
www.afm-journal.de

© 2022 Wiley-VCH GmbH2111610 (1 of 8)

RESEARCH ARTICLE

Inverse Design of Inflatable Soft Membranes Through
Machine Learning
Antonio Elia Forte,* Paul Z. Hanakata, Lishuai Jin, Emilia Zari, Ahmad Zareei,
Matheus C. Fernandes, Laura Sumner, Jonathan Alvarez, and Katia Bertoldi*

Across fields of science, researchers have increasingly focused on designing
soft devices that can shape-morph to achieve functionality. However, identi-
fying a rest shape that leads to a target 3D shape upon actuation is a non-
trivial task that involves inverse design capabilities. In this study, a simple
and efficient platform is presented to design pre-programmed 3D shapes
starting from 2D planar composite membranes. By training neural networks
with a small set of finite element simulations, the authors are able to obtain
both the optimal design for a pixelated 2D elastomeric membrane and the
inflation pressure required for it to morph into a target shape. The proposed
method has potential to be employed at multiple scales and for different
applications. As an example, it is shown how these inversely designed mem-
branes can be used for mechanotherapy applications, by stimulating certain
areas while avoiding prescribed locations.

DOI: 10.1002/adfm.202111610

A. E. Forte, L. Jin, E. Zari, A. Zareei, M. C. Fernandes, J. Alvarez, K. Bertoldi
J.A. Paulson School of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138, USA
E-mail: antonio.forte@kcl.ac.uk; bertoldi@seas.harvard.edu
A. E. Forte, E. Zari
Department of Electronics
Information and Bioengineering
Politecnico di Milano
Milan 20133, Italy
A. E. Forte
Department of Engineering
King’s College London
London WC2R 2LS, UK
P. Z. Hanakata
Department of Physics
Harvard University
Cambridge, MA 02138, USA
L. Sumner
Independent researcher

elaborate shapes via folding;[7–9] morphable
sheets have been realized by combining
materials that can expand and contract by
different amounts in response to external
stimuli such as temperature, humidity, or
pH;[4,10] inflating membranes reinforced
with stiff components have shown promise
for the realization of shape changing
surfaces.[3,6,11–14] Focusing specifically on
inflatable membranes, these are either
made in a complex deflated shape and out
of a single homogeneous material[3,11–15] or
in a simple rest shape by optimizing the
material locally to guide the deformation
upon inflation.[6,16,17] However, irrespective
of their fabrication method, programming
2D sheets to obtain a target 3D shape is a
non-trivial task that typically requires the

use of optimization algorithms.[16,18–21] These include gradient-
free algorithms[16,22] as well as gradient-based methods.[18,21]

Here, we consider inflatable membranes comprising soft and
stiff domains and show how machine learning tools can be used
to design configurations of such domain that result in target
shapes upon inflation. While machine learning methods have
been classically employed for image recognition[23] and language
processing,[24] they have also recently emerged as powerful tools
to solve mechanics problems.[25–38] Building on these recent suc-
cesses, we demonstrate that these tools can be extended to study
the nonlinear mechanics of inflatable systems. By using neural
networks (NNs) trained on finite element (FE) simulations, we
are able to solve the inverse design problem. This allows us
to prescribe a target 3D shape in input and obtain a spatially
defined 2D design for a soft membrane, comprising soft and
stiff elastomeric pixels, as output. Such a designed membrane
is then inflated to an optimal pressure—also instructed by
the model—and morphs into the desired shape. The platform
hereby introduced, despite being presented in a macroscale
framework, is highly scalable and holds potential for many fields
of science and engineering, enabling applications such as mor-
phable surfaces for architecture, soft sensors, ergonomic gar-
ments, and medical devices. As an example, we show how these
membranes can be used in mechanotherapy for wound healing.

2. Our Platform
Our platform consists of a square sheet of elastomeric mate-
rial with edges of 10 cm mounted on an acrylic chamber which

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adfm.202111610.

1. Introduction

2D sheets that can morph from flat into 3D shapes have
become a powerful and versatile platform to realize deploy-
able systems,[1–3], frequency shifting antennae,[4] active building
facades,[5] as well as camouflage devices.[6] Several avenues have
been successful in achieving shape changing capabilities. Ori-
gami principles have enabled transformation of flat sheets into

Adv. Funct. Mater. 2022, 2111610

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadfm.202111610&domain=pdf&date_stamp=2022-01-10

www.afm-journal.dewww.advancedsciencenews.com

2111610 (2 of 8) © 2022 Wiley-VCH GmbH

is pressurized (Figure 1a). As expected, when pressurized, the
elastomeric membrane deforms out-of-plane achieving a dome-
like shape with a height that depends both on the stiffness
of the material and the thickness of the sheet. For example,
under a pressure p = 1.7 KPa, a membrane made out of Eco-
flex (Ecoflex 00-30 with initial shear modulus µEco = 0.023 MPa)
with thickness hEco = 1 mm and initial flexural rigidity of

ν
=

−
= × −

12(1)
7.67 10

3

2
6D

E h
Eco

Eco Eco

Eco

 Pa·m3 (where EEco = 2µEco(1 + νEco)

and νEco = 0.5 are the Young’s modulus and Poisson’s ratio
of Ecoflex) reaches a height of about 9 cm (Figure 1b).
Differently, a membrane with thickness hPDMS = 7 mm made
out of PDMS (SYLGARD 184 with initial shear modulus
µPDMS = 0.85 MPa), for which the initial flexural rigidity is
DPDMS = 9.72 × 10−2 Pa·m3, reaches a height about 1 cm when
subjected to p = 10 KPa (Figure 1c).

Whereas homogeneous membranes always lead to dome-like
shapes, it has been shown that the range of achievable shapes
for both elastomeric membranes and tubes can be enriched
by incorporating stiffer components, such as fibers and
sheets.[6,16,39–41] Therefore, to achieve more complex configura-
tions, we realize our membranes out of a combination of stiff
and flexible pixels. To demonstrate the concept, we partition the
membrane with a 10×10 array of squares (all with edges of 1 cm)
and assign to each pixel either a 7 mm thick layer of PDMS or
a 1 mm thick layer of Ecoflex (Figure 1d). Such membranes are
manufactured using a multistep molding procedure. First, we
create a mold (with depth of 7 mm) with the negative shape of
the stiff pixels of the binary design and fill it with PDMS. Then,

before the PDMS is completely cured (after 1.5 h), we remove
1 mm acrylic sheet from the mold to leave behind a 1 mm
deep pocket corresponding to the soft pixels that we fill with
Ecoflex (see Video S1, Supporting Information). Note that after
curing a continuous membrane is obtained, due to the fact that
the two elastomeric networks bind upon contact while curing
(Section S1, Supporting Information Appendix) . In Figure 1e,
we show the fabricated membrane corresponding to the binary
design reported in Figure1d. As shown in Figure 1f for p = 5
kPa, upon inflation, this membrane undergoes a complex trans-
formation, bulging out of plane in a nonintuitive fashion. The
non-linear behaviour of such a membrane is strongly governed
by the location of the soft and stiff pixels on the square grid and
their interactions. As such, understanding the relation between
binary design and the resultant 3D inflated shape is non-trivial
and requires an efficient inverse design strategy.

3. Inverse Design via Neural Networks
Inspired by recent works that have successfully employed
machine learning methods to inverse-design complex physical
systems, including mechanical[26,42] and optical[43] metamate-
rials as well as chemical compounds,[44,45] we employ fully con-
nected NNs to identify binary design of pixelated membranes
and associated pressure levels at which such membranes
should be inflated to reach a target 3D shape.

To efficiently generate the large amounts of data for the NNs
to be trained on, we conduct non-linear FE simulations within

Figure 1. Bi-material membrane unlocks complex deformations. a) Inflation set up: the membrane (in cyan) is clamped between the acrylic chamber’s
edge underneath and the square flange aligned on top, using bolt and nuts. b) A flat membrane made out of Ecoflex morphs in a simple spherical
shape upon inflation. c) If the same membrane is made out of a stiffer material (i.e. PDMS), the deformation is simply scaled down. d) We use a
regular grid to divide the membrane’s domain into subdomains named pixels, to which either material can be assigned, creating a binary design.
e) The membrane can be fabricated as a continuous material. f) Upon inflation, the bi-material membrane assumes complex deformation, depending
on the mutual position of stiff and soft pixels.

