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Abstract

We model a financial market where some agents mistakenly attribute any price
change they observe to new information alone, when in reality part of the price
change is due to other agents’ buying/selling pressure, a form of bounded rationality
that we refer to as “Partial Equilibrium Thinking” (PET). PET provides a micro-
foundation for price extrapolation, where the degree of extrapolation depends on the
informational edge of informed agents. In normal times, this edge is constant and
bubbles and crashes do not arise. By contrast, following a large one-off innovation
in fundamentals that temporarily wipes out informed agents’ edge (a “displacement
event”), extrapolation by PET traders is initially very aggressive but then gradually
dies down, leading to bubbles and endogenous crashes. Micro-founding the degree
of extrapolation in this way allows us to shed light on both normal market dynamics
and on the Kindleberger (1978) narrative of bubbles within a unified framework.
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Sustained periods of over-optimism that eventually end in a crash are at the heart of

many macro-economic events, such as stock market bubbles, house price bubbles, invest-

ment booms, or credit cycles (Mackay (1841), Bagehot (1873), Galbraith (1954), Kindle-

berger (1978), Shiller (2000), Jordà et al. (2015), Greenwood et al. (2021)). Given the real

consequences of bubbles and crashes, there has been widespread interest in understanding

their anatomy and the beliefs that support them.

Perhaps the best known narrative of bubbles and crashes comes from Kindleberger

(1978), who identifies three key stages of bubbles. The first stage is characterized by a

displacement, which Kindleberger defines as “some outside event that changes horizons,

expectations, anticipated profit opportunities, behavior.” Examples include technological

revolutions, such as the railroads in the 1840s, the radio and automobiles in the 1920s,

and the internet in the 1990s, or financial innovations such as securitization prior to the

2008 financial crisis. As investors respond to such shocks, displacements lead to a wave of

optimism and rising prices. The second stage is characterized by euphoria, in which higher

prices encourage further buying in a self-sustaining feedback between prices and beliefs

that decouples prices from fundamentals. This stage is also characterized by destabilizing

speculation (De Long et al. (1990), Brunnermeier and Nagel (2004)), accelerating and

convex price paths (Greenwood et al. (2019)), and heavy trading (Ofek and Richardson

(2003), Hong and Stein (2007), Barberis (2018), DeFusco et al. (2020)). Eventually, in

the third stage of the bubble, sophisticated agents who rode the bubble exit, leading to a

crash.

Early theories of bubbles maintain the assumption of rational expectations (Blanchard

and Watson (1982), Tirole (1985)). However, as well as being at odds with empirical ev-

idence on prices (Giglio et al. (2016)), these theories are also unable to speak to the per-

vasive empirical and experimental evidence on extrapolative beliefs (Smith et al. (1988),

Haruvy et al. (2007), Case et al. (2012), Greenwood and Shleifer (2014)). Behavioral

theories have instead turned to over-confidence and short-sale constraints (Harrison and

Kreps (1978), Scheinkman and Xiong (2003), Simsek (2013)), and more recently to mod-

eling extrapolative expectations themselves (Cutler et al. (1990), De Long et al. (1990),

Hong and Stein (1999), Barberis et al. (2015), Glaeser and Nathanson (2017), Barberis
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et al. (2018), Bordalo et al. (2021), Liao et al. (2021), Chodorow-Reich et al. (2021)).1 By

directly modeling the self-sustaining feedback between outcomes and beliefs that is char-

acteristic of bubbles, these more recent models generate many features of the Kindleberger

(1978) narrative.

At the same time, the reduced form nature of extrapolation considered in these theories

leaves several questions open. First, what are the foundations of extrapolative expecta-

tions? Second, why is it that “[b]y no means does every upswing in business excess lead

inevitably to mania and panic” (Kindleberger (1978))? In other words, why is it that the

same type of extrapolative beliefs sometimes leads prices and beliefs to become extreme

and decoupled from fundamentals, while in normal times we don’t observe such extreme

responses to shocks?

To answer these questions we provide a micro-foundation for the degree of price extrap-

olation with a theory of “Partial Equilibrium Thinking” (PET) (Bastianello and Fontanier

(2021b)) in which traders fail to realize the general equilibrium consequences of their ac-

tions when learning information from prices. This cognitive failure leads to constant price

extrapolation in normal times, and to stronger and time-varying extrapolation in response

to displacement events.

