Filtering via Simulation: Auxiliary Particle Filters

Michael K. PITT and Neil SHEPHARD

This article analyses the recently suggested particle approach to filtering time series. We suggest that the algorithm is not robust
to outliers for two reasons: the design of the simulators and the use of the discrete support to represent the sequentially updating

prior distribution. Here we tackle the first of these problems.
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1. INTRODUCTION

In this article we model a time series y;,t = 1,...,n, as
being conditionally independent given an unobserved suffi-
cient state «;, which is itself assumed to be Markovian. The
task is to use simulation to carry out on-line filtering—that
is, to learn about the state given contemporaneously avail-
able information. We do this by estimating the difficult-
to-compute density (or probability distribution function)
flaelyr, ... p) = f(a|Yy),t = 1,...,n. We assume para-
metric forms for both the “measurement” density f(y:|o:)
and the “transition” density of the state f(cyii1|ay). The
state evolution is initialized by some density f(apg).

Filtering can be thought of as the repeated application
of a two-stage procedure. First, the current density must
be propagated into the future via the transition density
S(ag41|ee) to produce the prediction density

flopnl¥) = / flalon) dF(@l¥). (1)

Second, one moves to the filtering density via Bayes theo-
rem,

fyesr]onsr) flaea|Yh)
f(yes1|Y) ’

flaes1|Yeqr)

f(yes1|Y2) = /f(yt+1|ﬂz+1)dF(ﬂt+1th)» (2)

This implies that the data can be processed in a single
sweep, updating our knowledge about the states as we re-
ceive more information. This is straightforward if ooy,
has a finite set of known discrete points of support, as the
previous calculations can be computed exactly. When the
support is continuous and the integrals cannot be analyti-
cally solved, then numerical methods must be used.
Numerous attempts have been made to provide algo-
rithms that approximate the filtering densities. Important
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recent work includes that of Gerlach, Carter, and Kohn
(1996), Kitagawa (1987), West (1992), and those papers re-
viewed by West and Harrison (1997, chaps. 13 and 15).

In this article we use simulation to perform filtering fol-
lowing an extensive recent literature. Our approach is to
extend the particle filter that has recently been suggested in-
dependently by various authors. In particular, it was used by
Gordon, Salmond, and Smith (1993) on non-Gaussian state—
space models. The same algorithm, with extensions to the
smoothing problem, has been independently proposed by
Kitagawa (1996) (and generalized in Hiirzeler and Kiinsch
1995) for use in time series problems. It reappeared and was
then discarded by Berzuini, Best, Gilks, and Larizza (1997)
in the context of a real-time application of the sequential
analysis of medical patients. It was again proposed by Is-
ard and Blake (1996) in the context of robustly tracking
motion in visual clutter, under the term the “condensation”
algorithm. Some statistical refinements of this general class
of algorithm, generically called particle filters, have been
given by Carpenter, Clifford, and Fearnhead (1998), Doucet
(1998), and Liu and Chen (1998) (which were written inde-
pendently of this article). The idea of calling this class of
algorithm “particle filters” is from Carpenter et al. (1998),
although Kitagawa (1996) used the term “particles.” Similar
ideas (but using stronger assumptions) are used on the blind
deconvolution problem of Liu and Chen (1995) and in the
sequential importance sampling algorithms of Hendry and
Richard (1991) and Kong, Liu, and Wong (1994).

Here we discuss the particle filtering literature and extend
it in a number of directions so that it can be used in a
much broader context. The article is organized as follows.
In Section 2 we analyze the statistical basis of particle filters
and focus on its weaknesses. In Section 3 we introduce our
main contribution, an auxiliary particle filter method. We
give some numerical examples in Section 4 and state some
conclusions in Section 5.

2. PARTICLE FILTERS

2.1 Definition of Particle Filters

Particle filters are the class of simulation filters that re-
cursively approximate the filtering random variable o, |Y; =
(y1,...,y) by “particles” af,...,aM, with discrete prob-
ability mass of 7},..., 7M. Hence a continuous variable is
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-approximated by a discrete one with random support. These
E discrete points are viewed as samples from f(a;|Y:). In the
 literature all of the n] are assumed to equal 1/M. Through-
b.Hut, M is taken to be very large. Then we require that as
"M — oo, the particles can be used to increasingly well
§ approximate the density of o,|Y;.