Adv. Funct. Mater. 2022, 2111610

www.afm-journal.dewww.advancedsciencenews.com

2111610 (3 of 8) © 2022 Wiley-VCH GmbH

ABAQUS 2019/Standard. In all our simulations, we discretize
the PDMS and Ecoflex pixels with four-node general-purpose
shell elements (S4R element type) and four-node membrane
elements (M3D4 element type), respectively. Further, we i)
model the response of both elastomers using an incompress-
ible Gent material, ii) fix all nodes located on the four edges
of the models, iii) apply a pressure p (with p ∈ [0, 3.5] kPa)
directly on the bottom surface, and iv) solve for the deforma-
tion using the dynamic implicit solver, while monitoring the
kinetic energy to ensure quasi-static conditions. We then export
the deformed configurations of the membrane at p =1.5, 2.5,
and 3.5 kPa and use the method of voxelization[46] to represent
them. Specifically, we start with a rectangular cube with dimen-
sions 15 × 15 × 15 cm, which contains all inflated membranes
for the three pressure levels considered and split the domain
into smaller cubes known as voxels (Figure 2a). We then assign
a value of 1 if the voxel’s centroid falls below the inflated mem-
brane (Figure 2a, internal pixels), and 0 otherwise (Figure 2a,
external pixels). Since the height of the majority of the inflated
designs is lower than 8 cm, we use voxels with dimensions
1 × 1 × 0.25 cm to cover the height up to z = 8 cm and 1 × 1 ×
1.5 cm for z > 8 cm (Figure 2a). Further, since the corners of
the considered rectangular cube are never reached by the mem-
branes upon inflation, to reduce the size of our domain, we
remove the corresponding voxels from the analysis, resulting
in 9220 voxels.

Next, we flatten our 10 × 10 binary designs onto a 100-dimen-
sional vector X containing 0s and 1s in correspondence to the
soft and stiff pixels, respectively, and the numerically obtained
inflated shape at the three considered levels of pressure onto
three 9220-dimensional vectors Ys containing 0s and 1s in
correspondence to the internal and external voxels, respec-
tively (Figure 2b). We then train the NNs to perform a map-
ping YY XX→ ⊕p , where the overbar is used to represent the
quantities predicted by the NNs and ⊕ denotes concatenation
(Figure 2c). In this study, we use fully connected NNs with two
hidden layers having identical number of neurons, Nneu, and
iteratively update the neuron weights and biases to make the
output conform to the true X and p by minimizing[26]

XX XX∑ λ= − + −
=

1
| | | |

1

2 2

N
p pNN

train i

N

i i i i

train

L (1)

where Ntrain is the number of training datapoints and λ is an
adjustable hyperparameter that controls the relative weight
between the mean squared distance in X and p. Note that, in
order to obtain binary values for XX , we employ a sigmoid
function as an output filter on the output layer. Additional
details about the NNs’ hyperparameters (e.g., learning rate) are
reported in Section S5, Supporting Information Appendix.

In order to obtain accurate predictions in the inverse design
problem, the NNs need i) to have enough training data to cap-
ture the whole design space and ii) an optimized architecture
(i.e., optimal Nneu and λ). The most common strategy to gen-
erate large training datasets is based on randomly generated
data (in our case, this translates to generating pixelated mem-
brane designs where the locations for the soft and stiff pixels are
randomly assigned).[25,28] However, this approach would require
an extremely large number of simulations, since it would be

Figure 2. Data voxelization, processing, and structuring. a) The inflated
shape from each FEM simulation is mapped into a voxelated domain
comprising a fine and a coarse region. The voxels whose centroid falls
below the membrane are identified as internal and external otherwise.
b) The membrane’s binary design and the voxel domain are flattened into
two 1D binary arrays named X and Y, respectively, and concatenated with
the corresponding pressure level (p1, p2 or p3), producing three arrays per
simulation. The binary design can be rotated and mirrored augmenting
the number of datapoints eightfold. c) The Y and p⊕X matrices are fed
to the NNs in the input and output layers, respectively.

Adv. Funct. Mater. 2022, 2111610

www.afm-journal.dewww.advancedsciencenews.com

2111610 (4 of 8) © 2022 Wiley-VCH GmbH

rare to sample data points containing large clusters of soft/stiff
pixels or lines of soft/stiff pixels that are known to have a pro-
found effect on the mechanical behavior of the membranes.[6]
Therefore, guided by previous studies showing that the perfor-
mances of NNs improve when the model is trained with diverse
(non-redundant) datasets,[47–52] we adopt three different strate-
gies to generate 2D pixelated binary designs whose inflated
shapes predicted via FE are used to train the NNs. Specifically,
we simulate via FE the behavior upon inflation of i) 2500 mem-
branes in which we randomly assign a value of 0 or 1 to each
pixel (Figure 3a, left); ii) 2500 membranes in which a few (1–15)
pixels (“seeds”) located at random positions are allowed to grow

in all directions and convert the neighbor pixels from stiff to
soft until a critical ratio of soft pixels to all pixels is reached,[38]
effectively creating “islands” of soft pixels (Figure 3a, center);
iii) 2500 membranes realized employing logical operators to
combine row and column vectors of stiff pixels running from
and to opposite edges, to create features resembling fibers
(Figure 3a, right). We refer to these three datasets as i) random,
ii) islands, and iii) fibers and report design examples for each
dataset in Figure 3b. Note that, although for each dataset we
simulate 2500 membranes, we are able to create a total of
60 000 datapoints per dataset since i) each of these designs
can be rotated and mirrored seven times (see Figure 3c) and ii)
for each of them, we export the inflated configuration at three
different levels of pressure. Additional details about the algo-
rithms used to generate the pixelated membranes are reported
in Section S4, Supporting Information Appendix.

To optimize our NNs, we vary the number of neurons Nneu
and the hyperparameter λ. We first merge the generated 180 000
datapoints into a single dataset. We then use 80% of such
dataset to run multiple training sessions, and for each session,
we vary the number of neurons Nneu and the hyperparameter
λ. To attest the performance of each trained model, we use 10%
of the datapoints as validation set and the remaining as test set,
and introduce two metrics: an accuracy on the predicted binary
design, Abinary, and an accuracy on the predicted pressure level,

2Rpressure . Specifically, Abinary is evaluated by counting the number
of correctly identified pixels and therefore defined as

∑=
=

1

1

A
N

N
N

binary
test i

N
correct
i

pixels

test

 (2)

where Ncorrect
i is the total number of correctly predicted pixels

for the i-th binary design, Npixels is the total number of pixels in
the membrane (i.e., 100), and Ntest is the number of datapoints
used for testing (i.e., 18 000). Differently, since the pressure is
a continuous variable, we define the accuracy on the predicted
pressure level p as

∑
∑ ∑

= −
−

−
=

= =

1
| |

|
1

|

2 1

2

1 1

2
R

p p

p
N

p
pressure

i

N
i i

i

N
i

test
i

N
i

test

test test
 (3)

By systematically investigating the effect of λ and Nneu on the
two metrics, we find that larger values for Nneu generally lead
to a better test accuracy as the model capacity is increased
(Figure 3d). Note that, since increasing the number of neurons
often leads to overfitting,[53–55] we use early stopping rules[53]
to determine how many iterations can be run before the NNs
begin to over-fit. An increase in λ results in larger 2Rpressure , but
lower Abinary (Figure 3d). Hence, we use the average accuracy
between the two metrics, +()/ 22A Rbinary pressure , to determine the
optimized NN architecture, which we find to be characterized
by Nneu = 1000 and λ = 50–values that are fixed for the next
analyses. Additionally, it is worth noticing that the NNs trained
on a combination of all datapoints outperform the same model
trained on a single class of data, confirming that a diverse
dataset leads to better performances (more information on
NNs’ performances with different training are reported in Sec-
tion 5, Supporting Information Appendix).

Figure 3. Dataset classes and hyperparameter search. a) To train the
NNs, we use three classes of designs: random, islands, and fibers.
b) Examples from the three classes are reported to appreciate their topo-
logical characteristics. c) Each design can be rotated and mirrored to
generate eight different datapoints. d) Effect of the number of neurons in
the NNs layers, Nneu, and the hyperparameter λ on Abinary, 2Rpressure , and

+()/22A Rbinary pressure . The red marker indicates the combination of these
two parameters that gives the best average accuracy between the two
metrics (+()/22A Rbinary pressure).

