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to outliers for tWO reaIOIII: die design of the simulaton and the use of the discrete suppan to represent the sequentially updIboa
prior distribution. Here we t8ck1e the first of Iheae problems.
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1. INTRODUCTION

In this article we model a time series Yt, t = 1,. .. ,n, as
being conditionally independent given an unobserved suffi-
cient state °t> which is itself assumed to be Markovian. The
task is to use simulation to carry out on-line filtering-tbat
is, to learn about the state given contemporaneously avail-
able information. We do this by estimating the difficult-
to-compute density (or probability distribution function)
/(Otllll,"', lit) = /(OtIYt), t = 1,..., n. We assume para-
metric forms for both the "measurement" density /(lItIOt)
and the "transition" density of the state /(Ot+110t). The
state evolution is initialized by some density /(00).

Filtering can be thought of as the repeated application
of a two-stage procedure. First, the current density must
be propagated into the future via the transition density
/(OHII0t) to produce the prediction density

/(Ot+1IYt) = f /(oe-Hloe)dF(OtIYt). (1)

~econ<1. one moves to the filtering density via Bayes theo-
rem,

!( a 11'. ) - !<S/t+1lat+1)!(at+lIYt)HI HI - !(Jh+1IYt) ,

!<Slt+1IYt) - f !(Jh+1laHl) dF(aHlIYt). (2)

This implies that the data can be processed in a single
sweep. updating our knowledge about the states as we re-
ceive more information. This is straightforward if OtlOt-l
has a finite set of known discrete points of support, as the
previous calculations can be computed exactly. When the
support is continuous and the integrals cannot be analyti-
cally solved, then numerical methods must be used.

Numerous attempts have been made to provide algo-
rithms that approximate the filtering densities. Important
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recent work includes that of Gerlach. Carter, and Kohn
(1996), Kitagawa (1987), West (1992), and those papers re-
viewed by West and Harrison (1997, chaps. 13 and 15).

In this article we use simulation to perform filtering fol-
lowing an extensive recent literature. Our approach is to
extend the particle filter that has recently been suggested in-
dependently by various authors. In particular, it was used by
Gordon, Salmond, and Smith (1993) on non-Gaussian sta~
space models. The same algorithm, with extensions to the
smoothing problem. has been independently proposed by
Kitagawa (1996) (and generalized in Hiirzeler and Kiinsch
1995) for use in time series problems. It reappeared and was
then discarded by Berzuini, Best, Gilks, and Larizza (1997)
in the context of a real-time application of the sequential
analysis of medical patients. It was again proposed by Is-
ard and Blake (1996) in the context of robustly tracking
motion in visual clutter. under the term the "condensation"
algorithm. Some statistical refinements of this general class
of algorithm, generically called particle filters, have been
given by Carpenter, Clifford, and Feamhead (1998). Doucet
(1998). and Liu and Chen (1998) (which were written inde-
pendently of this article). The idea of calling this class of
algorithm "particle filters" is from Carpenter et al. (1998).
although Kitagawa (1996) used the term "particles." Similar
ideas (but using stronger assumptions) are used on the blind
deconvolution problem of Liu and Chen (1995) and in the
sequential importance sampling algorithms of Hendry and
Richard (1991) and Kong. Liu. and Wong (1994).

Here we discuss the particle filtering literature and extend
it in a number of directions so that it can be used in a
much broader context. The article is organized as follows.
In Section 2 we analyze the statistical basis of particle filters
and focus on its weaknesses. In Section 3 we introduce our
main contribution, an auxiliary particle filter method. We
give some numerical examples in Section 4 and state some
conclusions in Section 5.

