Insurance and Taxation Over the Life Cycle

Emmanuel Farhi Iván Werning

January 23, 2020

Introduction

- Uncertainty of lifetime earnings
- Gradually resolved over time
- How to set taxes to insure?
- Static models (Mirrlees 1971, Diamond 1998, Saez 2002):
- symmetric treatment of redistribution and insurance
- how to interpret a period?
- Dynamic context?

Introduction

- Most progress: particular cases or focus on saving distortions
- This paper: labor distortions and saving distortions in general setting
- theoretical: novel formula for labor taxes
- numerical simulations

Introduction

- Questions regarding optimum:
- taxes depend on age?
- taxes depend on past history?
- tax system progressive or regressive

Introduction

- Optimum requires sophisticated taxes
- Simpler taxes?
- use optimum to construct simpler taxes
- finding: relatively simple taxes get most gains

References

- Static Taxation: Mirrlees (1971), Diamond (1998), Saez (2002), Werning (2007).
- Dynamic Taxation: Diamond-Mirrlees (1978); Albanesi-Sleet (2004), Shimer-Werning (2008), Ales-Maziero (2009), Golosov-Troshkin-Tsyvinsky (2010).
- Method: Fernandes-Phelan (2000), Werning (2002), Abraham-Pavoni (2008), Kapicka (2009), Williams (2009), Pavan-Segal-Toikka (2009).
- Age Dependent taxation: Erosa-Gervais (2002), Kremer (2002), Weinzierl (2008).

Preferences and Technology

- Utility

$$
U(\{c, y\})=\mathbb{E}_{0} \sum_{t=1}^{T} \beta^{t-1} u^{t}\left(c_{t}, y_{t} ; \theta_{t}\right)
$$

- Cost

$$
\mathbb{E}_{0} \sum_{t=1}^{T} R^{-(t-1)}\left(c_{t}-y_{t}\right)
$$

- Life cycle:
- work phase

$$
t \leq T_{E} \quad u^{t}(c, y ; \theta)=\tilde{u}(c, y / \theta)
$$

- retirement

$$
T_{E}<t \leq T \quad u^{t}(c, y ; \theta)= \begin{cases}\tilde{u}(c, 0) & y=0 \\ -\infty & y>0\end{cases}
$$

Uncertainty and Information

- θ_{t} private info
- $\{\theta\}$ markov:
- support: $\left[\underline{\theta}_{t}\left(\theta_{t-1}\right), \bar{\theta}_{t}\left(\theta_{t-1}\right)\right]$
- differentiable density: $f^{t}\left(\theta_{t} \mid \theta_{t-1}\right)$
- Start with:
- fixed support $[\underline{\theta}, \bar{\theta}]$
- relax later...

Planning Problem

$$
\begin{aligned}
K_{0}(v) \equiv \min _{\{c, y\}} \mathbb{E}_{0} \sum_{t=1}^{T} R^{-(t-1)}\left(c_{t}-y_{t}\right) & \\
\text { s.t. } \quad & U(\{c, y\}) \geq v \\
& U(\{c, y\}) \geq U\left(\left\{c^{\sigma}, y^{\sigma}\right\}\right) \quad \forall \sigma \in \Sigma
\end{aligned}
$$

- Not tractable except special cases (for example, i.i.d.)
- Approach here:
- solve relaxed program with local ICs
- verify global ICs

Local ICs

- Continuation utility

$$
\begin{gathered}
w\left(\theta^{t}\right)=u\left(c\left(\theta^{t}\right), y\left(\theta^{t}\right) ; \theta_{t}\right)+\beta v\left(\theta^{t}\right) \\
v\left(\theta^{t}\right) \equiv \int w\left(\theta^{t+1}\right) f^{t+1}\left(\theta_{t+1} \mid \theta_{t}\right) d \theta_{t+1}
\end{gathered}
$$

- Necessary conditions for IC:

$$
\begin{gathered}
\frac{\partial}{\partial \theta_{t}} w\left(\theta^{t}\right)=u_{\theta}\left(c\left(\theta^{t}\right), y\left(\theta^{t}\right) ; \theta_{t}\right)+\beta \Delta\left(\theta^{t}\right) \\
\Delta\left(\theta^{t}\right) \equiv \int w\left(\theta^{t+1}\right) f_{\theta_{t}}^{t+1}\left(\theta_{t+1} \mid \theta_{t}\right) d \theta_{t+1}
\end{gathered}
$$

- Dynamic generalization of Envelope condition of Mirrlees (1971) and Milgrom and Segal (2002)
- Kapicka (2009), Williams (2009), Pavan, Segal and Toikka (2009)