Adv. Funct. Mater. 2022, 2111610

www.afm-journal.dewww.advancedsciencenews.com

2111610 (5 of 8) © 2022 Wiley-VCH GmbH

4. Inverse Design of Soft Membranes

Having verified the accuracy of the NNs on a test set of unseen
designs generated through three different algorithms, we then
employ them to inverse-design target 3D shapes. Specifically,
we feed a 3D shape as input to our trained NNs and obtain as
output a 2D binary design for the soft membrane, along with
the pressure necessary to reach the target shape upon inflation.
To demonstrate the process, we select shapes that resemble a
dog face, a turtle, and a manta ray (Figure 4a). Each target shape
is flattened onto a 9220-dimensional vector, YY target , which is fed
into the NNs. As output, for each design we obtain a pixelated
membrane design XX and inflation pressure p (Figure 4b).

To measure the accuracy of the designs identified by the
NNs, we start by employing FE to simulate the inflation of the
binary design XX until the pressure reaches p . As shown in
Figure 4c, the numerically obtained inflated shapes qualita-
tively match the 3D target ones. To better quantify the similarity
between the two sets of shapes, we flatten each numerically
obtained shape into a vector YYFE and compare all its internal
voxels to the corresponding one in YY target . We then use the ratio
between the number of voxels correctly predicted, Ncorrect, and
the number of internal voxels in the target shape, Ntarget as the
accuracy metric

=A
N
N

membrane
correct

target
 (4)

Using Equation (4), we obtain Amembrane = 0.975, 0.945, 0.996
for the dog face, turtle, and manta ray, respectively. Such high
accuracy values are indicative of effective NNs that provide

pixelated designs and pressures leading to 3D shapes extremely
close to those targeted.

Next, we physically fabricate the designs identified by the
NNs. In Figure 4d, we report snapshots of the physical mem-
branes inflated to the optimal pressure provided by the NNs. As
is noticeable, despite the unavoidable imperfections introduced
during fabrication and testing, the 3D shapes obtained upon
inflation are clearly recognizable. To compare such shapes
to those obtained via FE simulations, we use a hand-held 3D
scanner (Artec Space Spider, Artec Studio 14.1.1.75) and record
the experimentally obtained surface profiles at p (insets in
Figure 4d). As shown in Figure 4e, we find excellent agreement
between the numerically predicted and experimentally obtained
inflated shapes, confirming the validity of our approach: (more
information on the experiments are reported in Section S2 and
S3, Supporting Information Appendix).

Having demonstrated that our NNs, trained with a combi-
nation of three different datasets, can be used to identify soft
membranes capable of mimicking target 3D shapes upon
inflation, we then explore how these can be harnessed for appli-
cations. Specifically, since it is known that the application of
compressive loading around a wound site can reduce healing
time and formation of hypertrophic scars,[56,57] we design soft
membranes that apply pressure in targeted areas while avoiding
contact with sensitive locations.

To demonstrate our approach, we focus on the two scar pro-
files highlighted in orange in Figure 5a and aim at realizing
membranes that upon inflation have their maximum elevation
(along the z direction) in the areas surrounding the scars and
minimum elevation in the areas where the scars lie. We expect
such membranes to apply compressive loading to the region

Figure 4. Inverse design of target 3D shapes. a) Target 3D shapes that resemble a dog face (top), a turtle (center), and a manta ray (bottom) are fed in
the NNs. b) The NNs provide optimal inflation pressure, p , and binary designs, X , as outputs. c) The binary designs are inflated at the corresponding
pressure though FE. The colors indicate maximum in-plane principal true strains. d) The designs are fabricated, inflated at the corresponding pres-
sure, and 3D-scanned. e) The clouds of points from the FE simulations (red dots) and the 3D-scans (green dots) are overlapped and compared. Solid
markers are highlighted along cutting planes to better show the overlapping.

Adv. Funct. Mater. 2022, 2111610

www.afm-journal.dewww.advancedsciencenews.com

2111610 (6 of 8) © 2022 Wiley-VCH GmbH

around the wound when inflated against the skin and, there-
fore, to promote healing. To obtain pixelated membrane designs
resulting in the target shapes shown in Figure 5a upon infla-
tion, we flatten their voxelated shapes onto 9220-dimensional
vectors Ytarget and feed them into the trained NNs. As for the
membranes shown in Figure 3, we then use FE to simulate
the behavior of the designs identified by our NNs and find
very good agreement between the target and numerically sim-
ulated inflated shapes (Figure 5b) testified by Amembrane=0.949
and 0.932 for the c and χ-scars, respectively. Further, we build
the physical membranes, and also in this case found that they
nicely match the target shapes (Figure 5c). Finally, to evaluate
the pressure locally applied by the inflated membranes around
the two considered scars, we position the deflated membranes
at 15 mm from a pressure mat (Tekscan - Model 5250). When
inflated at p , the membranes come in contact with the pres-
sure mat which records the locally applied contact pressure,
pc. In Figure 5d, we show the top view of the inflated mem-
brane pushing against the mat (visible through the transparent

pressure chamber) as well as the recorded pressure distribution
overlaid with the scar profiles. As clearly visible, the inflated 3D
shapes optimized through our NNs are able to apply pressure
around the prescribed areas without touching the scars.

5. Conclusion
In summary, to realize membranes that can morph into pre-
programmed shapes upon inflation, we have employed NNs
that are trained to identify a pixelated membrane design and
inflation pressure leading to the desired 3D shape. The data
required to train the NNs were obtained by simulating the
membrane inflation through FE, and to guarantee the crea-
tion of a diverse dataset, three different algorithms have been
used to produce pixelated designs. We have then employed
our trained NNs to inverse-design a few user generated 3D
shapes and showed how such platform could be used to create
patient-specific devices for mechanotherapy routines where it

Figure 5. Inverse design of target 3D shapes for mechanotherapy: a) Target 3D-shapes that can stimulate the tissue around pre-defined scar profiles
during inflation are fed in the NNs. b) The NNs provide optimal inflation pressure, p , and binary designs, X , as outputs, which are inflated at the cor-
responding pressure though FE. Numerical snapshots of the inflated membranes are shown, with the color indicating the maximum in-plane principal
true strain. c) The designs are fabricated, inflated at the corresponding pressure, and 3D-scanned. The clouds of points from the FE simulations (red
dots) and the 3D-scans (green dots) are overlapped and compared. Solid markers are highlighted along cutting planes to better show the overlapping.
d) The membranes are fixed upside down at a 15 mm distance from a pressure mat and imaged from the top through a transparent pressure chamber.
The measured contact pressures are reported, along with their locations and the pre-defined scar profile.

Adv. Funct. Mater. 2022, 2111610

www.afm-journal.dewww.advancedsciencenews.com

2111610 (7 of 8) © 2022 Wiley-VCH GmbH

is important to stimulate the tissue around prescribed areas
(scars) to enhance healing and reduce recovery time.

Despite having presented results at the centimeter scale,
our methodology is scale independent and can benefit a range
of applications where having an inverse-design strategy could
facilitate and improve the design process itself. Examples might
include ergonomic designing, patient-specific medical devices,
architectural components, and shape-morphing acoustic
devices. Additionally, we have shown that our NNs trained on
only 7500 forward FEM simulations can successfully solve an
inverse problem with 2100 possible designs. This reinforces pre-
vious findings which identified machine learning methods as a
valuable complementary tool to established mechanical approa
ches.[25–27,29–31,36] The performance of our model can be further
improved by applying convolutional neural networks (CNNs)
as the filters and pooling layers are efficient in capturing spa-
tial correlation and locality in a sparse data.[25] In particular,
3D CNNs, which are widely used for point cloud labeling in
computer vision,[58,59] would be ideal to handle the voxels of
arbitrary 3D shapes. Moreover, recent deep learning methods
such as conditional generative adversarial neural networks,
with image-to-image translation capabilities,[60–62] could also be
employed to solve inverse-design problems similar to the one
hereby described.

Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.