" Particle filters treat the discrete support generated by the
- particles as the true filtering density. This allows us to pro-
" duce an approximation to the prediction density, (1), simply
} by using the discrete support of the particles. We call

M
flaenl¥e) =Y~ flaesled)rd (3)

j=1

' the “empirical prediction density.” This is a mixture of den-

. sities and so echoes the earlier filtering work of, for exam-

" ple, Sorensen and Alspach (1971). This can be combined

¥ with the measurement density to produce, up to propor-
~ tionality,

M
flawalYen) & f@erlaerr) D flaslod)nd,

j=1

@)

the “empirical filtering density” as an approximation to
' the true filtering density (2). Generically, particle filters
 then sample from this density to produce new particles
aliq,- .., oM, with weights n},,, ..., 7M. This procedure
can then be iterated through the data. We call a particle fil-
ter “normal” if it produces independent and identically dis-
tributed samples from the empirical filtering density. There
may be advantages in deliberately inducing (negative) corre-
lations among the particles. This approach was first explic-
itly pointed out by Carpenter et al. (1998), and has been fur-
ther explored in our earlier work (Pitt and Shephard 1998).
We do not discuss this here.

If the particle filter can be made to work, it could be used
in a number of different contexts. These could include on-
line tracking problems; estimating the one-step-ahead den-
sity f(ye41(Y:) and so, via the prediction decomposition, the
joint density of the observations; and estimating the corre-
sponding distribution function F(y.41|Y:), which can be a
useful diagnostic measure of fit for non-Gaussian models
(see, e.g., Gerlach et al. 1996, Shephard 1994; Smith 1985).

2.2 Sampling the Empirical Prediction Density

One way of sampling from the empirical prediction
density is to think of zjl‘il flaesr]ad)nl as a “prior”
density f(a;41]Y:) that is combined with the “likeli-
hood” f(y.+1|a,+1) to produce a posterior. We can sam-
ple from f(cq41|Y:) by choosing of with probability =
and then drawing from f(a41|ad). If we can also evalu-
ate f(yi+1)ae+1) up to proportionality, then this leaves us
with three sampling methods to draw from f(aes1|Yis1):
sampling/importance resampling, acceptance sampling, and
Markov chain Monte Carlo (MCMQ). In the rest of this sec-
tion we write the prior as f(a) and the likelihood as f(yla),
abstracting from subscripts and conditioning arguments, to
briefly describe these methods in this context.

2.2.1 Sampling/Importance Resampling. /
pling/importance resampling (SIR) method Rubu..
draws o!,...,a® from f(a) and then associates with ea.
of these draws the weights 7, where

wj
R k)
D i Wi

Then the weighted sample will converge, as R — oo, to
a nonrandom sample from the desired posterior f(aly) as
R7! Z:L wi 5 f(y). The nonrandom sample can be con-
verted into a random sample of size M by resampling the
at,...,aR using weights 7, ..., mg. This requires R — oo
and R >> M. The use of this method has been suggested
in the particle filter framework by Berzuini et al. (1997),
Gordon et al. (1993), Isard and Blake (1996), and Kitagawa
(1996).

To understand the efficiency of the SIR method, it is use-
ful to think of SIR as an approximation to the importance
sampler of the moment

j=1,...,R

= f(ylo?),

7l'j=

&
Efr{h(a)} = /h a) dF(a) by E h(a?)m(c?),
i=1

where a ~ f(a) and 7(a) = f(yla)/f(y). Liu (1996) sug-
gested that the variance of this estimator is approx1mately
(for slowly varying h(a)) proportional to Ej{m(a)’}/R.
Hence the SIR method will become very imprecise when
the 7; become very variable. This will happen if the likeli-
hood is highly peaked compared to the prior.

2.2.2 Adaptation. The foregoing SIR algorithm sam-
ples from f(c|y) by making blind proposals at,...,al
from the prior, ignoring the fact that we know the value
of y. This is the main feature of existing particle filters. We
say that a particle filter is adapted if we make proposals
that take into account the value of y.

An adapted SIR-based particle filter has the following
general structure:

1. Draw from o! ,aft ~ g(aly).

2. Evaluate w; = f(yla’ f(aJ)/g (oly),j=1,...,R.

3. Resample among the {a7} using weights propomonal
to {w;} to produce a sample of size M.

Although this looks attractive, for a particle filter, f(a) =
Z] i (er¢41]ad)wl, which implies we must at least evalu-
até M x R densities to generate M samples from f(aly).
Given that M and R are typically very large, this implies
that adaption is not generally feasible for SIR-based particle
filters.