I

I2. PARTICLE FILTERS

2.1 Definition of Particle Filters

Particle filters are the class of simulation filters that re-
cursively approximate the filtering random variable Ot lYe =
( )' b " . I .. 1 M o

th di rob-Yb 0 0 . , Yt Y partlc es °t,. 0 . ,Ot . Wl screte p
ability mass of 7rl, 0 . 0 , 7rfl. Hence a continuous variable is ,
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approximated by a discrete one with random support. These
'.aiscrete points are viewed as samples from f(atIYt). In the
..Jiterature all of the ~ are assumed to equal 1/ M. Through-
,Out. M is taken to be very large. Then we require that as
'14 -+ 00, the particles can be used to increasingly well
IIPproximate the density of atlYt.

Particle filters treat the discrete support generated by the
"particles as the true filtering density. This allows us to pro-
'.doce an approximation to the prediction density, 0), simply
by using the discrete support of the particles. We call

M
j(at+1IYt) = Lf(at+1Ia{)~ (3)

j=1

the "empirical prediction density." This is a mixture of den-
sities and so echoes the earlier filtering work of, for exam-
ple, Sorensen and Alspach 0971). This can be combined
with the measurement density to produce. up to propor-

tionality,

M
j(at+1IYt+d oc f(Yt+t!at+1) Lf(at+1Ia{)~, (4)

j=1

the "empirical filtering density" as an approximation to
the true filtering density (2). Generically, particle filters
then sample from this density to produce new particles

1 M .th ' gh 1 M Thi edat+l' ' . , ,at+i Wi wet ts 1I't+i' . , . ,1I't+l' S proc ure

can then be iterated through the data. We call a particle fil-
ter "normal" if it produces independent and identically dis-
tributed samples from the empirical filtering density. There
may be advantages in deliberately inducing (negative) corre-
lations among the particles, This approach was first explic-
itly pointed out by Carpenter et al, 0998), and has been fur-

i ther explored in our earlier work (Pitt and Shephard 1998).
We do not discuss this here.

If the particle filter can be made to work, it could be used
in a number of different contexts. These could include on-
line tracking problems; estimating the one-step-ahead den-
sity f(Yt+1IYt) and so, via the prediction decomposition, the
joint density of the observations; and estimating the corre-
sponding distribution function F(Yt+1IYt), which can be a
useful diagnostic measure of fit for non-Gaussian models
(see, e.g., Gerlach et al, 1996, Shephard 1994; Smith 1985).

2,2 Sampling the Empirical Prediction Density

One way of sampling from the empirical prediction
density is to think of E~1 f(at+1Ia{)~ as a "prior"

density j(at+1IYt) that is combined with the "likeli-
hood" f(1It+1lat+d to produce a posterior. We can sam-
ple from j(at+lIYt) by choosing a{ with probability ~
and then drawing from f(at+1Ia{). If we can also evalu-
ate f(Yt+t!at+1) up to proportionality. then this leaves us
with three sampling methods to draw from f(at+1IYt+d:
sampling/importance resampling, acceptance sampling, and
Markov chain Monte Carlo (MCMC). In the rest of this sec-
tion we write the prior as f(a) and the likelihood as f(yla),
abstracting from subscripts and conditioning arguments, to
briefly describe these methods in this context.

!
/

,

~

2.2.1 Sampling/1mportance Resampling.
piing/importance resampling (SIR) method Rub.a.
draws a1,... ,aR from f(a) and then associates with ea..
of these draws the weights 1r j' where

, w'

wj=f(yla'), 1rj= RJ , j=l,...,R.
Ei=l Wi

Then the weighted sample will converge, as R -+ 00, to
a nonrandom sample from the desired posterior f(aly) as
R-1 E::1 Wi 1+ f(y). The nonrandom sample can be con-
verted into a random sample of size M by resampling the
01,..., oR using weights 1r1,"', 1rR. This requires R -+ 00
and R > > M. The use of this method has been suggested
in the particle filter framework by Berzuini et al. (1997),
Gordon et al. (1993), Isard and Blake (1996), and Kitagawa
(1996).