Acknowledgements
This research was supported by the NSF grants DMR-2011754,
DMREF-1922321, and OAC-2118201. P.Z.H. acknowledges support
through the NSF grant DMR-1608501. P.Z.H. thanks Ekin D. Cubuk for
helpful discussions.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available on request
from the corresponding author. The data are not publicly available due
to privacy or ethical restrictions.

Keywords
inverse design, machine learning, membranes, shape morphing, soft
matter

Received: November 14, 2021
Revised: December 9, 2021

Published online:

[1] S. J. Callens, A. A. Zadpoor, Mater. Today 2018, 21, 241.
[2] G. P. Choi, L. H. Dudte, L. Mahadevan, Nat. Mater. 2019, 18, 999.
[3] E. Siéfert, E. Reyssat, J. Bico, B. Roman, Nat. Mater. 2019, 18, 24.
[4] J. W. Boley, W. M. van Rees, C. Lissandrello, M. N. Horenstein,

R. L. Truby, A. Kotikian, J. A. Lewis, L. Mahadevan, Proc. Natl. Acad.
Sci. U. S. A. 2019, 116, 20856.

[5] L. Tomholt, O. Geletina, J. Alvarenga, A. V. Shneidman, J. C. Weaver,
M. C. Fernandes, S. A. Mota, M. Bechthold, J. Aizenberg, Energy
Build. 2020, 226, 110377.

[6] J. Pikul, S. Li, H. Bai, R. Hanlon, I. Cohen, R. Shepherd, Science
2017, 358, 210.

[7] L. H. Dudte, E. Vouga, T. Tachi, L. Mahadevan, Nat. Mater. 2016, 15,
583.

[8] L. H. Dudte, G. P. Choi, L. Mahadevan, Proc. Natl. Acad. Sci. USA
2021, 118, 21.

[9] S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, Science 2014,
345, 644.

[10] J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, R. C. Hayward,
Science 2012, 335, 1201.

[11] E. Siéfert, E. Reyssat, J. Bico, B. Roman, Proc. Natl. Acad. Sci. USA
2019, 116, 16692.

[12] E. Siéfert, J. Bico, E. Reyssat, B. Roman, J. Mech. Phys. Solids 2020,
143, 104068.

[13] T. Gao, E. Siéfert, A. DeSimone, B. Roman, Adv. Mater. 2020, 32,
2004515.

[14] E. Siéfert, E. Reyssat, J. Bico, B. Roman, Soft Matter 2020, 16, 7898.
[15] M. Skouras, B. Thomaszewski, B. Bickel, M. Gross, in Computer

Graphics Forum, Vol. 31, Wiley Online Library 2012, pp. 835–844.
[16] L. Jin, A. E. Forte, B. Deng, A. Rafsanjani, K. Bertoldi, Adv. Mater.

2020, 32, 2001863.
[17] F. Connolly, C. J. Walsh, K. Bertoldi, Proc. Natl. Acad. Sci. USA 2017,

114, 51.
[18] L. H. Dudte, E. Vouga, T. Tachi, L. Mahadevan, Nat. Mater. 2016, 15,

583.
[19] M. Konaković, K. Crane, B. Deng, S. Bouaziz, D. Piker, M. Pauly,

ACM Transactions on Graphics (TOG) 2016, 35, 89.
[20] A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan,

J. A. Lewis, Nat. Mater. 2016, 15, 413.
[21] J. Panetta, F. Isvoranu, T. Chen, E. Siéfert, B. Roman, M. Pauly, ACM

Transactions on Graphics (TOG) 2021, 40, 39.
[22] R. Bouzidi, Y. Lecieux, Acta Astronaut. 2012, 74, 69.
[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,

W. Hubbard, L. D. Jackel, Neural Computation 1989, 1, 541.
[24] Y. Goldberg, Journal of Artificial Intelligence Research 2016, 57, 345.
[25] P. Z. Hanakata, E. D. Cubuk, D. K. Campbell, H. S. Park, Phys. Rev.

Lett. 2018, 121, 255304.
[26] P. Z. Hanakata, E. D. Cubuk, D. K. Campbell, H. S. Park, Physical

Review Research 2020, 2, 042006.
[27] M. A. Bessa, P. Glowacki, M. Houlder, Adv. Mater. 2019, 31, 1904845.
[28] G. X. Gu, C.-T. Chen, D. J. Richmond, M. J. Buehler, Mater. Horiz.

2018, 5, 939.
[29] C. Yang, Y. Kim, S. Ryu, G. X. Gu, Mater. Des. 2020, 189, 108509.
[30] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, M. Bessa,

Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 26414.
[31] Z. Yang, C.-H. Yu, M. J. Buehler, Sci. Adv. 2021, 7, eabd7416.
[32] J. K. Wilt, C. Yang, G. X. Gu, Adv. Eng. Mater. 2020, 22, 1901266.
[33] E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A deep

learning framework for solution and discovery in solid mechanics,
2020.

[34] D. W. Abueidda, M. Almasri, R. Ammourah, U. Ravaioli, I. M. Jasiuk,
N. A. Sobh, Compos. Struct. 2019, 227, 111264.

[35] C.-T. Chen, G. X. Gu, Advanced Theory and Simulations 2019, 2,
1900056.

Adv. Funct. Mater. 2022, 2111610

www.afm-journal.dewww.advancedsciencenews.com

2111610 (8 of 8) © 2022 Wiley-VCH GmbH

[36] C. Ma, Z. Zhang, B. Luce, S. Pusateri, B. Xie, M. H. Rafiei, N. Hu,
npj Computational Materials 2020, 6, 40.

[37] M. Bessa, S. Pellegrino, Int. J. Solids Struct. 2018, 139, 174.
[38] Y. Mao, Q. He, X. Zhao, Sci. Adv. 2020, 6, eaaz4169.
[39] F. Connolly, P. Polygerinos, C. J. Walsh, K. Bertoldi, Soft Rob. 2015,

2, 26.
[40] F. Connolly, C. J. Walsh, K. Bertoldi, Proc. Natl. Acad. Sci. USA 2017,

114, 51.
[41] P. Polygerinos, Z. Wang, J. T. Overvelde, K. C. Galloway,

R. J. Wood, K. Bertoldi, C. J. Walsh, IEEE Transactions on Robotics
2015, 31, 778.

[42] S. Kumar, S. Tan, L. Zheng, D. M. Kochmann, npj Computational
Materials 2020, 6, 73.

[43] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, W. Cai, Nano Lett. 2018,
18, 6570.

[44] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,
B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,
R. P. Adams, A. Aspuru-Guzik, ACS central science 2018, 4, 268.

[45] E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-
Lengeling, A. Aspuru-Guzik, A. Zhavoronkov, J. Chem. Inf. Model.
2018, 58, 1194.

[46] A. Kaufman, D. Cohen, R. Yagel, Computer 1993, 26, 51.
[47] P. Y. Simard, D. Steinkraus, J. C. Platt, et al., in Icdar, vol. 3, Citeseer

2003.
[48] A. Torralba, A. A. Efros, in CVPR 2011, IEEE, Piscataway, NJ 2011, pp.

1521–1528.
[49] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q. V. Le, in Proc.

of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition,
IEEE, Piscataway, NJ 2019, pp. 113–123.

[50] K. Vodrahalli, K. Li, J. Malik, arXiv preprint arXiv:1811.12569 2018.
[51] V. Birodkar, H. Mobahi, S. Bengio, arXiv preprint arXiv:1901.11409

2019.
[52] S. Paul, J. H. Bappy, A. K. Roy-Chowdhury, in 2016 IEEE International

Conference on Image Processing (ICIP), IEEE, Piscataway, NJ 2016,
pp. 494–498.

[53] I. V. Tetko, D. J. Livingstone, A. I. Luik, Journal of Chemical Informa-
tion and Computer Sciences 1995, 35, 826.

[54] C. M. Bishop, Machine Learning 2006, 128, 9.
[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,

R. Salakhutdinov, Journal of Machine Learning Research 2014, 15,
1929.

[56] L. A. Barnes, C. D. Marshall, T. Leavitt, M. S. Hu, A. L. Moore,
J. G. Gonzalez, M. T. Longaker, G. C. Gurtner, Advances in Wound
Care 2018, 7, 47.