2.2.3 Rejection and Markov Chain Monte Carlo Sam-
pling.  Exactly the same remarks hold for rejection sam-
pling. A blind rejection sampling-based particle filter will
simulate from f(o) and accept with probability w(a) =
f(yla)/ f(Ylamax), where amax = argmaxq f(y|@). This
has been proposed by Hiirzeler and Kiinsch (1995). Again,
the rejection becomes worse if the varg{m(c)} is high and
adaption is difficult, as it will again typically involve eval-
uating f(c) and so is computationally infeasible.
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Another alternative to SIR is the use of a blind MCMC
method (see Gilks, Richardson, and Spiegelhalter 1996 for
a review). In this context the MCMC accepts a move
from a current state o' to a'*! ~ f(a) with probability
min{1, f(y|a**t1)/f(y|at)}; otherwise, it sets o'l = o,
Again, if the likelihood is highly peaked, there may be a
large amount of rejection, which will mean the Markov
chain will have a great deal of dependence. This suggests
adapting, when this is possible, the MCMC method to draw
from g(e|y) and then accept these draws with probability

: flyle* ™) f(a)  glatly)
‘“‘“{1’ Flah) f () g(a“'“iy)}'

Again, the problem with this is that evaluating f(«) is very
expensive.

2.3 Weaknesses of Particle Filter

The particle filter based on SIR has two basic weak-
nesses. The first is well known, that when there is an outlier,
the weights 7; will be very unevenly distributed and so it
will require an extremely large value of R for the draws
to be close to samples from the empirical filtering density.
This is of particular concern if the measurement density
f(y+1]ae+1) is highly sensitive to ;. Notice this is not
a problem of having too small a value of M. That parameter
controls the accuracy of (3). Instead, the difficulty is, given
that degree of accuracy, how to efficiently sample from (4).
We show how to do this in the next section.

The second weakness holds in general for particle filters
for which the 77 are equal and where the states are updated
one period at a time. As R — co, so the weighted samples
can be used to arbitrarily well approximate (4). However,
the tails of (3) usually only poorly approximate the true
tails of a;41|Y;, due to the use of the mixture approxima-
tion. As a result, (4) can only poorly approximate the true
flagy1|Yir1) when there is an outlier. Hence the second
question is how to improve the empirical prediction den-
sity’s behavior in the tails. In earlier work (Pitt and Shep-
hard 1998) we analyzed this problem using the so-called
fixed lagged filter.

3. AUXILIARY VARIABLE
3.1

A fundamental problem with existing particle filters is
that their mixture structure means that it is difficult to adapt
the SIR, rejection, or MCMC sampling methods without
greatly slowing the running of the filter. Here we argue
that many of these problems are reduced when we perform
particle filtering in a higher dimension.

Our task is to sample from the joint density f(asy1,

k|Yi41), where k is an index on the mixture in (3). We
define

The Basics

flogsr, k|Yes1) o< fyes [at+1)f(at+1|af)ﬂ’“,

k=1,...,M. (9)
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If we draw from this joint density and then discard the
index, then we produce a sample from the empirical filtering
density (4) as required. We call k an auxiliary variable, as
it is present simply to aid the task of simulation. We call
generic particle filters of this type auxiliary particle filters.

We can now sample from f (i1, k|Y:41) using SIR, re-
Jjection, orMCMC. The SIR idea is to make R proposals
aj H,k»”' ~ g(ess1,k|Yis1) and then construct resampling
weights

_ f(yt+1|a_f+l)f(af+1|afj)
glad,y, k9 |Yiq1)

wy

w W= =r
Dim1 Wi
F= 1y B

We have complete control over the design of g(-), which can
depend on y;4, and af, to make the weights even. Thus this
method is adaptable and extremely flexible. In the next sec-
tion we give a convenient generic suggestion for the choice
of g(-).

Rejection sampling for auxiliary particle filtering could
also be used in this context. An example of this appears in
Section 3.3.4. We can also make proposals for an MCMC
variate of the auxiliary particle filter from af'}"), k(1) ~
g(a¢s1, k|Yiy1), where g(agy1,k|Yi41) is some arbitrary
density; then these moves are accepted with probability

141 i+1 (i+1)
o {1 F@erilofi0) (ol ™)

t41
fyes Iaﬁfﬂl)f(aﬁfﬂl |a§u;)

g(aidy, k9 Yie)
(i+1) p(+1)|y, ’
glogyy ' kUHD[Ye)
A special case of this argument has been given by Berzuini

et al. (1997), who put g(as41, k|Yes1)  f(aps1|aF), which
means that their method is again blind.