A Recursive First-Order Approach

$$
\begin{aligned}
& K\left(v, \Delta, \theta_{-}, t\right)=\min \int\left[c(\theta)-y(\theta)+\frac{1}{R} K(v(\theta), \Delta(\theta), \theta, t+1)\right] f^{t}\left(\theta \mid \theta_{-}\right) d \theta \\
& \text { s.t. }
\end{aligned}
$$

$$
v=\int w(\theta) f^{t}\left(\theta \mid \theta_{-}\right) d \theta \quad \text { where } \quad w(\theta)=u(c(\theta), y(\theta) ; \theta)+\beta v(\theta)
$$

$$
\begin{aligned}
\dot{w}(\theta) & =u_{\theta}(c(\theta), y(\theta) ; \theta)+\beta \Delta(\theta) \\
\Delta & =\int w(\theta) f_{\theta_{-}}^{t}\left(\theta \mid \theta_{-}\right) d \theta
\end{aligned}
$$

- Kapicka (2009), Williams (2009), Pavan, Segal and Toikka (2009)

Fernandes-Phelan

- warm up: finite shocks $\theta^{1}<\theta^{2}<\cdots<\theta^{N}$
- Fernandes-Phelan:

$$
\begin{aligned}
& K\left(v_{1}, v_{2}, \ldots, v_{N}, \theta^{\prime}, t\right)=\min \sum_{n}\left[c\left(\theta^{n}\right)-y\left(\theta^{n}\right)\right. \\
& \left.\quad+\frac{1}{R} K\left(v_{1}\left(\theta^{n}\right), v_{2}\left(\theta^{n}\right), \ldots, v_{N}\left(\theta^{n}\right), \theta^{n}, t+1\right)\right] f^{t}\left(\theta^{n} \mid \theta^{\prime}\right)
\end{aligned}
$$

s.t. $\forall n, m$:

$$
\begin{gathered}
u\left(c\left(\theta^{n}\right), y\left(\theta^{n}\right) ; \theta\right)+\beta v_{n}\left(\theta^{n}\right) \geq u\left(c\left(\theta^{m}\right), y\left(\theta^{m}\right) ; \theta^{n}\right)+\beta v_{n}\left(\theta^{m}\right) \\
v_{k}=\sum_{\theta} w(\theta) f\left(\theta \mid \theta^{k}\right) \quad k=1,2, \ldots, N \\
w\left(\theta^{n}\right)=u\left(c\left(\theta^{n}\right), y\left(\theta^{n}\right) ; \theta^{n}\right)+\beta v_{n}\left(\theta^{n}\right)
\end{gathered}
$$

Fernandes-Phelan Local ICs

- warm up: finite shocks $\theta^{1}<\theta^{2}<\cdots<\theta^{N}$
- Fernandes-Phelan: (relaxed)

$$
\begin{aligned}
K\left(v_{l}, v_{l+1}, \theta^{\prime}, t\right)= & \min \sum_{n}\left[c\left(\theta^{n}\right)-y\left(\theta^{n}\right)\right. \\
& \left.+\frac{1}{R} K\left(v_{n}\left(\theta^{n}\right), v_{n+1}\left(\theta^{n}\right), \theta^{n}, t+1\right)\right] f^{t}\left(\theta^{n} \mid \theta^{\prime}\right)
\end{aligned}
$$

s.t. $\forall n$:
$u\left(c\left(\theta^{n}\right), y\left(\theta^{n}\right), \theta^{n}\right)+\beta v_{n}\left(\theta^{n-1}\right) \geq u\left(c\left(\theta^{n-1}\right), y\left(\theta^{n-1}\right), \theta^{n}\right)+\beta v_{n}\left(\theta^{n-1}\right)$

$$
\begin{gathered}
v_{k}=\sum_{\theta} w(\theta) f\left(\theta \mid \theta^{k}\right) \quad k=I, l+1 \\
w\left(\theta^{n}\right)=u\left(c\left(\theta^{n}\right), y\left(\theta^{n}\right) ; \theta^{n}\right)+\beta v_{n}\left(\theta^{n}\right)
\end{gathered}
$$

Wedges

- Intertemporal wedge

$$
1=\beta R\left(1-\tau_{K, t-1}\right) \mathbb{E}_{t-1}\left[\frac{\hat{u}_{c}^{t}\left(c_{t}, y_{t} ; \theta_{t}\right)}{\hat{u}_{c}^{t-1}\left(c_{t-1}, y_{t-1} ; \theta_{t-1}\right)}\right]
$$

- Labor wedge

$$
1=\left(1-\tau_{L, t}\right) \frac{\hat{u}_{c}^{t}\left(c_{t}, y_{t} ; \theta_{t}\right)}{-\hat{u}_{y}^{t}\left(c_{t}, y_{t} ; \theta_{t}\right)}
$$

Intertemporal Wedge: Inverse Euler

Assumption

Separable utility: $u^{t}(c, y, \theta)=\hat{u}^{t}(c)-\hat{h}^{t}(y, \theta)$.
Proposition
Inverse Euler holds:

$$
\frac{1}{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}=\frac{1}{\beta R} \mathbb{E}_{t-1}\left[\frac{1}{\hat{u}^{t \prime}\left(c_{t}\right)}\right]
$$

