and
international transfers, where all international risk sharing occurs through international transfers. Ex
post, in every state of the world s, some countries i are net contributors to the union with T̂i(s) ≤ 0,
and some countries i are net beneficiaries with T̂i(s) ≥ 0. This poses no particular problem to the
extent that there exists a strong enough union-wide institutional enforcement mechanism. But with
imperfect enforcement and limited commitment, the concern arises that governments of ex-post net
contributor countries do no in fact contribute the transfers that were agreed upon ex ante behind the
veil of ignorance before the realization of the shock.

To make things stark, consider the extreme case where there is no institutional enforcement mech-
anism. Governments can default on their promised transfers T̂i(s), and have no ability to commit.
We assume that default leads to a utility loss for which we adopt a flexible parametrization Ki(s).
The planning problem can now be written as

max
PT ,Pi

NT ,Ci
T(s)

∫ ∫
λiVi

(
Ci

T(s),
PT

Pi
NT

; s

)
π(s)dids (28)

subject to ∫
Ci

T(s)di =
∫

Ei
T(s)di (29)

and

Vi

(
Ci

T(s),
PT

Pi
NT

; s

)
≥ Vi

(
Ei

T(s),
PT

Pi
NT

; s

)
− Ki(s). (30)

The only difference introduced by the limited commitment problem is the presence of the incen-

43In practice of course, institutional mechanisms exist to mitigate these agency problems. For example, most fiscal
unions such as the US channel a large part of their transfers through more or less ex-ante-rules-based automatic stabiliz-
ers (through the unemployment insurance program, federal income and social security taxes, bailout funds), probably
for reasons of political acceptability and transparency, but also to mitigate the difficulties associated with collective and
distributing discretionary ex-post transfers in a world with limited commitment. Another example is state debt-limit in
the US, or collective budget procedures and enforcement mechanisms that already exist in Europe.
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tive compatibility constraint (30), requiring each country to be better off sticking to the fiscal union
arrangement than defaulting and reverting to autarky while experiencing the endowment loss asso-
ciated with default.

Let µ > 0 be the multiplier on (29) and νi(s) ≥ 0 be the multiplier on (30). The condition for
constrained efficient risk sharing becomes

Ui
CT
(s)[1 +

αi(s)
pi(s)

τi(s)][1 + νi(s)] = µ. (31)

By contrast, the corresponding corresponding condition for a country outside the currency union is

Ui
CT
(s)[1 + νi(s)] = µ. (32)

Condition (32) shows that even with flexible exchange rates, limited commitment endogenously
limits insurance (risk sharing) possibilities. A high value of the multiplier νi(s) indicates that it
is relatively tempting for country i to default in a state s. The optimal contract then adjusts the
transfer T̂i(s) and the traded goods consumption Ci

T(s) so that default is prevented. Condition (31)
shows how the optimal provision of insurance (risk sharing) and incentives must be modified when
the country is in a currency union. The provision of incentives requires the private consumption of
traded goods to vary with the realization of government consumption. Because prices are sticky, this
generates a non-zero pattern of labor wedges τi(s). This in turn opens up a wedge between the social
and private marginal utility of income, which creates another force agains the perfect equalization
of consumption of traded goods across states for each country.

This example shows that the optimal risk sharing arrangements are different for countries that
belong to a currency union than that for countries who have a flexible exchange rate. This is true with
or without enforcement frictions. In both cases, the optimal arrangement involves a key sufficient
statistic, the social marginal utility of transfers given by Ui

CT
(s)[1 + αi(s)

pi(s)τi(s)] for a country in a

currency union and given by Ui
CT
(s) for a country outside a currency union.

B.3 Moral Hazard

Suppose that the government can exert effort e ex ante to affect the distribution of the endowment
of the traded good ex post, but that effort e is not observable, creating a moral hazard problem. We
focus on a single country i ∈ [0, 1]. We assume that the shock s is purely idiosyncratic and only
affects the value of the endowment Ei

T(s) in country i. Naturally, monetary policy at the union level
should not react to to the idiosyncratic shocks s of an infinitesimal country, so that PT(s) = PT is
constant. These assumptions simplify the exposition. The principal-agent problem is then

max
Pi

NT ,Ci
T(s),e

∫
Vi

(
Ci

T(s),
PT

Pi
NT

)
π(s|e)ds− h(e) (33)
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subject to ∫
(Ci

T(s)− Ei
T(s))π(s|e)ds ≤ 0 (34)

and

∫
Vi

(
Ci

T(s),
PT

Pi
NT

)
π(s|e)ds− h(e) ≥

∫
Vi

(
Ci

T(s),
PT

Pi
NT

)
π(s|e′)ds− h(e′) for all e′. (35)

The first constraint (34) simply conditions the average level of expected transfers; this reflects the
fact that insurance is priced fairly i.e. (Q(s) = 1), since the shock is experienced by a single country
and does not affect aggregate resources at the union level. The last constraint (35) is the incentive
compatibility condition, requiring the country’s effort to be optimal, taking the schedule Ci

T(s) as
given.

In the absence of nominal rigidities or for a country with flexible exchange rates and independent
monetary policy, we would solve the same problem but using Vi∗(Ci

T(s)) = maxpi Vi (Ci
T(s), pi) in

place of Vi
(

Ci
T(s),

PT
Pi

NT

)
. Note that Vi (Ci

T, pi) ≤ Vi∗(Ci
T) with equality at a single value of Ci

T, so

that Vi∗ is an upper envelope of Vi. When prices are rigid it is as if the country were more risk
averse, in the sense described earlier. In the presence of moral hazard, higher risk aversion affects
the optimal insurance (risk sharing) contract Ci

T(·).
Consider the planning problem (33). Let µ be the multiplier on (34) and dν(e′) be the measure

multiplier on (35). The corresponding for constrained efficient risk sharing becomes

Ui
CT
(s)[1 +

αi(s)
pi(s)

τi(s)][1 +
∫

π(s|e)− π(s|e′)
π(s|e) dν(e′)] = µ. (36)

By contrast, the corresponding corresponding condition for a country outside the currency union is

Ui
CT
(s)[1 +

∫
π(s|e)− π(s|e′)

π(s|e) dν(e′)] = µ. (37)

Condition (37) shows that even with flexible exchange rates, moral hazard endogenously limits in-
surance (risk sharing) possibilities. There is a meaningful tradeoff between insurance (risk sharing)
and incentives and providing incentives for the country’s government to exert the adequate level ef-
fort requires the government to have “skin in the game”. The private consumption of traded goods
must vary with the realization of government spending on traded goods. It must be high when-
ever the particular realization of government spending is more likely (as measured by the likelihood
ration π(s|e)−π(s|e′)

π(s|e) ) under the desired effort level than under alternative effort levels that the gov-
ernment is tempted to exert (as measured by the measure multiplier dν(e′) on the corresponding
incentive compatibility constraint). This is accomplished by reducing the level of transfers to the
country when government spending on traded goods is high.

Condition (36) shows how the optimal provision of insurance (risk sharing) and incentives must
be modified when the country is in a currency union. The provision of incentives requires the pri-
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vate consumption of traded goods to vary with the realization of government consumption. Because
prices are sticky, this generates a non-zero pattern of labor wedges τi(s). This in turn opens up a
wedge between the social and private marginal utility of income, which creates another force agains
the perfect equalization of consumption of traded goods across states. As a result, the optimal in-
surance insurance (risk sharing) arrangements are different for countries that belong to a currency
union than that for countries who have a flexible exchange rate.

B.4 Government Spending

We introduce government spending in the model. We characterize the joint optimal use of interna-
tional transfers and government spending. Our analysis underscores that both instruments should
be used in conjunction. Moreover, we show that our characterization of fiscal unions is robust to
the availability of government spending as an additional instrument. We also compare their relative
performance depending on a number of deep economic parameters by studying a few limit cases.

Introducing government spending. Following the literature, we focus on the case where govern-
ment spending is concentrated on non-traded goods, which we view as the most practically relevant
case.44 In each state s and country i, the government spends Pi

NTGi
NT(s) to finance government

consumption of Gi
NT(s) of non-traded goods. As is standard, we capture agents’ preferences of gov-

ernment consumption by including it in the utility function and write

Ui(Gi
NT(s), Ci

NT(s), Ci
T(s), Ni(s); s)

for the state-s utility function of country i agents. We assume that that preferences are weakly sep-
arable over government consumption on the one hand, and private consumption and labor on the
other hand. In addition, we continue to assume that preferences over consumption goods are weakly
separable from labor, and that the preference over consumption goods are homothetic.

Apart from that, there are only minor differences with the setup of the main model. These differ-
ences involve the government budget constraint, the resource constraint for non-traded goods, and
the price setting conditions.45 Our implementability results in Propositions 1 and 2 can be extended
in a straightforward way.

44For example Beetsma and Jensen (2005) and Gali and Monacelli (2008) introduce government spending on domestic
goods in models where all goods are traded, with or without home bias in consumption. The natural equivalent in our
setup is to study government spending on non-traded goods. We have also analyzed government spending on traded
goods. The analysis is available upon request.

45The government budget constraint is now Ti(s) + Pi
NTGi

NT(s) = τi
LWi(s)Ni(s)− τi

D(s)Di(s) + T̂i(s). The resource
constraint for non-traded goods is now Ci

NT(s) + Gi
NT(s) = Ai(s)Ni(s). The price setting constraint is now Pi

NT =

(1 + τi
L)

ε
ε−1

∫ Q(s)
1+τi

D(s)
Wi(s)
Ai(s)

[Ci
NT(s)+Gi

NT(s)]π(s)ds∫ Q(s)
1+τi

D(s)
[Ci

NT(s)+Gi
NT(s)]π(s)ds

.
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Second-Best Planning problem. In order to write down the second-best Ramsey planning prob-
lem jointly characterizing international transfers and government spending, we modify the indirect
utility function. We define

Ṽi(Gi
NT(s), CT, p; s) = Ui

(
Gi

NT(s), αi(p; s)CT, CT,
αi(p; s)CT + Gi

NT(s)
Ai(s)

; s

)
.

In an equilibrium with Gi
NT(s), Ci

T(s) and pi(s), ex post welfare in state s in country i is then given
by

Ṽi(Gi
NT(s), Ci

T(s), pi(s); s).

The second-best planning problem is

max
Gi

NT(s),PT(s),Pi
NT ,Ci

T(s)

∫ ∫
Ṽi

(
Gi

NT(s), Ci
T(s),

PT(s)
Pi

NT
; s

)
λiπ(s) di ds

subject to ∫
Ci

T(s)di =
∫

Ei
T(s)di.

We can solve this planning problem recursively by defining

Vi(CT, p; s) = max
Gi

NT(s)
Ui

(
Gi

NT(s), αi(p; s)CT, CT,
αi(p; s)CT + Gi

NT(s)
Ai(s)

; s

)
, (38)

and then solving

max
PT(s),Pi

NT ,Ci
T(s)

∫ ∫
Vi

(
Ci

T(s),
PT(s)
Pi

NT
; s

)
λiπ(s) di ds

subject to ∫
Ci

T(s)di =
∫

Ei
T(s)di.

Constrained Pareto efficient allocations. With these notations, the analysis is identical to that of
the model without government spending. Indeed, the derivatives of the indirect utility function
Vi(CT, p; s) are given by exactly the same formula as in Proposition 3, and as a result, Propositions
4-10 as well as Proposition 12 carry through without any modification.46 Hence our analysis of fiscal
unions is robust to the availability of government spending as an additional instrument.

Of course, this does not mean that the resulting allocation is unchanged. Away from this case,
optimal government spending can reduce the deviations of the labor wedge τi(s) from zero, but it
does not eliminate them.47 There are two informative ways to write the optimality condition for
government spending, both of which follow directly from the definition of Vi(CT, p; s) in equation

46The exact conditions in Proposition 11 for the constrained efficiency of the complete markets equilibrium without
portfolio taxes are different in the presence of government spending.

47Formally, this is true except in the knife-edge cases where the optimal allocation with flexible prices can be imple-
mented with a fixed exchange rate.
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(38):

Ui
GNT

(s) = − 1
Ai(s)

Ui
N(s), (39)

or
Ui

GNT
(s) = (1− τi(s))Ui

CNT
(s) . (40)

To understand these formulas, it is best to analyze first the case when prices or exchange rates
are flexible. Optimal government spending is then characterized by equation (39) or equation (40)
with τi(s) = 0. Both equations equalize the marginal benefit Ui

GNT
(s) of government consump-

tion with its marginal cost, but express the marginal cost in two different (but equivalent) ways.
Equation (39) expresses the marginal cost − 1

Ai(s)U
i
N(s) in terms of the marginal increase labor that

would be required to service the marginal increase in government consumption, while equation (40)
with τi(s) = 0 expresses the marginal cost Ui

CNT
(s) in terms of the marginal reduction in private

consumption that would be required to service the marginal increase in government consumption.
These are two equivalent ways of stating the Samuelson rule (see Samuelson 1954) for the optimal
provision of public goods.

Depending on which of these formulations one prefers to focus on, rigid prices and fixed ex-
change rates either require no deviation from the Samuelson rule (equation (39)) or a deviation from
the Samuelson rule (equation (40)). The reason is that the social marginal cost of government spend-
ing is still given by − 1

Ai(s)U
i
N(s) but not by Ui

CNT
(s) and instead by (1 − τi(s))Ui

CNT
(s). This is

because the price of non-traded goods does not reflect the marginal cost of producing them. The
discrepancy is precisely given by the labor wedge. The government internalizes this wedge when it
decides its consumption of non-traded goods, but private agents do not. As a result, in recessions
when τi(s) > 0, it is optimal to tilt the mix of government and private consumption of non-traded
goods in the direction of the former, and the opposite holds true in booms when τi(s) < 0.48

Having characterized the jointly optimal use of international transfers and government spending
and shown the robustness of our characterization of optimal international transfers to the availabil-
ity of government spending as an additional instrument, we now compare the relative performance
of government spending and international transfers in a few enlightening limit cases. We first treat
the case of the closed-economy limit. We show that international transfers achieve perfect macroe-
conomic stabilization, with no residual role for government spending. By contrast, in the perfectly
open economy limit, international transfers are not used for macroeconomic stabilization, but gov-
ernment spending is. We then treat the cases where the disutility of labor is linear or government
spending is purely wasteful. In both cases, we show that even though the optimum is away from
the first best, government spending is not useful for macroeconomic stabilization.

48This analysis assumes that prices are entirely rigid. If there is some adjustment in prices, then increases in govern-
ment spending stimulate inflation. Given a fixed exchange rate, and other things equal, this leads to an appreciation
of the real exchange rate which depresses private spending on non-traded goods and counteracts the direct effect of
government spending on total spending on non-traded goods (see e.g. Farhi-Werning 2012). This lessens the macroeco-
nomic stabilization role of government spending. The same holds true for international transfers, as we emphasize in
Section 5.
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Closed-economy limit. Consider first the closed-economy limit. This limit can be understood as
follows. Suppose for simplicity that preferences are given by v(Gi

NT(s)) +
Ci(s)1−γ

1−γ − φ(Ni(s)) where

Ci(s) =

[
(1− α)

1
η Ci

NT(s)
η−1

η + α
1
η Ci

T(s)
η−1

η

] η
η−1

. Then for any p, αi(p; s) is decreasing in α. The

closed-economy limit is obtained in the limit by also scaling where α goes to zero and αi(p; s) goes to
infinity as long as we also scale Ei

T(s) by α
(1−α)

so as to keep αi(p; s)Ei
T(s) constant. In this limit, the

first-best level of welfare is achieved. This is because international transfers are extremely power-
ful in relatively closed economies. Indeed, we have already emphasized that the “dollar-for-dollar”
output multiplier of transfers is precisely given by the relative expenditure share of non-traded to
traded goods. And this multiplier goes to infinity in the closed-economy limit. As we approach the
closed-economy limit, vanishingly small departures (as a fraction of each country’s nominal income)
from the international transfers that support the first-best allocation are enough to perfectly stabilize
the economy and deliver τi(s) = 0 for all i and s. There is no residual macroeconomic stabilization
role for government spending, which then simply follows the first-best Samuelson rule.

Perfectly-open economy limit. The relative usefulness of international transfers and government
spending is reversed in the limit where countries are perfectly open, which we capture by letting α

go to one. In this limit, international transfers are not used for macroeconomic stabilization, in the
sense that constrained efficient and privately optimal risk sharing coincide, so that optimal inter-
national transfers are only needed when markets are incomplete, in order to replicate the complete
markets allocation with privately optimal risk sharing. By contrast, government spending is used
for macroeconomic stabilization as characterized by the same optimality conditions (39) and (40).

Linear disutility of labor. Suppose now that the disutility from labor is linear. We maintain the
same parametrization of preferences and assume in addition that φ(Ni(s)) = φNi(s) for some con-
stant φ > 0. In this case, the first-order condition for optimal government spending (39) becomes
v′(Gi

NT(s)) =
φ

Ai(s) . This formula, which pins down Gi
NT(s) as a function of Ai(s), holds both under

rigid prices and fixed exchange rates, and under flexible prices or flexible exchange rates. Hence
there is a sense in which government spending is not used for macroeconomic stabilization, despite
the fact that macroeconomic stabilization is imperfect. The same is not true of international transfers.

Purely wasteful government spending. Another enlightening case is the case in which govern-
ment spending is purely wasteful, so that it does not enter preferences.49 In that case, formulas (39)
and (40) indicate that it is optimal not to use government spending, both with rigid prices and fixed
exchange rates and with flexible prices or flexible exchange rates. Hence, once again, there is a sense
in which government spending is not used for macroeconomic stabilization, despite the fact that
macroeconomic stabilization is imperfect. The same is not true of international transfers.

49 Formally, this means that Ui(Gi
NT(s), Ci

NT(s), Ci
T(s), Ni(s); s) is independent of Gi

NT(s).
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C Online Appendix: Proofs and Details for Dynamic Model in

Sections 4-5

C.1 Nonlinear Calvo Price Setting Equations

The equilibrium conditions for the Calvo price setting model can be expressed as follows

1− δΠε−1
H,t

1− δ
=

(
Ft

Kt

)ε−1

,

Kt =
ε

ε− 1
1 + τL

AH,t
YtN

φ
t + δβΠε

H,t+1Kt+1,

Ft = YtC−σ
t S−1

t Qt + δβΠε−1
H,t+1Ft+1,

together with an equation determining the evolution of price dispersion

∆t = h(∆t−1, ΠH,t),

where h(∆, Π) = δ∆Πε + (1− δ)
(

1−δΠε−1

1−δ

) ε
ε−1 .

C.2 Decomposing the Planning Problem (22)

We can break down the planning problem into two parts. First, there is an aggregate planning
problem determining the average output gap and inflation ŷ∗t and π∗t

min
1
2

∫ ∞

0
e−ρt

[
απ(π

∗
t )

2 + (ŷ∗t )
2
]

dt (41)

subject to (27).
Second, there is a disaggregated planning problem determining deviations from the aggregates

for output gap, home inflation and consumption smoothing, ˆ̄yi
t, ˆ̄πi

H,t and ˆ̄θi
t

min
1
2

∫ ∞

0

∫ 1

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 + ( ˆ̄yi

t)
2 + αθ(

ˆ̄θi)2
]

didt (42)

subject to (23), (24), (25), (26). Note that because the forcing variables in this linear quadratic problem
satisfy

∫ 1
0 s̃i

tdi = 0, the aggregation constraint (26) is not binding. We can therefore drop it from
the planning problem. The resulting relaxed planning problem can be broken down into separate
component planning problems for each country i ∈ [0, 1]

min
1
2

∫ ∞

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 + ( ˆ̄yi

t)
2 + αθ(

ˆ̄θi)2
]

dt (43)
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subject to (23), (24) and (25).

C.3 Incomplete Markets and No Transfers in a Currency Union

Here we analyze the solution with incomplete markets and no transfers. This solution imposes
ˆ̄θi = 0 and coincides with the solution with complete markets and no interventions in financial
markets, a well-known property of the Cole-Obstfeld case, where the lack of complete markets is not
a constraint on private risk sharing.

Using the fact that
∫ 1

0
ˆ̄yi
tdi =

∫ 1
0

ˆ̄πi
H,tdi = 0, we are led to the following planning problem:

min
1
2

∫ ∞

0

∫ 1

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 + ( ˆ̄yi

t)
2 + απ(π

∗
t )

2 + (ŷ∗t )
2
]
di dt

subject to

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κy ˆ̄yi
t,

˙̄̂yi
t = − ˆ̄πi

H,t − ˙̃si
t,

ˆ̄yi
0 = −s̃i

0,

π̇∗t = ρπ∗t − κyŷ∗t ,

where the minimization is over the variables ˆ̄πi
H,t, π∗t , ˆ̄yi

t, ŷ∗t . Note that since ˆ̄θi = 0, the two aggre-

gation constraints
∫ 1

0
ˆ̄yi
tdi = 0 and

∫ 1
0

ˆ̄πi
H,tdi = 0 are automatically verified.

The solution of the planning problem is then simply ŷ∗t = π∗t = 0 for the aggregates. This
result is a restatement of the result in Benigno (2004) and Gali and Monacelli (2008) that optimal
monetary policy in a currency union ensures that the union average output gap and inflation are
zero in every period. Monetary policy can be chosen at the union level so that monetary conditions
are adapted to the average country. The disaggregated variables ˆ̄πi

H,t and ˆ̄yi
t solve the following

system of differential equations,

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κy ˆ̄yi
t,

˙̄̂yi
t = − ˆ̄πi

H,t − ˙̃si
t,

with initial condition
ˆ̄yi
0 = −s̃i

0.

Proposition 18. The solution with incomplete markets and no interventions in financial markets ( ˆ̄NFAi
0 =

ˆ̄θi = 0) coincides with the solution with complete markets and no interventions in financial markets. In both
cases, union-wide aggregates are zero

ŷ∗t = π∗t = 0.

60



C.4 Transfer Multipliers in a Currency Union

Before solving the normative problem it is useful to review the positive effects of transfers. The next
proposition characterizes the response of the economy to a marginal increase in transfers.

Proposition 19 (Transfer Multipliers). Let ν =
ρ−
√

ρ2+4κy
2 . Transfer multipliers are given by

∂ ˆ̄yi
t

∂ ˆ̄NFAi
0

= eνtρ
1− α

α
− (1− eνt)ρ

1
1 + φ

,

∂ ˆ̄πi
H,t

∂ ˆ̄NFAi
0

= −νeνt
[

ρ
1− α

α
+ ρ

1
1 + φ

]
,

∂ ˆ̄si
t

∂ ˆ̄NFAi
0

= −[1− eνt]

[
ρ

1− α

α
+ ρ

1
1 + φ

]
.

The presence of the discount factor ρ in all these expressions is natural because what matters
is the annuity value ρ ˆ̄NFAi

0 of the transfer. Note that the terms of trade gap equals accumulated
inflation: ˆ̄st = −

∫ t
0

ˆ̄πi
H,sds.

Transfers have opposite effects on output in the short and long run. In the short run, when prices
are rigid, there is a Keynesian effect due to the fact that transfers stimulate the demand for home

goods: ∂ ˆ̄yi
0

∂ ˆ̄NFAi
0
= ρ 1−α

α . In the long run, when prices adjust, the neoclassical wealth effect on labor

supply lowers output: limt→∞
∂ ˆ̄yi

t
∂ ˆ̄NFAi

0
= −ρ 1

1+φ . In the medium run, the speed of adjustment, from

the Keynesian short-run response to the neoclassical long-run response, is controlled by the degree
of price flexibility κy, which affects ν.50

Note that the determinants of the Keynesian and neoclassical wealth effects are very different.
The strength of the Keynesian effect hinges on the relative expenditure share of home goods 1−α

α :
the more closed the economy, the larger the Keynesian effect. The strength of the neoclassical wealth
effect depends on the elasticity of labor supply φ: the more elastic labor supply, the larger the neo-
classical wealth effect.

Positive transfers also increase home inflation. The long-run cumulated response in the price of
home produced goods equals ρ 1−α

α + ρ 1
1+φ . The first term ρ 1−α

α comes from the fact that transfers
increase the demand for home goods, due to home bias. The second term ρ 1

1+φ is due to a neoclassical
wealth effect that reduces labor supply, raising the wage. How fast this increase in the price of home
goods occurs depends positively on the flexibility of prices through its effect on ν.51

The effects echo the celebrated Transfer Problem controversy of Keynes (1929) and Ohlin (1929).
With home bias, a transfer generates a boom when prices are sticky, and a real appreciation of the
terms of trade when prices are flexible. The neoclassical wealth effect associated with a transfer
comes into play when prices are flexible, and generates an output contraction and a further real

50Note that ν is decreasing in κy, with ν = 0 when prices are rigid (κy = 0), and ν = −∞ when prices are flexible
(κy = ∞).

51Recall that ν is decreasing in the degree of price flexibility κy.
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appreciation.

C.5 Proof of Proposition 14

In this case, κy = 0 and the constraint set boils down to ˆ̄yi
t = (1− α) ˆ̄θi − s̃i

t, and we are therefore left
with the following component planning problem

min
1
2

∫ ∞

0
e−ρt

[
((1− α) ˆ̄θi − s̃i

t)
2 + αθ(

ˆ̄θi)2
]
dt.

The result follows.

C.6 Proof of Proposition 19

We use the decomposition of the planning problem given in Appendix C.2. We focus on the compo-
nent planning problem for a country i. We first solve the behavior of an economy for a given transfer
ˆ̄θi. Then in Appendix C.7, we solve for the optimal ˆ̄θi.

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κy ˆ̄yi
t − λα ˆ̄θi,

˙̄̂yi
t = − ˆ̄πi

H,t − ˙̃si
t,

ˆ̄yi
0 = (1− α) ˆ̄θi − s̃i

0.

Define E1 = [1, 0]′ and E2 = [0, 1]′. Let Xi
t = [ ˆ̄πi

H,t, ˆ̄yi
t]
′, Bi

t = [−λα ˆ̄θi,− ˙̃si
t]
′ = −λα ˆ̄θiE1 − ˙̃si

tE2.