L]

3.2 A Generic Sampling/Importance
Resampling—Based Auxiliary Proposal

Here we give a generic g(-) that can be broadly applied.
We base our discussion on the SIR algorithm, although we
could have used an MCMC method. We approximate (5) by

glas1, klYer1) o f (e b)) flausr )",
k=1,...,M,

where uf, ; is the mean, the mode, a draw, or some other
likely value associated with the density of ay.i|aF. The
form of the approximating density is designed so that

g(k[Yie1) o 7 / F (s k1) dF(cesala)

= ﬁkf(ywll#?ﬂ)-

Thus we can sample from g(ay41, k|Y;+1) by simulating the
index with probability Ay o g(k|Y;41), and then sampling
from the transition density given the mixture f(ay41|af).
We call the Ay the first-stage weights.

The implication is that we simulate from particles as-
sociated with large predictive likelihoods. Having sampled
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'-j the joint density of g(ai41,k|Yi+1) R times, we perform
| a reweighting, putting on the draw (af,,,k7) the weights
. proportional to the so-called second-stage weights

o Sy |0{+1)

e, Wy
f(y:+1 |#fi1 ) '

g == R 1
2im Wi

j=1,...,R.

- The hope is that these second-stage weights are much less
variable than for the original SIR method. We might resam-
. ple from this discrete distribution to produce a sample of
L size M.

. By making proposals that have high conditional likeli-
- hoods, we reduce the costs of sampling many times from
particles that have very low likelihoods and so will not
- be resampled at the second stage of the process. This im-
. proves the statistical efficiency of the sampling procedure
~and means that we can reduce the value of R substantially.
- To measure the statistical efficiency of these proce-
| dures, we argued earlier that we could look at minimiz-
. ing E{m(a)?}. Here we compare a standard SIR with a
- SIR based on our auxiliary variable. For simplicity, we set
. 7% = 1/M in both cases. Then, for a standard SIR-based
.~ particle filter, for large M,

1‘?2:‘:1  fyesr|oes1)? dF (aesr|af)

E{r(a)’} = P 3
{ﬁ Yokt J F (e faz+1)dF(az+1|ﬂf)}

_ MEfil ’\Efk
e iR’

/A

f;=/{f{ye+1laz+1)

fyesr|pksy)

where

M}z dF (aeqaaf)
Fesa|ufyy) t

and

} dF(aypq)al).

The same calculation for a SIR-based auxiliary variable par-
ticle filter gives

i Mefi
(Tea X f2)?

which shows an efficiency gain if

M M
Z/\kfk < Mzﬁifk-
k=1 k=1

E{ma(a)’} =

If fi does not vary over k, then the auxiliary variable
particle filter will be more efficient as 2:’;1 Ax(1/M) =
(1/M) < 2:”:1 AZ. More likely is that fi, will depend on
k, but only mildly, as f(a;1|af) will be typically quite
tightly peaked [much more tightly peaked than f(a;.,|Y;)]
compared to the conditional likelihood.
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3.3 Examples of Adaption

3.3.1 Basics. Although the previous generic scheme
can usually reduce the variability of the second-stage
weights, other adaption schemes use the specific structure
of the time series model to allow us to achieve yet more
equal weights. If we can achieve exactly equal weights,
then we say that we have fully adapted the procedure to the
model, for now we can produce iid samples from (4). This
situation is particularly interesting, as we are then close
to the assumptions made by Kong et al. (1994) for their
sequential importance sampler. Although full adaption is
of some practical importance, we should remind ourselves
that even fully adapted particle filters do not produce iid
samples from f(cy41|Yi4+1), due to their approximation of
fla¢41]Y3) by a finite mixture distribution. This is inherent
in the construction of this class of filter.

3.3.2 Nonlinear Gaussian Measurement Model. In
the Gaussian measurement case, the absorption of the mea-
surement density into the transition equation is particularly
convenient. Consider a nonlinear transition density with
Qgy1foe ~ N{p(a:)‘ﬂz(m)} and ye41|arsr ~ N(agsr, 1).
Then

floesr, kYerr) o f(@esrloesr) flaeslaf)

= gk(yt+1)f(at+l|a’?syt+l):

where
flagsrlaf, yes1) = N(ug, 0p2),
k
- o2 )u‘(at)
p—yg _+_ 3
Hi T { 0'2 (Gi‘) Yt+1 }
and
0% =14+ 07%(af).