[57] G. C. Gurtner, R. H. Dauskardt, V. W. Wong, K. A. Bhatt, K. Wu,
I. N. Vial, K. Padois, J. M. Korman, M. T. Longaker, Ann. Surg. 2011,
254, 217.

[58] D. Maturana, S. Scherer, in 2015 IEEE Int. Conf. on Robotics and
Automation (ICRA), IEEE, Piscataway, NJ 2015, pp. 3471–3478.

[59] J. Huang, S. You, in 2016 23rd Int. Conf. on Pattern Recognition
(ICPR), IEEE, Piscataway, NJ 2016, pp. 2670–2675.

[60] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, J. Choo, in Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition, IEEE,
Piscataway, NJ 2018, pp. 8789–8797.

[61] P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, in Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, IEEE, Piscataway, NJ 2017,
pp. 1125–1134.

[62] M. Mirza, S. Osindero, arXiv preprint arXiv:1411.1784 2014.

Adv. Funct. Mater. 2022, 2111610

�������	
���
�����	�

����������	
������������������������������������

�
���������	�
����
������������������
��� !����!
��"!	
��#���
	
�

�	��	�����������������������	�������������	�������
������������������������������		��������
 ��	������	��	������!��	��"���#��������

Inverse design of inflatable soft membranes through machine learn-
ing
Antonio Elia Forte Paul Z. Hanakata Lishuai Jin Emilia Zari Ahmad Zareei Matheus C. Fernandes

Laura Sumner Jonathan Alvarez Katia Bertoldi*

Dr A. E. Forte, Dr L. Jin, E. Zari, Dr A. Zareei, Dr M. C. Fernandes, J Alvarez, Prof K Bertoldi
J.A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138,
USA
bertoldi@seas.harvard.edu
Dr A. E. Forte, E. Zari
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, 20133 Italy
Dr A. E. Forte,
Department of Engineering, King’s College London, London, WC2R 2LS, UK
Dr P. Z. Hanakata
Department of Physics, Harvard University, Cambridge, MA 02138, USA
Dr L Sumner
Independent researcher

1 Fabrication

As shown in Figure 1d in the main text, our soft membranes comprise a 10⇥10 array of squares (all with
edges of 1 cm). Each of these can be either made out of sti↵ (PDMS) or soft (Ecoflex) silicone material.
The sti↵ and soft pixels are 7 mm and 1 mm thick, respectively.
To demonstrate the concept, we partition the membrane with a 10×10 array of squares (all with edges
of 1 cm) and assign to each pixel either a 7 mm thick layer of PDMS or a 1 mm thick layer of Ecoflex

1.1 Materials: Ecoflex 00-30 and Polydimethylsiloxane

Polydimethylsiloxane (PDMS, Sylgard® 184) and Ecoflex 00-30 (Smooth-On) are selected as materials
to realize the sti↵ and soft pixels, respectively.
Ecoflex 00-30 comes in two parts that must be mixed 1A:1B by weight or volume and cured at room
temperature for 4 hours. The technical properties of Ecoflex 00-30 (as provided by the vendor) are listed
in Table 1.

Property Unit Result

Mixing Ratio 1A:1B
Color Translucent

Mixed Viscosity cPs 3000

Specific Gravity 1.07

Working Time at 25�C (Pot Life) minutes 45

Cure Time at 25�C hours 4

Cure Time at 65�C minutes 10

Table 1: Ecoflex 00-30 properties.

PDMS Sylgard® 184 Silicone Elastomer is supplied as a two-part liquid kit consisting of a polymeric
base (A) and a curing agent (B). The two components are mixed together with a 10A:1B mixing ratio
which is recommended by the vendor. Technical information provided by the vendor for the PDMS are
listed in Table 2. Note that PDMS can be cured at any temperature between room temperature and
200�C. The higher the temperature, the sti↵er the resulting material and the shorter the curing time.

1

1.1 Materials: Ecoflex 00-30 and Polydimethylsiloxane

Temperatures exceeding 200�C will cause thermal decomposition of the material [1, 2]. At room tem-
perature PDMS has a cure time of 48 hours. In order to speed up the PDMS curing time and the mem-
brane fabrication procedure, we interpolated the data given by the vendor in the range of temperature
25�C - 150�C (see Table 2) by fitting it using the power law reported in Figure 1. For all our samples we
choose a curing time of about 3 hours at 60�C.

Property Unit Result

Mixing Ratio 10A:1B

Color Colorless

Mixed Viscosity cP 3500

Specific Gravity 1.03

Working Time at 25�C (Pot Life) hours 1.5

Cure Time at 25�C hours 48

Cure Time at 100�C minutes 35

Cure Time at 125�C minutes 20

Cure Time at 150�C minutes 10

Table 2: PDMS Sylgard ® 184 properties.

Figure 1: PDMS Cure Time vs Curing Temperature.

Finally, we note that when pouring PDMS into the acrylic mold air-bubble formation occurs which sig-
nificantly increase the risk of material failure under stress (upon inflation). To remove the air-bubbles, a
degassing procedure in vacuum is adopted:

1. Before curing, the PDMS sample is placed into the vacuum chamber.

2. The vacuum pump is turned on for about 4 minutes in order to create vacuum. After this time, a
significant amount of air bubbles appear on the surface of the sample.

3. The pump is turned o↵ and the vacuum valve is opened to bring the sample back to atmospheric
pressure. The pressure shock bursts the air-bubbles.

Steps 2 and 3 are repeated 5 times, until all bubbles are removed from the sample. The whole process
takes about 20 minutes.

2

1.2 Bonding between Ecoflex and PDMS

1.2 Bonding between Ecoflex and PDMS

To ensure good bonding between the two materials, we investigate eight di↵erent curing procedures. All
experimental tests are conducted using a dog-bone specimen (whose dimensions are reported in Figure
2), filled with both PDMS and Ecoflex. A release agent (Ease Release 200 - Smooth-On) is sprayed on
the dog-bone acrylic mold before pouring the first material. The eight procedures are detailed below:

Figure 2: Dog-bone specimen dimensions.

The eight procedures are detailed below:

• Procedure 1: PDMS is poured and cured at 60�C for 3 hours. Ecoflex is poured and the specimen is
cured at 25�C for 4 hours.

• Procedure 2: PDMS is poured and cured at 60�C for 2 hours and 15 minutes. Ecoflex is poured and
the specimen is cured at 25�C for 1h. Then the specimen is cured at 60�C for 45 minutes to com-
plete the PDMS cure.

• Procedure 3: PDMS is poured and cured at 60�C for 1 hour and 30 minutes. Ecoflex is poured and
the specimen is cured at 25�C for 1h. Then the specimen is cured at 60�C for 1 hour and 30 min-
utes to complete the PDMS cure.

• Procedure 4: PDMS is poured and cured at 60�C for 45 minutes. Ecoflex is poured and the spec-
imen is cured at 25�C for 1h. Then the specimen is cured at 60�C for 2 hours and 15 minutes to
complete the PDMS cure.

• Procedure 5: Ecoflex is poured and cured at 25�C for 4 hours. PDMS is poured and the specimen is
cured at 60�C for 3 hours.

• Procedure 6: Ecoflex is poured and cured at 25�C for 3 hours. PDMS is poured and the specimen is
cured at 60�C for 3 hours.

• Procedure 7: Ecoflex is poured and cured at 25�C for 2 hours. PDMS is poured and the specimen is
cured at 60�C for 3 hours.

• Procedure 8: Ecoflex is poured and cured at 25�C for 1 hour. PDMS is poured and the specimen is
cured at 60�C for 3 hours.

3

1.2 Bonding between Ecoflex and PDMS

Figure 3: Uniaxial tensile test of a dog-bone specimen to determine the bond strength between PDMS and Ecoflex.