Define A =

[
ρ −κy

−1 0

]
. Let ν =

ρ−
√

ρ2+4κy
2 < 0 be the (only) negative eigenvalue of A, and

Xν = [−ν, 1]′ and be an eigenvector associated with the negative eigenvalue of A. The solution is
given by

Xi
t = eνtαi

νXν −
∫ ∞

t
eA(t−s)Bi

sds = eνtαi
νXν + λα ˆ̄θi A−1E1 +

∫ ∞

t
˙̃si
ueA(t−u)E2du,

where
Xi

0 +
∫ ∞

0
e−AsBi

sds = αi
νXν,

E′2Xi
0 = (1− α) ˆ̄θi − s̃i

0.

We find
αi

ν =
[
(1− α)− λαE′2A−1E1

]
ˆ̄θi − s̃i

0 −
∫ ∞

0
˙̃si
tE
′
2e−AtE2dt.

Using E′2A−1E1 = −κ−1
y , and E′1A−1E1 = 0, we can infer the path for output ˆ̄yi

t = E′2Xi
t and inflation

ˆ̄πi
H,t = E′1Xi

t as follows:

ˆ̄yi
t = eνtαi

ν −
λ

κy
α ˆ̄θi +

∫ ∞

t
˙̃si
uE′2eA(t−u)E2du,
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ˆ̄πi
H,t = −νeνtαi

ν +
∫ ∞

t
˙̃si
uE′1eA(t−u)E2du.

The results in Proposition 19 follow by specializing these expressions to the case s̃t = 0.

C.7 Derivation of the Optimum in Section 6.2

In Appendix C.6, we solved for the behavior of the disaggregated variables Xi
t = [ ˆ̄πi

H,t, ˆ̄yi
t]
′ for a

given ˆ̄θi. We now solve for the optimal ˆ̄θi. We apply the results of Appendix C.6 in the particular
case s̃i

t = s̃i
0e−ψt. We get

Xi
t = eνtαi

νXν + λα ˆ̄θi A−1E1 − ψe−ψt s̃i
0(A + ψI)−1E2,

where
αi

ν =
[
(1− α)− λαE′2A−1E1

]
ˆ̄θi − s̃i

0 + ψs̃i
0E′2(A + ψI)−1E2,

E1 = [1, 0]′, E2 = [0, 1]′, A =

[
ρ −κy

−1 0

]
, ν =

ρ−
√

ρ2+4κy
2 < 0 is the negative eigenvalue of A, and

Xν = [−ν, 1]′ is an eigenvector associated with the negative eigenvalue of A. This yields

ˆ̄πi
H,t = −αννeνt − ψκy s̃i

0
(ρ + ψ)ψ− κy

e−ψt,

ˆ̄yi
t = ανeνt − αλ

κy

ˆ̄θi − (ρ + ψ)ψs̃i
0

(ρ + ψ)ψ− κy
e−ψt.

We need to solve
min

ˆ̄θi

1
2

αθ

ρ
( ˆ̄θi)2 +

1
2

∫ ∞

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 + ( ˆ̄yi

t)
2
]

dt.

This can be rewritten as

min
ˆ̄θi

1
2

αθ

ρ
( ˆ̄θi)2 +

1
2

∫ ∞

0
e−ρt

[
απ

(
α2

νν2e2νt +
( ψκy s̃i

0
(ρ + ψ)ψ− κy

)2e−2ψt +
2αννψκy s̃i

0
(ρ + ψ)ψ− κy

e−(ψ−ν)t
)

+

(
α2

νe2νt +
(αλ

κy

)2
( ˆ̄θi)2 +

( (ρ + ψ)ψs̃i
0

(ρ + ψ)ψ− κy

)2e−2ψt − 2αν
αλ

κy

ˆ̄θieνt

− 2αν(ρ + ψ)ψs̃i
0

(ρ + ψ)ψ− κy
e−(ψ−ν)t +

2αλ(ρ + ψ)ψs̃i
0

κy[(ρ + ψ)ψ− κy]
ˆ̄θie−ψt

)]
dt.

Solving the integrals, we arrive at

min
ˆ̄θi

αθ

2ρ
( ˆ̄θi)2 +

(αλ)2

2ρκ2 ( ˆ̄θi)2 +
απν2 + 1
2(ρ− 2ν)

(αi
ν)

2 +
(απκ2 + (ρ + ψ)2)(ψs̃i

0)
2

2(ρ + 2ψ)[(ρ + ψ)ψ− κy]2

+
(απνκy − ρ− ψ)ψs̃i

0
(ρ + ψ− ν)[(ρ + ψ)ψ− κy]

αi
ν +

αλs̃i
0ψ

(ρ + ψ)ψκy − κ2
y

ˆ̄θi − αλ

(ρ− ν)κy
αi

ν
ˆ̄θi.
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The solution is

ˆ̄θi =

[
αλ

(ρ−ν)κy
− απν2+1

ρ−2ν (1− α + αλ
κy
)
]

κy s̃i
0

(ρ+ψ)ψ−κy
− αλψs̃i

0
(ρ+ψ)ψκy−κ2

y
−

(απνκy−ρ−ψ)ψs̃i
0(1−α+ αλ

κy )

(ρ+ψ−ν)((ρ+ψ)ψ−κy)

αθ
ρ + (αλ)2

ρκ2
y
+ απν2+1

ρ−2ν (1− α + αλ
κy
)2 − 2αλ

(ρ−ν)κy
(1− α + αλ

κy
)

.

C.8 Proof of Proposition 15

In the closed-economy limit, as α→ 0, we have αθ = 0, and we see directly from Section C.7 that

ˆ̄θi = − κy s̃i
0

(ρ + ψ)ψ− κy
− ρ− 2ν

απν2 + 1
(απνκy − ρ− ψ)ψs̃i

0
(ρ + ψ− ν)[(ρ + ψ)ψ− κy]

.

D Online Appendix: Extensions of Dynamic Model in Sections

4-5 for Section 6

In this appendix, we detail two extensions of the dynamic model by introducing hand-to-mouth
consumers and alternative macroeconomic instruments. This appendix is organized as follows. Sec-
tion D.1 outlines the extended model. Section D.2 derives the allocations given exogenous policies.
Section D.3 derives the loss function. Sections D.4-D.9 set up the planning problem as well as the so-
lution method for alternative macroeconomic instruments: international transfers, capital controls,
government spending, redistribution, deficits, and then all domestic fiscal policy instruments com-
bined. Section D.10 specializes the previous sections to the case of no hand-to-mouth consumers. We
first setup up the model allowing only for international transfers, government spending, and capital
controls in Sections D.4-D.6. We then generalize it to allow for redistribution and deficits in Sections
D.7-D.9.

D.1 Model

This is a model of fiscal unions with two types of agents: hand-to-mouth (HtM) agents of measure
χ ∈ [0, 1] and optimizers of measure 1− χ. We assume throughout that countries are in a currency
union. From the get go, we study idiosyncratic productivity shocks in a given country i, which
will correspond to Home in the exposition of Sections 4-5.52 We abstract from idiosyncratic shocks
in other countries and from aggregate shocks. As a result, union-wide aggregates and policies are
constant at their steady state where outputs in all countries are equal to one.

52There is no rest of the world (RoW) beyond the members of the fiscal union.
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D.1.1 Households

The two types of households in country i share the same preferences, given by

∫ ∞

0
e−ρt

(
(1− υ) ln(Ci,s

t )− 1
1 + φ

(Ni,s
t )1+φ + υ ln(Gi

t)

)
dt, (44)

where s ∈ {o, r} designates the agent type; o denotes optimizers and r HtM agents. As in the main
paper, Ni,s

t denotes labor supplied by agent s in country i, and the consumption basket is given by

Ci,s
t =

[
(1− α)

1
η (Ci,s

H,t)
η−1

η + α
1
η (Ci,s

F,t)
η−1

η

] η
η−1

,

where

Ci,s
H,t =

( ∫ 1

0
(Ci,s

H,t(j))
ε−1

ε dj
) ε

ε−1

is the basket of home goods consumed by agent s in country i, with j denoting an individual good
variety. Similarly,

Ci,s
F,t =

( ∫ 1

0
(Ci,s

k,t)
γ−1

γ dk
) γ

γ−1

denotes the consumption index of imported goods consumed by agent s. We also have

Ci,s
k,t =

( ∫ 1

0
(Ci,s

k,t(j))
ε−1

ε dj
) ε

ε−1

.

Throughout the paper, we focus exclusively on the Cole-Obstfeld calibration and subsequently set
η = γ = 1. As is standard, the parameter α indexes the degree of home bias in goods consumption.
As α → 0, the share of imported goods in domestic consumption vanishes. As α → 1, the share of
home goods vanishes. The two agent types differ with respect to their per-period budget constraints,
which we now describe.

D.1.2 Budget Constraints, Transfers, and NFA

In our analysis of transfers, country i will receive a transfer in every period from the remaining
members of the fiscal union after the realization of a productivity shock. We impose that each opti-
mizer and each HtM agent receive an equal share of this transfer in every period. To that end, the
government will tax optimizers and rebate the proceeds to the HtM agents accordingly.

For optimizers, only the net present value of this transfer matters. We encode the net present
value of this transfer in the initial net foreign asset position of country i, NFAi

0, which we will later
derive from the optimizers’ budget constraint explicitly.

We start our discussion of transfers by considering the optimizers’ budget constraint. Each opti-
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mizer faces the per-period constraint of

∫ 1

0
Pi

H,t(j)Ci,o
H,t(j)dj +

∫ 1

0

∫ 1

0
Pk

t (j)Ci
k,t(j)dkdj + Di

i,t+1 +
∫ 1

0
Di

k,t+1dk

(45)

≤W i
t Ni,o

t + (1 + ii
t−1)Di

i,t +
∫ 1

0
(1 + τ

cap,i
t−1 )(1 + i∗)Di

k,tdk +
1

1− χ
Pi

t Zi
H,t + Pi

t Tcap,i,o
t + Pi

t Ti,o
t + Pi

tT i
t

In this expression, Di
k,t+1 is country i’s holdings of country k bonds, Di

i,t+1 is country i’s holdings
of country i bonds, Pi

t is the domestic consumer price index, W i
t is the domestic wage, Pi

H,t(j) is the
price of variety j of the home good in country i, Pk

t (j) is the price of variety j of the good of country
k. Besides labor income and income on bond holdings, the budget constraint of optimizers features
three additional sources of transfers. We denote by Pi

t Zi
H,t = Pi

H,tY
i
t −W i

t Ni
t nominal domestic profits,

where Pi
H,t is the price of the home good in country i. Note that optimizers receive all the profits in

the economy.
We now turn to the policy instruments that show up in the budget constraint. Ti,o

t is the real trans-
fer each optimizer in country i receives from the domestic government. T i

t denotes the transfer that
each optimizer receives from the fiscal union. Note that for convenience, we adopt the convention
that international transfers are paid to optimizers and then passed through to HtM consumers via
government taxes and transfers. We could equivalently have specified that international transfers are
paid to the government and then distributed to optimizers and HtM consumers. Finally ii

t−1 is the in-
terest rate in country i and i∗ in the rest of the currency union with β(1+ i∗) = 1. These can be differ-
ent because of capital controls in the form of taxes on capital inflows τ

cap,i
t−1 in country i. We rebate the

proceeds from the capital controls lump sum to optimizers using Tcap,i,o
t = −

∫ 1
0 τ

cap,i
t−1 (1 + i∗)Di

k,tdk,
and from now on, we omit these flows from the government budget constraint.

The HtM budget constraint given by

Pi
t Ci,r

t = W i
t Ni,r

t + Pi
t Ti,r

t . (46)

In our baseline model (we relax this later), the government must balance its budget in every
period t, yielding the following government budget constraint

Pi
H,tG

i
t + χPi

t Ti,r
t + (1− χ)Pi

t Ti,o
t = 0,

where Gi
t are real government purchases of domestic goods.

We impose that the lump sum transfers to optimizers Ti,o
t and to hand-to-mouth agents Ti,r

t are
such that after these transfers: (i) each agent receives and equal share of domestic profits Pi

t Zi
H,t

in every period; (ii) each agent receives and equal share of the international transfer Pi
tT i

t in every
period; (iii) each agent contributes equally towards the financing of domestic government spending
Pi

H,tG
i
t in every period.

For convenience, we introduce a separate notation, τi,o
t and τi,r

t , for the part of these transfers that
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ensures equal distribution of profits across agents as described in point (i) above:

Ti,r
t − τi,r

t = Zi
H,t, (47)

Ti,o
t − τi,o

t = − χ

1− χ
Zi

H,t. (48)

The government budget constraint can then equivalently be restated as

Pi
H,tG

i
t + χPi

t τi,r
t + (1− χ)Pi

t τi,o
t = 0. (49)

We denote the net present value of international transfers Pi
tT i

t discounted as the union interest
rate i∗ = β−1 − 1 in units of the initial domestic price index, Pi

0, which is the same thing as the price
index for imports in country i, Pi

F, in every period:53

NFAi
0 =

∞

∑
t=0

βt Pi
tT i

t

Pi
0

=
∞

∑
t=0

βt Pi
tT i

t

Pi
F

=
∞

∑
t=0

βt(Si
t)
−(1−α)T i

t .

Points (ii) and (iii) above imply that

NFAi
0 =

∞

∑
t=0

βt[τi,r
t + (Si

t)
−αGi

t]. (50)

In equilibrium, NFA0 is equal to the net present value of trade balances, as required by the current
account identity. Net exports are given by

NXi
t = Pi

H,tY
i
t − Pi

t Ci
t − Pi

H,tG
i
t. (51)

Therefore, we have

NFAi
0 = −

∞

∑
t=0

βt NXi
t

Pi
F

= −
∞

∑
t=0

βt
(
(Si

t)
−1Yi

t − (Si
t)
−(1−α)Ci

t − (Si
t)
−1Gi

t

)
. (52)

D.1.3 Firms

Our descriptions of firms here is identical to that in the body of the paper. Firms produce differenti-
ated goods with a linear technology given by

Yi
t (j) = Ai

tN
i
t(j), (53)

where Ai
t is the productivity in the home country. To offset the monopoly distortion, we introduce a

constant employment tax 1 + τL so that the real marginal cost deflated by the home producer price
index is given by

MCi
t =

1 + τL

Ai
t

W i
t

Pi
H,t

. (54)

53In the absence of transfers we simply have NFAi
0 = T i

t = 0 and τi,r
t = τi,o

t = −(Si
t)
−αGi

t.
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This employment tax is set cooperatively at a symmetric steady state with flexible prices. As we
show later, this implies that τL = −1

ε or ε
ε−1(1 + τL) = 1.

As in the main paper, we assume that the Law of One Price holds at all times and maintain
Producer Currency Pricing. Our price setting assumptions here are also analogous to those in the
paper, except that we now use continuous time. As a result, we can write the supply side equilibrium
conditions of the model as

1− δ(Πi
H,t)

ε−1

1− δ
=

(
Fi

t

Ki
t

)ε−1

Ki
t =

ε

ε− 1
1 + τL

Ai
t

Yi
t (Ni

t)
φ + βδ(Πi

H,t+1)
εKi

t+1

Fi
t =

Yi
t Qi

t

Ci
tS

i
t
+ βδ(Πi

H,t+1)
εFi

t+1

Πi
H,t =

Pi
H,t

Pi
H,t−1

.

D.1.4 Terms of trade, Exchange rates, and UIP

We briefly restate here our conventions about price indices and exchange rates from the body of the
paper.

We can write the consumer price index (CPI) as

Pi
t =

[
(1− α)(Pi

H,t)
1−η + α(Pi

F)
1−η

] 1
1−η

, (55)

and the home producer price index (PPI) as

Pi
H,t =

( ∫ 1

0
Pi

H,t(j)1−εdj
) 1

1−ε

.

The import price index is given by

Pi
F =

( ∫ 1

0
(Pi

k)
1−γdk

) 1
1−γ

,

with Pi
k =

( ∫ 1
0 Pi

k(j)1−εdj
) 1

1−ε denoting country i’s PPI.
Under the Law of One Price, we have Pi

H,t = Pk
H,t where Pk

H,t is country k’s domestic PPI in terms

of country k’s currency. Therefore, Pi
F = P∗, where P∗ =

( ∫ 1
0 (Pk

H)
1−γdk

) 1
1−γ , is the world price index.

As is standard, we define the terms of trade by Si
t =

Pi
F

Pi
H,t

, which allows us to write the home CPI as

Pi
t = Pi

H,t
(
1− α + α(Si

t)
1−η
) 1

1−η .
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The real exchange rate with country k is given by Qi
k,t =

Pk

Pi
t

where Pk is country k’s CPI. The effective

real exchange rate is therefore Qi
t =

P∗
Pi

t
.

The UIP condition is

1 + ii
t = (1 + τ

cap,i
t )(1 + i∗).

We define the Pareto weights Θi
t by

Ci,o
t = Θi

tC
∗,oQi

t.

The UIP condition implies a direct mapping between capital controls and these Pareto weights

Θi
t+1

Θi
t

= 1 + τ
cap,i
t .

From now on, we simply describe capital controls in terms of the Pareto weights Θi
t.

D.1.5 Steady State

We postulate a symmetric steady state such that all countries i ∈ [0, 1] within the monetary union
are symmetric so that Si = Θi = 1 and for simplicity set Ai = Ak = A∗ = 1 . The social planner sets
the labor tax τL so that the steady state allocation is efficient. In particular, the centralized problem
to pin down the efficient steady state allocation can be written as

max(1− χ)(1− υ) ln(Ci,o) + χ(1− υ) ln(Ci,r)− χ

1 + φ
(Ni,r)1+φ − 1− χ

1 + φ
(Ni,o)1+φ + υ ln(Gi), (56)

subject to technology and resource constraints

Yi = Ni

Yi = Ci + Gi

Ci = χCi,r + (1− χ)Ci,o

Ni = χNi,r + (1− χ)Ni,o.

The first-order conditions with respect to Ci,o, Ci,r, Ni,o and Ni,r immediately imply that agents should
be symmetric. That is, the efficient steady state is characterized by Ci,o = Ci,r = Ci and Ni,o = Ni,r =

Ni. The remaining first-order conditions can be rearranged so that

(1− υ)Gi = υCi

(Ni)φ =
1− υ

Ci .
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The first of these, together with the resource constraint, implies that

υ =
Gi

Yi , 1− υ =
Ci

Yi . (57)

The second, using the technology constraint, yields

Ni = 1, Yi = 1. (58)

It is straightforward to show, as in Gali-Monacelli (2008) for example, that the efficient steady
state can be decentralized with an employment tax that solves ε

ε−1(1 + τL) = 1, which implies
τL = −1

ε .
Let Zi

H,t denote profits of domestic firms, defined as

Pi
t Zi

H,t = Pi
H,tY

i
t −W i

t Ni
t .

In steady state, we have

Zi
H = (Si)−αYi − 1

1− υ
Ci,o(Ni,o)φNi = Yi − (1− υ)Yi 1

1− υ
= 0, (59)

where the second line follows by setting Si = 1 and Ni,o = Ni = 1.
It follows from our discussion in the previous subsection that in steady state, when trade is bal-

anced and there are no transfers, we have

τi,r = τi,o = −(Si)−αGi = −υYi (60)

which is consistent with the government budget constraint. This furthermore implies that

Ti,r = Ti,o +
1

1− χ
Zi

H = Ti,o = −υYi. (61)

D.1.6 Linearized Equilibrium

As in the baseline model of Sections(4)-(5) and for the same reasons, we move to continuous time.
Notation. We begin by defining some useful notation. For all variables Xt, we drop the time

subscript to denote the steady state by X. For Xt ∈ {Ti,o
t , Ti,r

t , τi,o
t , τi,r

t , NFAi
0, NXi

t}, we define xt =

Xt−X and x̃t = X̃t−X, where X̃t denotes the natural allocation.54 For all other variables, we define
xt = ln(Xt)− ln(X) and x̃t = ln(X̃t)− ln(X).

Furthermore, it will be convenient to work with the allocation in gaps from the natural allocation.
To that end, we define for all variables x̂t = xt − x̃t. We will furthermore normalize our allocation
by writing it in gaps from union aggregates. For all country i variables, we let ˆ̄xi

t = x̂i
t − x̂∗t , where

54We will abuse notation and let τi,o
t and τi,r

t refer to both the level of rebates and the normalized deviation from steady
state. Throughout, it will be obvious which of the two we refer to.
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x̂∗t =
∫ 1

0 x̂i
tdi is the union aggregate of the log-linearized variable xi

t in gaps from the natural.55

Finally since inflation under flexible prices is not well defined, we define π̂i = πi and ˆ̄πi =

πi − π∗ for both PPI and CPI inflation.

Labor supply. We start with the households’ labor supply condition,

(1− υ)
W i

t

Pi
t
= Ci,o

t (Ni,o
t )φ = Ci,r

t (Ni,r
t )φ. (62)

Linearizing, we have
wi

t − pi
t = ci,o

t + φni,o
t = ci,r

t + φni,r
t . (63)

Therefore, we have

(Natural) c̃i,o
t + φñi,o

t = c̃i,r
t + φñi,r

t

(Gaps from natural) ĉi,o
t + φn̂i,o

t = ĉi,r
t + φn̂i,r

t

(Gaps from union) ˆ̄ci,o
t + φ ˆ̄ni,o

t = ˆ̄ci,r
t + φ ˆ̄ni,r

t .

Backus-Smith. We have

Ci,o
t = Θi

tC
∗,o
t Qi

t, (64)

where Qi
t = (Si

t)
1−α.56 Linearizing, we have

ci,o
t = θi

t + c∗,ot + (1− α)si
t. (65)

Therefore, we have

(Natural) c̃i,o
t = θ̃i

t + (1− α)s̃i
t

(Gaps from natural) ĉi,o
t = θ̂i

t + c∗,ot + (1− α)ŝi
t

(Gaps from union) ˆ̄ci,o
t = ˆ̄θi

t + (1− α) ˆ̄si
t.

Aggregation. We have

ci
t = χci,r

t + (1− χ)ci,o
t (66)

and
ni

t = χni,r
t + (1− χ)ni,o

t . (67)

Production. We have
55We note here that under idiosyncratic shocks, we will have x̃∗t =

∫ 1
0 x̃i

tdi = 0 for all natural variables. That is, any
idiosyncratic shock to measure-0 country i will not affect the union’s natural allocation.

56C∗,ot =
∫ 1

0 Ci,o
t di denotes the union aggregate of optimizers’ consumption. For double-superscripts (country and

agent type), we write the country index (i or ∗) first, followed by the agent index (o or r).
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Yi
t = Ai

tN
i
t . (68)

Linearizing, we have
yi

t = ai
t + ni

t. (69)

Therefore, we have

(Natural) ỹi
t = ai

t + ñi
t

(Gaps from natural) ŷi
t = n̂i

t

(Gaps from union) ˆ̄yi
t = ˆ̄ni

t.

HtM budget constraint. We have

Pi
t Ti,r

t + W i
t Ni,r

t = Pi
t Ci,r

t , (70)

or
Ti,r

t +
1

1− υ
Ci,r

t (Ni,r
t )1+φ = Ci,r

t , (71)

Linearizing, we have
Ti,r

Yi + ti,r
t + (1 + φ)ni,r

t + υci,r
t + υ = 0, (72)

and since Ti,r

Yi = −υ, we have
ti,r
t + (1 + φ)ni,r

t + υci,r
t = 0. (73)

Therefore, we have

(Natural) t̃i,r
t + (1 + φ)ñi,r

t + υc̃i,r
t = 0

(Gaps from natural) t̂i,r
t + (1 + φ)n̂i,r

t + υĉi,r
t = 0

(Gaps from union) ˆ̄ti,r
t + (1 + φ) ˆ̄ni,r

t + υ ˆ̄ci,r
t = 0.

Aggregate demand. We have

Yi
t = (1− α)Ci

t(S
i
t)

α + α
Ci,o

t (Si
t)

α

Θi
t

∫ 1

0

Θj
tC

j
t

Cj,o
t

dj + Gi
t. (74)

Linearizing, we have

1
1− υ

yi
t = (1− α)

(
θi

t + ci
t + c∗,ot − ci,o

t
)
+ si

t + αc∗t +
υ

1− υ
gi

t. (75)
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Therefore, we have

(Natural)
1

1− υ
ỹi

t = s̃i
t + (1− α)

(
θ̃i

t + c̃i
t − c̃i,o

t
)
+

υ

1− υ
g̃i

t

(Gaps from natural)
1

1− υ
ŷi

t = ŝi
t + αc∗t + (1− α)

(
θ̂i

t + ĉi
t + c∗,ot − ĉi,o

t
)
+

υ

1− υ
ĝi

t

(Gaps from union)
1

1− υ
ˆ̄yi
t = ˆ̄si

t + (1− α)
( ˆ̄θi

t + ˆ̄ci
t − ˆ̄ci,o

t
)
+

υ

1− υ
ˆ̄gi
t.

NFA. Log-linearizing (52), we find

NFAi
0 = −

∫ ∞

0
e−ρt

(
yi

t − α(1− υ)si
t − (1− υ)ci

t − υgi
t

)
dt, (76)

From (76), we have

(Natural) ˜NFAi
0 = −

∫ ∞

0
e−ρt

(
ỹi

t − α(1− υ)s̃i
t − (1− υ)c̃i

t − υg̃i
t

)
dt = 0

(Gaps from natural) ˆNFAi
0 = −

∫ ∞

0
e−ρt

(
ŷi

t − α(1− υ)ŝi
t − (1− υ)ĉi

t − υĝi
t

)
dt

(Gaps from union) ˆ̄NFAi
0 = −

∫ ∞

0
e−ρt

(
ˆ̄yi
t − α(1− υ) ˆ̄si

t − (1− υ) ˆ̄ci
t − υ ˆ̄gi

t

)
dt.