This allows us to provide a unifying theory where the two-way feedback between prices

and beliefs is present at all times, but only manifests itself in explosive ways under very

specific circumstances. According to Soros (2015): “[...] in most situations [the two-

way feedback] is so feeble that it can safely be ignored. We may distinguish between

near-equilibrium conditions where certain corrective mechanisms prevent perceptions and

reality from drifting too far apart, and far-from equilibrium conditions where a reflexive

double-feedback mechanism is at work and there is no tendency for perceptions and reality

to come closer together [...].” We formalize this notion of “near-equilibrium” and “far-from

equilibrium” conditions by modeling the distinction between normal times shocks which

do not generate large changes to the environment, and Kindleberger-type displacements

which instead do.

1See Brunnermeier and Oehmke (2013), Xiong (2013) and Barberis (2018) for exhaustive surveys on
bubbles and crashes.
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To illustrate what we mean by partial equilibrium thinking, consider some traders who

see the price of a stock rise, but do not know what caused this. They may think that

some informed investors in the market have received positive news about this stock and

decided to buy, pushing up its price. Given this thought process, they infer positive news

about it, and also buy, leading to a further price increase. At this point, rational agents

perfectly understand that this additional price rise is not due to further good news, but

simply reflects the lagged response of uninformed agents who are thinking and behaving

just like them. As a result, they no longer update their beliefs in response to this second

price rise, and the two-way feedback between prices and beliefs fails to materialize, as

shown in the top panel of Figure 1.

However, for uninformed agents to learn the right information from prices, they must

perfectly understand what generates the price changes they observe at each point in time,

which in turn requires them to perfectly understand other agents’ actions and beliefs.

Rational expectations model this level of understanding by assuming common knowledge

of rationality, which has been widely rejected by experimental evidence (Crawford et al.

(2013), Kübler and Weizsäcker (2004), Penczynski (2017), Eyster et al. (2018)). We relax

this assumption by instead assuming that agents think in partial equilibrium, whereby

“otherwise rational expectations fail to take into account the strength of similar responses

by others” (Kindleberger (1978)). PET agents neglect that all other uninformed agents

are thinking and behaving just like them, and attribute any price change they observe to

new information alone. Following the second price rise in the example in Figure 1, PET

agents attribute it to further good news, encouraging further buying and inducing further

price rises in a self-sustaining feedback between prices and beliefs.

Our notion of partial equilibrium thinking is an example of substitution bias (Kahne-

man (2011), DeMarzo et al. (2003), Greenwood and Hanson (2015), Glaeser and Nathanson

(2017)), where traders replace a complicated general equilibrium inference problem that

requires them to distinguish between different sources of price variation, with a simpler

one that neglects these distinctions and is driven by partial equilibrium intuitions. PET

agents think they are the only ones learning information from prices. This type of think-

ing is grounded in psychological evidence on the Lake Wobegan effect, where all agents
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Figure 1: The Feedback-Loop Theory of Bubbles. Changes in prices and beliefs after a one-off
shock to fundamentals, under rational expectations (top panel) and under partial equilibrium thinking
(bottom panel).

REE: ∆EI,1 =⇒ ∆P1 =⇒ ∆EU,2 =⇒ ∆P2

∆Pt+1∆EU,t+1PET: ∆EI,1 =⇒ ∆P1 =⇒ ∆EU,2 =⇒ ∆P2 =⇒

incorrectly think they have an edge relative to others (Svenson (1981), Maxwell and Lopus

(1994)). One of the most telling pieces of evidence of such behavior in financial markets

comes from the work of Liu et al. (2021), who survey retail traders in China about their

trading motives and combine these responses with observational data on their trading be-

havior. They find that a perceived information advantage is a dominant trading motive.

Finally, the bias which underlies partial equilibrium thinking has also been widely studied

in social learning contexts with models of naive inference and correlation neglect (Eyster

and Rabin (2005), Eyster and Rabin (2010), Bohren (2016), Esponda and Pouzo (2016),

Gagnon-Bartsch and Rabin (2016), Fudenberg et al. (2017), Bohren and Hauser (2021),

Frick et al. (2020), Fudenberg et al. (2021), Gagnon-Bartsch et al. (2021) among others).2

We introduce partial equilibrium thinking into a standard infinite horizon model of

a financial market where each period a continuum of investors solve a portfolio choice

problem between a risky and a riskless asset. Our agents differ in their ability to observe

fundamental news: a fraction of agents are informed and observe fundamental shocks,

and the remaining fraction of agents are uninformed and instead infer information from

prices. Motivated by empirical and experimental evidence that traders extrapolate trends

as opposed to instantaneous price movements, we assume that traders learn information

from past as opposed to current prices (Andreassen and Kraus (1990), Case et al. (2012)).3

2We introduce this type of bias into a general equilibrium environment, where the outcomes agents
learn from have not only an informational role, but also a market feedback effect role. We also consider
shocks that make the strength of these forces and the corresponding feedback effect time-varying.