To understand the efficiency of the SIR method, it is use-
ful to think of SIR as an approximation to the importance
sampler of the moment

R
Ef,..{h(a)} = J h(a)1r(o) dF{o) by ~ L h(~)1I"(~),

j=l

where a '" f(o) 'and 1r(a) = f(yla)Jf(y). Liu (1996) sug-
gested that the variance of this estimator is approximately
(for slowly varying h(o)) proportional to Ef{1I"(0)2}JR.
Hence the SIR method will become very imprecise when
the 1rj become very variable. This will happen if the likeli-
hood is highly peaked compared to the prior.

2.2.2 Adaptation. The foregoing SIR algorithm sam-
ples from f(aly) by making blind proposals a1,...,aR
from the prior, ignoring the fact that we know the value
of y. This is the main feature of existing particle filters. We
say that a particle filter is adapted if we make proposals
that take into account the value of y.

An adapted SIR-based particle filter has the following
general structure:

1. Drawfroma1,...,oR",g(aly).
2. Evaluate Wj = f(ylai)f(ai)Jg(aily),j = 1,...,R.
3. Resample among the {ai} using weights proportional

to {Wj} to produce a sample of size M.

Although this looks attractive, for a particle filter, f(o) =

E~l f(at+1la1)n1, which implies we must at least evalu-
ate M x R densities to generate M samples from f(oly).
Given that M and R are typically very large. this implies
that adaption is not generally feasible for SIR-based particle
filters.

2.2.3 Rejection and Markov Chain Monte Carlo Sam-
pling. Exactly the same remarks hold for rejection sam-
pling. A blind rejection sampling-based particle filter will
simulate from f(a) and accept with probability 11"(0)
f(ylo)J f(ylamax). where Omax = arg ID8.Xa f(yla). This
has been proposed by Hiirzeler and Kiinsch (1995). Again.
the rejection becomes worse if the varf{1r(a)} is high and
adaption is difficult. as it will again typically involve eval-
uating f(a) and so is computationally infeasible.

.j:. "
.'

~

-?OitIi.



592

Another alternab

min

largeamount

adapting,when this

/(,110'+1 )/(0/,+1)

/(,110')/(0')
miD { 1,

expensive.

Weaknesses of Particle Filter2.3

problem

that degree of accuracy, how to efficiently sample
We show how to do this in the next section.

fixed lagged filter.

3. AUXILIARY VARIABLE

3.1 The Basics

particle filtering in a higher dimension.

kIYt+1).
define

!(ot+l,kIYe+1) OC !(tlt+110t+1)!(Ot+1Ia:)~,

....

g(a'llI)
}g(OI+III1) .



the joint density of g( at+1, kIYt+1) R times, we perform
a reweighting, putting on the draw (al+ I' ki) the weights
proportional to the so-called second-stage weights

- I(Yt+1Ia1+1) . - wi . -
Wj- ( 1 1:1 ) ' 7r,- R ' }-I,.."R.I 1It+1 ISt+1 Ei=l Wi

The hope is that these second-stage weights are much less
variable than for the original SIR method. We might resam-
pie from this discrete distribution to produce a sample of
size M.

By making proposals that have high conditional likeli-
hoods, we reduce the costs of sampling many times from
particles that have very low likelihoods and so will not
be resarnpled at the second stage of the process. This im-
proves the statistical efficiency of the sampling procedure
and means that we can reduce the value of R substantially.

To measure the statistical efficiency of these proce-
dures, we argued earlier that we could look at minimiz-
ing E{7r(a):l}. Here we compare a standard SIR with a
SIR based on our auxiliary variable. For simplicity, we set
1r1c = 11M in both cases. Then, for a standard SIR-based
particle filter, for large M,

E{1r(a):l} = i1 E:'l f I(Yt+1lat+1):l dF(at+1Ia:)2

{l, E~l f I(Yt+1laHd dF(Ot+1Ia:')}

EO M ~:'-1 ~ll!
(Ejr81 ~jrl:)2'

where

Ijr =
f { /(Yt+1la~+1) } :l dF(aHlla:)