Cured specimens are carefully demolded and a tensile test is performed using an Instron 5969 Universal
Test Machine (see Fig. 3). We test the samples until failure and investigate their maximum elongation.
The collected experimental data is presented into the force-displacement graph shown in Fig. 4.
We find that the specimen cured following Procedure 1 (which involves pouring the Ecoflex when the
PDMS is already completely cured) is the one that withstands the lowest tensile stress. This means that
the bond between the two materials is stronger if they bind while curing. Further, the results of Figure 4
suggest that procedures 6 and 7 guarantee the best performance in terms of material bonding, confirmed
by the fact that the fracture takes place away from the bonding interface. However, procedures that in-
volve pouring Ecoflex first (i.e. Procedures 5, 6, 7 and 8) are not advisable due to air bubble formation
at the interface of the two materials. Finally, specimens cured with Procedures 4 and 8 are excluded be-
cause the two materials do not form a clear interface at the junction, as shown in Figure 5. This means
that in these two procedures the second material is poured too early, and the materials end up mixing.
As a result, we choose Procedure 3, as it involves pouring PDMS first and withstands the highest elon-
gation before breaking.

Figure 4: Tensile test results for PDMS-Ecoflex specimens cured following eight di↵erent curing procedures.

4

1.2 Bonding between Ecoflex and PDMS

Figure 5: PDMS-Ecoflex dog-bone specimens.

After selecting Procedure 3 for membrane fabrication, we introduce another step at the end of the mem-
brane curing procedure. This step consists of heating the final membrane for 1 hour at 200�C, which
is the most elevated curing temperature that does not cause thermal decomposition of PDMS [1]. This
step is added because previous studies have shown that the Young’s modulus of PDMS increases linearly
with the curing temperature [1, 2]. In order to demonstrate the e↵ect of this additional step, we conduct
a tensile test on dog-bone specimens made of either PDMS or Ecoflex only, exploring the di↵erence in
the samples’ behavior when heated at 200�C. In Figure 6 we report the results of 4 PDMS samples. All
the samples are cured as in Procedure 3. In addition, specimens 3 and 4 are treated with the addition
heating step at 200�C for 1 hour after curing. As expected, the sti↵ness of PDMS significantly increases
when the samples are heated at elevated temperature. Di↵erently, the mechanical properties of Ecoflex
(Figure 7) do not change considerably when the samples are heated at 200�C. Thus, by adding a final
step of heating at 200�C at the end of the curing procedure, we are able to increase sti↵ness ratio be-
tween the PDMS and Ecoflex, allowing the membrane to achieve more complex configurations when in-
flated.

5

1.2 Bonding between Ecoflex and PDMS

Figure 6: Tensile test comparison between PDMS samples not heated (specimens 1-2) and heated (specimens 3-4) at 200�C
after curing.

Figure 7: Tensile test comparison between Ecoflex samples not heated (specimens 1-2) and heated (specimens 3-4) at
200�C after curing.

6

1.3 Fabrication of the pixelated membranes

1.3 Fabrication of the pixelated membranes

Our membranes are fabricated using a multi-step molding process. The whole process requires around
7 hours. Note that the membrane binary design occupies a square area of 100x100 mm2, to which we
add a margin of 25 mm on every side (made of PDMS, see Figure 1e in the main manuscript) to fix the
membrane on the pressure chamber. Thus, the area of the fabricated membrane is 150x150 mm2.
Our membranes are fabricated using the following 12 steps (see Figure 8 and the supplementary Movie
S1):

1. We start by laser cutting the components of the acrylic mold. We first laser cut a square with length
of 170 mm on 3 mm thick acrylic sheet. This will be the mold base (Figure 8a). We also laser cut a
square with length 150 mm from double-sided tape (Figure 8b).

2. Then we create a square frame that has the same size of the base, and an internal square hole with
length of 150 mm out of a 6 mm thick acrylic sheet. We also cut the binary design out of the same
acrylic sheet (Figure 8c) and out of double sided tape (Figure 8d).

3. In order to obtain a 7 mm deep mold, we laser cut both frame and binary design again, this time
out of a 1 mm polyester sheet (Figure 8e).

4. We attach the 6 mm frame to the mold base using adhesive tape. We stick the double-sided tape
square created in 1. onto the mold base (Figure 8f) after removing its protective layer on one side.
We glue the 1 mm frame on the 6mm frame using superglue. By doing so we obtain a 7mm deep
mold.

5. By using the laser cutter at low power we cut the binary design directly through the tape without
damaging the acrylic mold underneath (Figure 8g). Note that this step is crucial because it acts as
a reference to the location of each sti↵/soft pixel on the mold base. We remove the second protec-
tive layer from the tape (in the areas corresponding to the soft pixels).

6. We stick the 6 mm thick acrylic binary design (from point 2., Figure 8h) on the exposed tape, which
corresponds to the location of the soft pixels. By using the binary design cut on double-sided tape
(from point 2. , Figure 8i), we stick the 1 mm thick polyester binary design on the 6 mm thick acrylic
binary design (Figure 8l). This last layer will be removed when PDMS is half-cured, in order to
pour the 1 mm layer of Ecoflex.

7. At this point, the acrylic mold is completed (Figure 8m). A release agent is spread on the mold
and the PDMS (already mixed) is poured in the mold forming a 7 mm thick layer corresponding to
the sti↵ pixels (Figure 8n). Air bubbles which form in the samples are removed using the degassing
method described previously. The PDMS is cured at 60�C for 1.5 hours (half of its cure time).

8. We take the mold out of the oven. Then we remove the 1 mm thick mold layer and the double-sided
tape underneath, leaving a 1 mm deep empty pocket corresponding to the soft pixels (Figure 8o).

9. In order to get a homogeneous 1 mm thick layer of Ecoflex 00-30, we dispense it by weight. We place
the mold on a precision scale and pour 0.107 g of Ecoflex (with specific density = 1.07 g/cc) for
each soft pixel, which has a volume of 0.1 cm3 (Figure 8p).

10. The membrane is set on a Thermo Scientific TM leveling platform and cured at room temperature
for 1 hour. The use of a three-point leveling platform ensures the fabrication of a flat layer of Ecoflex.
During this time the two elastomeric networks start to bond together.

11. Then, we put the membrane in the oven at 60�C for 1.5 hours in order to complete the curing pro-
cedure. At the end of this step PDMS and Ecoflex are completely cured and bonded together.

12. Finally, in order to increase the sti↵ness ratio between the two materials, we heat the membrane at
200�C for 1 hour.

7

1.3 Fabrication of the pixelated membranes

At the end of the procedure, we carefully remove the membrane from the mold (Figure 8q) and we mea-
sure the membrane thickness in order to verify that the PDMS and Ecoflex layers are 7 mm and 1 mm
thick respectively. The pressure chamber flange is used to mark the positions of the holes on the perime-
ter of the membrane (Figure 8r), and we use a hole-puncher to produce them (Figure 8s).
After being fabricated the membranes are mounted on the pressure chamber (Figure 8t) and inflated to
the optimal pressure level instructed by the the ML model. The membrane inflation procedure is de-
scribed in the next section.

Figure 8: Membrane fabrication procedure via multi step molding approach.

8

2 Testing

2.1 Inflation

To inflate the membranes we designed a pressure chamber made out of acrylic. This is sealed by apply-
ing super-glue on all edges. The membrane has a PDMS frame around the 100x100 mm2 area (as shown
in Figure 1e of the main manuscript) which is perforated with a hole-puncher. Using these holes, the
membrane is fixed on the top of the chamber by means of a flange and 12 bolts. Note that the internal
edge of the flange that holds the membrane in place has dimensions 100x100 mm. This allows the mem-
brane to deform out-of-plane only in that area.
On one side of the acrylic chamber there is an inlet for pressurized air, to which a tube is attached. The
tube is connected to both to a manual pump and to a pressure control system through a 3 way valve.
The pressure control system (Figure 9) consists of a pressure sensor (MPX5050DP, NXP USA Inc.), a
Data Acquisition device (NI-USB-2009, National Instruments) connected to a laptop, which runs a Mat-
lab script that records the data and displays the pressure level in real time. Air is manually pumped into
the chamber in order to reach the desired pressure. Due to the di↵erence in pressure between the inside
and outside of the chamber, the membrane deforms out-of-plane assuming the target 3D shape.

2.2 3D scanner

In order to record the 3D shapes assumed by membranes upon inflation we use a hand-held Artec Space
Spider 3D scanner based on blue light technology, which captures the geometry of real objects and pro-
duces a three-dimensional digital models. The set up for 3D scanning is shown in Figure 10. In order to
obtain high quality scans,

1. before scanner acquisition, we spread a chalk spray over the inflated membrane, in order to give it a
non-transparent color;

2. we place a large square acrylic sheet covered with patterned wrapping paper as a frame around the
membrane, on the chamber flange. By doing so, the colorful geometric pattern designed on the frame
defines the plane where the membrane lies before inflation, acting as a reference for the 3D scanner
to distinguish the membrane from the background.