3This assumption allows us to model the evolution of the two-way feedback between outcomes and
beliefs dynamically, and is in the spirit of positive feedback traders in De Long et al. (1990), Hong and
Stein (2007) and Barberis et al. (2018) among others. We explore the implications of partial equilibrium
thinking when agents learn from current prices in Bastianello and Fontanier (2021b).
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Given this information structure, in each period price changes reflect both the contem-

poraneous response of informed agents to news, and the lagged response of uninformed

agents who learn from past prices. However, when uninformed agents think in partial

equilibrium, they neglect the second source of variation and attribute any price change to

new information alone, leading to a simple type of price extrapolation. Moreover, the de-

gree of extrapolation depends on uninformed agents’ perception of informed agents’ edge:

the more aggressively informed agents trade on a given piece of fundamental news, the

greater the price change they generate, and the less strongly do uninformed agents have

to extrapolate price changes to recover that information. Changes in informed agents’

edge can then lead to changes in the degree of extrapolation.

We show that in normal times informed agents’ edge is fairly constant over time.

For example, normal times shocks may come in the form of earning announcements:

sophisticated traders are better able to understand the long run implications of such

shocks, and uninformed retail traders can learn about them more slowly by observing

how the market reacts to such news. When this is the case, informed traders are always

one step ahead of uninformed traders, and their edge is constant.

This is no longer true following a Kindleberger-type displacement. Specifically, dis-

placements are “something new under the sun”, and the implications of such shocks can

be learnt only gradually over time. These shocks wipe out much of informed agents’

edge as not even the most informed of informed agents are able to immediately grasp

the full long-term implications of such events. This leads informed agents to trade less

aggressively, so that PET agents must extrapolate price changes more strongly to recover

information from prices. This in turn fuels the strength of the feedback between prices

and beliefs, allowing both to accelerate away from fundamentals. As informed agents

learn more about the displacement over time, they regain their edge, leading to a gradual

fall in the degree of extrapolation, and in the strength of the feedback effect. When the

feedback effect runs out of steam, the bubble bursts, and prices and beliefs converge back

towards fundamentals. The exact shape of the bubble then depends on the speed with

which informed agents learn more about the displacement.

Finally, we show how our bias interacts with speculative motives, and show that
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whether speculators amplify bubbles or arbitrage them away depends on their beliefs of

whether mispricing is temporary or predictable. If they think that mispricing is temporary,

they arbitrage it away immediately, and bubbles and crashes do not arise. If instead they

realize that mispricing is predictable and that they will be able to sell the asset to “a

greater fool” at a higher price in the future, they increase their position in the asset,

thus pushing prices up further, and amplifying the bubble (De Long et al. (1990)). These

predictions are consistent with bubbles being associated with the type of destabilizing

speculation described in the latter case (Keynes (1936)), and with more sophisticated

traders initially riding the bubble (Brunnermeier and Nagel (2004)).

This paper proceeds as follows. In Section 1 we introduce our notion of partial equi-

librium thinking in a reduced form model. Section 2 provides a full micro-foundation of

this model and considers the implications of partial equilibrium thinking in normal times.

Section 3 models displacements and shows how these shocks interact with partial equilib-

rium thinking in generating bubbles and crashes. In Section 4 we add speculative motives.

Section 5 concludes and discusses some directions of future research. While prices are a

very natural equilibrium outcome agents may learn from, partial equilibrium thinking can

be applied more broadly to any setup where agents learn information from a general equi-

librium variable, thus lending itself to a variety of other macro and finance applications,

such as credit cycles and investment booms (Bastianello and Fontanier (2020)).