I(Yt+1I#£i+1 )

and

,- = f { /(Yt+110t+1) } dF (a laic)JIe I( I . ) HI t.
1It+1 ISHI

The same calculation for a SIR-based auxiliary variable par-
ticle filter gives

E {7r (a ):l} = E:'-1 ~.!jr
Q (E:'.1 ~1e!:)2'

which shows an efficiency gain if

AI AI
L~lc/le < ML~~!'"
1e-1 1e=1

If lie does not vary over k, then the auxiliary variable
particle filter will be more efficient as E~1 ~1e(I/M) =
(11M) ~ E~1 ~~. More likely is that I. will depend on
k, but only mildly, as I(Ot+1IQ~) will be typically quite
tightly peaked [much more tightly peaked than !(Ott+1IYt)l
compared to the conditional likelihood.

and

which shows an efficiency gain if

1583

3.3 Examples of Adaptlon

3.3.1 Basics. Although the previous generic scheme
can usually reduce the variability of the second-stage
weights. other adaption schemes use the specific structure
of the time series model to allow us to achieve yet more
equal weights. If we can achieve exactly equal weights.
then we say that we have fully adapted the procedure to the
model. for now we can produce iid samples from (4). This
situation is particularly interesting. as we are then close
to the assumptions made by Kong et aI. (I994) for their
sequential importance sampler. Although full adaption is
of some practical importance. we should remind ourselves
that even fully adapted particle filters do not produce iid
samples from !(ac+1IYt+1). due to their approximation of
!(ac+1IYt) by a finite mixture distribution. This is inherent
in the construction of this class of filter.

3.3.2 Nonlinear Gaussian Measurement Model. In
the Gaussian measurement case, the absorption of the mea-
surement density into the transition equation is particularly
convenient. Consider a nonlinear transition density with
Ot+1loc '" N{Jj(oc),u2(Ot)} and Yc+ll°t+l '" N(oc+1,l).

Then

!(QH1,kIYa+1) OC !(Ih+1IQH1)!(Q,+1IQ:)

= 9a:hh+1)!(Ctt+lla:,Ih+l),

where
!(QH11~,1h+.) = N(I£.,t1.2),

- _2 { J.'(ot) }J.'/c = q/c q2(0:) +~+1 .

and

17;-2 = 1 + u-2(0~).

This implies that the first-stage weights are

u' { .' ( . 2 }g.(Yt+l) ex ~

( ) exp ~ - '" at)

U(o:> 2u~ 2u2(at)

The Gaussian measurement density implies that the second-
stage weights are all equal.

An example of this is a Gaussian autoregressive condi-
tional heteroscedasticity (ARCH) model (see. e.g.. Boller-
slev. Engle. and Nelson 1994) observed with independent
Gaussian error. So we have

JhIQt - N(Qt.CT2). Qt+l1Qt - N(O.A» + Pta:).

This model is fully adaptable. It has received a great deal of
attention in the econometric literature, as it has some attrac-
tive multivariate generalizations; see the work by Diebold
and Nerlove (1989), Harvey, Ruiz, and Sentana (1992) and
King, Sentana, and Wadhwani (1994). As far as we know,
no likelihood methods exist in the literature for the analy-
sis of this type of model (and its various generali2l8tions),
although a number of very good approximations have been
suggested.





if tIt+1 ... I, we have, exactly,

Pr(QH1.kIYt+1) ex wkpr(Qt+1I~,QHl > 0),

wk = Pr(QHl > Ola~).

Hence we choose k with probability proportional to wk
and then draw from a truncated distribution conditional
()JI k. If IIt+1 is negative. then the weights wk would be
Pr(at+1 < ala:). and while the truncated draw would be
from Pr(aHlla:, at +1 < 0). This style of argument car-
ries over to ordered probit and censored models where we
observe, for example, min(O, at).

Adaption can be very important in these types of mod-
els. for naively implemented particle and auxiliary vari-
able filters are generally vulnerable to tightly peaked mea-
surement densities. In the censored model. where IIH 1 =
min(O, aHd, the measurement density is degenerate when
YH 1 > 0, and so the particle filter will degenerate to give
all of its mass on the simulation that is closest (but because
they are simulated from Pr(aH1!a:) not equal) to IIt+1'
Adaption overcomes this problem instantly.