After a calibration step, a 360� data acquisition is performed by rotating the chamber on a Lazy Susan
table, while the Artec Studio software for 3D scanning and data processing displays the 3D model of the
object on the computer. The software also allows to post-process the model, by smoothing and/or fill-
ing small missing holes on the object surface. The 3D model of the inflated membrane can be saved and
exported as a .ply file.

9

Figure 9: Pressure control system consisting of: a manual pump, a pressure sensor and a micro-controller.

Figure 10: Artec Space Spider 3D scanner acquisition set up.

3 Additional experimental results

In the following, we assess the membrane manufacture repeatability by fabricating and testing five soft
membranes with a simple binary design (see Figure 11).
In the first row of Figure 12 we show the inflated membranes corresponding to binary design 1, 2, 3, 4
and 5 (from left to right). Note that each membrane is inflated to a di↵erent pressure level. The 3D scan-
ner models of the inflated membranes are shown on the second row of Figure 12.

Figure 11: Membranes fabricated for validation of the experiments. Design 1, 2, 3, 4, 5.

10

Figure 12: Inflated membranes and 3D scanner models.

11

4 Finite Element simulations

To gain a deeper understanding of the mechanical response of these membranes and calculate their de-
formation upon pressurization, we conduct non-linear Finite Element (FE) simulations within ABAQUS
2019/Standard. In all our simulations, we discretize the PDMS and Ecoflex pixels with four-node general-
purpose shell elements (S4R element type) and four-node membrane elements (M3D4 element type), re-
spectively. Guided by experimental measurements, the thickness of the PDMS and Ecoflex sections are
set as 7 mm and 1 mm, respectively. Further, we model the response of both elastomers using an incom-
pressible Gent material model [3] with strain energy density function W given by

W = �µJlim
2

ln

✓
1� I1 � 3

Jlim

◆
, (S1)

where µ and Jlim represent the small strain shear modulus and a material parameter related to the lim-
iting stretch, and I1 = tr(FTF), F being the deformation gradient. We find that the response of PDMS
and Ecoflex is accurately captured using (µ, Jlim) = (850 kPa, 2.8) and (23 kPa, 24), respectively . An
in-house ABAQUS user subroutine (UHYPER) is used to define the hyperelastic material behavior given
by Eq. [S1] in the FE simulations.
To remove rigid body translations and rotations, we fix all nodes located on the four edges of the mem-
branes, and apply a pressure p (with p 2 [0, 3.5] kPa) directly on the bottom surface. We then solve for
the deformation using the dynamic implicit solver (using a density of ⇢ = 1000 kg/m3 for the PDMS and
Ecoflex) and monitor the kinetic energy to ensure quasi-static conditions. We then export the deformed
configurations of the membrane at p =1.5, 2.5 and 3.5 kPa and use the method of voxelization described
in the main text to represent them.

4.1 Validation

In order to validate the FE model we compare the acquired 3D scanner model of the inflated membranes
(represented by the green point cloud in Figure 13) with the FE results of the corresponding binary de-
signs (represented by the purple point cloud in Figure 13) inflated at the pressure level used in the ex-
periments. More specifically, we import the two point clouds into Matlab, overlap them and visually
compare. Figure 13 shows an accurate overlapping of the two point clouds for all the geometries consid-
ered in Figure 12.

12

4.2 2D pixelated binary designs

Figure 13: Point cloud comparison between the 3D model of inflated membrane (in green) and the Finite Element simula-
tion of the binary designs (in purple).

4.2 2D pixelated binary designs

Since diverse (non-redundant) datasets can improve the performances of neural networks, we adopt three
di↵erent strategies to generate 2D pixelated binary designs to be simulated using FE. Each design has in
total N = 10⇥ 10 pixels with NE pixels of Ecoflex material and NP pixels of PDMS material.
1. Random algorithm. To generate the random pixelated binary, we first assume all the pixels are
made of PDMS material (i.e. N = NP). Then, by seeding NE pixels to the design randomly, we achieve
a randomized binary array as the input of the simulations. In order to obtain most of the non-trival de-
formation of the membrane in a limited database, we choose the ratio between the Ecoflex pixels NE/N 2
[0.2, 0.6].
2. Islands algorithm. For the islands algorithm, inspired by a recent paper [4], we assume all the pix-
els are initially made of PDMS material (i.e. N = NP) and randomly seed NI 2 [1, 10] pixels of Ecoflex
material. The pixels made of Ecoflex represent the islands of the binary array. Then, we identify the
PDMS pixels that directly connected to these islands, and randomly choose one pixel from these selected
PDMS pixels and change its from PDMS to Ecoflex. Finally, we repeat this procedure until NE reaches
to a certain value. In order to obtain most of the non-trival deformation of the membrane in a limited
database, we choose the ratio between the Ecoflex pixels NE to the total amount of the pixels N in the
range of [0.2, 0.6].
3. Fibers algorithm. For the fibers algorithm, we start by approaching the problem as a permutations
with repetition problem. A permutation problem identifies the di↵erent ways in which we can order a
subset of objects, taken from the larger set of objects. If some of the objects are the same, the problem
becomes a permutation problem with repetitions. A classic example would be ‘how many di↵erent words
can you create shu✏ing the letters of the word Mississippi?’. Since there are 11 letters in the word ‘Mis-
sissippi’ (n = 11, i.e. the total number of objects) and we want to create new words made out of 11 let-
ters (r = 11, i.e. number of object selected), the number of all possible variants is given by

13

4.2 2D pixelated binary designs

nPr =
n!

(n� r)!
. (S2)

In the presence of repetitions, the number of unique words can be obtained by dividing it by the number
of ways we can arrange each set i of repeating letters. For example, in the case of ‘Mississippi’, we could
identify a first set corresponds to the letter ‘s’ which repeats x1 = 4 times. This can be arranged in 4!
di↵erent ways. Therefore

Nunique =
nPrQk
i=1 xi!

, (S3)

where k is the number of di↵erent sets. For our ‘Mississippi’ example nPr =n Pn = n! = 11!, therefore
Nunique =

11!
1!4!4!2! = 34650.

We apply this method to produce designs. We start by creating a vector that has 10 vacant positions.
We can fill these position with binary values (0 and 1) corresponding to soft and sti↵ pixels respectively.
It is known that features aggregating more consecutive pixels of the same type will have a stronger e↵ect
on the deformation of the membrane [5]. For this reason we firstly aim at producing designs with fibers
that have a minimum size of 2 pixels. We divide the the vector in 5 spatial domains, each containing a
pair of equal pixels. We can treat each of these domains as a super-pixel. This is the equivalent of find-
ing all the possible acronyms of a 5-letters word composed by only 2 letter types (i.e. n = 5, r = 5,
k = 2).
When computing the permutation with repetitions, the result could be one of the following cases:

• all sti↵ pixels ! N1unique = 1

• 1 soft pixel and 4 sti↵ ! N2unique = 10

• 2 soft pixels and 3 sti↵ pixels ! N3unique = 5

Also taking into account the complementary cases, we have a total number of unique designs Nunique =
32. After removing mirrored versions of these vectors (flipped in the horizontal direction, e.g. 00011 and
11000) and the two all-soft and all-sti↵ vectors, we obtain the designs in Figure 14a. To augment the
number of unique 1D vector designs, we return to the pixel level resolution, which means that each 1D
vector returns to 10 pixels. We then take each vector and shift it to the left by 1 pixel. If the shifted
version is a new original 1D design, and no mirrored version is present in the current pool, the algorithm
keeps the new design, or discards it otherwise. After this step we obtain the pool of designs in Figure
14b. Then we flatten the 1D designs into a single 1D row vector, p, and obtain its column version by
transposing it, q. We perform Boolean operations between the row and column vectors to create 2D square
designs, comprising 10x10 pixels (Figure 14c). All possible designs are obtained by using the Boolean
operations:
p ^ q,¬(p ^ q),¬p ^ q,¬(¬p ^ q), p ^ ¬q,¬(p ^ ¬q),¬p ^ ¬q,¬(¬p ^ ¬q), (p Y q), (¬p Y q),
where ^, Y and ¬ indicates the Boolean operators AND, XOR and NEGATE respectively.
Once the designs have been created, the algorithm checks that each 2D design is unique, and that there
are no rotated and symmetric versions in the final pool. The algorithm produces a final pool of about
2000 di↵erent designs with n = 5, r = 5, k = 2. Since the random and the island datasets comprise
2500 di↵erent designs, we also created a bigger pool of fibers designs without resorting to the super-pixel
approach, which means we used n = 10, r = 10, k = 2. Note that the shifting step is not used in this
case. We then randomly select about 500 designs from this new pool, to obtain a final fibers dataset of
2500 2D designs.