1 The Feedback Loop Theory of Bubbles

In this section we start with a reduced-form model to introduce our notion of partial

equilibrium thinking (PET), and we show how PET gives rise to the natural self-sustaining

feedback between outcomes and beliefs that lies at the heart of the Kindleberger narrative

of bubbles. We micro-found this model fully in Section 2.
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1.1 Reduced-Form Setup

Consider an asset whose fundamental value is determined by its terminal payoff DT , which

evolves as a random walk:

DT = D̄ +
T∑
j=0

uj (1)

where uj iid∼ N(0, σ2
u), and D̄ is a positive constant. Moreover, suppose the market for this

risky asset is populated by two types of risk averse agents i ∈ {I, U}, who differ in their

ability to observe the fundamental value of the asset. Type I agents are informed: they

observe the whole history of fundamental shocks {uj}tj=1, and form their expectations

accordingly:

EI,t[DT ] = EI,t−1[DT ] + ut (2)

so that ut also represents the amount by which informed agents update their beliefs in

period t.

Type U agents do not observe fundamentals, and instead learn information from prices.

To model the feedback between outcomes and beliefs dynamically, we consider the case

in which agents learn information from past as opposed to current prices, in the spirit

of the positive feedback traders in De Long et al. (1990), Hong and Stein (1999) and

Barberis et al. (2018). Intuitively, the experimental evidence in Andreassen and Kraus

(1990) that agents learn from past as opposed to current prices could be due to agents

being boundedly rational, and not having the cognitive capacity to update their beliefs

at the same time they submit their trades.4

Since traders learn information from past prices, each period they can learn about the

previous period fundamental shock, and update their beliefs accordingly:

EU,t[DT ] = EU,t−1[DT ] + ũt−1 (3)

where ũt−1 is uninformed agents’ belief about the fundamental shock in period t−1, ut−1,
4From a modeling point of view, having agents learn information from past as opposed to current

prices allows us to model the evolution of the feedback between outcomes and beliefs in a dynamic way,
and to exploit unstable regions without having to deal with upward sloping aggregate demand functions,
and non-well defined equilibria. We explore the implications of partial equilibrium thinking when agents
learn from current prices in Bastianello and Fontanier (2021b).
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and also represents the amount by which uninformed agents update their beliefs in period

t. Throughout this paper we denote by ·̃ uninformed agents’ beliefs about a variable.

Finally, suppose that all agents are only concerned with forecasting the long term

fundamental value of the asset, and that prices reflect the beliefs of both informed and

uninformed agents:5

Pt = aEI,t[DT ] + bEU,t[DT ]− c (4)

where a, b ∈ [0, 1] are weights which capture the influence on prices of informed and unin-

formed agents’ beliefs respectively, and c is a risk-premium component that compensates

risk-averse agents for bearing risk. In Section 2 we micro-found this price function and

show that the coefficients a, b and c are endogenous objects which are pinned down in

equilibrium, and depend on the composition of agents in the market and on their relative

confidence. For example, the greater the fraction of informed (uninformed) agents in the

market, and the more confident they are about their posterior beliefs, the more strongly

are their beliefs incorporated into prices, which results in a higher a (b). For now take a,

b and c to be constants.

Given the price function in (4) and agents’ beliefs in (2) and (3), the price change in

period t reflects the instantaneous response of informed agents to new information they

receive in period t, and the lagged response of uninformed agents who learn information

from past prices:

∆Pt = aut︸︷︷︸
instantaneous response

+ bũt−1︸ ︷︷ ︸
lagged response

(5)

Understanding what information ũt−1 uninformed agents learn from past prices lies at

the heart of our feedback-loop theory of bubbles. This, in turn, requires us to understand

what uninformed agents think is generating the price changes they observe. We now turn

to comparing rational agents’ inference to that of agents who think in partial equilibrium.

5We consider agents who are only concerned with forecasting long term fundamentals. This is in
contrast to agents who are interested in timing the market, and who are instead concerned with forecasting
next period prices. We make this assumption to illustrate our notion of PET in the simplest possible
framework, but we relax this assumption in Section 4.
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1.2 Rational Expectations

Since traders can only learn information from past prices, in period t they learn informa-

tion from ∆Pt−1, which is simply given by:

∆Pt−1 = aut−1︸ ︷︷ ︸
instantaneous response

+ bũt−2︸ ︷︷ ︸
lagged response

(6)

If uninformed agents hold rational expectations, they perfectly understand what gen-

erates this price change, and think that this is due to informed agents updating their

beliefs by ũt−1 (their conjecture of ut−1) and to uninformed agents updating their beliefs

by ũt−2. They then invert the following mapping to learn ũt−1 from ∆Pt−1:

∆Pt−1 = aũt−1︸ ︷︷ ︸
instantaneous response

+ bũt−2︸ ︷︷ ︸
lagged response

=⇒ ũt−1 =
(1
a

)
∆Pt−1 −

(
b

a

)
ũt−2 (7)

Substituting the true price function (6) into this expression, we see that if agents are

rational they are indeed able to recover the right information from prices:

ũt−1 = ut−1 (8)

When this is the case, price changes follow an MA(1) and any shock takes two periods to

propagate through the economy, as intuited in the example in the top panel of Figure 1

in the introduction.6 However, for uninformed agents to learn the right information from

prices, they must perfectly understand what generates the price that they observe at each

point in time, which in turn requires them to perfectly understand other agents’ actions

and beliefs. We relax this assumption with a specific type of substitution bias, whereby

traders replace this complicated inference problem with a simpler one (DeMarzo et al.

(2003), Kahneman (2011), Greenwood and Hanson (2015)).

6If these traders were trying to time the market instead of being fundamental traders, they would
anticipate the second price change, recognize that this represents an arbitrage opportunity for them, and
they would drive the price to its new steady state immediately, in the first period. As will become clear,
this assumption is not key in delivering our notion of partial equilibrium thinking.
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1.3 Partial Equilibrium Thinking

Agents who think in partial equilibrium fail to realize that all other uninformed agents

are thinking and behaving just like them, and are also learning information from past

prices (Bastianello and Fontanier (2021b)). When thinking about what generates the

price change they observe, they then omit the second source of price variation in (6) and

attribute any price change they observe to new information alone.

∆Pt−1 = aũt−1︸ ︷︷ ︸
instantaneous response

=⇒ ũt−1 =
(1
a

)
∆Pt−1 (9)

Combining this expression with (3) we see that PET provides a micro-foundation for a

very simple type of price extrapolation, where uninformed agents become more optimistic

(pessimistic) whenever they see a price rise (fall), regardless of the true source of this

price change:

EU,t[DT ] = EU,t−1[DT ] +
(1
a

)
∆Pt−1 (10)

where the extrapolation parameter is given by 1/a: PET agents understand that when the

influence on prices of informed agents’ beliefs (a) is lower, a given piece of fundamental

news leads to a smaller price change, and they must therefore extrapolate price changes

more strongly to recover that information.7

Substituting the true price function in (5) into the mapping in (9), we find that unlike

their rational counterparts, PET agents extract biased information from prices:

ũt−1 = ut−1 +
(
b

a

)
ũt−2︸ ︷︷ ︸

bias

(11)

where the AR(1) nature of this expression makes clear that uninformed agents mistakenly

infer a sequence of shocks from a one-off shock. The bottom panel of the example in Figure

1 in the introduction shows that uninformed agents fail to realize that the second price

rise is due to the buying pressure of all other uninformed agents, and instead attribute it

7This intuition is clearest when prices are fully revealing, and is robust to having a small amount of
noise and prices being partially revealing, as discussed in Appendix B.
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to further good news, which in turn fuels even higher prices and more optimistic beliefs,

in a self-sustaining feedback loop.8 Moreover, (11) shows that the bias is increasing in the

influence on prices of uninformed agents’ beliefs (b), and in the extrapolation parameter

(1/a), as this leads PET agents to neglect a bigger source of price variation.

Turning to the properties of equilibrium prices, we can substitute the information

uninformed agents extract from prices in (9) into the true price function in (5), to find

that price changes also follow an AR(1):

∆Pt = aut +
(
b

a

)
∆Pt−1 (12)

In this case, t periods after a one-off shock u0 in period 0 the price level is given by:

Pt = P̄ +
t∑

j=1
∆Pj = P̄ +

t∑
j=1

(
b

a

)j
(au0) (13)

These expressions illustrate two key points. First, b
a

governs the strength of the feed-

back between outcomes and beliefs. Intuitively, a higher influence on prices of uninformed

agents’ biased beliefs (b), and a stronger extrapolation parameter (1/a), both fuel the feed-

back between outcomes and beliefs.

Second, when b
a
< 1, the left panel of Figure 2 shows that following a one-off shock,

the influence of the feedback on equilibrium outcomes dies out as it gets compounded:

consecutive changes in prices and beliefs become smaller over time, and the geometric

series in (13) is bounded, so that prices and beliefs converge to a new steady state. On

the other hand, the right panel of Figure 2 shows that when b
a
> 1 the influence of

the feedback effect is explosive: consecutive changes in prices and beliefs get larger and

larger, and the geometric series in (13) is explosive, so that prices and beliefs accelerate

in a convex way and become extreme and decoupled from fundamentals.