- Intertemporal wedge

$$
\tau_{K, t-1} \geq 0
$$

Labor Wedge: A Simple Formula

Assumption
Isoelastic disutility of work $\hat{h}^{t}(y, \theta)=(\kappa / \alpha)(y / \theta)^{\alpha}$.
Assumption
$A R(1)$ productivity

$$
\log \left(\theta_{t}\right)=\rho \log \left(\theta_{t-1}\right)+\bar{\theta}_{t}+\varepsilon_{t}
$$

Proposition

$$
\begin{aligned}
& \mathbb{E}_{t-1}\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t^{\prime}}\left(c_{t}\right)}\right] \\
& \quad=\rho \frac{\tau_{L, t-1}}{1-\tau_{L, t-1}}+\alpha \operatorname{Cov}_{t-1}\left(\log \left(\theta_{t}\right), \frac{1}{\beta R} \frac{\hat{u}^{t-1^{\prime}}\left(c_{t-1}\right)}{\hat{u}^{t \prime}\left(c_{t}\right)}\right)
\end{aligned}
$$

Labor Wedge: A Simple Formula

- Labor wedge formula:

$$
\begin{aligned}
\mathbb{E}_{t-1} & {\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t \prime}\left(c_{t}\right)}\right] } \\
& =\rho \frac{\tau_{L, t-1}}{1-\tau_{L, t-1}}+\alpha \operatorname{Cov}_{t-1}\left(\log \left(\theta_{t}\right), \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t \prime}\left(c_{t}\right)}\right)
\end{aligned}
$$

Labor Wedge: A Simple Formula

- Labor wedge formula:

$$
\begin{aligned}
\mathbb{E}_{t-1} & {\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t \prime}\left(c_{t}\right)}\right] } \\
& =\rho \frac{\tau_{L, t-1}}{1-\tau_{L, t-1}}+\alpha \operatorname{Cov}_{t-1}\left(\log \left(\theta_{t}\right), \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t \prime}\left(c_{t}\right)}\right)
\end{aligned}
$$

- LHS: risk-adjusted conditional expectation of $\tau_{L, t} /\left(1-\tau_{L, t}\right)$

Labor Wedge: A Simple Formula

- Labor wedge formula:

$$
\begin{aligned}
\mathbb{E}_{t-1} & {\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t^{\prime}}\left(c_{t}\right)}\right] } \\
& =\rho \frac{\tau_{L, t-1}}{1-\tau_{L, t-1}}+\alpha \operatorname{Cov}_{t-1}\left(\log \left(\theta_{t}\right), \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t \prime}\left(c_{t}\right)}\right)
\end{aligned}
$$

- LHS: risk-adjusted conditional expectation of $\tau_{L, t} /\left(1-\tau_{L, t}\right)$
- $\operatorname{RHS}(1):\left\{\tau_{L} /\left(1-\tau_{L}\right)\right\}$ inherits mean reversion of $\{\theta\}$

Labor Wedge: A Simple Formula

- Labor wedge formula:

$$
\begin{aligned}
\mathbb{E}_{t-1} & {\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t^{\prime}}\left(c_{t}\right)}\right] } \\
& =\rho \frac{\tau_{L, t-1}}{1-\tau_{L, t-1}}+\alpha \operatorname{Cov}_{t-1}\left(\log \left(\theta_{t}\right), \frac{1}{\beta R} \frac{\hat{u}^{t-1^{\prime}}\left(c_{t-1}\right)}{\hat{u}^{\prime \prime}\left(c_{t}\right)}\right)
\end{aligned}
$$

- LHS: risk-adjusted conditional expectation of $\tau_{L, t} /\left(1-\tau_{L, t}\right)$
- RHS $(1):\left\{\tau_{L} /\left(1-\tau_{L}\right)\right\}$ inherits mean reversion of $\{\theta\}$
- $\operatorname{RHS}(2)$: positive drift of $\left\{\tau_{L} /\left(1-\tau_{L}\right)\right\}$
- benefit of added insurance: $\operatorname{Cov}_{t-1}\left(\log \left(\theta_{t}\right), \frac{1}{\beta R} \frac{\hat{u}^{t-1}\left(c_{t-1}\right)}{\hat{u}^{t}\left(c_{t}\right)}\right)$
- incentive cost increases with Frisch elasticity $1 /(\alpha-1)$

Labor Wedge: A Simple Formula

- If θ_{t} predictable...

$$
\frac{\tau_{L, t}}{1-\tau_{L, t}}=\rho \frac{\tau_{L, t-1}}{1-\tau_{L, t-1}}
$$