Transfer conversion. We have

τi,r
t = Ti,r

t − Zi
H,t = Ti,r

t −Yi
t (S

i
t)
−α +

1
1− υ

Ci,o
t (Ni,o

t )φNi
t . (77)

Linearizing, we have
τi,r

t = ti,r
t −

(
yi

t − αsi
t − ci,o

t − φni,o
t − ni

t
)
. (78)

Therefore, we have

(Natural) τ̃i,r
t = t̃i,r

t −
(
ỹi

t − αs̃i
t − c̃i,o

t − φñi,o
t − ñi

t
)

(Gaps from natural) τ̂i,r
t = t̂i,r

t −
(
ŷi

t − αŝi
t − ĉi,o

t − φn̂i,o
t − n̂i

t
)

(Gaps from union) ˆ̄τi,r
t = ˆ̄ti,r

t −
(

ˆ̄yi
t − α ˆ̄si

t − ˆ̄ci,o
t − φ ˆ̄ni,o

t − ˆ̄ni
t
)
.

Similar conditions hold for τi,o
t .

Government budget constraint. We have

0 = Pi
H,tG

i
t + χPi

t τi,r
t + (1− χ)Pi

t τi,o
t , (79)

which we can linearize as
αυsi

t = χτi,r
t + (1− χ)τi,o

t + υgi
t. (80)

73



Therefore, we have

(Natural) αυs̃i
t = χτ̃i,r

t + (1− χ)τ̃i,o
t + υg̃i

t

(Gaps from natural) αυŝi
t = χτ̂i,r

t + (1− χ)τ̂i,o
t + υĝi

t

(Gaps from union) αυ ˆ̄si
t = χ ˆ̄τi,r

t + (1− χ) ˆ̄τi,o
t + υ ˆ̄gi

t.

Symmetric fiscal union transfers. We want to rebate the transfers received by optimizers from the

union to HtM agents so that each agent receives the same amount. This condition is given by

NFAi
0 =

∫ ∞

0
e−ρt[τi,r

t + (Si
t)
−αGi

t]dt. (81)

Linearizing yields

NFAi
0 =

∫ ∞

0
e−ρt[τi,r

t + υgi
t − υαsi

t]dt. (82)

This implies

(Natural) ˜NFAi
0 =

∫ ∞

0
e−ρt[τ̃i,r

t + υg̃i
t − υαs̃i

t]dt = 0

(Gaps from natural) ˆNFAi
0 =

∫ ∞

0
e−ρt[τ̂i,r

t + υĝi
t − υαŝi

t]dt = 0

(Gaps from union) ˆ̄NFAi
0 =

∫ ∞

0
e−ρt[ ˆ̄τi,r

t + υ ˆ̄gi
t − υα ˆ̄si

t]dt = 0.

Supply side with flexible prices. Under the natural, the supply side simplifies to the single equation

ỹi
t = c̃i

t + αs̃i
t + (1 + φ)ñi

t. (83)

Supply side with sticky prices. Let λ = ρδ(ρ + ρδ), where ρδ is the arrival rate of price changes.

Using the supply-side equilibrium conditions in continuous time, we can write the Phillips Curve as

(Gaps from natural) ˙̂πi
H,t = ρπ̂i

H,t − λ

(
φn̂i

t + ĉi
t + αŝi

t

)
(Gaps from union) ˙̄̂πi

H,t = ρ ˆ̄πi
H,t − λ

(
φ ˆ̄ni

t + ˆ̄ci
t + α ˆ̄si

t

)
.

D.2 Allocations Given Exogenous Policies

We begin this section by characterizing and solving for the natural allocation. We then summarize
the allocation with policy in gaps from the natural, which will be our exclusive focus for all sub-
sequent analysis. Furthermore, we derive the (IS) and (NKPC) equations, an initial condition with
which we can solve the dynamical system later on, as well as country i’s generalized budget con-
straint. Finally, we solve analytically the allocation under sticky prices but without policy, which we
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will later use for several of our numerical exercises.

D.2.1 Natural Allocation

We define the natural as the allocation with flexible prices and with passive policy. As discussed
in the main text, we allow government spending and taxes to move with the technology shock to
ensure that the flexible price allocation is efficient. At the natural allocation, taxes are uniform across
agents and the government budget is balanced in every period. This implies g̃i

t = ai
t and θ̃i

t = θ̃i

for all i. Furthermore, there are no fiscal union transfers so that ˜NFAi
0 = 0. This implies that τ̃i,r

t

and τ̃i,o
t merely denote tax rebates that are equally imposed on both agents to balance the per-period

government budget constraint. We note here again that under idiosyncratic shocks to any measure-0
country i, the union-wide natural allocation remains unaffected and x̃∗t = 0 for all variables x̃t.

The natural allocation is given by the system of equations

ỹi
t = ai

t + ñi
t (84)

c̃i
t = χc̃i,r

t + (1− χ)c̃i,o
t (85)

ñi
t = χñi,r

t + (1− χ)ñi,o
t (86)

c̃i,o
t + φñi,o

t = c̃i,r
t + φñi,r

t (87)

c̃i,o
t = θ̃i

t + (1− α)s̃i
t (88)

0 = t̃i,r
t + (1 + φ)ñi,r

t + υc̃i,r
t (89)

1
1− υ

ỹi
t = s̃i

t + (1− α)
(
θ̃i

t + c̃i
t − c̃i,o

t
)
+

υ

1− υ
g̃i

t (90)

ỹi
t = c̃i

t + αs̃i
t + (1 + φ)ñi

t (91)

as well as the following conditions for transfers and the NFA

αυs̃i
t = χτ̃i,r

t + (1− χ)τ̃i,o
t + υg̃i

t (92)

τ̃i,o
t = t̃i,o

t +
χ

1− χ

(
ỹi

t − αs̃i
t − c̃i,o

t − φñi,o
t − ñi

t

)
(93)

τ̃i,r
t = t̃i,r

t −
(

ỹi
t − αs̃i

t − c̃i,o
t − φñi,o

t − ñi
t

)
(94)

0 = −
∫ ∞

0
e−ρt

(
ỹi

t − α(1− υ)s̃i
t − (1− υ)c̃i

t − υg̃i
t

)
dt (95)

0 =
∫ ∞

0
e−ρt

(
τ̃i,r

t + υg̃i
t − αυs̃i

t

)
dt = 0. (96)

We highlight two important features of the natural allocation: First, for any level of steady state
government spending υ ∈ [0, 1], the natural allocation is χ-invariant and θ̃i = 0. Second, for any
level of steady state government spending υ ∈ [0, 1] and for any share of hand-to-mouth agents
χ ∈ [0, 1], the natural allocation is symmetric, with ñi,r

t = ñi,o
t and c̃i,r

t = c̃i,o
t for all t.
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We will now solve the natural allocation in closed form. We use g̃i
t = ai

t. Solving out for θ̃i
t,

ñi
t = ỹi

t − ai
t, c̃i

t = χc̃i,r
t + (1− χ)c̃i,o

t , and c̃i,o
t = θ̃i

t + (1− α)s̃i
t, we find

ỹi
t − ai

t = χñi,r
t + (1− χ)ñi,o

t

φñi,o
t + (1− α)s̃i

t = c̃i,r
t + φñi,r

t

αυs̃i
t + (1 + φ)ñi,r

t + υc̃i,r
t = s̃i

t + φñi,o
t − (1− υ)ai

t

1
1− υ

ỹi
t = [1− χ(1− α)2]s̃i

t + χ(1− α)c̃i,r
t +

υ

1− υ
ai

t

(1 + φ)ai
t = χc̃i,r

t + [(1− χ)(1− α) + α]s̃i
t + φỹi

t.

From here, we can solve for c̃i,r
t and ñi,r

t , yielding

c̃i,r
t =

φ

1− χ + (1− υ)φ
ỹi

t −
υφ

1− χ + (1− υ)φ
ai

t +
(1− α)(1− χ)− (1− υ)αφ

1− χ + (1− υ)φ
s̃i

t

ñi,r
t =

(1− υ)φ

1− χ + (1− υ)φ
ỹi

t −
(1− υ)(1− χ + φ)

1− χ + (1− υ)φ
ai

t +
(1− χ)(1− υ)

1− χ + (1− υ)φ
s̃i

t.

Plugging these into the aggregate demand relation, we can solve for the terms of trade and find that
s̃i

t =
1

1−υ ỹi
t − υ

1−υ ai
t. Using these to solve for the output gap, finally, we find

ỹi
t = ai

t, (97)

and similarly
s̃i

t = ai
t. (98)

Solving the remainder of the allocation is straightforward using these two results. Finally, we note
here that

˙̃si
t = − ṗi

H,t

= −ψe−ψtai
0. (99)

We will make use of this result later on.

D.2.2 Allocation with Policy

We now present the allocation in terms of gaps from the natural. Recall that ˆ̄xi
t = ln(Xi

t)− ln(X̃i
t) for

all variables Xi
t, where X̃i

t denotes the natural allocation.
The linear model with policy is given by

ˆ̄ci,o
t + φ ˆ̄ni,o

t = ˆ̄ci,r
t + φ ˆ̄ni,r

t (100)

ˆ̄ci,o
t = ˆ̄θi

t + (1− α) ˆ̄si
t (101)

ˆ̄ci
t = χ ˆ̄ci,r

t + (1− χ) ˆ̄ci,o
t (102)
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ˆ̄ni
t = χ ˆ̄ni,r

t + (1− χ) ˆ̄ni,o
t (103)

ˆ̄yi
t = ˆ̄ni

t (104)
ˆ̄ti,r
t = −(1 + φ) ˆ̄ni,r

t − υ ˆ̄ci,r
t (105)

1
1− υ

ˆ̄yi
t = ˆ̄si

t + (1− α)
( ˆ̄θi

t + ˆ̄ci
t − ˆ̄ci,o

t
)
+

υ

1− υ
ˆ̄gi
t (106)

ˆ̄τi,r
t = ˆ̄ti,r

t −
(

ˆ̄yi
t − α ˆ̄si

t − ˆ̄ci,o
t − φ ˆ̄ni,o

t − ˆ̄ni
t
)

(107)

αυ ˆ̄si
t = χ ˆ̄τi,r

t + (1− χ) ˆ̄τi,o
t + υ ˆ̄gi

t (108)

ˆ̄NFAi
0 =

∫ ∞

0
e−ρt[ ˆ̄τi,r

t + υ ˆ̄gi
t − υα ˆ̄si

t
]
dt (109)

ˆ̄NFAi
0 = −

∫ ∞

0
e−ρt[ ˆ̄yi

t − α(1− υ) ˆ̄si
t − (1− υ) ˆ̄ci

t − υ ˆ̄gi
t
]
dt (110)

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − λ

(
φ ˆ̄ni

t + ˆ̄ci
t + α ˆ̄si

t

)
(111)

πi
t = πi

H,t + αṡi
t (112)

ċi,o
t = ii

t − πi
t − ρ. (113)

Note that for all variables we have
∫ 1

0 x̃i
tdi = 0, so that ˜̄xi

t = x̃i
t. We used this simplification above.

We furthermore need an initial value condition to close the system and pin down the solution of
this first-order linear system of ODEs. We will derive the initial condition below.

Before doing so, it will be convenient to solve this system in terms of ˆ̄yi
t, ˆ̄τi,r

t , ˆ̄θi
t and ˆ̄gi

t. We start
by solving out for ˆ̄ni

t, ˆ̄ci
t, and ˆ̄ci,o

t . This yields

ˆ̄θi
t + (1− α) ˆ̄si

t + φ ˆ̄ni,o
t = ˆ̄ci,r

t + φ ˆ̄ni,r
t

ˆ̄yi
t = χ ˆ̄ni,r

t + (1− χ) ˆ̄ni,o
t

ˆ̄ti,r
t = −(1 + φ) ˆ̄ni,r

t − υ ˆ̄ci,r
t

1
1− υ

ˆ̄yi
t = (1− α)(1− χ) ˆ̄θi

t + χ(1− α) ˆ̄ci,r
t + [1− χ(1− α)2] ˆ̄si

t +
υ

1− υ
ˆ̄gi
t

ˆ̄ti,r
t = ˆ̄τi,r

t + ˆ̄yi
t − α ˆ̄si

t − ˆ̄ci,o
t − φ ˆ̄ni,o

t − ˆ̄ni
t.

Next, we solve out for ˆ̄ti,r
t using the last equation in the previous block, and for ˆ̄ni,o

t = 1
1−χ

ˆ̄yi
t −

χ
1−χ

ˆ̄ni,r
t . We are interested in the following two equations,

ˆ̄θi
t + (1− α) ˆ̄si

t +
φ

1− χ
ˆ̄yi
t = ˆ̄ci,r

t +
φ

1− χ
ˆ̄ni,r

t

ˆ̄τi,r
t − ˆ̄si

t − ˆ̄θi
t −

φ

1− χ
ˆ̄yi
t + (1 + φ +

χφ

1− χ
) ˆ̄ni,r

t = −υ ˆ̄ci,r
t ,

which we can now use to solve for ˆ̄ci,r
t and ˆ̄ni,r

t . In particular, this yields

ˆ̄ni,r
t =

1− χ

1− χ + (1− υ)φ

(
(1− υ)

φ

1− χ
ˆ̄yi
t + (1− υ) ˆ̄θi

t + [1− υ(1− α)] ˆ̄si
t − ˆ̄τi,r

t

)
(114)
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and
ˆ̄ci,r
t =

1
1− χ + (1− υ)φ

(
(1− χ) ˆ̄θi

t + φ ˆ̄yi
t + [(1− α)(1− χ)− αφ] ˆ̄si

t + φ ˆ̄τi,r
t

)
. (115)

Finally, we use the linearized aggregate demand relation to solve for ˆ̄si
t. We find

ˆ̄si
t =

(
1− (1− α)χ

(1− υ)φ + αυφ

1− χ + (1− υ)φ

)−1[( 1
1− υ

− (1− α)χφ

1− χ + (1− υ)φ

)
ˆ̄yi
t −

υ

1− υ
ˆ̄gi
t (116)

− (1− α)(1− χ)
1 + φ− υφ

1− χ + (1− υ)φ
ˆ̄θi
t −

(1− α)χφ

1− χ + (1− υ)φ
ˆ̄τi,r
t

]
≡νy ˆ̄yi

t + νg ˆ̄gi
t + νθ

ˆ̄θi
t + ντ ˆ̄τi,r

t . (117)

Therefore, we can for the future introduce the following notation

ˆ̄ci,r
t = ψy ˆ̄yi

t + ψθ
ˆ̄θi
t + ψτ ˆ̄τi,r

t + ψg ˆ̄gi
t (118)

ˆ̄ni,r
t = ηy ˆ̄yi

t + ηg ˆ̄gi
t + ηθ

ˆ̄θi
t + ητ ˆ̄τi,r

t (119)

ˆ̄ci
t = ζy ˆ̄yi

t + ζθ
ˆ̄θi
t + ζτ ˆ̄τi,r

t + ζg ˆ̄gi
t (120)

where

ψy =
φ

1− χ + (1− υ)φ
+

[
1− α− (1− υ)φ + αυφ

1− χ + (1− υ)φ

]
νy

ψθ =
1− χ

1− χ + (1− υ)φ
+

[
1− α− (1− υ)φ + αυφ

1− χ + (1− υ)φ

]
νθ

ψτ =
φ

1− χ + (1− υ)φ
+

[
1− α− (1− υ)φ + αυφ

1− χ + (1− υ)φ

]
ντ

ψg =

[
1− α− (1− υ)φ + αυφ

1− χ + (1− υ)φ

]
νg

and

ηy =
1− χ

1− χ + (1− υ)φ

[
(1− υ)

φ

1− χ
+ [1− υ(1− α)]νy

]
ηg =

1− χ

1− χ + (1− υ)φ
[1− υ(1− α)]νg

ηθ =
1− χ

1− χ + (1− υ)φ

[
1− υ + [1− υ(1− α)]νθ

]
ητ =

1− χ

1− χ + (1− υ)φ

[
− 1 + [1− υ(1− α)]ντ

]
,

and

ζy = χψy + (1− χ)(1− α)νy
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ζg = χψg + (1− χ)(1− α)νg

ζτ = χψτ + (1− χ)(1− α)ντ

ζθ = χψθ + (1− χ)[1 + (1− α)νθ].

D.2.3 IS equation

We start from the linearized aggregate demand equation and use slightly more convenient notation
to write

Λy ˆ̄yi
t = Λs ˆ̄si

t + Λg ˆ̄gi
t + Λθ

ˆ̄θi
t + Λτ ˆ̄τi,r

t , (121)

where

Λy =
1

1− υ
− (1− α)χφ

1− χ + (1− υ)φ

Λs = 1− (1− α)χ
(1− υ)φ + αυφ

1− χ + (1− υ)φ

Λθ = (1− α)(1− χ)
1 + φ− υφ

1− χ + (1− υ)φ

Λg =
υ

1− υ

Λτ =
(1− α)χφ

1− χ + (1− υ)φ
,

and where we have the easy conversions: νy =
Λy
Λs

, νg = −Λg
Λs

,νθ = −Λθ
Λs

, and ντ = −Λτ
Λs

. Differenti-
ating, we have

Λy
˙̄̂yi
t = Λs

˙̄̂si
t + Λg

˙̄̂gi
t + Λθ

˙̄̂
θi

t + Λτ
˙̄̂τi,r
t ,

To derive the (IS) equation, all that is left to do is to find an expression for ˙̄̂si
t. From the definition

of the terms of trade, we can directly write

˙̄̂si
t = −( ˆ̄πi

H,t + ˙̃si
t). (122)

Therefore, the fully general (IS) equation is given by

Λy
˙̄̂yi
t = −Λs( ˆ̄πi

H,t + ˙̃si
t) + Λg

˙̄̂gi
t + Λθ

˙̄̂
θi

t + Λτ
˙̄̂τi,r
t . (123)

D.2.4 NKPC

We start with the general Phillips Curve

π̇i
H,t = ρπi

H,t − λ

(
φni

t + ci
t + αsi

t − ai
t

)
. (124)
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Noting that
φñi

t + c̃i
t + αs̃i

t − ai
t = 0 (125)

under the natural allocation, and taking deviations from union aggregates, we can write the NKPC
in gap notation as

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − λ
(
φ ˆ̄ni

t + ˆ̄ci
t + α ˆ̄si

t
)
, (126)

Using expressions we derived earlier, we have

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − λφ ˆ̄yi
t − λ

(
ζy ˆ̄yi

t + ζθ
ˆ̄θi
t + ζτ ˆ̄τi,r

t + ζg ˆ̄gi
t
)
− λα

(
νy ˆ̄yi

t + νg ˆ̄gi
t + νθ

ˆ̄θi
t + ντ ˆ̄τi,r

t
)
,

or, collecting terms,
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κθ
ˆ̄θi
t − κτ ˆ̄τi,r

t − κg ˆ̄gi
t, (127)

where

κy = λ(φ + ζy + ανy)

κg = λ(ζg + ανg)

κτ = λ(ζτ + αντ)

κθ = λ(ζθ + ανθ).

D.2.5 Initial Condition

As for the (IS) equation, we start with the linearized aggregate demand relation. We have

Λy ˆ̄yi
0 = Λs ˆ̄si

0 + Λg ˆ̄gi
0 + Λθ

ˆ̄θi
0 + Λτ ˆ̄τi,r

0 . (128)

We can obtain an initial condition for our dynamic system by noting that

si
0 = ˆ̄si

t + s̃i
0 = 0, (129)

implying that ˆ̄si
t = −s̃i

0. Using this, we can write

Λy ˆ̄yi
0 = −Λs s̃i

0 + Λg ˆ̄gi
0 + Λθ

ˆ̄θi
0 + Λτ ˆ̄τi,r

0 . (130)

D.2.6 Country-i Budget Constraint

Finally, it remains to simplify the net foreign asset relations. Solving out for ˆ̄NFAi
0, we can write

∫ ∞

0
e−ρt[ ˆ̄τi,r

t + υ ˆ̄gi
t − υα ˆ̄si

t
]
dt = −

∫ ∞

0
e−ρt[ ˆ̄yi

t − α(1− υ) ˆ̄si
t − (1− υ) ˆ̄ci

t − υ ˆ̄gi
t
]
dt.
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We can simplify to get

0 =
∫ ∞

0
e−ρt

[
ˆ̄yi
t + ˆ̄τi,r

t − (1− υ)χ

(
ψy ˆ̄yi

t + ψθ
ˆ̄θi
t + ψτ ˆ̄τi,r

t + ψg ˆ̄gi
t

)
− (1− υ)(1− χ) ˆ̄θi

t

− [α + (1− υ)(1− χ)(1− α)]

(
νy ˆ̄yi

t + νg ˆ̄gi
t + νθ

ˆ̄θi
t + ντ ˆ̄τi,r

t

)]
dt.

Collecting terms, we can write

0 =
∫ ∞

0
e−ρt

[
Γy ˆ̄yi

t + Γτ ˆ̄τi,r
t + Γθ

ˆ̄θi
t + Γg ˆ̄gi

t

]
dt, (131)

where

Γy = 1− (1− υ)χψy − [α + (1− υ)(1− χ)(1− α)]νy

Γτ = 1− (1− υ)χψτ − [α + (1− υ)(1− χ)(1− α)]ντ

Γθ = −(1− υ)(1− χ)− (1− υ)χψθ − [α + (1− υ)(1− χ)(1− α)]νθ

Γg = −(1− υ)χψg − [α + (1− υ)(1− χ)(1− α)]νg.

D.2.7 Allocation with Sticky Prices

Finally, we will solve the allocation presented above under sticky prices but without optimal policy
intervention. In particular, we have ˆ̄NFAi

0 = 0 since there are no international transfers. This implies
that ˆ̄τi,r

t = ˆ̄τi,o
t = αυ ˆ̄si

t.
Furthermore, we set ˆ̄gi

t = 0 and ˆ̄θi
t =

ˆ̄θi in the absence of government spending policy and capital
controls. Since we also have ˆ̄si

t = νy ˆ̄yi
t + ντ ˆ̄τi,r

t + νθ
ˆ̄θi, we can write

ˆ̄τi,r
t =

αυ

1− αυντ
(νy ˆ̄yi

t + νθ
ˆ̄θi)

˙̄̂τi,r
t =

αυ

1− αυντ
νy

˙̄̂yi
t.

This allocation will be important for our numerical exercises where we compare optimal policy
to this no-policy benchmark.

NFA. The general country i budget constraint simplifies to

0 =
∫ ∞

0
e−ρt

[
Γy ˆ̄yi

t + Γτ ˆ̄τi,r
t + Γθ

ˆ̄θi
]

dt (132)

0 =
∫ ∞

0
e−ρt

[(
Γy + Γτ

αυ

1− αυντ
νy

)
ˆ̄yi
t +

(
Γθ + Γτ

αυ

1− αυντ
νθ

)
ˆ̄θi
]

dt. (133)

One can easily verify that Γy + Γτ
αυ

1−αυντ
νy = 0. The budget constraint then directly implies that

ˆ̄θi = 0 for the no-policy allocation.
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Allocation. The simplified (IS) equation can then be written as

˙̄̂yi
t = −G′( ˆ̄πi

H,t + ˙̃si
t), (134)

where G′ = Λs
Λy−Λτ

αυ
1−αυντ

νy
. The (NKPC) becomes

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κ̂y ˆ̄yi
t, (135)

with κ̂y = κy + κτ
αυ

1−αυντ
νy. And finally, the initial condition can be written as

ˆ̄yi
0 = −Ḡ′ s̃i

0 (136)

with Ḡ′ = Λs+αυΛτ
Λy

.
We can write the dynamical system describing the no-policy allocation as

Ẋi
t = AXi

t + Bi
t, (137)

where

A =

(
ρ −κ̂y

−G′ 0

)
, Bi

t =

(
0
−G′ ˙̃si

t

)
, Xi

0 =

(
ˆ̄πi

H,0

−Ḡ′ s̃i
0

)
,

We will solve for ˆ̄πi
H,0 to ensure the stability of this system. It is straightforward to verify that the

only negative eigenvalue of A is

ν =
1
2

(
ρ−

√
ρ2 + 4G′κ̂y

)
. (138)

The corresponding eigenvector is Xν = (− ν
G′ , 1)′.

We know that the solution to this system is given by

Xi
t = eAt

[
Xi

0 +
∫ t

0
e−As

(
− G′ ˙̃si

tE2

)
ds
]

, (139)

where E1 = (1, 0)′ and E2 = (0, 1)′ are projection matrices. We restrict attention to the parameter
subspace where A is nonsingular. Furthermore, we know that

˙̃si
t = −ψai

0e−ψt, (140)

where ai
0 is the initial technology shock. This implies

Xi
t =eAt

[
Xi

0 + ψG′ai
0

∫ t

0
e−As−ψsE2ds

]
(141)
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=eAt
[

Xi
0 + ψG′ai

0(A + ψI)−1E2

]
− ψG′ai

0e−ψt(A + ψI)−1E2. (142)

Stability. For stability, we require the term in square brackets be spanned on the stable manifold,
which is satisfied if and only if there exists an αν ∈ C such that

ανXν = Xi
0 + ψG′ai

0(A + ψI)−1E2. (143)

This condition implies the two stability equations

− ν

G′
αν = ˆ̄πi

H,0 + ψG′ai
0E′1(A + ψI)−1E2 (144)

αν = −Ḡ′ s̃i
0 + ψG′ai

0E′2(A + ψI)−1E2, (145)

from which we can solve explicitly for αν and ˆ̄πi
H,0. Note that we have

E′1(A + ψI)−1E2 =
κ̃y

ψ̂

E′2(A + ψI)−1E2 =
ρ + ψ

ψ̂
,

where ψ̂ = (ρ + ψ)ψ− G′κ̂y. We can now rewrite the two stability conditions as

− ν

G′
αν = ˆ̄πi

H,0 + ψG′
κ̂y

ψ̂
ai

0 (146)

αν = −Ḡ′ s̃i
0 + ψG′

ρ + ψ

ψ̂
ai

0. (147)

We can now characterize the closed-form solution of our dynamical system, which is given by

Xi
t = ανeνtXν − ψG′ai

0e−ψt(A + ψI)−1E2, (148)

from which we can back out explicit solutions for inflation and output:

ˆ̄πi
H,t = −

ν

G′
ανeνt − ψG′

κ̂y

ψ̂
e−ψtai

0 (149)

ˆ̄yi
t = ανeνt − ψG′

ρ + ψ

ψ̂
e−ψtai

0. (150)

We note here that the no-policy benchmark allocation is χ-invariant. To gain some intuition for
this result, note that under Cole-Obstfeld and with profit redistribution the positive allocation is
symmetric, with ˆ̄ci,o

t = ˆ̄ci,r
t , and trade is balanced in every period, ˆ̄NXi

t = 0. That is, HtM agents and
optimizers always consume the same amount and face the same budget constraint, in a sense, since
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there is no inter-temporal substitution.