This implies that the first-stage weights are

2
oL 7
Xp .

o(ay) {2:;,;’ }
The Gaussian measurement density implies that the second-
stage weights are all equal.

An example of this is a Gaussian autoregressive condi-
tional heteroscedasticity (ARCH) model (see, e.g., Boller-

slev, Engle, and Nelson 1994) observed with independent
Gaussian error. So we have

plaf)?
202 (af

Ik (Ye41)

Ye|or "-’N(a:eag)\ Qe ""N(U‘ﬁo-i'ﬁlﬂzz)-

This model is fully adaptable. It has received a great deal of
attention in the econometric literature, as it has some attrac-
tive multivariate generalizations; see the work by Diebold
and Nerlove (1989), Harvey, Ruiz, and Sentana (1992) and
King, Sentana, and Wadhwani (1994). As far as we know,
no likelihood methods exist in the literature for the analy-
sis of this type of model (and its various generalizations),
although a number of very good approximations have been
suggested.

w ] O T O
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3.3.3 Log-Concave Measurement Densities. ~ Suppose
again that f(a,.i/aF) is Gaussian, but the measurement
density is log-concave as a function of a;y;. Then we
might extend the foregoing argument by Taylor expand-
ing log f(ye+1]aes1) to a second-order term, again around
jif, 1, to give the approximation

IOEQ(yt+1]at+19#f+1)
=1 Is:% i k ]
== ng(yt+liiig+1) F (@41 — Heyq)

« 2108 f (e lutyn)

Oayp i)
1
+ 5 (ceeq1 — I*fﬂy

9? log f(yi+1 |P5;C+1)
Ba¢+1801+1

(g1 — l‘f+1)<
Then

glarsr, k|Yiqn) x Q{yr+1l&:+|Hlfﬂ)f(au-i!ﬂf)-

Rearranging, we can express this as

9(ae+1, k|Yesr) o g(yesn l#f-;—l )g(ae 41 lafs Ye+1; #?H):

which means that we could simulate the index with prob-
ability proportional to g(y;+1|pf,,) and then draw from
g(aesr|af, yerr, uF,,). The resulting reweighted sample’s
second-stage weights are proportional to the, hopefully
fairly even, weights

f(ye |‘1Qj+1)f(ﬂc+1iﬂfj)

W= kj j k; k
Q(ye+1|#t+1)!}(a§+1|ﬂz ,y:+1,#t+1)
. f(yt+1}af+1)
o : ks L]
g(yt+l|a§+1;ﬂzil)
wJ .
?sz—ﬁ—-, ‘}'Z].,‘M,R.
Zl':]. w;

Thus we can exploit the special structure of the model, if
available, to improve upon the auxiliary particle filter.

3.3.4 Stochastic Volatility and Rejection Sampling.
The same argument carries over when we use a first-order
Taylor expansion to construct g(ye+1|as1, uf, ), but in this

case we know that g(ysi1|ovsr, ufy1) > f(yes1|ausr) for
any value of yf,, due to the assumed log-concavity of the
measurement density. Thus

a1, kY1) & fyesr|aesr) o |af)

9(Wes1| e ) faesa|af)

(Y1 |Hf+1 )9(“t+1|a§vyt+liiif+1)
o g(ats1, k|Yier).

IA

Thus we can perform rejection sampling from f(oiq,
k|Y;41) by simply sampling k with probability proportional
to g(yg+11;;f+1) and then drawing a1 from g(ayqi|af,
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Yes1s MEyq). This pair is then accepted with probab;
f(yesrlae+1)/9(yesr|aess #?4.1)-

This argument applies to the stochastic volatility
model,

Y = esBexp(ae/2),  ony1 = day + 1,

where €, and 7, are independent Gaussian processes Wit
variances 1 and o?. Here § has the interpretation as
modal volatility, ¢ is the persistence in the volatility §
and o7 is the volatility of the volatility. This model has a
tracted much recent attention in the econometrics litera
as a way of generalizing the Black—Scholes option pricing
formula to allow volatility clustering in asset returns (
e.g., Hull and White 1987). MCMC methods have bee
on this model by, for instance, Jacquier, Polson, and R
(1994), Kim, Shephard, and Chib (1998), and Shephard
Pitt (1997).