- Tax smoothing: $\rho=1 \Rightarrow \tau_{L, t}=\tau_{L, t-1}$
- Mean reversion: $\rho<1 \Rightarrow\left\{\tau_{L}\right\}$ reverts to zero at rate ρ

General Stochastic Process

- Define

$$
\phi_{t}^{\log }\left(\theta_{t-1}\right) \equiv \int \log \left(\theta_{t}\right) f^{t}\left(\theta_{t} \mid \theta_{t-1}\right) d \theta_{t}
$$

Proposition

$$
\begin{aligned}
& \mathbb{E}_{t-1}\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t^{\prime}}\left(c_{t}\right)}\right]= \\
& \quad \theta_{t-1} \frac{d \phi_{t}^{\log }}{d \theta_{t-1}} \frac{\tau_{L, t-1}}{1-\tau_{L, t-1}}+\alpha \operatorname{Cov}_{t-1}\left(\log \left(\theta_{t}\right), \frac{1}{\beta R} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t \prime}\left(c_{t}\right)}\right)
\end{aligned}
$$

Moving Support

- Moving support:

$$
\left[\underline{\theta}_{t}\left(\theta_{t-1}\right), \bar{\theta}_{t}\left(\theta_{t-1}\right)\right]
$$

- Only difference

$$
\begin{aligned}
& \Delta\left(\theta^{t}\right)=\int w\left(\theta^{t+1}\right) f_{\theta_{t}}^{t+1}\left(\theta_{t+1} \mid \theta_{t}\right) d \theta_{t+1} \\
& +\frac{d \bar{\theta}_{t+1}}{d \theta_{t}} w\left(\bar{\theta}_{t+1}\right) f^{t+1}\left(\bar{\theta}_{t+1} \mid \theta_{t}\right) \\
& \quad-\frac{d \underline{\theta}_{t+1}}{d \theta_{t}} w\left(\underline{\theta}_{t+1}\right) f^{t+1}\left(\underline{\theta}_{t+1} \mid \theta_{t}\right)
\end{aligned}
$$

Labor Wedge at Top and Bottom

Proposition

$$
\begin{aligned}
\frac{\bar{\tau}_{L, t}}{1-\bar{\tau}_{L, t}} & =\frac{\tau_{L, t-1}}{1-\tau_{L, t-1}} \beta R \frac{\hat{u}^{t \prime}}{\hat{u}^{t-1^{\prime}}} \frac{d \log \bar{\theta}_{t}}{d \log \theta_{t-1}} \\
\frac{\underline{\tau}_{L}}{1-\underline{\tau}_{L, t}} & =\frac{\tau_{L, t-1}}{1-\tau_{L, t-1}} \beta R \frac{\hat{u}^{t}}{\hat{u}^{t-1^{\prime}}} \frac{d \log \underline{\theta}_{t}}{d \log \theta_{t-1}}
\end{aligned}
$$

- Generalizes Mirrlees (1971):
- fixed support...

$$
\tau_{L}\left(\theta^{t-1}, \bar{\theta}_{t}\right)=\tau_{L}\left(\theta^{t-1}, \underline{\theta}_{t}\right)=0
$$

- $\theta_{t}=\varepsilon_{t} \theta_{t-1}$ and $\varepsilon_{t} \in[\underline{\varepsilon}, \bar{\varepsilon}] \ldots$

$$
\tau_{L}\left(\theta^{t-1}, \bar{\theta}_{t}\right) \leq \tau_{L}\left(\theta^{t-1}\right) \leq \tau_{L}\left(\theta^{t-1}, \underline{\theta}_{t}\right)
$$

Continuous Time: Approach

- Productivity $\{\theta\}$ follows a Brownian diffusion:

$$
d \log \theta_{t}=\hat{\mu}_{t}^{\log }\left(\theta_{t}\right) d \theta_{t}+\hat{\sigma}_{t} d W_{t}
$$

- Stochastic control formulation:
- Laws of motion for state variables v_{t} and $\Delta_{t} \ldots$
- ...HJB equation for cost function $K\left(v_{t}, \Delta_{t}, \theta_{t}, t\right)$

Continuous Time: Dynamics

Proposition

1. Dynamics

$$
\begin{aligned}
\frac{d \lambda_{t}}{\lambda_{t}} & =\sigma_{\lambda, t} \hat{\sigma}_{t} d W_{t} \\
d \gamma_{t} & =\left[-\theta_{t} \sigma_{\lambda, t} \hat{\sigma}_{t}^{2}+\left(\hat{\mu}_{t}+\theta_{t} \frac{d \hat{\mu}_{t}^{\log }}{d \theta}\right) \gamma_{t}\right] d t+\gamma_{t} \hat{\sigma}_{t} d W_{t}
\end{aligned}
$$