14

4.2 2D pixelated binary designs

Figure 14: (a) 1D binary vector designs after computing permutations with repetitions with n = 5, r = 5, k = 2. (b)
Design augmentation using shifting. (c) Matrix of designs obtained by flattening all the 1D vectors into a single 1D array
and using di↵erent Boolean operations to combine them.

15

5 Machine Learning

In this section we provide details on the machine learning model, hyperparameters search, and the inves-
tigation of neural networks trained on di↵erent combinations of training sets.

5.1 Machine learning model

We built our neural networks (NNs) on TensorFlow version r1.12 [6]. The model was run on NVIDIA
Tesla P100 GPU card. The Adam optimizer was used to minimize the mean squared error with a learn-
ing rate of 0.0001. We used a batch size of 100 and number of epoch of 50 for all training [7, 8].

5.2 Neural networks for inverse design

Our goal is to do inverse design of inflatable membranes using neural networks. Specifically, we want to
predict the pressure level and binary design for a given inflated target shape. We denote the pressure as
p, the binary design as X and the inflated shape (voxels) as Y.
We use two fully connected layers (FCL) in which the computation in each layer is given by

a(l+1) = g(W (l)a(l) + b(l)), (S4)

where g is a non-linear or linear function, a(l), b(l), W (l) are the activation (input) biases and the weights
in a layer l, respectively. Rectified linear unit functions (ReLU) are applied to all layers. The first layer
takes an inflated shape (voxels) Y as an input and the last layer outputs a pressure level p and a binary
design X. To obtain binary values (0 or 1) for X, we apply sigmoid functions only to the last 100 activa-
tions of the last layer as the pressure (first activation) is a continuous variable.
We train the NNs to map Y to p�X by minimizing the mean squared loss function [8]

LNN =
1

Ntrain

NtrainX

i=1

|Xi �Xi|2 + �|pi � pi|2, (S5)

where Ntrain is the number of training samples, overbar denotes ML predictions, and � is an adjustable
hyperparameter that controls the relative weight between the two losses.
To evaluate the performance of our NNs we introduce two accuracy scores: an accuracy on the predicted
pressure level (R2

pressure) and an accuracy on the predicted binary design (Abinary). Since the pressure
level is a continuous variable, we use the R2 metric to evaluate the pressure accuracy

R2
pressure = 1�

PNtest

i=1 |pi � pi|2PNtest

i=1 |pi � 1
Ntest

PNtest

i=1 pi|2
, (S6)

where p is the true pressure, p is the predicted pressure and Ntest is the number of datapoints in the test/validation
set. To evaluate the binary prediction accuracy, Abinary, we use the average of the ratio of correctly iden-
tified pixels (N i

correct) in the i-th data point to the total number of pixels (Npixels = 100)

Abinary =
1

Ntest

NtestX

i=1

N i
correct

Npixels
. (S7)

16

5.3 Varying hyperparameters � and number of neurons

5.3 Varying hyperparameters � and number of neurons

(a) (b) (c)

Figure 15: E↵ect of the hyperparameter � and the number of neurons Nneu on (a) binary accuracy Abinary, (b) pressure
accuracy R2

pressure, and (c) average accuracy score (R2
pressure +Abinary))/2.

We first use all classes of FE data to find the optimal NNs architecture. We use 80%, 10%, 10% of total
simulations data for training, validation, and test, respectively. Note that the total number of training
datapoints is 144000. We use a grid search to optimize our NNs. Specifically, we varied � from 1 to 1000
and number of neurons from 500 to 2000. Note that we set the number of neurons in the first and sec-
ond layer to be equal.
In Figure 15, we show how Abinary, R2

pressure and (R2
pressure + Abinary)/2 change with varying � and number

of neurons Nneu. Increasing � generally improves the accuracy score of pressure as we penalize the model
more when the pressure prediction deviates from the true pressure. For very small �, the NNs predicts
binary design better than pressure, whereas for very large �, NNs predict pressure better. To select the
best model, we choose a model with the highest average accuracy score (Abinary + R2

pressure)/2 on the val-
idation set. The model with Nneu = 1000 and � = 50 was found to be the best model with the highest
validation average accuracy score of 0.953.

17

5.4 Performance on di↵erent training sets

5.4 Performance on di↵erent training sets

(a) (b)

Figure 16: Accuracy scores of NNs with � = 50 and Nneu = 1000 trained and tested on di↵erent combinations of classes:
(a) Abinary; (b) R2

pressure. Note that the limits of the color bars in plots (a) and (b) are di↵erent.

After optimizing the NNs, we also investigate how training NNs with di↵erent combinations of training
sets give di↵erent performances. As discussed in Section 4B, in this study we consider three classes of
designs: (i) random designs (R); (ii) island designs (I); and (iii) fiber designs (F).
We start by training and testing the NNs with single-class datasets (R, I or F). For each class of dataset
we employ 80% of the datapoints as training set, 10% as test set and 10% as validation set. This means
that the NNs get trained on Ntrain =48000 designs from one class and tested on unseen Ntest=6000 de-
signs from the same class. The results reported in Fig. 16 show that, when trained on one single class of
designs and tested on designs from the same class, the NNs provide similar accuracy for the three con-
sidered datasets. Di↵erently, we find that a model trained with one set of designs does not generalize
well to other classes, leading to poor predictions on pressure (R2

pressure < 0.7) and lower accuracy on bi-
nary designs.
However, we find that the results can be improved by training the NNs with combinations of di↵erent
design classes. Specifically, we consider combinations of random and islands (RI), random and fibers
(RF), islands and fibers (IF) and random, islands and fibers (RIF) designs. In order to compare per-
formances, we always train the NNs with 48000 datapoints split equally between classes (e.g., for the
combination RF the NNs is trained with 24000 datapoints from the R class and 24000 from the F class).
As shown in Fig. 16b, we find that models trained on the four hybrid classes (i.e., RF , IF and RIF)
outperform the single-class trained models, with only the RI model having poor performance on the
pressure predictions when tested with designs from the F class (R2

pressure = 0.326). On average, a model
trained with the combination of three di↵erent classes of designs (RIF) shows the best performance both
in binary design prediction and pressure prediction (average Abinary = 0.955 and average R2

pressure =
0.884). Hence, we train our NNs using all three classes of designs (RIF) to perform the inverse design
of membranes morphing into user-defined 3D shapes upon inflation.

18

5.4 Performance on di↵erent training sets

Membrane Fabrication Fabrication procedure of the membranes via multi step molding.

19

REFERENCES

References

[1] M. Liu, J. Sun, Q. Chen, Sensors and Actuators A: Physical 2009, 151, 1 42.

[2] I. D. Johnston, D. K. McCluskey, C. K. L. Tan, M. C. Tracey, Journal of Micromechanics and Mi-

croengineering 2014, 24, 3 035017.

[3] A. Gent, Rubber chemistry and technology 1996, 69, 1 59.

[4] Y. Mao, Q. He, X. Zhao, Science Advances 2020, 6, 17 eaaz4169.

[5] J. Pikul, S. Li, H. Bai, R. Hanlon, I. Cohen, R. Shepherd, Science 2017, 358, 6360 210.

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015, URL https://www.tensorflow.org/, Software
available from tensorflow.org.

[7] P. Z. Hanakata, E. D. Cubuk, D. K. Campbell, H. S. Park, Physical review letters 2018, 121, 25
255304.

[8] P. Z. Hanakata, E. D. Cubuk, D. K. Campbell, H. S. Park, Physical Review Research 2020, 2, 4
042006.

20