For this model log f(y¢+1|as+1) is concave in agyy
that, for uf,, = ¢af,

1
log Q(Ut+1|&z+1;#f+1) = const — §at+1

2
= % EXP[—#’?H {1 = (41 — #f+1)}-‘

The implication is that

g(az+110f,yt+1iﬂf+1)
= 2
a U
= N {P'f+l ey {ﬁ—; exp(—f41) = 1} ﬂ??}

= N(uify,0%).

Likewise,

1 i
S’(yt+1|ﬁf+1} = exp { 252 (Nsﬁ = ﬂtil)}

2

X exp {— 2% exp(—ps)(1 + #f+1)}

Finally, the log-probability of acceptance is

2
- 5%2 exp(—ae+1) — exp(=pg){1 = (aesr — uip)})

Notice that as o2 falls to 0, so the acceptance probability §
goes to 1. 4

Finally, the same argument holds when we use a SIR al- |
gorithm instead of rejection sampling. The proposals are
made in exactly the same way, but now instead of com- |
puting log-probabilities of accepting, these become log- |
second-stage weights.

3.3.5 Limited Dependent Processes. A less trivial ex- §
ample of full adaption is a special case of limited dependent |
processes, where the observations are deterministic func- §
tions of the states. A simple example of this is a probit §
time series where y; = I(a; > 0), where o, is Gaussian |
and univariate and () denotes an indicator function. Then §
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if y¢+1 = 1, we have, exactly,
Pr(ees1, k|Yet1) o w* Pr(asp|af, augr > 0),
w* = Pr(asyy > 0jal).

¢ Hence we choose k with probability proportional to w*
. and then draw from a truncated distribution conditional
. on k. If y4, is negative, then the weights w* would be
. Pr(a41 < 0laF), and while the truncated draw would be
. from Pr(ay4i|af, arer < 0). This style of argument car-
ries over to ordered probit and censored models where we
~ observe, for example, min(0, a).

| Adaption can be very important in these types of mod-
~ els, for naively implemented particle and auxiliary vari-
¢ able filters are generally vulnerable to tightly peaked mea-
. surement densities. In the censored model, where v, =
. min(0, o441 ), the measurement density is degenerate when
. 541 > 0, and so the particle filter will degenerate to give
. all of its mass on the simulation that is closest (but because
they are simulated from Pr(a::|af) not equal) to y, ;.
¢ Adaption overcomes this problem instantly.

~ Adaption is also essential for the following problem. Sup-
- pose that o;y1|a; is Gaussian, oy is bivariate, and we
. observe y;4; = min(az4;). Such models are called dise-
. quilibrium models in economics. (Recent work in this area
- includes Laroque and Salanié 1993 and Manrique and Shep-
. hard 1998.) Then

Pr(ags1,k|Yes1) o Pr(yes1|assr) Pr(as|of).

Then we have that w* should be proportional to the proba-
| bility of a41|af having its minimum exactly at y,,,. This
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can be shown to be exactly

w* = Fob ooiran W) {1 = Prog e, (ves1)}

|
+ fazeiria, e+1){1 = Pray g410, (ve41) }

while, having selected k, we sample from

with probability

Q1i+1 = Yt41

f"‘x.:-mﬂ;« (Ye+1){1 — Pr Qg t+1|ak (ye+1)}

A£+l - wk ]

and then from

Qg t+1]Q1,t41 = yt+1,af|02.:+1 > Yet1-
Likewise, @ 44+1 = 91+ with probability 1 — Ap4y.

3.3.6 Mixtures of Normals. Suppose that f(cys1|oy)
is Gaussian, but the measurement density is a discrete mix-
ture of normals 2;;1 A fi(Yes1]ees1). Then we can per-
fectly sample from f(cyy,k|Yis1) by working with

flowsr, k, 3lYes) }“_'.‘fJ(yt+l]at+1)f((}'t+1|3§)
- w.-r'.kfj(“r+liﬂf,yt+1J.

Then we sample from f(a;yy,k, j|Yi41) by selecting the
index k,j with probability proportional to w,, and then
drawing from f;(asi1laf, ye41). The disadvantage of this
approach is that the complete enumeration and storage
of w; involves P x M calculations. This approach can
be trivially extended to cover the case where f(apy|y)
is a mixture of normals. MCMC smoothing methods

T

.5k

| " 1 e i 1 i | " 1 | |

L 1 M | L 1 " L 1 i
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Figure 1. Plot of the Angular Measurements From Origin, the True Trajectory (Solid Line, Crosses), the Particle Filtered Mean Trajectory (Dashed
| Line, Boxes), and the Auxiliary Particle Mean Trajectory (Dotted Line, Circles). Ship moving southeast. T = 10, M = 300, R = 500.
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for state—space models with mixtures have been studied
by, for example, Carter and Kohn (1994) and Shephard
(1994).