2. Allocation and wedges

$$
\begin{gathered}
\frac{1}{\hat{u}^{t^{\prime}}\left(c_{t}\right)}=\lambda_{t} \quad \frac{1}{\hat{u}^{t^{\prime}}\left(c_{t}\right)}-\frac{\theta_{t}}{h^{t^{\prime}}\left(y_{t} / \theta_{t}\right)}=-\alpha \frac{\gamma_{t}}{\theta_{t}} \\
\frac{\tau_{L, t}}{1-\tau_{L, t}}=-\alpha \frac{\gamma_{t}}{\lambda_{t}} \frac{1}{\theta_{t}} \quad \tau_{K, t}=\sigma_{\lambda, t}^{2} \hat{\sigma}_{t}^{2}
\end{gathered}
$$

- Dual variables: $\lambda_{t} \equiv K_{v}\left(v_{t}, \Delta_{t}, \theta_{t}, t\right)$ and $\gamma_{t} \equiv K_{\Delta}\left(v_{t}, \Delta_{t}, \theta_{t}, t\right)$
- Sufficient control: $\sigma_{\lambda}\left(\lambda_{t}, \gamma_{t}, \theta_{t}, t\right)$

Labor Wedge: A Simple Formula

- continuous time counterpart...

$$
d\left(\lambda_{t} \frac{\tau_{L, t}}{1-\tau_{L, t}}\right)=\left[\lambda_{t} \frac{\tau_{L, t}}{1-\tau_{L, t}} \theta_{t} \frac{d \hat{\mu}_{t}^{\log }}{d \theta_{t}}+\alpha \lambda_{t} \sigma_{\lambda, t} \hat{\sigma}_{t}^{2}\right] d t
$$

- Drift: same discrete time
- Zero volatility: new!
- realized paths \Rightarrow bounded variation
- innovations in $\tau_{L, t} /\left(1-\tau_{L, t}\right)$ mirror λ_{t}
- regressivity in short run

Labor Wedge: A Simple Formula

- continuous time counterpart...

$$
d\left(\lambda_{t} \frac{\tau_{L, t}}{1-\tau_{L, t}}\right)=\left[\lambda_{t} \frac{\tau_{L, t}}{1-\tau_{L, t}} \theta_{t} \frac{d \hat{\mu}_{t}^{\log }}{d \theta_{t}}+\alpha \lambda_{t} \sigma_{\lambda, t} \hat{\sigma}_{t}^{2}\right] d t
$$

- Drift: same discrete time
- Zero volatility: new!
- realized paths \Rightarrow bounded variation
- innovations in $\tau_{L, t} /\left(1-\tau_{L, t}\right)$ mirror λ_{t}
- regressivity in short run
- Intuiton: $\lambda_{t} \frac{\tau_{L, t}}{1-\tau_{L, t}}=\frac{1}{\hat{u}^{\prime}\left(c_{t}\right)}-\frac{\theta_{t}}{\hat{h}^{\prime}\left(\frac{Y_{t} t}{}\right)}$
- $\frac{1}{\hat{u}^{\prime}\left(c_{t}\right)}=\frac{\theta_{t}}{\hat{h}^{\prime}\left(\frac{y_{t}}{\theta_{t}}\right)}$ at first best
$-\frac{1}{\hat{u}^{\prime}\left(c_{t}\right)}$ tracks $\frac{\theta_{t}}{\frac{h^{\prime}}{}\left(\frac{t_{t}}{t_{t}}\right)}$ at second best

Labor Wedge: A Simple Formula

- Ito's Lemma....

$$
d\left(\frac{\tau_{L, t}}{1-\tau_{L, t}}\right)=\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} \theta_{t} \frac{d \hat{\mu}_{t}^{\log }}{d \theta}+\alpha \sigma_{\lambda, t} \hat{\sigma}_{t}^{2}\right] d t+\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\hat{u}_{t}^{\prime}} d\left(\hat{u}_{t}^{\prime}\right)
$$

- Drift: same discrete time
- Zero volatility: new!
- realized paths \Rightarrow bounded variation
- innovations in $\tau_{L, t} /\left(1-\tau_{L, t}\right)$ mirror λ_{t}
- regressivity in short run
- Intuiton: $\lambda_{t} \frac{\tau_{L, t}}{1-\tau \tau_{L, t}}=\frac{1}{\hat{u}^{\prime}\left(c_{t}\right)}-\frac{\theta_{t}}{\hat{h}^{\prime}\left(\frac{\nu_{t}}{\theta_{t}}\right)}$
- $\frac{1}{\hat{u}^{\prime}\left(c_{t}\right)}=\frac{\theta_{t}}{\left.\frac{h^{\prime}\left(\frac{y}{t^{\prime}}\right)}{\theta_{t}}\right)}$ at first best
$-\frac{1}{\hat{u}^{\prime}\left(c_{t}\right)}$ tracks $\frac{\theta_{t}}{\frac{h^{\prime}}{}\left(\frac{t_{t}}{t_{t}}\right)}$ at second best