We summarize these results in the following proposition.

Proposition 1 (Strength of Feedback Effect and Equilibrium Outcomes.). When the

8Unlike the rational case, even if informed agents were trying to time the market they wouldn’t be
able to bring the price to its new equilibrium level within a single period because PET agents would
extrapolate this price change, regardless of its new level.
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Figure 2: Stable and Unstable Regions. Evolution of prices and beliefs following a one-off shock
to fundamentals when the economy is in a stable region (left panel), and when the economy is in an
unstable region (right panel). The green lines on this graph plot Pt = aDt + bEU,t[DT ]− c for Dt = D0
(dashed line) and for Dt = D0 + u1 (solid line). These mapping should be read from the horizontal to
the vertical axis: fixing the beliefs of informed agents, the mappings return the market clearing price Pt
which arises if all uninformed agents trade on EU,t[DT ]. The slope of these mappings is b. The orange
line plots EU,t[DT ] = 1

aPt−
1
aP0 +D0, which we obtain by simply solving (10) recursively. This mapping

should be read from the vertical to the horizontal axis: given an observable price, this mapping returns
uninformed agents’ beliefs next period. The slope of this mapping is 1/θ. In the left panel b

a < 1 (the
orange mapping is steeper than the green ones), and outcomes and beliefs converge to a new steady state
following a shock. In the right panel b

a > 1, and outcomes and beliefs accelerate and become extreme
and decoupled from fundamentals.

(a) Stable Region

Pt

EU,t[DT ]0

(b) Unstable Region

Pt

EU,t[DT ]0

strength of the feedback effect is constant, outcomes and beliefs either converge to a state-

dependent equilibrium (if b
a
< 1), or they accelerate and become extreme and decoupled

from fundamentals (if b
a
> 1). We refer to regions with b

a
< 1 as stable regions, and

regions with b
a
> 1 as unstable regions.

While it is implausible to think that the economy always responds to shocks in an

unstable way, as we don’t usually observe unbounded prices and beliefs in response to

shocks, the convexity generated by unstable regions is a noted feature of bubbles and

crashes (Greenwood, Shleifer and You, 2018). However, as long as b
a

is constant, the

economy is either always in a stable region, where prices and beliefs monotonically con-

verge to the new steady state in response to a shock, or it is always in an unstable region,

where any shock leads outcomes and beliefs to accelerate away from fundamentals in

an unbounded way. While the acceleration characteristic of the unstable regions of this
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theory may seem well-suited to model the formation of bubbles, it leaves no room for

endogenous reversals and crashes.

In the rest of this paper we micro-found the mappings in (5) and (9), and show that the

strength of the feedback between outcomes and beliefs ( b
a
) depends on the informational

edge of informed agents, which in turn is determined by the composition of agents in the

market, and by the relative confidence of informed and uninformed agents.

In normal times, these quantities tend to be fairly constant over time, and since prices

and beliefs are usually not explosive, the economy must be in a stable region and responds

to shocks in a stationary way. On the other hand, the types of displacements described

by Kindleberger generate time-variation in informed agents’ edge, and temporarily shift

the economy into an unstable region, thus temporarily bringing the explosive properties

of unstable regions into play before the convergent properties of stable regions take over

again. Specifically, displacements initially wipe out informed agents’ edge as even the

informed are not able to fully grasp the long term implications of such shocks. As informed

agents trade less aggressively, and uninformed agents extrapolate prices more strongly,

the strength of the feedback effect increases, and the economy shifts into an unstable

region, leading prices and beliefs to become extreme and decoupled from fundamentals.

As informed agents gradually learn more about the displacement over time, they regain

their edge, leading to a weakening of the feedback effect and returning the economy to a

stable region. At this point, the bubble bursts and outcomes and beliefs converge back

towards fundamentals.

In the rest of the paper, we formalize these intuitions.