D.3 Loss Function and Planning Problem

Before we can set up the planning problem for a currency union with hand-to-mouth agents, we
have to derive the loss function. Our loss function features three distinct policy instruments: ex-
post transfers, capital controls and government spending. It also leaves room for several derivative
policy instruments which we will discuss later. We follow the linear-quadratic approach discussed
in Benigno and Woodford (2012). We continue to assume that there are no aggregate shocks but in
this section, to derive the loss function, we need to temporarily allow for idiosyncratic shocks in all
countries.

D.3.1 Notation

Once again, we reiterate our notational conventions. For all Xi
t 6∈ {Ti,o

t , Ti,r
t , τi,o

t , τi,r
t , NFAi

t, NXi
t}, we

have xi
t = ln(Xi

t) − ln(Xi), where Xi is the steady state value of Xi
t; furthermore, we define x̃i

t =

ln(X̃i
t)− ln(Xi), x̂i

t = ln(Xi
t)− ln(X̃i

t) and ˆ̄xi
t = x̂i

t −
∫ 1

0 x̂i
tdi ≡ x̂i

t − x̂∗t . Our goal is to approximate
welfare in terms of ˆ̄xi

t variables.
By definition, we have Xi

t = Xiexi
t . Taylor expansions of the function xi

t 7→ Xi
t around xi

t = 0
yield:

To 1st order: Xi
t ≈ Xi + Xixi

t = Xi(1 + xi
t).

To 2nd order: Xi
t ≈ Xi + Xixi

t +
1
2 Xi(xi

t)
2 = Xi(1 + xi

t +
1
2(xi

t)
2).

So for example, the second-order approximation of ln(Xi
t) = ln(Xi) + xi

t around xi
t = 0 is exactly

ln(Xi) + xi
t. Similarly, approximating (Xi

t)
φ = (Xi)φeφxi

t around φxi
t = 0, we have

(Xi
t)

φ ≈ (Xi)φ +
(Xi)φe0

1
+

(Xi)φe0

2
(φxi

t)
2 = (Xi)φ

(
1 + φxi

t +
φ2

2
(xi

t)
2). (151)

D.3.2 Starting with Household Utility

We begin by taking as our welfare criterion the households’ utility function. In particular, we solve
a coordinated problem, with the social planner’s objective function of the form

U =
∫ ∞

0

∫ 1

0
e−ρt

[
χ(1− υ) ln(Ci,r

t )− χ

1 + φ
(Ni,r

t )1+φ (152)

+ (1− χ)(1− υ) ln(Ci,o
t )− 1− χ

1 + φ
(Ni,o

t )1+φ + υ ln(Gi
t)

]
didt.

84



Approximating the RHS to second order, we have

U =
∫ ∞

0

∫ 1

0
e−ρt

[
χ(1− υ) ln(Ci,r) + χ(1− υ)ci,r

t + (1− χ)(1− υ) ln(Ci,o) + (1− χ)(1− υ)ci,o
t

− χ

1 + φ
(Ni,r)1+φ

(
1 + (1 + φ)ni,r

t +
(1 + φ)2

2
(ni,r

t )2)
− 1− χ

1 + φ
(Ni,o)1+φ

(
1 + (1 + φ)ni,o

t +
(1 + φ)2

2
(ni,o

t )2)+ υ ln(Gi) + υgi
t

]
didt.

Recall the steady state relations: Yi = 1, Ci,r = Ci,o = (1 − υ), Gi = υ, and (Ni,o)1+φ =

(Ni,r)1+φ = 1. Hence, we have

U =
∫ ∞

0

∫ 1

0
e−ρt

[
(1− υ) ln(1− υ)− 1

1 + φ
+ υ ln(υ)

+ (1− υ)[χci,r
t + (1− χ)ci,o

t ]− [χni,r
t + (1− χ)ni,o

t ] + υgi
t

− χ(1 + φ)

2
(ni,r

t )2 − (1− χ)(1 + φ)

2
(ni,o

t )2
]

didt.

Let Zi ≡ (1− υ) ln(1− υ) − 1
1+φ + υ ln(υ). Also note that χci,r

t + (1− χ)ci,o
t = ci

t and χni,r
t + (1−

χ)ni,o
t = ni

t. Finally, we use the linearity of the integral operator, noting that
∫ 1

0 xi
tdi ≡

∫ 1
0 ( ˆ̄xi

t + x̂∗t +
x̃i

t)di = x̂∗t , to write

U =
∫ ∞

0

∫ 1

0
e−ρt

[
Zi + (1− υ)ĉ∗t + υĝ∗t − ni

t −
χ(1 + φ)

2
(ni,r

t )2 − (1− χ)(1 + φ)

2
(ni,o

t )2
]

didt. (153)

D.3.3 Linear-Quadratic Framework

Having completed a second-order approximation of the social planner’s welfare criterion, we will
now try to express said metric in terms of the variables ˆ̄yi

t, ˆ̄πi
H,t, ˆ̄τi,r

t , ˆ̄θi
t, and ˆ̄gi

t, where the latter three
represent the full set of policy instruments available to the planner. In this particular case, a proper
linear-quadratic approximation rests on the following two key steps:

i. Approximate the A-D relation to second order to find an expression for (1− υ)ĉ∗t + υĝ∗t .

ii. Express n̂i
t in terms of inflation.

We start with (2): With Calvo-pricing, we have the distorted production function

Yi
t

∫ 1

0

(Pi
H,t(j)

Pi
H,t

)−ε

dj = Ai
tN

i
t .

Therefore, we can approximate ni
t = yi

t + zi
t − ai

t to second order, where

zi
t = ln

( ∫ 1

0

(Pi
H,t(j)

Pi
H,t

)−ε

dj
)
≈ ε

2

∫ 1

0
(Pi

H,t(j)− Pi
H,t)

2dj = απ(π
i
H,t)

2, (154)

85



for απ = ε
2λ and λ = ρδ(ρ + ρδ). Note that this definition of απ differs slightly from that used in

the main body of the paper. We found this notation slightly more convenient for the analysis in the
appendix. Hence, we have

ni
t = yi

t + απ(π
i
H,t)

2 − ai
t. (155)

The technology term is invariant to policy and so we drop it. It would later naturally drop out as we
rewrite the loss in gaps from the natural allocation.

Next, we tackle the more difficult step (1): Recall that the A-D relation can be written as

Yi
t − Gi

t = Si
tC
∗,o
(
(1− α)

Θi
tC

i
t

Ci,o
t

+ α
∫ 1

0

Θj
tC

j
t

Cj,o
t

dj
)

.

The linear-quadratic procedure requires that we approximate all those constraints to second order
that we use to substitute out terms in the loss function. We start by approximating the LHS to second
order. We have

LHS ≈(1 + yi
t +

1
2
(yi

t)
2)− υ(1 + gi

t +
1
2
(gi

t)
2)

=(1− υ) + [ŷi
t + ỹi

t] +
1
2
[ŷi

t + ỹi
t]

2 − υ[ĝi
t + g̃i

t]−
υ

2
[ĝi

t + g̃i
t]

2.

Integrating (using linearity of the integral), noting that ỹ∗t = 0 and g̃i
t = ai

t because we only consider
idiosyncratic shocks (and country i is of measure 0) and we defined the natural allocation without
policy intervention, respectively, we have

LHS ≈ (1− υ)Yi + Yiŷ∗t +
Yi

2

∫ 1

0
[ŷi

t + ỹi
t]

2di− υYi ĝ∗t −
υYi

2

∫ 1

0
[ĝi

t + g̃i
t]

2di. (156)

For the RHS, we have

RHS ≈(1− α)
SiC∗,oΘiCi

Ci,o

(
1 + si

t + c∗,ot + θi
t + ci

t − ci,o
t +

1
2
[si

t + c∗,ot + θi
t + ci

t − ci,o
t ]2
)

+ α
∫ 1

0

ΘjCjSiC∗,o

Cj,o

(
1 + si

t + c∗,ot + θ
j
t + cj

t − cj,o
t +

1
2
[si

t + c∗,ot + θ
j
t + cj

t − cj,o
t ]2
)

dj

=(1− α)(1− υ)Yi
(

1 + si
t + c∗,ot + θi

t + ci
t − ci,o

t +
1
2
[si

t + c∗,ot + θi
t + ci

t − ci,o
t ]2
)

+ α(1− υ)Yi
(

1 + θ∗t + c∗t + s∗t +
1
2

∫ 1

0
[si

t + c∗,ot + θ
j
t + cj

t − cj,o
t ]2dj

)
.

Putting these together, we can write

ŷ∗t − υĝ∗t +
1
2

∫ 1

0
[ŷi

t + ỹi
t]

2di− υ

2

∫ 1

0
[ĝi

t + g̃i
t]

2di

=(1− υ)c∗t + (1− υ)s∗t + (1− υ)θ∗t

86



+
1− υ

2

∫ 1

0
(θi

t + ci
t − ci,o

t + c∗,ot )2di

+
(1− α)(1− υ)

2

∫ 1

0

(
(si

t)
2 + 2si

t(θ
i
t + ci

t − ci,o
t + c∗,ot )

)
di

+
α(1− υ)

2

∫ 1

0

∫ 1

0

(
(si

t)
2 + 2si

t(θ
j
t + cj

t − cj,o
t + c∗,ot )

)
djdi.

Re-writing,

ŷ∗t − υĝ∗t +
1
2

∫ 1

0
(yi

t)
2di− υ

2

∫ 1

0
(gi

t)
2di

=(1− υ)c∗t + (1− υ)s∗t + (1− υ)θ∗t

+
1− υ

2

∫ 1

0

(
(θi

t)
2 + (ci

t)
2 + (ci,o

t )2 + (c∗,ot )2 + 2θi
tc

i
t + 2θi

tc
∗,o
t − 2θi

tc
i,o
t − 2ci

tc
i,o
t + 2ci

tc
∗,o
t − 2ci,o

t c∗,ot

)
di

+ (1− α)(1− υ)s∗t c∗,ot +
(1− α)(1− υ)

2

∫ 1

0
(si

t)
2di + (1− α)(1− υ)

∫ 1

0
si

t(θ
i
t + ci

t − ci,o
t + c∗,ot )di

+
α(1− υ)

2

∫ 1

0
(si

t)
2di + α(1− υ)(θ∗t + c∗t )

∫ 1

0
si

tdi.

Note that by definition, we have for all union variables x∗t = x̂∗t + x̃∗t = x̂∗t because x̃∗t = 0 (we
use idiosyncratic shocks and country i is of measure 0). Therefore, we also have ŝ∗t = s∗t = 0 and
θ̂∗t = θ∗t = 0. Hence, we have

ŷ∗t − υĝ∗t +
1
2

∫ 1

0
(yi

t)
2di− υ

2

∫ 1

0
(gi

t)
2di

=(1− υ)ĉ∗t +
1− υ

2
(ĉ∗,ot )2 − (1− υ)(ĉ∗,ot )2 + (1− υ)ĉ∗t ĉ∗,ot

+
1− υ

2

∫ 1

0

(
(θi

t)
2 + (ci

t)
2 + (ci,o

t )2 + 2θi
tc

i
t − 2θi

tc
i,o
t − 2ci

tc
i,o
t

)
di

+
1− υ

2

∫ 1

0
(si

t)
2di + (1− α)(1− υ)

∫ 1

0
si

t(θ
i
t + ci

t − ci,o
t )di.

And so finally, we have

(1− υ)ĉ∗t + υĝ∗t =ŷ∗t +
1
2

∫ 1

0
(yi

t)
2di− υ

2

∫ 1

0
(gi

t)
2di− (1− υ)ĉ∗t ĉ∗,ot (157)

+
1− υ

2
(ĉ∗,ot )2 − 1− υ

2

∫ 1

0

(
(θi

t)
2 + (ci

t)
2 + (ci,o

t )2 + 2θi
tc

i
t − 2θi

tc
i,o
t − 2ci

tc
i,o
t

)
di

− 1− υ

2

∫ 1

0
(si

t)
2di− (1− α)(1− υ)

∫ 1

0
si

t(θ
i
t + ci

t − ci,o
t )di.

Therefore, we can write the welfare criterion as

U =
∫ ∞

0
e−ρt

[
− απ(π

i
H,t)

2 + Ui
t

]
dt, (158)
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where
∫ 1

0 ŷ∗t − yi
tdi = 0 and thus drops out, and so

Ui
t =Zi +

1− υ

2
(ĉ∗,ot )2 − (1− υ)ĉ∗t ĉ∗,ot (159)

+
1
2
(yi

t)
2 − υ

2
(gi

t)
2 − 1− υ

2
(si

t)
2 − (1− α)(1− υ)si

t(θ
i
t + ci

t − ci,o
t )

− 1− υ

2

(
(θi

t)
2 + (ci

t)
2 + (ci,o

t )2 + 2θi
tc

i
t − 2θi

tc
i,o
t − 2ci

tc
i,o
t

)
− χ(1 + φ)

2
(ni,r

t )2 − (1− χ)(1 + φ)

2
(ni,o

t )2. (160)

D.3.4 Gap Notation

We have now finished deriving a second-order approximation of the social planner’s welfare crite-
rion. We want to express this equation entirely in gap notation because we later want to write all
optimal policy problems in gap notation as well.

To that end, we convert variables according to xi
t = ˆ̄xi

t + x̂∗t + x̃i
t. After some algebra, we find

Ui
t =Zi + Ẑ∗t + Z̃i

t +
1
2
( ˆ̄yi

t)
2 + ˆ̄yi

tỹ
i
t −

υ

2
( ˆ̄gi

t)
2 − υ ˆ̄gi

t g̃
i
t −

1− υ

2
( ˆ̄si

t)
2 − (1− υ) ˆ̄si

t s̃
i
t

− (1− α)(1− υ) ˆ̄si
t[

ˆ̄θi
t + θ̃i

t + ˆ̄ci
t + c̃i

t − ˆ̄ci,o
t − c̃i,o

t ]− (1− α)(1− υ)s̃i
t[

ˆ̄θi
t + ˆ̄ci

t − ˆ̄ci,o
t ]

− 1− υ

2

(
( ˆ̄θi

t)
2 + 2 ˆ̄θi

tθ̃
i
t + ( ˆ̄ci

t)
2 + 2 ˆ̄ci

t c̃
i
t + ( ˆ̄ci,o

t )2 + 2 ˆ̄ci,o
t c̃i,o

t + 2 ˆ̄θi
t ˆ̄ci

t + 2 ˆ̄θi
t c̃

i
t + 2θ̃i

t ˆ̄ci
t

− 2 ˆ̄θi
t ˆ̄ci,o

t − 2 ˆ̄θi
t c̃

i,o
t − 2θ̃i

t ˆ̄ci,o
t − 2 ˆ̄ci

t ˆ̄ci,o
t − 2 ˆ̄ci

t c̃
i,o
t − 2c̃i

t ˆ̄ci,o
t

)
− χ(1 + φ)

2
( ˆ̄ni,r

t )2 − χ(1 + φ)

2
ˆ̄ni,r

t ñi,r
t −

(1− χ)(1 + φ)

2
( ˆ̄ni,o

t )2 − (1− χ)(1 + φ)

2
ˆ̄ni,o

t ñi,o
t ,

where

Ẑ∗t =
1
2
(ŷ∗t )

2 − υ

2
(ĝ∗t )

2 − 1− υ

2
(ĉ∗t )

2 − χ(1 + φ)

2
(n̂∗,rt )2 − (1− χ)(1 + φ)

2
(n̂∗,ot )2

Z̃i
t =

1
2
(ỹi

t)
2 − υ

2
(g̃i

t)
2 − 1− υ

2
(s̃i

t)
2 − (1− α)(1− υ)s̃i

t[θ̃
i
t + ĉ∗t + c̃i

t − ĉ∗,ot − c̃i,o
t ]− 1− υ

2
(θ̃i

t)
2 − 1− υ

2
(c̃i

t)
2

− 1− υ

2
(c̃i,o

t )2 − (1− υ)θ̃i
t(ĉ
∗
t + c̃i

t) + (1− υ)θ̃i
t(ĉ
∗,o
t + c̃i,o

t ) + (1− υ)[c̃i
t c̃

i,o
t + ĉ∗t c̃i,o

t + c̃i
t ĉ
∗,o
t ]

− χ(1 + φ)

2
(ñi,r

t )2 − (1− χ)(1 + φ)

2
(ñi,o

t )2.

We also use gap notation for the inflation term in the loss function, noting that πi
H,t = π̂i

H,t =

ˆ̄πi
H,t + π̂∗H,t. As in the body of the paper, it is easy to verify that the social planner can fully stabilize

union-wide inflation so that π̂∗H,t = 0. Alternatively, we could have added terms in π̂∗H,t to the term
Ẑ∗t which will be entirely inconsequential for all subsequent analysis since the planning problem
can be disaggregated by country, as in the body of the paper, and we will focus exclusively on
idiosyncratic shocks in country i.
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D.3.5 Final Steps

What remains now is to use the first-order approximation of the equilibrium conditions to solve out
terms so that we can write the welfare criterion entirely as a function of ˆ̄yi

t, ˆ̄πi
H,t, ˆ̄τi,r

t , ˆ̄θi
t, and ˆ̄gi

t. This
is consistent with the linear-quadratic approach.

Drawing on our earlier derivations, we use the following substitutions:

ˆ̄ni,r
t = ηy ˆ̄yi

t + ηg ˆ̄gi
t + ηθ

ˆ̄θi
t + ητ ˆ̄τi,r

t

ˆ̄ni,o
t =

( 1
1− χ

− χ

1− χ
ηy
)

ˆ̄yi
t −

χ

1− χ
ηg ˆ̄gi

t −
χ

1− χ
ηθ

ˆ̄θi
t −

χ

1− χ
ητ ˆ̄τi,r

t

ˆ̄ci,r
t = ψy ˆ̄yi

t + ψθ
ˆ̄θi
t + ψτ ˆ̄τi,r

t + ψg ˆ̄gi
t

ˆ̄ci,o
t = (1− α)νy ˆ̄yi

t + [1 + (1− α)νθ]
ˆ̄θi
t + (1− α)νg ˆ̄gi

t + (1− α)ντ ˆ̄τi,r
t

ˆ̄ci
t = ζy ˆ̄yi

t + ζθ
ˆ̄θi
t + ζτ ˆ̄τi,r

t + ζg ˆ̄gi
t.

After a lot of algebra, the social planner’s welfare criterion can be written as

U =
∫ ∞

0
e−ρt

∫ 1

0

[
− απ( ˆ̄πi

H,t)
2 + Zi + Ẑ∗t + Z̃i

t + αyy( ˆ̄yi
t)

2 + αθθ(
ˆ̄θi
t)

2 + αττ( ˆ̄τi,r
t )2 + αgg( ˆ̄gi

t)
2 (161)

+ αyθ ˆ̄yi
t
ˆ̄θi
t + αyg ˆ̄yi

t ˆ̄gi
t + αyτ ˆ̄yi

t ˆ̄τi,r
t + αgθ ˆ̄gi

t
ˆ̄θi
t + αgτ ˆ̄gi

t ˆ̄τi,r
t + ατθ ˆ̄τi,r

t
ˆ̄θi
t

+ αi
y,t ˆ̄yi

t + αi
g,t ˆ̄gi

t + αi
τ,t ˆ̄τi

t + αi
θ,t

ˆ̄θi
t

]
didt,

where

αyy =
1
2
− 1− υ

2
ν2

y − (1− α)(1− υ)νy(ζy − (1− α)νy)−
1− υ

2
ζ2

y −
1− υ

2
(1− α)2ν2

y

+ (1− υ)(1− α)νyζy −
χ(1 + φ)

2
η2

y −
(1− χ)(1 + φ)

2
(

1
1− χ

− χ

1− χ
ηy)

2

αθθ =−
1− υ

2
ν2

θ − (1− α)(1− υ)νθ(ζθ − (1− α)νθ)−
1− υ

2
− 1− υ

2
ζ2

θ −
1− υ

2
[(1− α)νθ + 1]2

− (1− υ)(ζθ − [1 + (1− α)νθ]) + (1− υ)[1 + (1− α)νθ]ζθ −
χ(1 + φ)

2
η2

θ −
(1− χ)(1 + φ)

2
(

χ

1− χ
ηθ)

2

αττ =− 1− υ

2
ν2

τ − (1− α)(1− υ)ντ(ζτ − (1− α)ντ)−
1− υ

2
ζ2

τ −
1− υ

2
(1− α)2ν2

τ

+ (1− υ)(1− α)ντζτ −
χ(1 + φ)

2
η2

τ −
(1− χ)(1 + φ)

2
(

χ

1− χ
ητ)

2

αgg =− υ

2
− 1− υ

2
ν2

g − (1− α)(1− υ)νg(ζg − (1− α)νg)−
1− υ

2
ζ2

g −
1− υ

2
(1− α)2ν2

g

+ (1− υ)(1− α)νgζg −
χ(1 + φ)

2
η2

g −
(1− χ)(1 + φ)

2
(

χ

1− χ
ηg)

2

αyθ =− (1− υ)νyνθ − (1− α)(1− υ)
(
νy[ζθ − (1− α)νθ] + νθ[ζy − (1− α)νy]

)
− (1− υ)ζyζθ − (1− υ)(1− α)νy[1 + (1− α)νθ]− (1− υ)(ζy − (1− α)νy)
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+ (1− υ)(1− α)νyζθ + (1− υ)[1 + (1− α)νθ]ζy − χ(1 + φ)ηyηθ − (1 + φ)χηθ(
1

1− χ
− χ

1− χ
ηy)

αyg =− (1− υ)νyνg − (1− α)(1− υ)
(
νy[ζg − (1− α)νg] + νg[ζy − (1− α)νy]

)
− (1− υ)ζyζg − (1− υ)(1− α)2νyνg + (1− υ)(1− α)νyζg + (1− υ)(1− α)νgζy

− χ(1 + φ)ηyηg − (1 + φ)χηg(
1

1− χ
− χ

1− χ
ηy)

αyτ =− (1− υ)νyντ − (1− α)(1− υ)
(
νy[ζτ − (1− α)ντ] + ντ[ζy − (1− α)νy]

)
− (1− υ)ζyζτ − (1− υ)(1− α)2νyντ + (1− υ)(1− α)νyζτ + (1− υ)(1− α)ντζy

− χ(1 + φ)ηyητ − (1 + φ)χητ(
1

1− χ
− χ

1− χ
ηy)

αgθ =− (1− υ)νgνθ − (1− α)(1− υ)
(
νg[ζθ − (1− α)νθ] + νθ[ζg − (1− α)νg]

)
− (1− υ)ζgζθ − (1− υ)(1− α)νg[1 + (1− α)νθ]− (1− υ)(ζg − (1− α)νg)

+ (1− υ)[1 + (1− α)νθ]ζg + (1− υ)(1− α)νgζθ − χ(1 + φ)ηgηθ − (1 + φ)
χ2

1− χ
ηθηg

αgτ =− (1− υ)νgντ − (1− α)(1− υ)
(
νg[ζτ − (1− α)ντ] + ντ[ζg − (1− α)νg]

)
− (1− υ)ζgζτ − (1− υ)(1− α)2νgντ + (1− υ)(1− α)νgζτ + (1− υ)(1− α)ντζg

− χ(1 + φ)ηgητ − (1 + φ)
χ2

1− χ
ηgητ

ατθ =− (1− υ)ντνθ − (1− α)(1− υ)
(
ντ[ζθ − (1− α)νθ] + νθ[ζτ − (1− α)ντ]

)
− (1− υ)ζτζθ − (1− υ)(1− α)ντ[1 + (1− α)νθ]− (1− υ)(ζτ − (1− α)νgτ)

+ (1− υ)[1 + (1− α)νθ]ζτ + (1− υ)(1− α)ντζθ − χ(1 + φ)ητηθ − (1 + φ)
χ2

1− χ
ηθητ

αi
y,t =ai

t − (1− υ)νyai
t − (1− α)(1− υ)[ζy − (1− α)νy]ai

t

αi
g,t =− (1− υ)νgai

t − (1− α)(1− υ)[ζg − (1− α)νg]ai
t − υai

t

αi
τ,t =− (1− υ)ντai

t − (1− α)(1− υ)[ζτ − (1− α)ντ]ai
t

αi
θ,t =− (1− υ)νθai

t − (1− α)(1− υ)[ζθ − (1− α)νθ]ai
t.

It turns out that we generally have αi
y,t = αi

g,t = αi
τ,t = αi

θ,t = 0 for all t and i.

D.3.6 Loss Function

We will find it more convenient later on to work with the loss function instead of the welfare function.
The former is the negative of the latter. Moreover, as in the body of the paper, we will be interested in
the loss function in gaps from its natural counterpart. Note in (161) that for the loss function under
the natural allocation, all terms drop out except for Zi + Ẑ∗t + Z̃i

t. Therefore, we have the following
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loss function in gaps from the natural

L =− (U − Ũ) (162)

=
∫ ∞

0

∫ 1

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 − αyy( ˆ̄yi

t)
2 − αθθ(

ˆ̄θi
t)

2 − αττ( ˆ̄τi,r
t )2 − αgg( ˆ̄gi

t)
2

− αyθ ˆ̄yi
t
ˆ̄θi
t − αyg ˆ̄yi

t ˆ̄gi
t − αyτ ˆ̄yi

t ˆ̄τi,r
t − αgθ ˆ̄gi

t
ˆ̄θi
t − αgτ ˆ̄gi

t ˆ̄τi,r
t − ατθ ˆ̄τi,r

t
ˆ̄θi
t

]
didt

≡
∫ ∞

0

∫ 1

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 − ˆ̄Ui

t

]
didt.