Labor Wedge: A Simple Formula

- Ito's Lemma...

$$
d\left(\frac{\tau_{L, t}}{1-\tau_{L, t}}\right)=\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} \theta_{t} \frac{d \hat{\mu}_{t}^{\log }}{d \theta}+\alpha \sigma_{\lambda, t} \hat{\sigma}_{t}^{2}+\frac{\tau_{L, t}}{1-\tau_{L, t}} \sigma_{\lambda, t}^{2} \hat{\sigma}_{t}^{2}\right] d t-\frac{\tau_{L, t}}{1-\tau_{L, t}} \sigma_{\lambda, t} \hat{\sigma}_{t} d W_{t}
$$

- Drift: same discrete time
- Zero volatility: new!
- realized paths \Rightarrow bounded variation
- innovations in $\tau_{L, t} /\left(1-\tau_{L, t}\right)$ mirror λ_{t}
- regressivity in short run
- Intuiton: $\lambda_{t} \frac{\tau_{L, t}}{1-\tau \tau_{L, t}}=\frac{1}{\hat{u}^{\prime}\left(c_{t}\right)}-\frac{\theta_{t}}{\hat{h}^{\prime}\left(\frac{\nu_{t}}{\theta_{t}}\right)}$
- $\frac{1}{\hat{u}^{\prime}\left(c_{t}\right)}=\frac{\theta_{t}}{\hat{h}^{\prime}\left(\frac{t}{t_{t}}\right)}$ at first best
$-\frac{1}{\hat{u}^{\prime}\left(c_{t}\right)}$ tracks $\frac{\theta_{t}}{\frac{h^{\prime}}{}\left(\frac{t_{t}}{t_{t}}\right)}$ at second best

General Preferences

- Inverse Euler requires separability
- General utility $u^{t}(c, y, \theta)$
- Define:

$$
\eta_{t}=\frac{\partial \log \left|\mathrm{MRS}_{t}\right|}{\partial \log \theta_{t}}
$$

$$
\left|\mathrm{MRS}_{t}\right|=-\frac{u_{y}^{t}}{u_{c}^{t}}
$$

General Preferences

- Inverse Euler requires separability
- General utility $u^{t}(c, y, \theta)$
- Define:

$$
\eta_{t}=\frac{\partial \log \left|\mathrm{MRS}_{t}\right|}{\partial \log \theta_{t}}
$$

\mid MRS $_{t} \left\lvert\,=-\frac{u_{t}^{t}}{u_{c}^{t}}\right.$

- Generalization

$$
d\left(\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\eta_{t}} \frac{1}{u_{c}^{t}}\right)=\left[\lambda_{t} \sigma_{\lambda, t} \hat{\sigma}_{t}^{2}+\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\eta_{t}} \frac{1}{u_{c}^{t}} \theta_{t} \frac{d \hat{\mu}_{t}^{\log }}{d \theta_{t}}\right] d t
$$

- Interpretation:

$$
\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{\eta_{t}}=\text { discouragement }
$$

General Preferences

- Interesting case

$$
\tilde{u}^{t}\left(\hat{u}^{t}(c)-\frac{\kappa_{t}}{\alpha_{t}}\left(\frac{y}{\theta}\right)^{\alpha_{t}}\right)
$$

- Then $\eta_{t}=\alpha_{t}$ deterministic and

$$
\begin{aligned}
d\left(\frac{\tau_{L, t}}{1-\tau_{L, t}}\right)=\left[\alpha_{t} \lambda_{t} \sigma_{\lambda, t} \hat{\sigma}_{t}^{2}+\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{u_{c}^{t}}\left(\theta_{t} \frac{d \hat{\mu}_{t}^{\log }}{d \theta_{t}}\right.\right. & \left.\left.+\frac{1}{\alpha_{t}} \frac{d \alpha_{t}}{d t}\right)\right] d t \\
& +\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{1}{u_{c}^{t}} d\left(u_{c}^{t}\right)
\end{aligned}
$$

- Life cycle pattern for elasticity?

Numerical Simulation

- Agents live for $T=60$ years, work for 40 years and retire for 20 years
- Utility function:

$$
\log \left(c_{t}\right)-\frac{\kappa}{\alpha}\left(\frac{y_{t}}{\theta}\right)^{\alpha}
$$

with $\alpha=3 ; \kappa=1 ; q=\beta=0.95$.

- Storesletten, Telmer and Yaron (2004)

$$
\theta_{t}=\varepsilon_{t} \theta_{t-1}
$$

$\varepsilon \operatorname{lognormal}$ with $\operatorname{Var}(\log \varepsilon)=0.0161$.