2 Normal Times

In this section we micro-found the model considered in Section 1, and study the properties

of partial equilibrium thinking in normal times, when the informational edge of informed

agents is constant.
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2.1 Setup

Agents solve a portfolio choice problem between a risk-free and a risky asset. The risk-free

asset is in zero net supply and we normalize its price and its risk free rate to one. The

risky asset is in fixed net supply Z and pays a liquidating dividend when it dies at an

uncertain terminal date. In each period, with probability β the asset remains alive and

produces ut iid∼ N(0, σ2
u) worth of terminal dividends, and with probability (1 − β) the

asset dies, and all accumulated dividends are paid out. As a result, if the asset dies in

period t+ h, its terminal dividend still evolves as a random walk:

Dt+h = D̄ +
t+h∑
j=0

uj (14)

where D̄ is the prior belief of the asset’s terminal dividend, and this is common knowledge.

From the point of view of period t, the asset dies in period t+h with probability (1−β)βh.

Taking expectations over all possible terminal dates, the present value of the terminal

dividend in period t, conditional on realized future shocks {ut+h}∞h=1 can be written as:

DT = Dt +
∞∑
h=1

βhut+h (15)

which has the appealing property that β effectively acts as a discount rate such that

dividends paid further into the future receive a lower weight. Modelling the present value

of the terminal dividend in this way, and modifying (1) with an uncertain terminal date

serves two purposes: first, it avoids horizon effects as we approach the terminal date,

and second, it bounds the variance perceived by agents even if the terminal date can be

arbitrarily far into the future.

Our economy is populated by a continuum of measure one of fundamental traders,

who have CARA utility over terminal wealth and trade as if they were going to hold the

asset until its death, even though they rebalance their portfolio every period.9 In each

9The fundamental traders in this section are time-inconsistent in that they trade as if they were going
to hold their position forever, even though they rebalance every period. This is a simplifying assumption,
which allows us to illustrate our notion of partial equilibrium thinking in the simplest possible framework.
In Section 4 we relax this assumption and model traders who time the market, and have CARA utility
over next period wealth.
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period t all agents then solve the following problem:

max
Xi,t

{
Xi,t (Ei,t[DT ]− Pt)−

1
2AX

2
i,tVi,t[DT ]

}
(16)

where Xi,t is the dollar amount that agent i invests in the risky asset in period t, A is the

coefficient of absolute risk aversion, and Ei,t[DT ] and Vi,t[DT ] refer to agent i’s posterior

beliefs about the fundamental value of the asset conditional on their information set in

period t. The corresponding first order condition yields the following standard demand

function for the risky asset:

Xi,t = Ei,t[DT ]− Pt
AVi,t[DT ] (17)

which is increasing in agent i’s expected payoff, and decreasing in the risk they associated

with holding the asset.

Turning to the information structure, we assume that a fraction φ of agents are in-

formed, and in each period t they observe the current fundamental shock ut, so their full

information set is {uj}tj=1. The remaining fraction (1− φ) of agents are uninformed and

do not observe any of the fundamental shocks that determine the fundamental value of

the asset, but since informed agents trade on their information advantage, uninformed

agents can learn information from past prices, as discussed in Section 1.

To solve the model, we proceed in three steps, which closely mirror our discussion

in Section 1. First, we solve for the true price function which generates the outcomes

that agents observe. Second, we turn to PET agents’ beliefs of what generates the prices

they observe, which allows us to pin down the mapping that PET agents use to learn

information from prices. Finally, we solve the equilibrium recursively, and study the

properties of equilibrium outcomes.

2.2 True Price Function in Normal Times

To solve for the true market clearing price function, we need to specify agents’ posterior

beliefs, compute agents’ asset demand functions, and impose market clearing. Starting

from agents’ beliefs, we know that in period t all informed agents trade on the information
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they receive, and update their beliefs accordingly:

EI,t[DT ] = EI,t

Dt−1 + ut +
∞∑
j=1

βhut+h

 = EI,t−1[DT ] + ut (18)

VI,t[DT ] = VI,t

[ ∞∑
h=1

βhut+h

]
=
(

β2

1− β2

)
σ2
u ≡ VI (19)

where the equivalence in equation (19) highlights that informed agents’ uncertainty is

constant over time. Moreover, all uninformed agents learn information from past prices,

and their posterior beliefs are given by:

EU,t[DT ] = EU,t

Dt−2 + ut−1 + ut +
∞∑
j=1

βhut+h

 = EU,t−1[DT ] + ũt−1 (20)

VU,t[DT ] = VI,t

[
ut +

∞∑
h=1

βhut+h

]
=
(

1
1− β2

)
σ2
u ≡ VU (21)

where the last equality in (21) shows that the uncertainty faced by uninformed agents is

also constant over time. Moreover, comparing (21) to (19) we see that informed agents are

more confident than uninformed agents as they always see one-period ahead of them. We

define ζ to be the aggregate informational edge of informed agents relative to uninformed

agents as follows:

ζ ≡ φ

(1− φ)
τI
τU

(22)

where τi = (Vi)−1 is the confidence of agent i.