D.3.7 General Planning Problem

In summary, in this section we have derived all elements that comprise the general planning problem
for country i, featuring all three policy instruments. Assembling them now, we can write the fully
general country-i planning problem as follows:

min
{ ˆ̄θi

t, ˆ̄gi
t, ˆ̄τi,r

t }t≥0

∫ ∞

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 − ˆ̄Ui

t

]
dt (163)

subject to

Λy
˙̄̂yi
t = −Λs( ˆ̄πi

H,t + ˙̃si
t) + Λg

˙̄̂gi
t + Λθ

˙̄̂
θi

t + Λτ
˙̄̂τi,r
t

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κy ˆ̄yi
t − κθ

ˆ̄θi
t − κτ ˆ̄τi,r

t − κg ˆ̄gi
t

Λy ˆ̄yi
0 = −Λs s̃i

0 + Λg ˆ̄gi
0 + Λθ

ˆ̄θi
0 + Λτ ˆ̄τi,r

0

0 =
∫ ∞

0
e−ρt

[
Γy ˆ̄yi

t + Γτ ˆ̄τi,r
t + Γθ

ˆ̄θi
t + Γg ˆ̄gi

t

]
dt.

We note again that the coordinated union-wide planning problem coincides with the disaggre-
gated problem, where the social planner solves the above optimal control problem for each country
i ∈ [0, 1] separately. This follows from the analogous result derived in the main body of the paper. In
the remainder of this appendix, we will therefore only consider the disaggregated planning problem
of country i under an idiosyncratic productivity shock.

The constraints in this planning problem are the relevant implementability conditions. All other
equilibrium conditions can be used to simply back out the equilibrium variables that are not featured
in the planning problem.

D.4 Optimal Transfers

We now consider the problem where the social planner only has access to ex-post transfers, as in
body of the paper. In particular, we have ˆ̄θi

t =
ˆ̄θi for all t and ˆ̄gi

t = 0.
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Country i’s planning problem can then be written as

min
ˆ̄θi,{ ˆ̄τi,r

t }t≥0

∫ ∞

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 − ˆ̄Ui

t
∣∣ ˆ̄θi

t=
ˆ̄θi, ˆ̄gi

t=0

]
dt, (164)

subject to

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t) + D ˆ̄νi

t
˙̄̂τi,r
t = ˆ̄νi

t
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κθ
ˆ̄θi − κτ ˆ̄τi,r

t

where D′ = Λs
Λy

and D = Λτ
Λy

, and also subject to the intial condition

Λy ˆ̄yi
0 = −Λs s̃i

0 + Λθ
ˆ̄θi + Λτ ˆ̄τi,r

0 (165)

which will be used to ensure the stability of the dynamical system, and the budget constraint

0 =
∫ ∞

0
e−ρt

[
Γy ˆ̄yi

t + Γτ ˆ̄τi,r
t + Γθ

ˆ̄θi
]

dt (166)

which will be used to solve for ˆ̄θi. In particular, our strategy will be to solve the optimal allocation
and policy intervention as a function of ˆ̄θi analytically, and then numerically solve for the optimal ˆ̄θi

in a second stage.
Also note that we have replaced ˙̄̂τi,r

t in the (IS) equation with another variable. This is necessary
to bring the planning problem into the form of a standard optimal control problem. Finally, we will
integrate the initial condition and the budget constraint, an isoperimetric constraint in this case, into
the optimal control problem using Lagrange multipliers. In particular, let

– xi
t = { ˆ̄πi

H,t, ˆ̄yi
t, ˆ̄τi,r

t } denote the vector of state variables,

– ui
t = { ˆ̄νi

t} denote the vector of control variables, and

– µi
t = {µi

π,t, µi
y,t, µi

τ,t} denote the vector of costates.

Then we can summarize country i’s optimal control problem with its current-value Hamiltonian,
which is given by

H(xi
t, ui

t, µi
t) =απ(π

i
H,t)

2 − ˆ̄Ui
t
∣∣ ˆ̄θi

t=
ˆ̄θi, ˆ̄gi

t=0 (167)

+ λ

[
Γy ˆ̄yi

t + Γτ ˆ̄τi,r
t + Γθ

ˆ̄θi
]

+ ∆
[

Λy ˆ̄yi
0 + Λs s̃i

0 −Λθ
ˆ̄θi −Λτ ˆ̄τi,r

0

]
+ µi

y,t

[
D ˆ̄νi

t − D′( ˆ̄πi
H,t + ˙̃si

t)

]
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+ µi
τ,t ˆ̄νi

t

+ µi
π,t

[
ρ ˆ̄πi

H,t − κy ˆ̄yi
t − κθ

ˆ̄θi − κτ ˆ̄τi,r
t

]
.

D.4.1 Optimality Conditions

Since we have transformed the planning problem into a standard optimal control problem, the opti-
mality conditions are given by

[(1)]

i. ∂uHi
t = 0 (Optimality)

ii. ρµi
x,t − µ̇i

x,t = ∂xHi
t (Multiplier)

iii. ẋi
t = ∂µx Hi

t (State equations)

iv. µi
x,0 = ∂xHi

0 (Initial conditions),

where we abuse notation slightly to let x and u stand in for each element of the respective vectors. ∂x

denotes the partial derivative with respect to x. This yields the following nine first-order conditions:

Optimality:
Dµi

y,t + µi
τ,t = 0. (168)

Multiplier:

µ̇i
π,t = D′µi

y,t − 2απ ˆ̄πi
H,t (169)

ρµi
y,t − µ̇i

y,t = λΓy − κyµi
π,t − 2αyy ˆ̄yi

t − αyθ
ˆ̄θi − αyτ ˆ̄τi,r

t (170)

ρµi
τ,t − µ̇i

τ,t = λΓτ − κτµi
π,t − 2αττ ˆ̄τi,r

t − ατθ
ˆ̄θi − αyτ ˆ̄yi

t (171)

State:

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t) + D ˆ̄νi

t
˙̄̂τi,r
t = ˆ̄νi

t
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κθ
ˆ̄θi − κτ ˆ̄τi,r

t

Initial conditions:

µi
π,0 = 0 (172)

µi
y,0 = ∆Λy (173)

µi
τ,0 = −∆Λτ. (174)
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We will now reduce the size of the above dynamical system by solving out for µi
π,t and µi

τ,t. Using
equations (168), (170) and (171), we can write

(κτ + Dκy)µ
i
π,t =(ΓyD + Γτ)λ− (2αττ + Dαyτ) ˆ̄τi,r

t − (2Dαyy + αyτ) ˆ̄yi
t − (ατθ + Dαyθ)

ˆ̄θi. (175)

Taking the derivative with respect to time and using (169), we have

(κτ + Dκy)(D′µi
y,t − 2απ ˆ̄πi

H,t) + (2αττ + Dαyτ) ˙̄̂τi,r
t + (2Dαyy + αyτ) ˙̄̂yi

t = 0,

from which we can solve for the rate of change of transfers using the (IS) equation:

˙̄̂τi,r
t = −

(κτ + Dκy)(D′µi
y,t − 2απ ˆ̄πi

H,t)− D′(2Dαyy + αyτ)( ˆ̄πi
H,t + ˙̃si

t)

2αττ + Dαyτ + D(2Dαyy + αyτ)
(176)

Using the (IS) equation again, we have

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t)− D

(κτ + Dκy)(D′µi
y,t − 2απ ˆ̄πi

H,t)− D′(2Dαyy + αyτ)( ˆ̄πi
H,t + ˙̃si

t)

2αττ + Dαyτ + D(2Dαyy + αyτ)
. (177)

Finally, using (170) and our solution for µi
π,t above, we find

µ̇i
y,t =ρµi

y,t + λ
κyΓτ − κτΓy

κτ + Dκy
− ˆ̄τi,r

t
2κyαττ − κταyτ

κτ + Dκy
− ˆ̄yi

t
αyτκy − 2κταyy

κτ + Dκy
− ˆ̄θi κyατθ − κταyθ

κτ + Dκy
. (178)

Therefore, we can write the reduced system of optimality conditions as

µ̇i
y,t = ρµi

y,t + Kτ ˆ̄τi,r
t + Ky ˆ̄yi

t + Kθ
ˆ̄θi + Kλλ (179)

˙̄̂yi
t = Jµy µi

y,t + Jπ ˆ̄πi
H,t + Js ˙̃si

t (180)
˙̄̂τi,r
t = Hµy µi

y,t + Hπ ˆ̄πi
H,t + Hs ˙̃si

t (181)
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κθ
ˆ̄θi − κτ ˆ̄τi,r

t . (182)

D.4.2 Solving the Dynamic System

In particular, the optimality conditions yield a system of linear ODEs which, letting Xi
t = { ˆ̄πi

H,t, ˆ̄yi
t, ˆ̄τi,r

t , µi
y,t},

we can express as
Ẋi

t = AXi
t + Bi

t, (183)

where

A =


ρ −κy −κτ 0
Jπ 0 0 Jµy

Hπ 0 0 Hµy

0 Ky Kτ ρ

 , Bi
t =


−κθ

ˆ̄θi

J̄i
t

H̄i
t

K̄i
t

 , Xi
0 =


ˆ̄πi

H,0
ˆ̄yi
0

ˆ̄τi,r
0

∆Λy

 ,
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where J̄i
t = Js ˙̃si

t, H̄i
t = Hs ˙̃si

t, and K̄i
t = Kθ

ˆ̄θi + Kλλ.
The solution to this dynamical system is, as is well known, given by

Xi
t = eAt

[
Xi

0 +
∫ t

0
e−AsBi

sds
]

,

which we can rewrite as

Xi
t = eAt

[
Xi

0 +
∫ t

0
e−As

(
− κθ

ˆ̄θiE1 + J̄i
sE2 + H̄i

sE3 + K̄i
sE4ds

]
,

where Ei is the 4× 1 zero vector with a 1 in the ith position. We can write

Xi
t = eAt

[
Xi

0 − κθ
ˆ̄θi
∫ t

0
e−AsE1ds + (Kθ

ˆ̄θi + Kλλ)
∫ t

0
e−AsE4ds

+ W2

∫ t

0
e−As−ψsE2ds + W3

∫ t

0
e−As−ψsE3ds

]
,

where W2 = −ψai
0 Js, and W3 = −ψai

0Hs.
Assuming that the economy is in the parameter subspace where A is nonsingular, we can use

the results
∫ t

0 e−Asds = A−1(I − e−At) and
∫ t

0 e−(A+ψI)sds = (A + ψI)−1(I − e−(A+ψI)t) to solve the
integral, so that

Xi
t = eAt

[
Xi

0 − κθ
ˆ̄θi A−1(I − e−At)E1 + (Kθ

ˆ̄θi + Kλλ)A−1(I − e−At)E4

+ W2(A + ψI)−1(I − e−(A+ψI)t)E2 + W3(A + ψI)−1(I − e−(A+ψI)t)E3

]
.

From this, we finally arrive at the solution

Xi
t =eAt

[
Xi

0 − κθ
ˆ̄θi A−1E1 + (Kθ

ˆ̄θi + Kλλ)A−1E4 + (A + ψI)−1(W2E2 + W3E3
)]

(184)

+ κθ
ˆ̄θi A−1E1 − (Kθ

ˆ̄θi + Kλλ)A−1E4 − (A + ψI)−1e−ψt(W2E2 + W3E3
)

D.4.3 Stability

There is a unique solution if and only if A has two negative eigenvalues. For stability, we then need

Xi
0 − κθ

ˆ̄θi A−1E1 + (Kθ
ˆ̄θi + Kλλ)A−1E4 + (A + ψI)−1(W2E2 + W3E3

)
to be in the stable manifold, the subspace of the state space spanned by the eigenvectors associated
with the negative eigenvalues. Let Vj, j ∈ {1, 2}, be the eigenvector of A associated with the negative
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eigenvalue λj. Then there must be αj ∈ C, j ∈ {1, 2} such that

0 =α1V1 + α2V2 + Xi
0 − κθ

ˆ̄θi A−1E1 + (Kθ
ˆ̄θi + Kλλ)A−1E4 (185)

+ (A + ψI)−1(W2E2 + W3E3
)
.

In particular, to guarantee stability we need to solve for the vector Z = (α1, α2, λ, ∆, ˆ̄πi
H,0, ˆ̄yi

0, ˆ̄τi,r
0 )′ ∈

C7. Therefore, we need seven linearly independent conditions involving the desired variables. Equa-
tion (185) yields four of these conditions. To see this, left-multiply (185) by E′i for each i ∈ {1, 2, 3, 4}.

The fifth stability condition will be the initial condition, Λy ˆ̄yi
0 = −Λs s̃i

0 + Λτ ˆ̄τi,r
0 + Λθ

ˆ̄θi. The sixth
condition we obtain by writing

(κτ + Dκy)µ
i
π,0 = 0 (186)

= (ΓyD + Γτ)λ− (2αττ + Dαyτ) ˆ̄τi,r
0 − (2Dαyy + αyτ) ˆ̄yi

0 − (ατθ + Dαyθ)
ˆ̄θi.

The seventh and final condition we obtain from country i’s budget constraint. In particular, we
have

0 =
∫ ∞

0
e−ρt

[
Γy ˆ̄yi

t + Γτ ˆ̄τi,r
t + Γθ

ˆ̄θi
]

dt

=
Γθ

ρ
ˆ̄θi +

∫ ∞

0
e−ρt(ΓyE2 + ΓτE3)

′Xi
tdt.

We can write

Xi
t = eAt(− α1V1 − α2V2

)
+ κθ

ˆ̄θi A−1E1 − (Kθ
ˆ̄θi + Kλλ)A−1E4 − (A + ψI)−1e−ψt(W2E2 + W3E3

)
= −α1eλ1tV1 − α2eλ2tV2 + κθ

ˆ̄θi A−1E1 − (Kθ
ˆ̄θi + Kλλ)A−1E4 − (A + ψI)−1e−ψt(W2E2 + W3E3

)
.

Plugging this in and solving the integrals, we obtain our final stability condition

0 =
Γθ

ρ
ˆ̄θi +

α1

λ1 − ρ
(ΓyE2 + ΓτE3)

′V1 +
α2

λ2 − ρ
(ΓyE2 + ΓτE3)

′V2 (187)

+
κθ

ˆ̄θi

ρ
(ΓyE2 + ΓτE3)

′A−1E1 −
Kθ

ˆ̄θi + Kλλ

ρ
(ΓyE2 + ΓτE3)

′A−1E4

− 1
ρ + ψ

(ΓyE2 + ΓτE3)
′(A + ψI)−1[W2E2 + W3E3].
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Putting everything together, we can write MZ = N, where

M =



E′1V1 E′1V2 KλE′1 A−1E4 0 1 0 0
E′2V1 E′2V2 KλE′2 A−1E4 0 0 1 0
E′3V1 E′3V2 KλE′3 A−1E4 0 0 0 1
E′4V1 E′4V2 KλE′4 A−1E4 Λy 0 0 0

0 0 0 0 0 Λy −Λτ

0 0 Γτ + DΓy 0 0 −(2αyyD + αyτ) −(2αττ + Dαyτ)
(ΓyE2+Γτ E3)

′

λ1−ρ V1
(ΓyE2+Γτ E3)

′

λ2−ρ V2 −Kλ
ρ (ΓyE2 + ΓτE3)

′A−1E4 0 0 0 0



and

N =



−E′1W
−E′2W
−E′3W
−E′4W

−Λs s̃i
0 + Λθ

ˆ̄θi

(ατθ + Dαyθ)
ˆ̄θi

− Γθ
ρ

ˆ̄θi − κθ
ˆ̄θi

ρ (ΓyE2 + ΓτE3)
′A−1E1 +

Kθ
ˆ̄θi

ρ (ΓyE2 + ΓτE3)
′A−1E4 +

(ΓyE2+Γτ E3)
′

ρ+ψ (A + ψI)−1[W2E2 + W3E3]



where W = −κθ
ˆ̄θi A−1E1 + Kθ

ˆ̄θi A−1E4 + (A + ψI)−1[W2E2 + W3E3]. Given these matrices, we
can compute the vector Z numerically by setting

Z = M−1N (188)

over the parameter subspace on which M is invertible.

D.5 Optimal Capital Controls

We now consider the case where the social planner only has access to capital controls. That is, ˆ̄gi
t = 0

for all t and NFAi
0 = 0. The planner’s choice of capital controls will be encoded in a time-varying ˆ̄θi

t.
This directly implies that ˆ̄NFAi

0 = 0 in the absence of transfers. Furthermore, since we assume
that the government does not engage in additional redistribution, we have τi,r

t = −(Si
t)
−αGi

t. Sim-
ilarly, τi,r

t = τi,o
t because the government does not discriminate between different types of agents.

Hence, we have
ˆ̄τi,r
t = αυ ˆ̄si

t. (189)

Plugging in for ˆ̄si
t = νy ˆ̄yi

t + νg ˆ̄gi
t + ντ ˆ̄τi

t + νθ
ˆ̄θi
t, with ˆ̄gi

t = 0, we find that

ˆ̄τi,r
t =

αυ

1− αυντ

(
νy ˆ̄yi

t + νθ
ˆ̄θi
t
)

(190)

˙̄̂τi,r
t =

αυ

1− αυντ

(
νy

˙̄̂yi
t + νθ

˙̄̂
θi

t
)
. (191)
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IS equation. This allows us to rewrite the general (IS) equation for this particular allocation as

Λy
˙̄̂yi
t = −Λs( ˆ̄πi

H,t + ˙̃si
t) +

αυνy

1− αυντ
Λτ

˙̄̂yi
t +
(
Λθ +

αυνθ

1− αυντ
Λτ

) ˙̄̂
θi

t, (192)

or, more conveniently,
˙̄̂yi
t = −G′( ˆ̄πi

H,t + ˙̃si
t) + G ˙̄̂

θi
t, (193)

where

G =
Λθ +

αυνθ
1−αυντ

Λτ

Λy − αυνy
1−αυντ

Λτ

G′ =
Λs

Λy − αυνy
1−αυντ

Λτ

.

NKPC. Similarly, we can rewrite the Phillips Curve noting that we now have

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κy ˆ̄yi
t − κθ

ˆ̄θi
t −

αυ

1− αυντ
κτ

(
νy ˆ̄yi

t + νθ
ˆ̄θi
t
)
, (194)

or, more conveniently,
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κ̂y ˆ̄yi

t − κ̂θ
ˆ̄θi
t, (195)

where

κ̂y = κy +
αυ

1− αυντ
κτνy

κ̂θ = κθ +
αυ

1− αυντ
κτνθ.

Initial condition. Following similar conversions relative to the general specification presented in

the last section, we find that
ˆ̄yi
0 = −Ḡ′ s̃i

0 + Ḡ ˆ̄θi
0, (196)

for

Ḡ =
Λθ

Λy

Ḡ′ =
Λs + αυΛτ

Λy
.

NFA. Finally, we record here the simplified country-i budget constraint when only capital controls

are used. We have

0 =
∫ ∞

0
e−ρt

(
Γ̂y ˆ̄yi

t + Γ̂θ
ˆ̄θi
t

)
dt, (197)
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where

Γ̂y = Γy +
αυ

1− αυντ
νyΓτ

Γ̂θ = Γθ +
αυ

1− αυντ
νθΓτ.

We note at this point that Γ̂y = 0 over the entire parameter space. We will continue to carry the term
around in this section, but we want to highlight the important implication of this result: informally,
present-value capital controls must always average to zero over time. Formally, of course, we must
have

0 =
∫ ∞

0
e−ρtΓ̂θ

ˆ̄θi
tdt =

∫ ∞

0
e−ρt ˆ̄θi

tdt. (198)

Disaggregated control problem. We are now in a position to transform country-i’s disaggregated
planning problem to the form of a standard optimal control problem. In particular, the planning
problem is given by

min
{ ˆ̄θi

t}t≥0

∫ ∞

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 − ˆ̄Ui

t
∣∣

ˆ̄gi
t=0, ˆ̄τi,r

t =αυ ˆ̄si
t

]
dt, (199)

subject to

˙̄̂yi
t = −G′( ˆ̄πi

H,t + ˙̃si
t) + G ˙̄̂

θi
t

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κ̂y ˆ̄yi
t − κ̂θ

ˆ̄θi
t

ˆ̄yi
0 = −Ḡ′ s̃i

0 + Ḡ ˆ̄θi
0

0 =
∫ ∞

0
e−ρt

(
Γ̂y ˆ̄yi

t + Γ̂θ
ˆ̄θi
t

)
dt.

As in the previous section for optimal transfers, the conversion from planning two optimal control
problem requires to important steps. First, we include the initial condition and the isoperimetric
budget constraint in the Hamiltonian using Lagrange multipliers. Second, we have to substitute out
the time derivative ˙̄̂

θi
t in the (IS) equation and replace it with placeholder ˆ̄νi

t. We record country i’s
disaggregated optimal control problem in the form of the following Hamiltonian:

Hi
t(xi

t, ui
t, µi

t) =απ(π
i
H,t)

2 − ˆ̄Ui
t
∣∣

ˆ̄gi
t=0, ˆ̄τi,r

t =αυ ˆ̄si
t

+ λ

[
Γ̂y ˆ̄yi

t + Γ̂θ
ˆ̄θi
t

]
+ ∆

[
ˆ̄yi
0 + Ḡ′ s̃i

0 − Ḡ ˆ̄θi
0

]
+ µi

y,t

[
G ˆ̄νi

t − G′( ˆ̄πi
H,t + ˙̃si

t)

]
+ µi

θ,t ˆ̄νi
t
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+ µi
π,t

[
ρ ˆ̄πi

H,t − κ̂y ˆ̄yi
t − κ̂θ

ˆ̄θi
t

]
.

As before, xi
t describes the vector of state variables, ui

t the vector of control variables, and µi
t the

vector of costates.

Loss function. Finally, to work with the above Hamiltonian we have to record the precise form
that the loss function takes when the planner can only use capital controls. It is straightforward to
verify that we have

ˆ̄Ui
t
∣∣

ˆ̄gi
t=0, ˆ̄τi,r

t =αυ ˆ̄si
t
= α̂yy( ˆ̄yi

t)
2 + α̂θθ(

ˆ̄θi
t)

2 + α̂yθ ˆ̄yi
t
ˆ̄θi
t, (200)

where

α̂yy = αyy +
( αυ

1− αυντ

)2
ν2

yαττ +
αυ

1− αυντ
νyαyτ

α̂θθ = αθθ +
( αυ

1− αυντ

)2
ν2

θ αττ +
αυ

1− αυντ
νθατθ

α̂yθ = 2αττ

( αυ

1− αυντ

)2
νyντ + αyθ +

αυ

1− αυντ
νθαyτ +

αυ

1− αυντ
νyατθ.

D.5.1 Optimality Conditions

The Hamiltonian is associated with the following first-order conditions.

Optimality:
Gµi

y,t + µi
τ,t = 0. (201)

Multiplier:

µ̇i
π,t = G′µi

y,t − 2απ ˆ̄πi
H,t (202)

ρµi
y,t − µ̇i

y,t = λΓ̂y − κ̂yµi
π,t − 2α̂yy ˆ̄yi

t − α̂yθ
ˆ̄θi
t (203)

ρµi
θ,t − µ̇i

θ,t = λΓ̂θ − κ̂θµi
π,t − 2α̂θθ

ˆ̄θi
t − α̂yθ ˆ̄yi

t (204)

State:

˙̄̂yi
t = −G′( ˆ̄πi

H,t + ˙̃si
t) + G ˆ̄νi

t

˙̄̂
θi

t = ˆ̄νi
t

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κ̂y ˆ̄yi
t − κ̂θ

ˆ̄θi
t

Initial conditions:

µi
π,0 = 0 (205)

µi
y,0 = ∆ (206)
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µi
θ,0 = −∆Ḡ. (207)

We will now reduce the size of the above dynamical system by solving out for µi
π,t and µi

θ,t. Using
equations (201), (203) and (204), we can write

(κ̂θ + Gκ̂y)µ
i
π,t =(Γ̂yG + Γ̂θ)λ− (2α̂θθ + Gα̂yθ)

ˆ̄θi
t − (2Gα̂yy + α̂yθ) ˆ̄yi

t. (208)

Taking the derivative with respect to time and using (202), we have

(κ̂θ + Gκ̂y)(G′µi
y,t − 2απ ˆ̄πi

H,t) + (2α̂θθ + Gα̂yθ)
˙̄̂
θi

t + (2Gα̂yy + α̂yθ)
˙̄̂yi
t = 0,

from which we can solve for optimal capital controls using the (IS) equation:

˙̄̂
θi

t = −
(κ̂θ + Gκ̂y)(G′µi

y,t − 2απ ˆ̄πi
H,t)− G′(2Gα̂yy + α̂yθ)( ˆ̄πi

H,t + ˙̃si
t)

2α̂θθ + Gα̂yθ + G(2Gα̂yy + α̂yθ)
(209)

Using the (IS) equation again, we have

˙̄̂yi
t = −G′( ˆ̄πi

H,t + ˙̃si
t)− G

(κ̂θ + Gκ̂y)(G′µi
y,t − 2απ ˆ̄πi

H,t)− G′(2Gα̂yy + α̂yθ)( ˆ̄πi
H,t + ˙̃si

t)

2α̂θθ + Gα̂yθ + G(2Gα̂yy + α̂yθ)
. (210)

Finally, using (203) and our solution for µi
π,t above, we find

µ̇i
y,t =ρµi

y,t + λ
κ̂yΓ̂θ − κ̂θ Γ̂y

κ̂θ + Gκ̂y
− ˆ̄θi

t
2κ̂yα̂θθ − κ̂θ α̂yθ

κ̂θ + Gκ̂y
− ˆ̄yi

t
α̂yθ κ̂y − 2κ̂θ α̂yy

κ̂θ + Gκ̂y
. (211)

Therefore, we can write the reduced system of optimality conditions just like in the case of opti-
mal transfers as the dynamical system

µ̇i
y,t = ρµi

y,t + K̂θ
ˆ̄θi
t + K̂y ˆ̄yi

t + K̂λλ (212)
˙̄̂yi
t = Ĵµy µi

y,t + Ĵπ ˆ̄πi
H,t + Ĵs ˙̃si

t (213)
˙̄̂
θi

t = Ĥµy µi
y,t + Ĥπ ˆ̄πi

H,t + Ĥs ˙̃si
t (214)

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κ̂y ˆ̄yi
t − κ̂θ

ˆ̄θi
t (215)

subject to the initial conditions µi
y,0 = ∆, ˆ̄yi

0 = −Ḡ′ s̃i
0 + Ḡ ˆ̄θi

0.