Adaption is also essential for the foUowing problem. Sup-
pose that at+1lat is Gaussian, at+1 is bivariate, and we
observe YHl = min(aHd. Such models are called dise-
quilibrium models in economics. (Recent work in this area
includes Laroque and Salanie 1993 and Manrique and Shep-
hard 1998.) Then

Pr(aHlt klYt+d ex Pr(Yt+1lat+d Pr(at+1la~).

Then we have that tJt should be proportional to the proba-
bility of at+1IQ: having its minimum exactly at IIt+1. This

FIgure ,. Pfol 01 II» Angular AIe.uunJmenf8 From 0rlgIn. II» »w 7t8jecfory (SolId Line, crosH8), ",. P8rt#cIe RItet8d MNn T1ajtIctory (DaMd
Ie, eo..). 8IId II» AuxIliary P8ItfcIe Mean bjtJctory (Dot1ed Line. CItf:*). - tDOIIInt1 «JU1hetJst. T. 10. AI . 300. R. 500.
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can be shown to be exactly

wI: = fo. (~+1){1- PrQ2,Hllot(~+1)}
l,t+ll-,

+ 102.&+1101 (1It+1){1- Pr Ql,t+1la. ("+1)}.

while. having selected k. we sample from

°l,Hl = Yt+l with probability

101.&+11-:(Yt+d{1- PrQ3,t+lI0:(IIt+1)}At+l = Ie I
W

and then from

02.t+1!Ol.t+1 = Yt+t. O~, 02.t+l > IIt+1-

Likewise. 02.t+ 1 = IIt+1 with probability 1 - At+1'

3.3.6 Mixtures of Normals. Suppose that j(ot+1loe)
is Gaussian, but the measurement density is a discrete mix-
ture of normals E:=l Ajf;(YHlloHd. Then we can per-
fectly sample from j(OHlt klYe+d by working with

!(Oe+l,k,jIYc+l) OC Aj"(~+110t+1)!(Ot+lla:)

= Wi,t!;(Ot+lla:,Jt+1)'

Then we sample from f(at+l, k,jIYt+d by selecting the
index k, j with probability proportional to Wj,k and then
drawing from h(ot+lla~,Yt+l)' The disadvantage of this
approach is that the complete enumeration and storage
of wi,le involves P x M calculations. This approach can
be trivially extended to cover the case where !(ot+1lat)
is a mixture of normals. MCMC smoothing methods
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for state-space models with mixtures have been studied
by, for example, Carter and Kobo (1994) and Shephard
(1994).

NUMERICAL EXAMPLE4.
A Time Series of Angles4.1

4.1.1 The Model. In this section we compare the per-
fonnance of the particle and auxiliary particle filter meth-
vds for an angular time series model: the bearings-only
model. We consider the simple scenario described by Gor-
don et aI. (1993). The observer is considered stationary
at thf'. origin of the x - z plane, and the ship is assumed
to gradually accelerate or decelerate randomly over time.
We use the following discretisation of this system, where
at = (Xt! VXt, Zt. VZt)':

( 1 1 0 0 ) ( . t o). 0 1 0 0 . . e
at+l - 0 0 1 1 at + u" . 0 i

. .. Ut, 0001 OL

In obvious notation Xt and Zt represent the ship's horizontal
and vertical positions at time t and VXt and VZt represent
the corresponding velocities. The state evolution is thus a

VAR(1) of the form at+l = Tat + HUt.
cates that the state evolution error arises becau
celerations are white noise. The initial state des
ship's starting positions and velocities al '" NI
This prior, together with the state evolution of (7
the overall prior for the states.