Insurance and Redistribution

- Initial heterogeneity:
- $f^{0}\left(\theta_{0}\right)$
- Pareto weights $\left.\int \Lambda\left(\theta_{0}\right)\left[\mathbb{E}_{0} \sum_{t=1}^{T} \beta^{t-1} u^{t}\left(c_{t}, y_{t} ; \theta_{t}\right)\right)\right] f^{0}\left(\theta_{0}\right) d \theta_{0} \ldots$
- ...or SWF $\int W\left(\mathbb{E}_{0} \sum_{t=1}^{T} \beta^{t-1} u^{t}\left(c_{t}, y_{t} ; \theta_{t}\right)\right) f^{0}\left(\theta_{0}\right) d \theta_{0}$
- initial tax rate $\tau_{L, 0}\left(\theta_{0}\right)$
- Focus on social insurance:
- no initial heterogeneity
- independent of Pareto weights or SWF
- easy to extend

Wedges

Wedges

- Recall from continuous time:
- key statistic $\left\{\sigma_{\lambda}\right\}$
- with \log utility $\lambda_{t}=c_{t}$
$-\operatorname{var}_{t}\left(c_{t+1} / c_{t}\right)=\sigma_{\lambda, t}^{2} \hat{\sigma}^{2}$ decreases to 0
- as retirement nears uncertainty goes to 0
- labor wedge increasing over time \Rightarrow increased insurance
- explains patterns for labor and intertemporal wedges.

Allocation

Allocation

- $\mathbb{E}\left[c_{t}\right]$ constant: Inverse Euler
- $\mathbb{E}\left[y_{t}\right]$ decreasing: increasing labor wedge
- $\operatorname{var}\left(y_{t}\right)>\operatorname{var}\left(\theta_{t}\right)$: income and substitution effects
- $\operatorname{var}\left(c_{t}\right)<\operatorname{var}\left(y_{t}\right)$: insurance

Tax Smoothing and Drift

Tax Smoothing and Drift

- Tax smoothing: slope close to one
- dispersion: innovations in c_{t}
- Drift: above 45 degree line
- Late in life:
- lower dispersion
- smaller drift
- key to both: $\lim _{t \rightarrow T_{E}} \sigma_{\lambda, t}=0$

Near Zero Volatility

Near Zero Volatility

- Little dispersion
- Illustrates zero volatility result

History Dependence and Insurance

History Dependence and Insurance

- Regressive tax on average: short-term regressivity
- History dependence: dispersion
- Insurance: slope of 0.67

Impulse Response

- Baseline:

$$
\varepsilon_{t}=F(0.5) \quad t=1,2, \ldots, 60
$$

- Shock:

$$
\varepsilon_{20}=F(0.95)
$$

I.i.d. Case

- Normalize so that same cross sectional variance
- Level: smaller shocks in NPV
- Dynamics: easier to smooth incentives early in life

$$
\mathbb{E}_{t-1}\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} c_{t}\right]=\alpha \operatorname{Cov}_{t-1}\left(\log \left(\theta_{t}\right), c_{t}\right)
$$

Welfare Gains and Simple Tax Systems

- Welfare gains relative to no taxes from...

	$\hat{\sigma}^{2}=0.0161$
second best	3.43%
first best	13.04%

Welfare Gains and Simple Tax Systems

- Welfare gains relative to no taxes from...

	$\hat{\sigma}^{2}=0.0161$
second best	3.43%
first best	13.04%

- simple policies:
- history independent
- age dependent
- linear taxes $=$ average of wedges from simulation

Welfare Gains and Simple Tax Systems

- Welfare gains relative to no taxes from...

	$\hat{\sigma}^{2}=0.0161$
second best	3.43%
first best	13.04%

- simple policies:
- history independent
- age dependent
- linear taxes $=$ average of wedges from simulation
- Simple policies capture most of the gains...

$$
\begin{array}{ll}
\tau_{L, t}, \tau_{K, t} & 3.30 \% \\
\tau_{L, t}, \tau_{K, t}=0 & 3.16 \% \\
\tau_{L, t}, \tau_{K, t}=\bar{\tau}_{K} & 3.29 \% \\
\tau_{L, t}=\bar{\tau}_{L,}, \tau_{K, t}=\bar{\tau}_{K} & 2.71 \%
\end{array}
$$

Welfare Gains and Simple Tax Systems

- age indendent taxes $\tau_{L, t}=\bar{\tau}_{L}, \tau_{K, t}=\bar{\tau}_{K}$

$$
\Rightarrow \bar{\tau}_{K} \approx 0
$$

- intuition
- mimick effects of missing age dependent taxes...
- ... subisdy on savings \approx increasing taxes on labor
- ... encourages earlier rather than later work
(e.g. work in earlier periods buys more goods at retirement)
- cancels force for positive tax on savings (Inverse Euler)

Welfare Gains and Simple Tax Systems

- what is the benefit of sophisticated savings distortions?
- Exercise (Farhi-Werning, 2008)
- take allocation from simple tax system
- perturbation:
- Inverse Euler holds
- labor allocation unchanged