D.5.2 Solving the Dynamic System

Viewing the system of optimality conditions as system of linear ODEs, letting Xi
t = { ˆ̄πi

H,t, ˆ̄yi
t,

ˆ̄θi
t, µi

y,t},
we can write as

Ẋi
t = AXi

t + Bi
t, (216)
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where

A =


ρ −κ̂y −κ̂θ 0
Ĵπ 0 0 Ĵµy

Ĥπ 0 0 Ĥµy

0 K̂y K̂θ ρ

 , Bi
t =


0
ˆ̄Ji
t

ˆ̄Hi
t

ˆ̄Ki
t

 , Xi
0 =


ˆ̄πi

H,0
ˆ̄yi
0

ˆ̄θi
0

∆

 ,

where ˆ̄Ji
t = Ĵs ˙̃si

t,
ˆ̄Hi

t = Ĥs ˙̃si
t, and ˆ̄Ki

t = K̂θ
ˆ̄θi
t + K̂λλ.

The solution to this dynamical system is given by

Xi
t = eAt

[
Xi

0 +
∫ t

0
e−AsBi

sds
]

,

which we can rewrite as

Xi
t = eAt

[
Xi

0 +
∫ t

0
e−As

(
ˆ̄Ji
sE2 + ˆ̄Hi

sE3 + ˆ̄Ki
sE4ds

]
,

where Ei is the 4× 1 zero vector with a 1 in the ith position. We rewrite the solution for Xi
t and get

Xi
t = eAt

[
Xi

0 + K̂λλ
∫ t

0
e−AsE4ds

+ W2

∫ t

0
e−As−ψsE2ds + W3

∫ t

0
e−As−ψsE3ds

]
,

where now W2 = −ψai
0 Ĵs and W3 = −ψai

0Ĥs.
Following the same steps as in the previous section for optimal transfers, we arrive at the follow-

ing final expression for the solution of the dynamical system of optimality conditions:

Xi
t =eAt

[
Xi

0 + K̂λλA−1E4 + (A + ψI)−1(W2E2 + W3E3
)]

(217)

− K̂λλA−1E4 − (A + ψI)−1e−ψt(W2E2 + W3E3
)
.

D.5.3 Stability

There is a unique solution to this system of linear ODEs if and only if A has two negative eigenvalues.
For stability, we require the term in square brackets above to be in the stable manifold. This gives
us four stability conditions, requiring that the term be spanned by the two 4× 1 eigenvectors of A
associated with the negative eigenvalues. In particular, we have

0 =α1V1 + α2V2 + Xi
0 − κθ

ˆ̄θi A−1E1 + (Kθ
ˆ̄θi + Kλλ)A−1E4 (218)

+ (A + ψI)−1(W2E2 + W3E3
)
,

where, as before, Vi is associated with the negative eigenvalue of A λi, and α1, α2 ∈ C. To guarantee
stability, we solve the vector Z = (α1, α2, λ, ∆, ˆ̄πi

H,0, ˆ̄yi
0, ˆ̄τi,r

0 )′ ∈ C7 using seven linearly independent
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equations that satisfy said stability criterion as well as the initial conditions of the dynamical system.
Equation (218) gives us four of these conditions if we left-multiply both sides by E′i for i ∈ {1, 2, 3, 4}.

As before, the fifth stability condition will be the initial condition, ˆ̄yi
0 + Ḡ′ s̃i

0− Ḡ ˆ̄θi
0 = 0. Using the

initial conditions we obtained from the first-order conditions, we can write

0 = (Γ̂yG + Γ̂θ)λ− (2α̂θθ + Gα̂yθ)
ˆ̄θi
0 − (2Gα̂yy + α̂yθ) ˆ̄yi

0. (219)

Finally, using the budget constraint, we have

0 =
∫ ∞

0
e−ρt

(
Γ̂y ˆ̄yi

t + Γ̂θ
ˆ̄θi
t

)
dt

=
∫ ∞

0
e−ρt(Γ̂yE2 + Γ̂θE3

)′Xi
tdt.

Solving as before yields

0 =
α1

λ1 − ρ

(
Γ̂yE2 + Γ̂θE3

)′V1 +
α2

λ2 − ρ

(
Γ̂yE2 + Γ̂θE3

)′V2 (220)

− K̂λλ

ρ

(
Γ̂yE2 + Γ̂θE3

)′A−1E4 −
1

ρ + ψ

(
Γ̂yE2 + Γ̂θE3

)′
(A + ψI)−1(W2E2 + W3E3).

Putting everything together, we can write MZ = N, where

M =



E′1V1 E′1V2 K̂λE′1 A−1E4 0 1 0 0
E′2V1 E′2V2 K̂λE′2 A−1E4 0 0 1 0
E′3V1 E′3V2 K̂λE′3 A−1E4 0 0 0 1
E′4V1 E′4V2 K̂λE′4 A−1E4 1 0 0 0

0 0 0 0 0 1 −Ḡ
0 0 Γ̂θ + GΓ̂y 0 0 −(2α̂yyG + α̂yθ) −(2α̂θθ + Gα̂yθ)

(Γ̂yE2+Γ̂θ E3)
′

λ1−ρ V1
(Γ̂yE2+Γ̂θ E3)

′

λ2−ρ V2 − K̂λ
ρ (Γ̂yE2 + Γ̂θE3)

′A−1E4 0 0 0 0


Let W = (A + ψI)−1(W2E2 + W3E3), then

N =



−E′1W
−E′2W
−E′3W
−E′4W
−Ḡ′ s̃i

0

0
1

ρ+ψ (Γ̂yE2 + Γ̂θE3)′(A + ψI)−1[W2E2 + W3E3]


.

Given these matrices, we can compute the vector Z numerically by setting
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Z = M−1N (221)

over the parameter subspace on which M is invertible.

D.6 Optimal Government Spending

Finally, we consider optimal government spending. We set ˆ̄θi
t =

ˆ̄θi for all t and NFAi
0 = 0. This again

implies ˆ̄NFAi
0 = 0. Hence, τi,r

t = −(Si
t)
−αGi

t = τi,o
t because the government does not discriminate

between agents in the way it sets taxes. Thus, we have ˆ̄τi,r
t = αυ ˆ̄si

t − υ ˆ̄gi
t or, substituting in for the

terms of trade,
ˆ̄τi,r
t =

αυ

1− αυντ

(
νy ˆ̄yi

t + (νg −
1
α
) ˆ̄gi

t + νθ
ˆ̄θi).

NFA. We start by considering country i’s budget constraint and record an important result: For
all χ ∈ [0, 1] and υ ∈ [0, 1], we have ˆ̄θi = 0 under optimal government spending. Moreover, under
the Cole-Obstfeld calibration trade is balanced in every period and HtM agents and optimizers are
entirely symmetric.
Under optimal government spending, the budget constraint becomes

0 =
∫ ∞

0
e−ρt

[(
Γy +

αυ

1− αυντ
νyΓτ

)
ˆ̄yi
t +

(
Γθ +

αυ

1− αυντ
νθΓτ

)
ˆ̄θi +

(
Γg +

αυ

1− αυντ
(νg−

1
α
)Γτ

)
ˆ̄gi
t

]
dt,

and we have

Γ̂y = Γy +
αυ

1− αυντ
νyΓτ = 0

Γ̂g = Γg +
αυ

1− αυντ
(νg −

1
α
)Γτ = 0.

Therefore, we must have ˆ̄θi = 0. Since the term in square brackets is also equivalent to net exports,
Γ̂y ˆ̄yi

t + Γ̂g ˆ̄gi
t + Γ̂θ

ˆ̄θi
t =

ˆ̄NXi
t, we furthermore find that trade is balanced in every period. This implies

that optimizers and HtM agents will have the same consumption profile, since the former do not
save or borrow to smooth their consumption over time.

As a result, we can rewrite the expression for the rebate as follows:

ˆ̄τi,r
t =

αυ

1− αυντ

(
νy ˆ̄yi

t + (νg −
1
α
) ˆ̄gi

t
)
. (222)

And with that, we can now present the simplified dynamical system characterizing the allocation
under optimal government spending.

IS equation. The (IS) equation becomes

˙̄̂yi
t = −G′( ˆ̄πi

H,t + ˙̃si
t) + F ˙̄̂gi

t, (223)
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where

F =
Λg +

αυ
1−αυντ

Λτ(νg − 1
α )

Λy − αυνy
1−αυντ

Λτ

NKPC. The Phillips Curve becomes

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κ̂y ˆ̄yi
t − κ̂θ

ˆ̄θi − κ̂g ˆ̄gi
t, (224)

where
κ̂g = κg +

αυ

1− αυντ
κτ(νg −

1
α
).

Initial condition. Finally, we can rewrite the initial condition as

Λy ˆ̄yi
0 = −(Λs + αυΛτ)s̃i

0 + (Λg − υΛτ) ˆ̄gi
0 + Λθ

ˆ̄θi. (225)

Planning problem. Therefore, the planning problem for country i under optimal government

spending becomes

min
{ ˆ̄gi

t}t≥0

∫ ∞

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 − ˆ̄Ui

t
∣∣ ˆ̄θi

t=0, ˆ̄τi,r
t =αυ ˆ̄si

t

]
dt, (226)

subject to

˙̄̂yi
t = −G′( ˆ̄πi

H,t + ˙̃si
t) + F ˙̄̂gi

t
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κ̂y ˆ̄yi

t − κ̂g ˆ̄gi
t

Λy ˆ̄yi
0 = −(Λs + αυΛτ)s̃i

0 + (Λg − υΛτ) ˆ̄gi
0

Control problem. Again, the conversion from planning to optimal control problem requires two

steps. First, we now only include the initial condition in the Hamiltonian using Lagrange multiplier
∆, since the isoperimetric budget constraint has dropped out. Second, we substitute out the time
derivative ˙̄̂gi

t in the (IS) equation and replace it with placeholder ˆ̄νi
t. The following Hamiltonian

emerges:

Hi
t(xi

t, ui
t, µi

t) =απ( ˆ̄πi
H,t)

2 − ˆ̄Ui
t
∣∣ ˆ̄θi

t=0, ˆ̄τi,r
t =αυ ˆ̄si

t

+ ∆
[

Λy ˆ̄yi
0 + (Λs + αυΛτ)s̃i

0 − (Λg − υΛτ) ˆ̄gi
0

]
+ µi

y,t

[
F ˆ̄νi

t − G′( ˆ̄πi
H,t + ˙̃si

t)

]
+ µi

g,t ˆ̄νi
t
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+ µi
π,t

[
ρ ˆ̄πi

H,t − κ̂y ˆ̄yi
t − κ̂g ˆ̄gi

t

]
.

As before, xi
t describes the vector of state variables, ui

t the vector of control variables, and µi
t the

vector of costates.
Loss function. Finally, we want to express the simplified loss function under government spending

is characterized by
ˆ̄Ui

t
∣∣ ˆ̄θi

t=0, ˆ̄τi,r
t =αυ ˆ̄si

t
= α̂yy( ˆ̄yi

t)
2 + α̂gg( ˆ̄gi

t)
2 + α̂yg ˆ̄yi

t ˆ̄gi
t, (227)

where

α̂gg = αgg +
( αυ

1− αυντ

)2
(νg −

1
α
)2αττ +

αυ

1− αυντ
(νg −

1
1− α

)αgτ

α̂yg = 2αττ

( αυ

1− αυντ

)2
νy(νg −

1
α
) + αyg +

αυ

1− αυντ
(νg −

1
α
)αyτ +

αυ

1− αυντ
νyαgτ

and the remaining coefficients are as before.

D.6.1 Optimality Conditions

The Hamiltonian yields the following first-order conditions.

Optimality:
Fµi

y,t + µi
τ,t = 0. (228)

Multiplier:

µ̇i
π,t = G′µi

y,t − 2απ ˆ̄πi
H,t (229)

ρµi
y,t − µ̇i

y,t = −κ̂yµi
π,t − 2α̂yy ˆ̄yi

t − α̂yg ˆ̄gi
t (230)

ρµi
g,t − µ̇i

g,t = −κ̂gµi
π,t − 2α̂gg ˆ̄gi

t − α̂yg ˆ̄yi
t (231)

State:

˙̄̂yi
t = −G′( ˆ̄πi

H,t + ˙̃si
t) + F ˆ̄νi

t
˙̄̂gi
t = ˆ̄νi

t
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κ̂y ˆ̄yi

t − κ̂g ˆ̄gi
t

Initial Conditions:

µi
π,0 = 0 (232)

µi
y,0 = ∆Λy (233)
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µi
g,0 = −∆(Λg − υΛτ). (234)

We will now simplify the above dynamical system by solving out for µi
π,t and µi

θ,t. Using equations
(228), (230) and (231), we can write

(κ̂g + Fκ̂y)µ
i
π,t = −(2α̂gg + Fα̂yg) ˆ̄gi

t − (2Fα̂yy + αyg) ˆ̄yi
t. (235)

Taking the derivative with respect to time and using (229), we have

(κ̂g + Fκ̂y)(G′µi
y,t − 2απ ˆ̄πi

H,t) + (2α̂gg + Fα̂yg) ˙̄̂gi
t + (2Fα̂yy + α̂yg) ˙̄̂yi

t = 0,

from which we can solve for optimal capital controls using the (IS) equation:

˙̄̂gi
t = −

(κ̂g + Fκ̂y)(G′µi
y,t − 2απ ˆ̄πi

H,t)− G′(2Fα̂yy + α̂yg)( ˆ̄πi
H,t + ˙̃si

t)

2α̂gg + Fα̂yg + F(2Fα̂yy + α̂yg)
(236)

Using the (IS) equation again, we have

˙̄̂yi
t = −G′( ˆ̄πH,t + ˙̃si

t)− F
(κ̂g + Fκ̂y)(G′µi

y,t − 2απ ˆ̄πi
H,t)− G′(2Fα̂yy + α̂yg)( ˆ̄πi

H,t + ˙̃si
t)

2α̂gg + Fα̂yg + F(2Fα̂yy + α̂yg)
. (237)

Finally, using (230) and our solution for µi
π,t above, we find

µ̇i
y,t =ρµi

y,t − ˆ̄gi
t
2κ̂yα̂gg − κ̂gα̂yg

κ̂g + Fκ̂y
− ˆ̄yi

t
α̂ygκ̂y − 2κ̂gα̂yy

κ̂g + Fκ̂y
. (238)

Therefore, we can write the reduced system of optimality conditions as

µ̇i
y,t = ρµi

y,t + K̃y ˆ̄yi
t + K̃g ˆ̄gi

t (239)
˙̄̂yi
t = J̃µy µi

y,t + J̃π ˆ̄πi
H,t + J̃s ˙̃si

t (240)
˙̄̂
θi

t = H̃µy µi
y,t + H̃π ˆ̄πi

H,t + H̃s ˙̃si
t (241)

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κ̃y ˆ̄yi
t − κ̃g ˆ̄gi

t (242)

subject to the initial conditions µi
y,0 = ∆Λy and Λy ˆ̄yi

0 = −(Λs + αυΛτ)s̃i
0 + (Λg − υΛτ) ˆ̄gi

0.

D.6.2 Solving the Dynamic System

Let Xi
t = { ˆ̄πi

H,t, ˆ̄yi
t, ˆ̄gi

t, µi
y,t}. Then we have

Ẋi
t = AXi

t + Bi
t, (243)
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where

A =


ρ −κ̂y −κ̂θ 0
J̃π 0 0 J̃µy

H̃π 0 0 H̃µy

0 K̃y K̃θ ρ

 , Bi
t =


0
˜̄Ji
t

˜̄Hi
t

˜̄Ki
t

 , Xi
0 =


ˆ̄πi

H,0
ˆ̄yi
0

ˆ̄θi
0

∆Λy

 ,

where ˜̄Ji
t = J̃s ˙̃si

t,
˜̄Hi

t = H̃s ˙̃si
t, and ˜̄Ki

t = K̃λλ.
Therefore, following the same steps as in the previous two sections the solution of the dynamical

system of optimality conditions can be written as

Xi
t =eAt

[
Xi

0 + (A + ψI)−1(W2E2 + W3E3 + W4E4
)]

(244)

− (A + ψI)−1e−ψt(W2E2 + W3E3
)
,

where W2 = −ψai
0 J̃s and W3 = −ψai

0H̃s.

D.6.3 Stability

As we argued in previous sections, there is a unique solution to this system of linear ODEs if and
only if A has two negative eigenvalues. For stability, we require the term in square brackets above
to be in the stable manifold. In other words, we require the term in square brackets to be spanned by
the two eigenvectors, V1 and V2, of A that are associated with the two negative eigenvalues, which
we will call λ1 and λ2. This gives us a system of four linearly independent equations

0 =α1V1 + α2V2 + Xi
0 + (A + ψI)−1(W2E2 + W3E3 + W4E4

)
,

where α1, α2 ∈ C.
Unlike in the previous two sections, we now only have to solve for six variables which we sum-

marize in the vector Z = (α1, α2, ∆, ˆ̄πi
H,0, ˆ̄yi

0, ˆ̄τi,r
0 )′ ∈ C6. Equation (218) gives us four of these condi-

tions if we left-multiply both sides by E′i for i ∈ {1, 2, 3, 4}.
The fifth stability condition will be the initial condition, Λy ˆ̄yi

0 = −(Λs + αυΛτ)s̃i
0 +(Λg− υΛτ) ˆ̄gi

0.
The sixth and final stability condition we obtain from one of the initial conditions of the dynamical
system of optimality conditions,

0 = −(2α̂gg + Fα̂yg) ˆ̄gi
0 − (2Fα̂yy + αyg) ˆ̄yi

0. (245)
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In matrix form, this system of linear equations can be written MZ = N, where

M =



E′1V1 E′1V2 0 1 0 0
E′2V1 E′2V2 0 0 1 0
E′3V1 E′3V2 0 0 0 1
E′4V1 E′4V2 Λy 0 0 0

0 0 0 0 Λy −(Λg − υΛτ)

0 0 0 0 −(2α̂yyF + α̂yg) −(2α̂gg + Fα̂yg)


and

N =



−E′1(A + ψI)−1(W2E2 + W3E3)

−E′2(A + ψI)−1(W2E2 + W3E3)

−E′3(A + ψI)−1(W2E2 + W3E3)

−E′4(A + ψI)−1(W2E2 + W3E3)

−(Λs + αυΛτ)s̃i
0

0


.

Given these matrices, we can compute the vector Z numerically by setting

Z = M−1N (246)

over the parameter subspace on which M is invertible.

D.7 Optimal Redistribution

We can easily study redistribution as a distinct, fourth policy instrument in the present framework,
even though we have not explicitly discussed it until now.

We have previously imposed that the government does not discriminate between agents when
funding its own outlays. To introduce redistribution as a distinct policy instrument, we remove this
constraint. In addition, we set NFAi

0 = 0, implying that country i does not receive international
transfers. Therefore, the only relevant constraint becomes

χ ˆ̄τi,r
t + (1− χ) ˆ̄τi,o

t = αυ ˆ̄si
t, (247)

since government spending is not used, ˆ̄gi
t = 0. Finally, the social planner cannot use capital controls,

either, so that ˆ̄θi
t =

ˆ̄θi for all t.
Note that the only important difference between the characterization of optimal redistribution

and optimal transfers is country i’s budget constraint. In particular, we now have NFAi
0 = 0 so that

0 =
∫ ∞

0
e−ρt

(
ˆ̄yi
t − (1− υ)α ˆ̄si

t − (1− υ) ˆ̄ci
t

)
dt, (248)
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where ˆ̄NXi
t = ˆ̄yi

t − (1− υ)α ˆ̄si
t − (1− υ) ˆ̄ci

t. We can rewrite the budget constraint using earlier results
so that

0 =
∫ ∞

0
e−ρt

[(
1− α(1− υ)νy − (1− υ)ζy

)
ˆ̄yi
t − (1− υ)(ανθ + ζθ)

ˆ̄θi − (1− υ)(αντ + ζτ) ˆ̄τi,r
t

]
dt,

or, more conveniently,

0 =
∫ ∞

0
e−ρt

[
Γ∗y ˆ̄yi

t + Γ∗θ
ˆ̄θi + Γ∗τ ˆ̄τi,r

t

]
dt. (249)

D.7.1 Optimal Control Problem

Exploiting the similarity between transfers and redistribution, we can simply adopt the same loss
function, IS equation, Phillips Curve and initial condition. The planning problem can therefore be
written as

min
ˆ̄θi,{ ˆ̄τi,r

t }t≥0

∫ ∞

0
e−ρt

[
απ(π

i
H,t)

2 − ˆ̄Ui
t
∣∣ ˆ̄θi

t=
ˆ̄θi, ˆ̄gi

t=0

]
dt, (250)

subject to

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t) + D ˆ̄νi

t
˙̄̂τi,r
t = ˆ̄νi

t
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κθ
ˆ̄θi − κτ ˆ̄τi,r

t

where D′ = Λs
Λy

and D = Λτ
Λy

, and also subject to the intial condition Λy ˆ̄yi
0 = −Λs s̃i

0 + Λθ
ˆ̄θi + Λτ ˆ̄τi,r

0 .
Instead of the budget constraint under transfers, however, we now use the budget constraint pre-
sented in (249). As before, the associated optimal control problem can be characterized via the Hamil-
tonian

H(xi
t, ui

t, µi
t) =απ(π

i
H,t)

2 − ˆ̄Ui
t
∣∣ ˆ̄θi

t=
ˆ̄θi, ˆ̄gi

t=0 (251)

+ λ

[
Γ∗y ˆ̄yi

t + Γ∗τ ˆ̄τi,r
t + Γ∗θ

ˆ̄θi
]

+ ∆
[

Λy ˆ̄yi
0 + Λs s̃i

0 −Λθ
ˆ̄θi −Λτ ˆ̄τi,r

0

]
+ µi

y,t

[
D ˆ̄νi

t − D′( ˆ̄πi
H,t + ˙̃si

t)

]
+ µi

τ,t ˆ̄νi
t

+ µi
π,t

[
ρ ˆ̄πi

H,t − κy ˆ̄yi
t − κθ

ˆ̄θi − κτ ˆ̄τi,r
t

]
,

where xi
t, ui

t, and µi
t denote the vectors of state variables, control variables, and costates, respectively.

Reducing the system of the first-order conditions associated with this control problem as before,
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we can summarize the optimal allocation using the dynamical system

Ẋi
t = AXi

t + Bi
t, (252)

where Xi
t = { ˆ̄πi

H,t, ˆ̄yi
t, ˆ̄τi,r

t , µi
y,t} and

A =


ρ −κy −κτ 0
Jπ 0 0 Jµy

Hπ 0 0 Hµy

0 Ky Kτ ρ

 , Bi
t =


−κθ

ˆ̄θi

J̄i
t

H̄i
t

K̄i
t

 , Xi
0 =


ˆ̄πi

H,0
ˆ̄yi
0

ˆ̄τi,r
0

∆Λy

 ,

and where J̄i
t = Js ˙̃si

t, H̄i
t = Hs ˙̃si

t, and K̄i
t = Kθ

ˆ̄θi + Kλλ.
The solution to this dynamical system is, as before, given by

Xi
t =eAt

[
Xi

0 − κθ
ˆ̄θi A−1E1 + (Kθ

ˆ̄θi + Kλλ)A−1E4 + (A + ψI)−1(W2E2 + W3E3
)]

(253)

+ κθ
ˆ̄θi A−1E1 − (Kθ

ˆ̄θi + Kλλ)A−1E4 − (A + ψI)−1e−ψt(W2E2 + W3E3
)

D.7.2 Stability

To guarantee the stability of this system, we want to solve for the vector Z = (α1, α2, λ, ∆, ˆ̄πi
H,0, ˆ̄yi

0, ˆ̄τi,r
0 )′ ∈

C7 using a set of stability conditions. We use the same first six stability conditions as for optimal
transfers. The seventh stability condition, however, is now given by

0 =
Γ∗θ
ρ

ˆ̄θi +
α1

λ1 − ρ
(Γ∗yE2 + Γ∗τE3)

′V1 +
α2

λ2 − ρ
(Γ∗yE2 + Γ∗τE3)

′V2 (254)

+
κθ

ˆ̄θi

ρ
(Γ∗yE2 + Γ∗τE3)

′A−1E1 −
Kθ

ˆ̄θi + Kλλ

ρ
(Γ∗yE2 + Γ∗τE3)

′A−1E4

− 1
ρ + ψ

(Γ∗yE2 + Γ∗τE3)
′(A + ψI)−1[W2E2 + W3E3].