Our model is based on a mean
ta.n-l(zt/xd. The measured angle is
wrapped Cauchy with density (~, e.g.,
p.46)

1 I-p'Jf(ytll-'t} = 211' 1 + p2 - 2pCOl(~ -I-'t)'

0 :::; 1It < 211",

where p is the mean resultant length.

4.1.2 The Simulated Scenario.
tiye efficiency of the particle filter and the basic
method discussed in Section 3.2, we have closel3
the setup described by Gordon et aI. (1993). TIll
ered u" = .001 and Ue = .005, where Ztl~t '" NI
We choose p = 1 - u~ (yielding the sam!

dispersion) for our wrapped Cauchy density.
tual initial starting vector of this is taken to
(-.05, .001, .2, ~.055)'. In contrast to the metho
don et aI. (1993), however, we wish to have an
accurate and tight prior for the initial state. This
we want the variance of quantities arising from t

Ut '" NID(O, 1). (7)

(c)



Pitt and Shephard: Auxiliary Particle Filters

I

0 20 40 60 80 tOO 120 140 160 180 200

(b)

FIgu,. 3. (a) T1NI Poeterlor FIltered MfMn (Heavy Line) of {j 8KP(o,l2)1 Y" ToQether wtth the 5. 20. 50. BO, Md IS ~ A*If8 allhe
DistrIJuIIon Md (b) T1NI 0IIJIy Returns on the U.$. doII8r AQaJn« the UK. pound 8terlInQ from the ffrst Dey of 7hIdtng In '987 for 200 '7tadInQ D4Iy8.
NotIce the medIwIl8 8Iw8ys below ",. mean. M . 5.000; R . 6,000.

posterior density to be small, allowing us to formulate rea-
sonably conclusive evidence about the relative efficiency ofthe auxiliary method to the standard method. Thus we take .

al = 01 and have a diagonal initial variance PI with the
elements .01 x (.52,.0052,.32,.012) on the diagonal.

Figure 1 illustrates a realization of the model for the fore-
going scenario with T = 10. The ship is moving in a south-

easterly direction over time. The trajectories given by the
posterior filtered means from the particle method and the
auxiliary method (M = 300 and R = 500 in both cases) are
both fairly close to the true path despite the small amount
of simulation used.

4.1.3 Monte Carlo Comparison. We now compare the
two methods using a Monte Carlo study of the foregoing
scenario with T = 10. The "true" filtered mean is calcu-
lated for each repliCation by using the auxiliary method
with M = 100,000 and R = 120,000. Within each replica-
tion, the mean squared error (MSE) for the particle method
for each component of the state over time is evaluated by
running the method, with a different random number seed,
S times and recording the average of the resulting squared
difference between the resulting particle filter's estimated
mean and the "true" filtered mean. Hence for replication i,
state component j, at time t, we calculate

597
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where a:,;,a is the particle mean for replication i, state com-
ponent j, at time t, for simulation 8 and &:,; is the "true"
filtered mean replication i, state component j, at time t. The
log mean squared error (LMSE) for component j at time t
is obtained as

1 REP
LMSEft = log REP L MSE ri,t.

i-1
The same operation is performed for the auxiliary method
to deliver the corresponding quantity LMSE~r. For this
study, we use REP = 40 and S = 20. We allow M = 4,000
or 8,000, and for each of these values we set R = M or
2M. Figure 2 shows the relative performance of the two
methods for each component of the state vector over time.
For each component j, the quantity LMSE~r - LMSEft is
plotted against time. Values close to 0 indicate that the two
methods are broadly equivalent in performance; negative
values indicate that the auxiliary method performs better
than the standard particle filter.

The graphs give the expected result, with the auxiliary
particle filter typically being more precise, but with the dif-
ference between the two methods falling as R increases.

4.2 Stochastic Volatility

The basic SV model was defined in Section 3.3.4. Here
we construct 100 times the compound daily returns on the
U.S. dollar against the U.K. pound sterling from the first
day. of trading in 1997 and for the next 200 days of active
trading. (This dataset is discussed in more detail in Pitt&;J)2,

..
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