Welfare Gains and Simple Tax Systems

- what is the benefit of sophisticated savings distortions?
- Exercise (Farhi-Werning, 2008)
- take allocation from simple tax system
- perturbation:
- Inverse Euler holds
- labor allocation unchanged
- Welfare gains from Inverse Euler relative to...

$$
\begin{array}{ll}
\tau_{L, t}=0, \tau_{K, t}=0 & 0.449 \% \\
\tau_{L, t}, \tau_{K, t} & 0.011 \% \\
\tau_{L, t}, \tau_{K, t}=0 & 0.095 \% \\
\tau_{L, t}, \tau_{K, t}=\bar{\tau}_{K} & 0.003 \% \\
\tau_{L, t}=\bar{\tau}_{L,}, \tau_{K, t}=\bar{\tau}_{K} & 0.180 \%
\end{array}
$$

- Gains
- overall: relatively modest
- no taxes: higher gains (higher variance in consumption)
- small gains from sophisticated capital taxes
- gains from better mimicking?

Summary

- Methodology:
- first order approach
- discrete and continuous time
- Characterization of second best:
- formula for the labor wedge
- labor wedge at top and bottom
- zero volatility result (short term regressivity)
- Second best informs us of simple policies:
- labor taxes increasing with age
- capital taxes decreasing with age
- Age dependent taxes important

Extensions

- Other productivity processes
- Human capital accumulation
- Extensive margin for retirement
- Occupational choice

Verification

- Solve using FOA...

$$
\begin{aligned}
c_{t} & =g^{c}\left(v_{t}, \Delta_{t}, r_{t-1}, r_{t}, t\right) \\
y_{t} & =g^{y}\left(v_{t}, \Delta_{t}, r_{t-1}, r_{t}, t\right) \\
v_{t+1} & =g^{v}\left(v_{t}, \Delta_{t}, r_{t-1}, r_{t}, t\right) \\
\Delta_{t+1} & =g^{\Delta}\left(v_{t}, \Delta_{t}, r_{t-1}, r_{t}, t\right) \\
w_{t} & =g^{w}\left(v_{t}, \Delta_{t}, r_{t-1}, r_{t}, t\right)
\end{aligned}
$$

- agent's problem

$$
\begin{aligned}
& V\left(v, \Delta, r_{-}, \theta, t\right)=\max _{r}\left\{u^{t}\left(g^{c}\left(v, \Delta, r_{-}, r, t\right), g^{y}\left(v, \Delta, r_{-}, r, t\right), \theta\right)\right. \\
+ & \left.\beta \int V\left(g^{v}\left(v, \Delta, r_{-}, r, t\right), g^{\Delta}\left(v, \Delta, r_{-}, r, t\right), r, \theta^{\prime}, t+1\right) f^{t+1}\left(\theta^{\prime} \mid \theta\right) d \theta^{\prime}\right\}
\end{aligned}
$$

- IC $=$ verify that

$$
V\left(v, \Delta, r_{-}, \theta, t\right)=g^{w}\left(v, \Delta, r_{-}, \theta, t\right)
$$

General Weighting Function

- For any function $\pi(\theta)$, let $\Pi(\theta)$ be a primitive of $\pi(\theta) / \theta$
- Define

$$
\phi_{t}^{\Pi}\left(\theta_{t-1}\right) \equiv \int \Pi\left(\theta_{t}\right) f^{t}\left(\theta_{t} \mid \theta_{t-1}\right) d \theta_{t}
$$

Proposition

$$
\begin{aligned}
& \mathbb{E}_{t-1}\left[\frac{\tau_{L, t}}{1-\tau_{L, t}} \frac{q}{\beta} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t \prime}\left(c_{t}\right)} \pi\left(\theta_{t}\right)\right] \\
& \quad=\frac{\tau_{L, t-1}}{1-\tau_{L, t-1}} \theta_{t-1} \frac{d \phi_{t}^{\Pi}}{d \theta_{t-1}}+\alpha \operatorname{Cov}_{t-1}\left(\Pi\left(\theta_{t}\right), \frac{q}{\beta} \frac{\hat{u}^{t-1 \prime}\left(c_{t-1}\right)}{\hat{u}^{t \prime}\left(c_{t}\right)}\right)
\end{aligned}
$$

- Generalizes previous formula (i.e. $\pi(\theta)=1$)
- Characterizes process $\left\{\tau_{L} /\left(1-\tau_{L}\right)\right\}$

Formula from Global IC

- Formula:
- local ICs \rightarrow any π
- global ICs \rightarrow some π

Proposition

If $\{c, y\}$ is optimal then the labor wedge satisfies the formula above for some $\pi(\theta)$.

- e.g. $\{\theta\}$ geometric random walk $\rightarrow \pi(\theta)=\theta^{-\alpha}$