Putting everything together, we can write MZ = N, where

M =



E′1V1 E′1V2 KλE′1 A−1E4 0 1 0 0
E′2V1 E′2V2 KλE′2 A−1E4 0 0 1 0
E′3V1 E′3V2 KλE′3 A−1E4 0 0 0 1
E′4V1 E′4V2 KλE′4 A−1E4 Λy 0 0 0

0 0 0 0 0 Λy −Λτ

0 0 Γ∗τ + DΓ∗y 0 0 −(2αyyD + αyτ) −(2αττ + Dαyτ)
(Γ∗y E2+Γ∗τ E3)

′

λ1−ρ V1
(Γ∗y E2+Γ∗τ E3)

′

λ2−ρ V2 −Kλ
ρ (Γ∗yE2 + Γ∗τE3)

′A−1E4 0 0 0 0



and
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N =



−E′1W
−E′2W
−E′3W
−E′4W

−Λs s̃i
0 + Λθ

ˆ̄θi

(ατθ + Dαyθ)
ˆ̄θi

− Γ∗θ
ρ

ˆ̄θi − κθ
ˆ̄θi

ρ (Γ∗yE2 + Γ∗τE3)
′A−1E_1 + Kθ

ˆ̄θi

ρ (Γ∗yE2 + Γ∗τE3)
′A−1E4 +

(Γ∗y E2+Γ∗τ E3)
′

ρ+ψ (A + ψI)−1[W2E2 + W3E3]


where W = −κθ

ˆ̄θi A−1E1 + Kθ
ˆ̄θi A−1E4 + (A + ψI)−1[W2E2 + W3E3]. Given these matrices, we can

compute the vector Z numerically by setting

Z = M−1N (255)

over the parameter subspace on which M is invertible.

D.8 Optimal Deficits

We now study a particular form of deficits in this economy. In particular, we allow the government
to accrue debt over time and rebate these funds to households. With the presence of HtM agents,
Ricardian equivalence breaks down and such a policy can be effective.

Instead of the per-period government budget constraint, we now impose an isoperimetric con-
straint of the form

0 =
∫ ∞

0
e−ρt

(
χ ˆ̄τi,r

t + (1− χ) ˆ̄τi,o
t + υ ˆ̄gi

t − αυ ˆ̄si
t

)
dt. (256)

Implicitly, this constraint states that the government can now accumulate debt from one period to
the next. In this section, we assume that ˆ̄gi

t = 0 for all t because we want to narrow in on the question
of budget deficits, independent from the question of optimal government spending. We furthermore
assume that ˆ̄θi

t =
ˆ̄θi, since the government cannot use capital controls, and NFAi

0 = 0, since we do
not want to consider cross-border transfers here.

The second key assumption we make is that the government does not discriminate between
agents when rebating its deficit funds, which implies that ˆ̄τi,r

t = ˆ̄τi,o
t . Therefore, the inter-temporal

government budget constraint becomes

0 =
∫ ∞

0
e−ρt

(
ˆ̄τi,r
t − αυ ˆ̄si

t

)
dt. (257)

We now consider the problem where the social planner only has access to ex-post transfers, as in
body of the paper. In particular, we have ˆ̄θi

t =
ˆ̄θi for all t and ˆ̄gi

t = 0.

IS, NKPC and initial condition. The problem laid out above is almost identical to that of Section
4 with optimal fiscal union transfers. In fact, the only difference in the two planning problems
comes from the budget constraint and the now new isoperimetric government budget constraint. In
particular, it is easy to verify that we can adopt the same (IS) equation, (NKPC) and initial condition
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as we specified in Section 4. In particular, the (IS) equation is given by

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t) + D ˙̄̂τi,r

t .

The (NKPC) is given by
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κθ
ˆ̄θi − κτ ˆ̄τi,r

t ,

and the initial condition is
Λy ˆ̄yi

0 = −Λs s̃i
0 + Λθ

ˆ̄θi + Λτ ˆ̄τi,r
0 .

NFA. Finally, we rederive country i’s budget constraint. Recall that in the general derivation of

the NFA condition in Section 3, we assumed that the government budget constraint held period-by-
period. Under deficit spending, we have

W i
t Ni,o

t − Pi
t Ci,o

t + Pi
H,tY

i
t −W i

t Ni
t + Pi

t τi,r
t = W i

t Ni,o
t − Pi

t Ci,o
t + Pi

H,tY
i
t −W i

t Ni
t + Pi

t Ti,r
t − Pi

t Zi
H,t

= W i
t Ni,o

t − Pi
t Ci,o

t + Pi
t Ci,r

t −W i
t Ni,r

t

= Pi
t (C

i,r
t − Ci,o

t )−W i
t(Ni,r

t − Ni,o
t ).

Therefore, we have

NFAi
0 = −

∫ ∞

0
e−ρt 1

Pi
F

[
Pi

t (C
i,r
t − Ci,o

t )−W i
t(Ni,r

t − Ni,o
t )

]
dt

= −
∫ ∞

0
e−ρt

[
(Si

t)
−(1−α)(Ci,r

t − Ci,o
t )− 1

1− υ
Ci,r

t (Ni,r
t )φ(Si

t)
−(1−α)(Ni,r

t − Ni,o
t )

]
dt

since
W i

t

Pi
F
=

W i
t

Pi
t

Pi
t

Pi
F
=

1
1− υ

Ci,r
t (Ni,r

t )φ Pi
t

Pi
H,t

Pi
H,t

Pi
F

=
1

1− υ
Ci,r

t (Ni,r
t )φ(Si

t)
−(1−α).

Linearizing, we find

NFAi
0 = −

∫ ∞

0
e−ρt

[
(1− υ)(ci,r

t − ci,o
t )− (ni,r

t − ni,o
t )

]
dt. (258)

Adopting gap notation and noting that ˆ̄NFAi
0 = 0,

0 =
∫ ∞

0
e−ρt

[
(1− υ)( ˆ̄ci,r

t − ˆ̄ci,o
t )− ( ˆ̄ni,r

t − ˆ̄ni,o
t )

]
dt

=
∫ ∞

0
e−ρt

[
(1− υ)( ˆ̄ci,r

t − ˆ̄θi − (1− α) ˆ̄si
t)− ( ˆ̄ni,r

t −
1

1− χ
ˆ̄ni

t +
χ

1− χ
ˆ̄ni,r

t )

]
dt

=
∫ ∞

0
e−ρt

[
(1− υ)

(
ψy ˆ̄yi

t + (ψθ − 1) ˆ̄θi + ψτ ˆ̄τi,r
t
)
+

1
1− χ

ˆ̄yi
t

− (1− α)(1− υ)
(
νy ˆ̄yi

t + νθ
ˆ̄θi + ντ ˆ̄τi,r

t
)
− 1

1− χ

(
ηy ˆ̄yi

t + ηθ
ˆ̄θi + ητ ˆ̄τi,r

t
)]

dt.
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To simplify notation, we write

0 =
∫ ∞

0
e−ρt

[
Γ∗∗y ˆ̄yi

t + Γ∗∗θ
ˆ̄θi + Γ∗∗τ ˆ̄τi,r

t

]
dt. (259)

Partial collinearity of NFA and GBC. Comparing the NFA condition with the isoperimetric gov-

ernment budget constraint, which we can write as

0 =
∫ ∞

0
e−ρt

[
(1− αυντ) ˆ̄τi,r

t − αυνy ˆ̄yi
t − αυνθ

ˆ̄θi
]

dt, (260)

we note that we have
Γ∗∗y
−αυνy

=
Γ∗∗τ

1− αυντ
≡ ν. (261)

We can multiply (259) by 1/ν and subtract it from (260). This yields

0 =
∫ ∞

0
e−ρt

[
− αυνθ

ˆ̄θi − Γ∗∗θ
ν

ˆ̄θi
]

dt,

which immediately implies that we must have ˆ̄θi = 0.
Planning problem. Country i’s planning problem can therefore be written as

min
ˆ̄θi,{ ˆ̄τi,r

t }t≥0

∫ ∞

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 − ˆ̄Ui

t
∣∣ ˆ̄θi

t=0, ˆ̄gi
t=0

]
dt, (262)

subject to

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t) + D ˙̄̂τi,r

t
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κτ ˆ̄τi,r
t

Λy ˆ̄yi
0 = −Λs s̃i

0 + Λτ ˆ̄τi,r
0

0 =
∫ ∞

0
e−ρt

[
Γ∗∗y ˆ̄yi

t + Γ∗∗τ ˆ̄τi,r
t

]
dt

where D′ = Λs
Λy

and D = Λτ
Λy

, and

ˆ̄Ui
t
∣∣ ˆ̄θi

t=0, ˆ̄gi
t=0 = αyy( ˆ̄yi

t)
2 + αττ( ˆ̄τi,r

t )2 + αyτ ˆ̄yi
t ˆ̄τi,r

t

Control problem. To transform this planning problem into an optimal control problem that we can

work with we replace the time derivative ˙̄̂τi,r
t in the (IS) equation by a placeholder, ˆ̄νi

t, and introduce
a new dynamic state equation. The Hamiltonian associated with this control problem can then be
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written as

H(xi
t, ui

t, µi
t) =απ( ˆ̄πi

H,t)
2 − ˆ̄Ui

t
∣∣ ˆ̄θi

t=0, ˆ̄gi
t=0 (263)

+ ∆
[

Λy ˆ̄yi
0 + Λs s̃i

0 −Λτ ˆ̄τi,r
0

]
+ λ

[
Γ∗∗y ˆ̄yi

t + Γ∗∗τ ˆ̄τi,r
t

]
+ µi

y,t

[
D ˆ̄νi

t − D′( ˆ̄πi
H,t + ˙̃si

t)

]
+ µi

τ,t ˆ̄νi
t

+ µi
π,t

[
ρ ˆ̄πi

H,t − κy ˆ̄yi
t − κτ ˆ̄τi,r

t

]
,

where xi
t = { ˆ̄πi

H,t, ˆ̄yi
t, ˆ̄τi,r

t } denotes the vector of state variables, ui
t = { ˆ̄νi

t} the vector of control
variables, and µi

t = {µi
π,t, µi

y,t, µi
τ,t} the vector of costates.

D.8.1 Optimality Conditions

The Hamiltonian yields the nine first-order conditions

Optimality:
Dµi

y,t + µi
τ,t = 0. (264)

Multiplier:

µ̇i
π,t = D′µi

y,t − 2απ ˆ̄πi
H,t (265)

ρµi
y,t − µ̇i

y,t = Γ∗∗y λ− κyµi
π,t − 2αyy ˆ̄yi

t − αyτ ˆ̄τi,r
t (266)

ρµi
τ,t − µ̇i

τ,t = Γ∗∗τ λ− κτµi
π,t − 2αττ ˆ̄τi,r

t − αyτ ˆ̄yi
t (267)

State:

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t) + D ˆ̄νi

t
˙̄̂τi,r
t = ˆ̄νi

t
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κτ ˆ̄τi,r
t

Initial conditions:

µi
π,0 = 0

µi
y,0 = ∆Λy
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µi
τ,0 = −∆Λτ.

We can now solve out for µi
π,t and µi

τ,t to reduce the dimensionality of this dynamical system. Using
equations (264), (266) and (267), we can write

(κτ + Dκy)µ
i
π,t = (Γ∗∗y D + Γ∗∗τ )λ− (2αττ + Dαyτ) ˆ̄τi,r

t − (2Dαyy + αyτ) ˆ̄yi
t. (268)

Taking the derivative with respect to time and using (265), we have

(κτ + Dκy)(D′µi
y,t − 2απ ˆ̄πi

H,t) + (2αττ + Dαyτ) ˙̄̂τi,r
t + (2Dαyy + αyτ) ˙̄̂yi

t = 0,

from which we can solve for the rate of change of transfers using the (IS) equation:

˙̄̂τi,r
t = −

(κτ + Dκy)(D′µi
y,t − 2απ ˆ̄πi

H,t)− D′(2Dαyy + αyτ)( ˆ̄πi
H,t + ˙̃si

t)

2αττ + Dαyτ + D(2Dαyy + αyτ)
(269)

Using the (IS) equation again, we have

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t)− D

(κτ + Dκy)(D′µi
y,t − 2απ ˆ̄πi

H,t)− D′(2Dαyy + αyτ)( ˆ̄πi
H,t + ˙̃si

t)

2αττ + Dαyτ + D(2Dαyy + αyτ)
. (270)

Finally, using (266) and our solution for µi
π,t above, we find

µ̇i
y,t = ρµi

y,t + λ
κyΓ∗∗τ − κτΓ∗∗y

κτ + Dκy
− ˆ̄τi,r

t
2κyαττ − κταyτ

κτ + Dκy
− ˆ̄yi

t
αyτκy − 2κταyy

κτ + Dκy
. (271)

Therefore, we can write the reduced system of optimality conditions as

µ̇i
y,t = ρµi

y,t + Kτ ˆ̄τi,r
t + Ky ˆ̄yi

t + Kλλ (272)
˙̄̂yi
t = Jµy µi

y,t + Jπ ˆ̄πi
H,t + Js ˙̃si

t (273)
˙̄̂τi,r
t = Hµy µi

y,t + Hπ ˆ̄πi
H,t + Hs ˙̃si

t (274)
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κτ ˆ̄τi,r
t . (275)

D.8.2 Solving the Dynamical System

We can thus express the dynamical system of first-order conditions as a system of linear ODEs,

Ẋi
t = AXi

t + Bi
t (276)
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for Xi
t = { ˆ̄πi

H,t, ˆ̄yi
t, ˆ̄τi,r

t , µi
y,t}. We have

A =


ρ −κy −κτ 0
Jπ 0 0 Jµy

Hπ 0 0 Hµy

0 Ky Kτ ρ

 , Bi
t =


0
J̄i
t

H̄i
t

K̄i
t

 , Xi
0 =


ˆ̄πi

H,0
ˆ̄yi
0

ˆ̄τi,r
0

∆Λy

 ,

and J̄i
t = Js ˙̃si

t, H̄i
t = Hs ˙̃si

t, and K̄i
t = Kλλ.

Following the same steps as in Section 4, we can write the solution as

Xi
t = eAt

[
Xi

0 + Kλλ
∫ t

0
e−AsE4ds + W2

∫ t

0
e−As−ψsE2ds + W3

∫ t

0
e−As−ψsE3ds

]
,

where W2 = −ψai
0 Js and W3 = −ψai

0Hs. Assuming that the economy is in the parameter subspace
where A is nonsingular, we can solve out the integrals to arrive at

Xi
t =eAt

[
Xi

0 + KλλA−1E4 + (A + ψI)−1(W2E2 + W3E3
)]

(277)

− KλλA−1E4 − (A + ψI)−1e−ψt(W2E2 + W3E3
)
.

D.8.3 Stability

Our main departure from the solution in Section 4 is the following stability analysis. To guarantee
uniqueness, we still require

Xi
0 + KλλA−1E4 + (A + ψI)−1(W2E2 + W3E3

)
to be in the stable manifold. Let Vj, j ∈ {1, 2}, denote the eigenvector of A associated with the
negative eigenvalue λj. We can express this stability condition as

0 = α1V1 + α2V2 + Xi
0 + KλλA−1E4 + (A + ψI)−1(W2E2 + W3E3

)
, (278)

for some αj ∈ C, j ∈ {1, 2}.
Under deficit spending, however, we now have an extra parameter that we need to solve for.

That is, we now need to solve the vector Z = (α1, α2, λ, ∆, ˆ̄πi
H,0, ˆ̄yi

0, ˆ̄τi,r
0 )′ ∈ C7 to satisfy the stability

requirement and initial conditions. Equation (278) yields four of the desired eight conditions. As
before, we left-multiply (278) by E′i for each i ∈ {1, 2, 3, 4}.

The first initial condition we can use is Λy ˆ̄yi
0 = −Λs s̃i

0 +Λτ ˆ̄τi,r
0 . Another one we obtain by writing

(κτ + Dκy)µ
i
π,0 = 0 = (Γ∗∗y D + Γ∗∗τ )λ− (2αττ + Dαyτ) ˆ̄τi,r

0 − (2Dαyy + αyτ) ˆ̄yi
0. (279)

The remaining two conditions we obtain from the two constraints associated with λ1 and λ2,
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respectively. Note that we can write

Xi
t =eAt(− α1V1 − α2V2

)
− KλλA−1E4 − (A + ψI)−1e−ψt(W2E2 + W3E3

)
=− α1eλ1tV1 − α2eλ2tV2 − KλλA−1E4 − (A + ψI)−1e−ψt(W2E2 + W3E3

)
.

The budget constraint then becomes

0 =
∫ ∞

0
e−ρt

[
Γ∗∗y ˆ̄yi

t + Γ∗∗τ ˆ̄τi,r
t

]
dt

=
∫ ∞

0
e−ρt(Γ∗∗y E2 + Γ∗∗τ E3)

′Xi
tdt,

where we can plug in the solution for Xi
t and solve out the integrals to obtain

0 =
α1

λ1 − ρ
(Γ∗∗y E2 + Γ∗∗τ E3)

′V1 +
α2

λ2 − ρ
(Γ∗∗y E2 + Γ∗∗τ E3)

′V2 (280)

− Kλλ

ρ
(Γ∗∗y E2 + Γ∗∗τ E3)

′A−1E4

− 1
ρ + ψ

(Γ∗∗y E2 + Γ∗∗τ E3)
′(A + ψI)−1[W2E2 + W3E3].

Putting everything together, we can write MZ = N. Letting Ẽ = (Γ∗∗y E2 + Γ∗∗τ E3) for ease of
notation, we have

M =



E′1V1 E′1V2 KλE′1A−1E4 0 1 0 0
E′2V1 E′2V2 KλE′2A−1E4 0 0 1 0
E′3V1 E′3V2 KλE′3A−1E4 0 0 0 1
E′4V1 E′4V2 KλE′4A−1E4 Λy 0 0 0

0 0 0 0 0 Λy −Λτ

0 0 Γ∗∗τ + DΓ∗∗y 0 0 −(2αyyD + αyτ) −(2αττ + Dαyτ)
Ẽ′

λ1−ρ V1
Ẽ′

λ2−ρ V2 −Kλ
ρ Ẽ′A−1E4 0 0 0 0


and

N =



−E′1W
−E′2W
−E′3W
−E′4W
−Λs s̃i

0

0
Ẽ′

ρ+ψ (A + ψI)−1[W2E2 + W3E3]
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where W = (A + ψI)−1[W2E2 + W3E3]. Given these matrices, we can compute the vector Z
numerically by setting

Z = M−1N (281)

over the parameter subspace on which M is invertible.

D.9 Jointly Optimal Fiscal Policy

Finally, we consider optimal fiscal policy, allowing for both government spending and redistribution.
The allocation derived under jointly optimal government and deficit spending would be identical.

In the absence of international transfers, we have NFAi
0 = ˆ̄NFAi

0 = 0. We do not allow for capital
controls, ˆ̄θi

t = ˆ̄θi, and impose the per-period government budget constraint, χ ˆ̄τi,r
t + (1 − χ) ˆ̄τi,o

t +

υ ˆ̄gi
t − αυ ˆ̄si

t = 0.
Since the government’s budget is balanced in every period, the original external budget con-

straint for country i holds,

0 =
∫ ∞

0
eρt
[

ˆ̄yi
t − α(1− υ) ˆ̄si

t − (1− υ) ˆ̄ci
t − υ ˆ̄gi

t

]
dt ≡

∫ ∞

0
e−ρt ˆ̄NXi

tdt (282)

where as before ˆ̄si
t = νy ˆ̄yi

t + ντ ˆ̄τi,r
t + νθ

ˆ̄θi + νg ˆ̄gi
t and ˆ̄ci

t = ζy ˆ̄yi
t + ζg ˆ̄gi

t + ζτ ˆ̄τi,r
t + ζθ

ˆ̄θi. We can simplify
to write the NFA condition as

0 =
∫ ∞

0
e−ρt

[
Γ∗y ˆ̄yi

t + Γ∗θ
ˆ̄θi + Γ∗τ ˆ̄τi,r

t + Γ∗g ˆ̄gi
t

]
dt, (283)

where

Γ∗y = 1− α(1− υ)νy − (1− υ)ζy

Γ∗θ = −α(1− υ)ντ − (1− υ)ζτ

Γ∗τ = −α(1− υ)νθ − (1− υ)ζθ

Γ∗g = −υ− α(1− υ)νg − (1− υ)ζg.

Planning problem. We can again adopt the (IS), (NKPC) and initial condition as they were spec-
ified in Section 4. Therefore, we can write country i’s disaggregated planning problem as

min
ˆ̄θi,{ ˆ̄τi,r

t , ˆ̄gi
t}t≥0

∫ ∞

0
e−ρt

[
απ( ˆ̄πi

H,t)
2 − ˆ̄Ui

t
∣∣ ˆ̄θi

t=
ˆ̄θi

]
dt, (284)

subject to

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t) + D̄ ˙̄̂gi

t + D ˙̄̂τi,r
t

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κy ˆ̄yi
t − κθ

ˆ̄θi − κτ ˆ̄τi,r
t − κg ˆ̄gi

t
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Λy ˆ̄yi
0 = −Λs s̃i

0 + Λθ
ˆ̄θi + Λτ ˆ̄τi,r

0 + Λg ˆ̄gi
0

0 =
∫ ∞

0
e−ρt

[
Γ∗y ˆ̄yi

t + Γ∗θ
ˆ̄θi + Γ∗τ ˆ̄τi,r

t + Γ∗g ˆ̄gi
t

]
dt

where D′ = Λs
Λy

, D̄ =
Λg
Λy

and D = Λτ
Λy

, and

ˆ̄Ui
t
∣∣ ˆ̄θi

t=
ˆ̄θi =αyy( ˆ̄yi

t)
2 + αθθ(

ˆ̄θi)2 + αττ( ˆ̄τi,r
t )2 + αgg( ˆ̄gi

t)
2

+ αyθ ˆ̄yi
t
ˆ̄θi + αyg ˆ̄yi

t ˆ̄gi
t + αyτ ˆ̄yi

t ˆ̄τi,r
t + αgθ ˆ̄gi

t
ˆ̄θi + αgτ ˆ̄gi

t ˆ̄τi,r
t + ατθ ˆ̄τi,r

t
ˆ̄θi.

Control problem. As before, we incorporate the initial condition and the country budget constraint

into the objective function using Lagrange multipliers ∆ and λ, respectively. Furthermore, we re-
place the time derivatives ˙̄̂gi

t and ˙̄̂τi,r
t in the (IS) equation with ˆ̄ωi

t and ˆ̄νi
t, respectively, to recover the

standard optimal control problem structure. We add these equations as dynamic state equations.
We can now write down the Hamiltonian associated with this control problem. We have

H(xi
t, ui

t, µi
t) =απ( ˆ̄πi

H,t)
2 − ˆ̄Ui

t
∣∣ ˆ̄θi

t=
ˆ̄θi (285)

+ ∆
[

Λy ˆ̄yi
0 + Λs s̃i

0 −Λg ˆ̄gi
0 −Λθ

ˆ̄θi −Λτ ˆ̄τi,r
0

]
+ λ

[
Γ∗y ˆ̄yi

t + Γ∗g ˆ̄gi
t + Γ∗τ ˆ̄τi,r

t + Γ∗θ
ˆ̄θi
]

+ µi
y,t

[
D ˆ̄νi

t + D̄ ˆ̄ωi
t − D′( ˆ̄πi

H,t + ˙̃si
t)

]
+ µi

τ,t ˆ̄νi
t

+ µi
g,t ˆ̄ωi

t

+ µi
π,t

[
ρ ˆ̄πi

H,t − κy ˆ̄yi
t − κθ

ˆ̄θi − κτ ˆ̄τi,r
t − κg ˆ̄gi

t

]
,

where xi
t = { ˆ̄πi

H,t, ˆ̄yi
t, ˆ̄τi,r

t , ˆ̄gi
t} denotes the vector of state variables, ui

t = { ˆ̄νi
t, ˆ̄ωi

t} the vector of control
variables, and µi

t = {µi
π,t, µi

y,t, µi
g,t, µi

τ,t} the vector of costates.

D.9.1 Optimality Conditions

The first-order optimality conditions associated with this problem are given by

Optimality:

Dµi
y,t + µi

τ,t = 0 (286)

D̄µi
y,t + µi

g,t = 0 (287)

Multiplier:

120



µ̇i
π,t = D′µi

y,t − 2απ ˆ̄πi
H,t (288)

ρµi
y,t − µ̇i

y,t = Γ∗yλ− κyµi
π,t − 2αyy ˆ̄yi

t − αyθ
ˆ̄θi − αyg ˆ̄gi

t − αyτ ˆ̄τi,r
t (289)

ρµi
τ,t − µ̇i

τ,t = Γ∗τλ− κτµi
π,t − 2αττ ˆ̄τi,r

t − ατθ
ˆ̄θi − αyτ ˆ̄yi

t − αgτ ˆ̄gi
t (290)

ρµi
g,t − µ̇i

g,t = Γ∗gλ− κgµi
π,t − 2αgg ˆ̄gi

t − αyg ˆ̄gi − αgθ
ˆ̄θi − αgτ ˆ̄τi,r

t (291)

State:

˙̄̂yi
t = −D′( ˆ̄πi

H,t + ˙̃si
t) + D ˆ̄νi

t + D̄ ˆ̄ωi
t

˙̄̂τi,r
t = ˆ̄νi

t
˙̄̂gi,r
t = ˆ̄ωi

t
˙̄̂πi

H,t = ρ ˆ̄πi
H,t − κy ˆ̄yi

t − κg ˆ̄gi
t − κθ

ˆ̄θi − κτ ˆ̄τi,r
t

Initial conditions:

µi
π,0 = 0

µi
y,0 = ∆Λy

µi
τ,0 = −∆Λτ

µi
g,0 = −∆Λg.

We can conveniently reduce the dimensionality of this system of differential equations. Following
steps analogous to those in earlier sections, we can write

˙̄̂gi
t =−

1
αgτ + Dαyg + D̄(2αyyD + αyτ)

[
(κτ + Dκy)D′µi

y,t

−
(

2απ(κτ + Dκy) + D′(2αyyD + αyτ)

)
ˆ̄πi

H,t − D′(2αyyD + αyτ) ˙̃si
t

+

(
D(2αyyD + αyτ) + 2αττ + Dαyτ

)
˙̄̂τi,r
t

]
≡lµy µi

y,t + lπ ˆ̄πi
H,t + ls ˙̃si

t + lτ ˙̄̂τi,r
t .