4. NUMERICAL EXAMPLE

4.1 A Time Series of Angles

4.1.1  The Model. In this section we compare the per-
formance of the particle and auxiliary particle filter meth-
ods for an angular time series model: the bearings-only
model. We consider the simple scenario described by Gor-
don et al. (1993). The observer is considered stationary
at the origin of the = — z plane, and the ship is assumed
to gradually accelerate or decelerate randomly over time.
We use the following discretisation of this system, where
oy = (T4, 0@, 24, 021)"s

Qi1 = g + Ty

00
00
11 Ut,
01

O O e
[l =] i s B v

1
1
0
0

e B e B B

U ™~ NID(O, 1). [?)

In obvious notation z, and z, represent the ship’s horizontal
and vertical positions at time ¢ and vz; and vz, represent
the corresponding velocities. The state evolution is thus a

Journal of the American Statistical Association, June 198!

VAR(1) of the form a;y1 = Tay + Hu;. The model indi-
cates that the state evolution error arises because the ac
celerations are white noise. The initial state describes thi
ship’s starting positions and velocities oy ~ NID(a;, P;)
This prior, together with the state evolution of (7), describe
the overall prior for the states.

Our model is based on a mean direction g,
tan~!(z;/z;). The measured angle is assumed to by
wrapped Cauchy with density (see, e.g., Fisher 1993
p. 46)

1-p?

1
Flyelue) = o 1 + p? — 2pcos(ye — pe)’

0$Qt<2ﬂ'v USPSL (8

where p is the mean resultant length.

4.1.2 The Simulated Scenario. To assess the rela
tive efficiency of the particle filter and the basic auxiliary
method discussed in Section 3.2, we have closely followed
the setup described by Gordon et al. (1993). They consid-
ered o, = .001 and o, = .005, where z¢|p; ~ NID(ju,02)
We choose p = 1 — o2 (yielding the same circula
dispersion) for our wrapped Cauchy density. The ac
tual initial starting vector of this is taken to be a; =
(—.05,.001,.2,-.055)". In contrast to the method of Gor
don et al. (1993), however, we wish to have an extremel
accurate and tight prior for the initial state. This is becaus
we want the variance of quantities arising from the filte

Figure 2. Plot of the Relative MSE Performance (on the Log Scale) of the Particle Filter and the Auxiliary-Based Particle Filter for the Bearings:
Only Tracking Problem. Numbers below 0 indicate a superior performance by the auxiliary particle filter. In these graphs M = 4,000 or 8,000 and
R = M or R = 2M. Throughout SIR is used as the sampling mechanism. (a) a;y = x;; (b) arg = 21, () ez = vy, (d) g = vzp. + — — — +, M
and R = 4,000;0 — — — o, (b) M and R = 8,000; (c) O — — — O, M = 4,000 and (d) R = 8,000; + - - -+, M = 8,000 and R = 16,000.
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Figure 3. (a) The Posterior Filtered Mean (Heavy Line) of 3 exp(a/2)|Y:, Together with the 5, 20, 50, 80, and 95 Percentage Points of the
Distribution and (b) The Daily Returns on the U.S. dollar Against the U.K. pound sterling from the first Day of Trading in 1997 for 200 Trading Days.

Notice the median is always below the mean. M = 5,000; R = 6,000.

posterior density to be small, allowing us to formulate rea-
sonably conclusive evidence about the relative efficiency of

% a; = a; and have a diagonal initial variance P, with the
" ® elements .01 x (.52,.0052,.32,.01?) on the diagonal.

L Figure 1 illustrates a realization of the model for the fore-
going scenario with 7' = 10. The ship is moving in a south-
easterly direction over time. The trajectories given by the
posterior filtered means from the particle method and the
auxiliary method (M = 300 and R = 500 in both cases) are
. both fairly close to the true path despite the small amount
& of simulation used.

4.1.3 Monte Carlo Comparison. We now compare the

. two methods using a Monte Carlo study of the foregoing

scenario with 7' = 10. The “true” filtered mean is calcu-

@ lated for each replication by using the auxiliary method

- with M = 100,000 and R = 120,000. Within each replica-

4 tion, the mean squared error (MSE) for the particle method

& for each component of the state over time is evaluated by

& running the method, with a different random number seed,

. S times and recording the average of the resulting squared

. difference between the resulting particle filter’s estimated

. mean and the “true” filtered mean. Hence for replication 7,
. state component j, at time ¢, we calculate

]
1 =i
MSE{j. =5 2 (Ghse—_ 5
s=1 J

the auxiliary method to the standard method. Thus we take

where a; ; , is the particle mean for replication 4, state com-
ponent j, at time ¢, for simulation s and &; ; is the “true”
filtered mean replication i, state component j, at time ¢. The
log mean squared error (LMSE) for component j at time ¢
is obtained as

REP

p 1
LMSE], = log oo E MSE [;..

The same operation is performed for the auxiliary method
to deliver the corresponding quantity LMSEM. For this
study, we use REP = 40 and S = 20. We allow M = 4,000
or 8,000, and for each of these values we set R = M or
2M. Figure 2 shows the relative performance of the two
methods for each component of the state vector over time.
For each component j, the quantity LMSE/AM — LMSE?, is
plotted against time. Values close to 0 indicate that the two
methods are broadly equivalent in performance; negative
values indicate that the auxiliary method performs better
than the standard particle filter.

The graphs give the expected result, with the auxiliary
particle filter typically being more precise, but with the dif-
ference between the two methods falling as R increases.

4.2 Stochastic Volatility

The basic SV model was defined in Section 3.3.4. Here
we construct 100 times the compound daily returns on the
U.S. dollar against the U.K. pound sterling from the first
day of trading in 1997 and for the next 200 days of active
trading. (This dataset is discussed in more detail in Pitt
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(c)

(d)

Figure 4. Plot of the MSE Performance (on the Log Scale) of the Particle Filter to the Auxiliary-Based Particle Filter and an Adapted Particle
Filter. The lower the number, the more efficient the method. (a) and (b) have M = 2,000; (c) and (d) have M = 4,000. (a) and (c) have R = M; (b}
and (d) have A = 2M. (+- - -+ SIR; O — — — O auxiliary SIA; o- - o adapted SIR.) ;

and Shephard 1999, where we estimated the parameters of
the model using Bayesian methods.) Throughout we take
¢ = .9702,0, = .178, and § = .5992, the posterior means
of the model for a long time series of returns up until the
end of 1996.

Figure 3 graphs these daily returns against time. The fig-
ure also displays the estimated quantiles of the filtering den-
sity, f{Bexp(a:/2)|Y;} computed using an auxiliary parti-
cle filter. Throughout the series, we set M = 5,000 and
R = 6,000. We have also displayed the posterior mean of
the filtering random variable. This is always very slightly
above the posterior median, as «;|Y; is very close to being
symmetric,

The figure shows that the filtered volatility jumps up
more quickly than it tends to go down. This reflects the
fact that the volatility is modeled on the log scale.

4.2.1  Simulation Experiment. To compare the effi-
ciency of the simple particle filter, our basic auxiliary par-
ticle filter, and the (rejection-based) fully adapted particle
filter discussed in Section 3.3.4, we again conducted a simu-
lation experiment measuring MSE for each value of ¢ using
the foregoing model and again having n = 50. We simu-
lated the data using the model parameters discussed earlier.
Figure 4 shows the results (using a log scale). To make
the problem slightly more realistic and challenging, we set

£21 = 2.5 for each series, so there is a significant outlier at
that point. For this study, we set REP = 40 and S = 20.
We allow M = 2,000 or 4,000, and for each of these values
we set £ = M or 2M. For the rejection-based particle filter
algorithm, it only makes sense to take M = R, and so when
R > M, we repeat the calculations as if M = R. Finally,
the rejection-based method takes approximately twice the
time of the SIR-based particle filter when M = R. :

The plot shows that the fully adapted particle filter is
considerably more accurate than the other particle filters. It
also has the advantage of not depending on R. The auxiliary
particle filter is more efficient than the plain particle filter,
but the difference is small, reflecting the fact that for the
SV model, the conditional likelihood is not very sensitive
to the state.

5. CONCLUSION

In this article we have studied the weaknesses of the very
attractive particle filtering method proposed by Gordon ¢
al. (1993). The SIR implementation of this method is no
robust to outliers for two different reasons: sampling ef
ficiency and the unreliability of the empirical predictio
density in the tails of the distribution. We have introduce
an auxiliary variable into the particle filter to overcome th
first of these problems, providing a powerful framework
that is as simple as SIR, but more flexible and reliable.
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