We then find that

˙̄̂τi,r
t =− 1

2αyyDD̄ + αygD + αgτ + D̄αyτ + lτ(2αyyD̄2 + αygD̄ + 2αgg + D̄αyg)
·[(

D′(κg + D̄κy) + lµy(2αyyD̄2 + αygD̄ + 2αgg + D̄αyg)

)
µi

y,t

+

(
lπ(2αyyD̄2 + αygD̄ + 2αgg + D̄αyg)− 2απ(κg + D̄κy)− D′(2αyyD̄ + αyg)

)
ˆ̄πi

H,t
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−
(

D′(2αyyD̄ + αyg) + ls(2αyyD̄2 + αygD̄ + 2αgg + D̄αyg)

)
˙̃si
t

]
≡Hµy µi

y,t + Hπ ˆ̄πi
H,t + Hs ˙̃si

t

and

˙̄̂gi
t =lµy µi

y,t + lπ ˆ̄πi
H,t + ls ˙̃si

t + lτ(Hµy µi
y,t + Hπ ˆ̄πi

H,t + Hs ˙̃si
t).

Using the (IS) equation, we have

˙̄̂yi
t =(DHµy + D̄Lµy)µ

i
y,t + (DHπ + D̄Lπ − D′) ˆ̄πi

H,t + (DHs + D̄Ls + D′) ˙̃si
t.

Finally, we can write

µ̇i
y,t =ρµi

y,t + λ
κyΓ∗g − κgΓ∗y

κg + D̄κy
+ ˆ̄yi

t
2αyyκg − αygκy

κg + D̄κy
+ ˆ̄gi

t
αygκg − 2αggκy

κg + D̄κy

+ ˆ̄τi,r
t

αyτκg − αgτκy

κg + D̄κy
+ ˆ̄θi αyθκg − αgθκy

κg + D̄κy
.

Summarizing, we obtain the system

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − κy ˆ̄yi
t − κg ˆ̄gi

t − κθ
ˆ̄θi − κτ ˆ̄τi,r

t (292)
˙̄̂yi
t ≡ Jµy µi

y,t + Jπ ˆ̄πi
H,t + Js ˙̃si

t (293)
˙̄̂τi,r
t = Hµy µi

y,t + Hπ ˆ̄πi
H,t + Hs ˙̃si

t (294)
˙̄̂gi
t ≡ Lµy µi

y,t + Lπ ˆ̄πi
H,t + Ls ˙̃si

t (295)

µ̇i
y,t ≡ ρµi

y,t + Kλλ + Ky ˆ̄yi
t + Kg ˆ̄gi

t + Kτ ˆ̄τi,r
t + Kθ

ˆ̄θi. (296)

D.9.2 A Targeting Rule for Government Spending

If we let Xi
t = { ˆ̄πi

H,t, ˆ̄yi
t, ˆ̄τi,r

t , ˆ̄gi
t, µi

y,t}, then the dynamical system of optimality conditions can be
written as

Ẋi
t = AXi

t + Bi
t, (297)

where

A =


ρ −κy −κτ −κg 0
Jπ 0 0 0 Jµy

Hπ 0 0 0 Hµy

Lπ 0 0 0 Lµy

0 Ky Kτ Kg ρ

 , Bi
t =


−κθ

ˆ̄θi

J̄i
t

H̄i
t

L̄i
t

K̄i
t

 , Xi
0 =



ˆ̄πi
H,0
ˆ̄yi
0

ˆ̄τi,r
0
ˆ̄gi
0

∆Λy

 ,

and

J̄i
t = Js ˙̃si

t
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H̄i
t = Hs ˙̃si

t

L̄i
t = Ls ˙̃si

t

K̄i
t = Kθ

ˆ̄θi + Kλλ.

The coefficient matrix A has one 0-eigenvalue. This implies that one of the differential equations
can be expressed as a function of the other variables in Xi

t. We will exploit this to derive an explicit
targeting rule for government spending using tools from linear algebra. We could also prove this
result directly starting from the system (292) - (296).

If A has a 0-eigenvalue, then so does its transpose A′. Hence, there exists a vector E such that
A′E = 0, which gives us E′A = 0. That is, E is the eigenvector associated with the 0-eigenvalue of
the transpose matrix A′. We have

E′Ẋi
t = E′AXi

t + E′Bi
t = E′Bi

t.

Integrating, we find

E′Xi
t = E′Xi

0 +
∫ t

0
E′Bi

sds

It is easy to verify that E(1) = E(5) = 0. Therefore, we can write

Eg ˆ̄gi
t = −Ey ˆ̄yi

t − Eτ ˆ̄τi,r
t + E′Xi

0 +
∫ t

0
E′Bi

sds, (298)

where Ey = E(2), Eτ = E(3) and Eg = E(4). Let

W =− ψEy Jsai
0 − ψEτ Hsai

0 − ψEgLsai
0.

It then follows from (298) that government spending follows the policy targeting rule

ˆ̄gi
t = −

Ey

Eg
( ˆ̄yi

t − ˆ̄yi
0)−

Eτ

Eg
( ˆ̄τi,r

t − ˆ̄τi,r
0 ) + ˆ̄gi

0 +
W

ψEg
(1− e−ψt). (299)

So far, we have only shown that the targeting rule holds for some family of eigenvectors E. How-
ever, we can even solve for Ey, Eτ and Eg in closed form. Differentiating the targeting rule with
respect to time, we have

˙̄̂gi
t = −

Ey

Eg

˙̄̂yi
t −

Eτ

Eg

˙̄̂τi,r
t +

W
Eg

e−ψt. (300)

Using the original system of equations (292) - (296) to substitute in for ˙̄̂yi
t and ˙̄̂τi,r

t yields, after some
algebra, the two equations

EgLµy = −Ey Jµy − Eτ Hµy (301)

EgLπ = −Ey Jπ − Eτ Hπ, (302)
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in the three unknowns Ey, Eτ and Eg. By construction, an uncountably large class of linearly depen-
dent eigenvectors E can give rise to the targeting rule (note that the coefficients in the policy rule are
ratios). Therefore, we can normalize Eg = 1, and solve for Ey and Eτ:

Ey = −
Hπ Lµy + Hµy Lπ

Hπ Jµy + Hµy Jπ
(303)

Eτ =
Jπ

Hπ

Hπ Lµy + Hµy Lπ

Hπ Jµy + Hµy − Lπ
Hπ

. (304)

D.9.3 Solving the Dynamic System

We can use the targeting rule to simplify the dynamical system of optimality conditions. We have

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − ˜̄κy ˆ̄yi
t − ˜̄κτ ˆ̄τi,r

t − κθ
ˆ̄θi − κg

Eg
(Ey ˆ̄yi

0 + Eτ ˆ̄τi,r
0 )− κg ˆ̄gi

0 − κg
W

ψEg
(1− e−ψt) (305)

˙̄̂yi
t ≡ Jµy µi

y,t + Jπ ˆ̄πi
H,t + J̄i

t (306)
˙̄̂τi,r
t = Hµy µi

y,t + Hπ ˆ̄πi
H,t + H̄i

t (307)

µ̇i
y,t = ρµi

y,t +
˜̄Ky ˆ̄yi

t +
˜̄Kτ ˆ̄τi,r

t + K̄i
t +

Kg

Eg
(Ey ˆ̄yi

0 + Eτ ˆ̄τi,r
0 ) + Kg ˆ̄gi

0 + Kg
W

ψEg
(1− e−ψt), (308)

where

˜̄κy = κy − κg
Ey

Eg

˜̄κτ = κτ − κg
Eτ

Eg

˜̄Ky = Ky − Kg
Ey

Eg

˜̄Kτ = Kτ − Kg
Eτ

Eg
.

Next, we need to solve for ˆ̄yi
0 and ˆ̄τi,r

0 using the initial conditions

Λy ˆ̄yi
0 =−Λs s̃i

0 + Λθ
ˆ̄θi + Λτ ˆ̄τi,r

0 + Λg ˆ̄gi
0 (309)

0 =λ(Γ∗g + D̄Γ∗y)− (2αgg + D̄αyg) ˆ̄gi
0 − (2αyyD̄ + αyg) ˆ̄yi

0

− (αgτ + D̄αyτ) ˆ̄τi,r
0 − (αgθ + D̄αyθ)

ˆ̄θi. (310)

Rearranging and solving the two equations in the two unknowns, we can write

ˆ̄τi,r
0 ≡ Qλλ + Qg ˆ̄gi

0 + Qθ
ˆ̄θi + Qs s̃i

0 (311)

ˆ̄yi
0 ≡ Pλλ + Pg ˆ̄gi

0 + Pθ
ˆ̄θi + Ps s̃i

0. (312)
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Hence, we have solved for ˆ̄yi
0 and ˆ̄τi,r

0 as functions of the Lagrange multiplier λ, ˆ̄gi
0 and ˆ̄θi. Recall that

in previous sections, we have solved for the optimal allocation as a function of ˆ̄θi. Now, even though
the path of government spending is tied down by the targeting rule, ˆ̄gi

0 is a free parameter that the
social planner can choose optimally. Therefore, we will now go on to solve the optimal allocation as
a function of ( ˆ̄gi

0, ˆ̄θi) and then numerically pin down these two free constants.
The transformed dynamical system can now be written in terms of X̃i

t = { ˆ̄πi
H,t, ˆ̄yi

t, ˆ̄τi,r
t , µi

y,t} as

˙̃Xi
t = ÃX̃i

t + B̃i
t, (313)

where

Ã =


ρ − ˜̄κy − ˜̄κτ 0
Jπ 0 0 Jµy

Hπ 0 0 Hµy

0 ˜̄Ky
˜̄Kτ ρ

 , B̃i
t =


κi

t

J̄i
t

H̄i
t

Ki
t

 ,

and

X̃i
0 =


ˆ̄πi

H,0

Pλλ + Pg ˆ̄gi
0 + Pθ

ˆ̄θi + Ps s̃i
0

Qλλ + Qg ˆ̄gi
0 + Qθ

ˆ̄θi + Qs s̃i
0

∆Λy

 ,

where

κi
t =− κθ

ˆ̄θi − κg
W

ψEg
(1− e−ψt)− λ

κg

Eg
(EyPλ + EτQλ)

− ˆ̄gi
0

κg

Eg
(EyPg + EτQg + Eg)− ˆ̄θi κg

Eg
(EyPθ + EτQθ)

− s̃i
0

κg

Eg
(EyPs + EτQs)

≡− ˜̄κθ
ˆ̄θi − ˜̄κλλ− ˜̄κg ˆ̄gi

0 − ˜̄κ + κg
W

ψEg
e−ψt

with
˜̄κ = s̃i

0
κg

Eg
(EyPs + EτQs) + κg

W
ψEg

,

and

Ki
t =Kg

W
ψEg

(1− e−ψt) + λ
Kg

Eg
(EyPλ + EτQλ)

+ ˆ̄gi
0

Kg

Eg
(EyPg + EτQg) + ˆ̄θi Kg

Eg
(EyPθ + EτQθ)

+ s̃i
0

Kg

Eg
(EyPs + EτQs) + Kλλ + Kθ

ˆ̄θi

≡ ˜̄Kλλ + ˜̄Kg ˆ̄gi
0 +

˜̄Kθ
ˆ̄θi + ˜̄K− Kg

W
ψEg

e−ψt
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with

˜̄K = s̃i
0

Kg

Eg
(EyPs + EτQs) + Kg

W
ψEg

.

Therefore, we can write the forcing term vector as

B̃i
t =


− ˜̄κθ

ˆ̄θi − ˜̄κλλ− ˜̄κg ˆ̄gi
0 − ˜̄κ + κg

W
ψEg

e−ψt

J̄i
t

H̄i
t

˜̄Kλλ + ˜̄Kg ˆ̄gi
0 +

˜̄Kθ
ˆ̄θi + ˜̄K− Kg

W
ψEg

e−ψt

 . (314)

The solution is then given by

X̃i
t = eÃt

[
X̃i

0 +
∫ t

0
e−ÃsB̃i

sds
]

. (315)

Using the same steps as in previous sections, we can manipulate this solution to obtain

Xi
t =eÃt

[
X̃i

0 − ( ˜̄κθ
ˆ̄θi + ˜̄κλλ + ˜̄κg ˆ̄gi

0 + ˜̄κ)Ã−1E1 + ( ˜̄Kθ
ˆ̄θi + ˜̄Kλλ + ˜̄Kg ˆ̄gi

0 +
˜̄K)Ã−1E4 + (Ã + ψI)−1 ˆ̄E

]
+ ( ˜̄κθ

ˆ̄θi + ˜̄κλλ + ˜̄κg ˆ̄gi
0 + ˜̄κ)Ã−1E1 − ( ˜̄Kθ

ˆ̄θi + ˜̄Kλλ + ˜̄Kg ˆ̄gi
0 +

˜̄K)Ã−1E4 − (Ã + ψI)−1e−ψt ˆ̄E, (316)

where
ˆ̄E = W2E2 + W3E3 − Kg

W
ψEg

E4 + κg
W

ψEg
E1

and W2 and W3 are defined as in previous sections.

D.9.4 Stability

As before, we require the term in square brackets to be spanned in the stable manifold to guarantee
the stability of the system. Ã again has two negative eigenvalues. Let Vj, j ∈ {1, 2} denote the
eigenvectors of A associated with these negative eigenvalues, which we denote λ1 and λ2. The
spanning condition can then be written as

0 = α1V1 + α2V2X̃i
0− ( ˜̄κθ

ˆ̄θi + ˜̄κλλ+ ˜̄κg ˆ̄gi
0 + ˜̄κ)Ã−1E1 +( ˜̄Kθ

ˆ̄θi + ˜̄Kλλ+ ˜̄Kg ˆ̄gi
0 +

˜̄K)Ã−1E4 +(Ã+ψI)−1 ˆ̄E
(317)

for some αj ∈ C, j ∈ {1, 2}.
The solution, including the above stability condition, is now given as a function of the free pa-

rameters ( ˆ̄gi
0, ˆ̄θi) and Z = (α1, α2, λ, ∆, ˆ̄πi

H,0). We can pin down the latter set of free parameters by im-
posing the stability condition as well as the country budget constraint. The stability condition yields
a system of four equations if we premultiply both sides by the projection matrices Ei, i ∈ {1, 2, 3, 4}.
Unlike in previous sections, we have already solved for and substituted in ˆ̄yi

0 and ˆ̄τi,r
0 using the two
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initial conditions.
We now substitute the target rule for government spending into the country budget constraint

0 =
∫ ∞

0
e−ρt

[
Γ∗y ˆ̄yi

t + Γ∗θ
ˆ̄θi + Γ∗τ ˆ̄τi,r

t + Γ∗g ˆ̄gi
t

]
dt

=
Γ∗θ
ρ

ˆ̄θi +
Γ∗g
ρ

ˆ̄gi
0 +

Γ∗g
ρEg

(Ey ˆ̄yi
0 + Eτ ˆ̄τi,r

0 ) + Γ∗g
W

ρψEg

+
∫ ∞

0
e−ρt

[
(Γ∗y − Γ∗g

Ey

Eg
) ˆ̄yi

t + (Γ∗τ − Γ∗g
Eτ

Eg
) ˆ̄τi,r

t − Γ∗g
W

ψEg
e−ψt

)]
dt

=
Γ∗θ
ρ

ˆ̄θi +
Γ∗g
ρ

ˆ̄gi
0 +

Γ∗g
ρEg

Ey(Pλλ + Pg ˆ̄gi
0 + Pθ

ˆ̄θi + Ps s̃i
0)

+
Γ∗g

ρEg
Eτ(Qλλ + Qg ˆ̄gi

0 + Qθ
ˆ̄θi + Qs s̃i

0) + Γ∗g
W

ρψEg
− Γ∗g

W
(ρ + ψ)ψEg

+
∫ ∞

0
e−ρt ˜̄E′X̃i

tdt

where
˜̄E = (Γ∗y − Γ∗g

Ey

Eg
)E2 + (Γ∗τ − Γ∗g

Eτ

Eg
)E3.

We have ∫ ∞

0
e−ρt ˜̄E′X̃i

tdt =
α1

λ1 − ρ
˜̄E′V1 +

α2

λ2 − ρ
˜̄E′V2 +

1
ρ
( ˜̄κθ

ˆ̄θi + ˜̄κλλ + ˜̄κg ˆ̄gi
0 + ˜̄κ) ˜̄E′ Ã−1E1

− 1
ρ
( ˜̄Kθ

ˆ̄θi + ˜̄Kλλ + ˜̄Kg ˆ̄gi
0 +

˜̄K) ˜̄E′ Ã−1E4 −
1

ρ + ψ
˜̄E′(Ã + ψI)−1 ˆ̄E.

Therefore, putting everything together and grouping terms, the country budget constraint becomes

0 = ˆ̄θi
(

Γ∗θ
ρ

+
Γ∗g

ρEg
(EyPθ + EτQθ)

)
+ Γ∗g

W
ρ(ρ + ψ)Eg

+ λ
Γ∗g

ρEg
(EyPλ + EτQλ) (318)

+ ˆ̄gi
0

(Γ∗g
ρ

+
Γ∗g

ρEg
(EyPg + EτQg)

)
+ s̃i

0
Γ∗g

ρEg
(EyPs + EτQs)

+
α1

λ1 − ρ
˜̄E′V1 +

α2

λ2 − ρ
˜̄E′V2 +

1
ρ
( ˜̄κθ

ˆ̄θi + ˜̄κλλ + ˜̄κg ˆ̄gi
0 + ˜̄κ) ˜̄E′ Ã−1E1

− 1
ρ
( ˜̄Kθ

ˆ̄θi + ˜̄Kλλ + ˜̄Kg ˆ̄gi
0 +

˜̄K) ˜̄E′ Ã−1E4 −
1

ρ + ψ
˜̄E′(Ã + ψI)−1 ˆ̄E.

Together, the stability condition and the country budget constraint imply a system of equations
MZ = N, with

M =



E′1V1 E′1V2 − ˜̄κλE′1A−1E1 +
˜̄KλE′1A−1E4 0 1

E′2V1 E′2V2 Pλ − ˜̄κλE′2A−1E1 +
˜̄KλE′2A−1E4 0 0

E′3V1 E′3V2 Qλ − ˜̄κλE′3A−1E1 +
˜̄KλE′3A−1E4 0 0

E′4V1 E′4V2 − ˜̄κλE′4A−1E1 +
˜̄KλE′4A−1E4 Λy 0

˜̄E′
λ1−ρ V1

˜̄E′
λ2−ρ V2

Γ∗g
ρEg

(EyPλ + EτQλ) +
˜̄κλ
ρ

˜̄E′ Ã−1E1 −
˜̄Kλ
ρ

˜̄E′ Ã−1E4 0 0


127



and

N =



−E′1
˜̄W

−E′2
˜̄W − Pg ˆ̄gi

0 − Pθ
ˆ̄θi − Ps s̃i

0

−E′3
˜̄W −Qg ˆ̄gi

0 −Qθ
ˆ̄θi −Qs s̃i

0

−E′4
˜̄W

− ˆ̄θi(Γ∗θ
ρ +

Γ∗g
ρEg

(EyPθ + EτQθ)
)
− Γ∗g

W
ρ(ρ+ψ)Eg

− ˆ̄gi
0
(Γ∗g

ρ +
Γ∗g

ρEg
(EyPg + EτQg)

)
. . .

. . .− s̃i
0

Γ∗g
ρEg

(EyPs + EτQs)− 1
ρ ( ˜̄κθ

ˆ̄θi + ˜̄κg ˆ̄gi
0 + ˜̄κ) ˜̄E′ Ã−1E1 . . .

. . . + 1
ρ (

˜̄Kθ
ˆ̄θi + ˜̄Kg ˆ̄gi

0 +
˜̄K) ˜̄E′ Ã−1E4 +

1
ρ+ψ

˜̄E′(Ã + ψI)−1 ˆ̄E


,

where ˜̄W = −( ˜̄κθ
ˆ̄θi + ˜̄κg ˆ̄gi

0 + ˜̄κ)Ã−1E1 + ( ˜̄Kθ
ˆ̄θi + ˜̄Kg ˆ̄gi

0 +
˜̄K)Ã−1E4 + (Ã + ψI)−1 ˆ̄E.

Inverting M, which is non-singular in all of our calibrations, we can solve for Z numerically. Given Z,
we have the full solution of the optimal allocation as a function of the two remaining free parameters
( ˆ̄gi

0, ˆ̄θi), over which we optimize numerically.

D.10 The Special Case χ = 0

We now provide a general formulation the allocation and planning problem without hand-to-mouth
agents as an important special case.

We start by recording several important parameters. For χ = 0, we have Λy = 1
1−υ , Λτ = 0,

Λs = 1, Λg = υ
1−υ and Λθ = 1 − α. Furthermore, we have ντ = 0, νy = 1

1−υ , νθ = −(1 − α),
νg = − υ

1−υ . And ζy = 1−α
1−υ , ζg = −(1− α) υ

1−υ , ζτ = 0, and ζθ = 1− (1− α)2.

D.10.1 General Allocation for χ = 0

Give these parameters, we can write the (IS) equation for χ = 0 as

1
1− υ

˙̄̂yi
t = −( ˆ̄πi

H,t + ˙̃si
t) +

υ

1− υ
˙̄̂gi
t + (1− α)

˙̄̂
θi

t. (319)

For the Phillips Curve, we record the following parameters: κy = λ(φ + 1
1−υ ), κg = −λ υ

1−υ ,
κτ = 0, and κθ = αλ. Therefore, we can write the (NKPC) as

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − λ(φ +
1

1− υ
) ˆ̄yi

t − αλ ˆ̄θi
t + λ

υ

1− υ
ˆ̄gi
t (320)

The initial condition is the given by

1
1− υ

ˆ̄yi
0 = −s̃i

0 +
υ

1− υ
ˆ̄gi
0 + (1− α) ˆ̄θi

0. (321)
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Finally, for country i’s budget constraint, we note that for χ = 0, Γy = − αυ
1−υ , Γτ = 1, Γθ =

1− α− (1− υ)− υ(1− α)2, and Γg = υ + α υ2

1−υ . We can then use the government budget constraint
to substitute in for ˆ̄τi,o

t , which yields that in the absence of transfers we have the following NFA
condition

0 = −α(1− υ)
∫ ∞

0
e−ρt ˆ̄θi

tdt. (322)

D.10.2 Loss Function and Planning Problem for χ = 0

For χ = 0, the loss function coefficients are as follows: αττ = αgτ = αyτ = ατθ = αyθ = αgθ = 0. This
leaves us with

απ =
ε

2λ

αyy = −1 + (1− υ)φ

2(1− υ)

αgg = − υ

2(1− υ)

αθθ = −
1− υ

2
(
1− (1− α)2)

αyg =
υ

1− υ
.

Hence, the loss function can be written as

L =
∫ ∞

0

∫ 1

0
e−ρt

[
ε

2λ
( ˆ̄πi

H,t)
2 +

1 + (1− υ)φ

2(1− υ)
( ˆ̄yi

t)
2 +

1− υ

2
(
1− (1− α)2)( ˆ̄θi

t)
2 (323)

+
υ

2(1− υ)
( ˆ̄gi

t)
2 − υ

1− υ
ˆ̄yi
t ˆ̄gi

t

]
didt.

where of course ai
t = e−ψtai

0 is the initial productivity shock.

D.10.3 Planning Problem for Transfers when χ = 0

When the social planner can only use transfers, we have ˆ̄gi
t = 0 and ˆ̄θi

t =
ˆ̄θi. Therefore, we can write

the planning problem as

min
ˆ̄θi

∫ ∞

0

∫ 1

0
e−ρt

[
ε

2λ
( ˆ̄πi

H,t)
2 +

1 + (1− υ)φ

2(1− υ)
( ˆ̄yi

t)
2 +

1− υ

2
(
1− (1− α)2)( ˆ̄θi)2

]
didt,

subject to

1
1− υ

˙̄̂yi
t = −( ˆ̄πi

H,t + ˙̃si
t)

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − λ(φ +
1

1− υ
) ˆ̄yi

t − αλ ˆ̄θi
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1
1− υ

ˆ̄yi
0 = −s̃i

0 + (1− α) ˆ̄θi.

D.10.4 Planning Problem for Capital Controls when χ = 0

When the social planner can only use transfers, we have ˆ̄gi
t = 0 and ˆ̄τi,r

t = υα ˆ̄si
t. Therefore, we can

write the planning problem as

min
{ ˆ̄θi

t}t≥0

∫ ∞

0

∫ 1

0
e−ρt

[
ε

2λ
( ˆ̄πi

H,t)
2 +

1 + (1− υ)φ

2(1− υ)
( ˆ̄yi

t)
2 +

1− υ

2
(
1− (1− α)2)( ˆ̄θi

t)
2
]

didt,

subject to

1
1− υ

˙̄̂yi
t = −( ˆ̄πi

H,t + ˙̃si
t) + (1− α)

˙̄̂
θi

t

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − λ(φ +
1

1− υ
) ˆ̄yi

t − αλ ˆ̄θi
t

1
1− υ

ˆ̄yi
0 = −s̃i

0 + (1− α) ˆ̄θi
0

0 = −α(1− υ)
∫ ∞

0
e−ρt ˆ̄θi

tdt.

D.10.5 Planning Problem for Government Spending when χ = 0

When the social planner can only use government spending, we have ˆ̄θi
t = 0 and ˆ̄τi,r

t = υα ˆ̄si
t. There-

fore, we can write the planning problem as

min
{ ˆ̄θi

t}t≥0

∫ ∞

0

∫ 1

0
e−ρt

[
ε

2λ
( ˆ̄πi

H,t)
2 +

1 + (1− υ)φ

2(1− υ)
( ˆ̄yi

t)
2 +

υ

2(1− υ)
( ˆ̄gi

t)
2 − υ

1− υ
ˆ̄yi
t ˆ̄gi

t

]
didt,

subject to

1
1− υ

˙̄̂yi
t = −( ˆ̄πi

H,t + ˙̃si
t) +

υ

1− υ
˙̄̂gi
t

˙̄̂πi
H,t = ρ ˆ̄πi

H,t − λ(φ +
1

1− υ
) ˆ̄yi

t + λ
υ

1− υ
ˆ̄gi
t

1
1− υ

ˆ̄yi
0 = −s̃i

0 +
υ

1− υ
ˆ̄gi
0.
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