Given these posterior beliefs, we can compute agents’ asset demand functions and

impose market clearing by simply equating the aggregate demand for the risky asset to

the fixed supply Z:

φ

(
EI,t−1[DT ] + ut − Pt

AVI

)
︸ ︷︷ ︸

XI,t

+(1− φ)
(
EU,t−1[DT ] + ũt−1 − Pt

AVU

)
︸ ︷︷ ︸

XU,t

= Z (23)

The true market clearing price function is then given by:

Pt = a (EI,t−1[DT ] + ut) + b (EU,t−1[DT ] + ũt−1)− c (24)
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where:

a ≡ φτI
φτI + (1− φ)τU

= ζ

1 + ζ
(25)

b ≡ (1− φ)τU
φτI + (1− φ)τU

= 1
1 + ζ

(26)

c ≡ AZ
φτI + (1− φ)τU

(27)

This micro-founds our expression in (4), and shows that prices reflect a weighted average

of agents’ beliefs minus a risk-premium component which compensates agents for bearing

risk. The weight on informed agents’ beliefs is increasing in their informational edge, and

the opposite comparative static holds for the weight on uninformed agents’ beliefs.

Re-writing (24) in changes, we find that:

∆Pt = aut + bũt−1 (28)

which micro-founds (5) in the reduced-form model, and shows that price changes reflect

both the instantaneous response to shocks of informed agents, and the lagged response of

uninformed agents who learn information from past prices.

2.3 Partial Equilibrium Thinking

To specify what information uninformed agents extract from prices we need to understand

what uninformed agents think is generating the prices that they observe. As discussed in

Section 1, the assumption of common knowledge or rationality embedded in the rational

expectations equilibrium ensures that all agents perfectly understand the equilibrium

forces that generate price changes, and are therefore able to extract the right information

from prices. Instead, when agents think in partial equilibrium, they misunderstand what

generates the price that they observe because they fail to realize the general equilibrium

consequences of their actions. The way that PET manifests itself in this setup is that

all agents learn information from prices, but they fail to realize that other agents do too.

In other words, PET agents think that they are the only ones inferring information from
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prices, and that all other agents trade on their unconditional priors.

Formally, PET agents think that in period t− 1 informed agents update their beliefs

with the new fundamental information they receive, ũt−1:10

ẼI,t−1[DT ] = ẼI,t−1

[
Dt−2 + ut−1 +

∞∑
h=1

βhut−1+h

]
= D̃t−2 + ũt−1 (29)

ṼI,t−1[DT ] = ṼI,t−1

[ ∞∑
h=1

βhut−1+h

]
=
(

β2

1− β2

)
σ2
u ≡ ṼI (30)

On the other hand, they think that all other uninformed agents do not learn informa-

tion from prices, and instead trade on the same unconditional prior beliefs they held in

period t = 0:

ẼU,t−1[DT ] = ẼU,0
[
D̄ + u0 +

∞∑
h=1

βhuh

]
= D̄ (31)

ṼU,t−1[DT ] = ṼU,0

[
u0 +

∞∑
h=1

βhuh

]
=
(

1
1− β2

)
σ2
u ≡ ṼU (32)

where the equivalences in (30) and (32) highlight that in normal times, PET agents

understand that all agents face constant uncertainty over time. Moreover, since ṼI =

VI < ṼU = VU , we see that PET agents are not misspecified about other agents’ second

moment beliefs, and they understand that informed agents have an informational edge.

Importantly, all agents are atomistic and do not consider the effect of their own asset

demand on prices. PET agents then think that the equilibrium price in period t − 1 is

generated by the following market clearing condition:

φ

(
EU,t−1[DT ] + ũt−1 − Pt

AṼI

)
︸ ︷︷ ︸

X̃I,t

+(1− φ)
(
D̄ − Pt
AṼU

)
︸ ︷︷ ︸

X̃U,t

= Z (33)

which leads to the following price function:

Pt−1 = ã (EU,t−1[DT ] + ũt−1) + b̃D̄ − c̃ (34)

10The use of t−1 subscripts instead of t is to highlight that uninformed agents learn information from
past prices, so that in period t they must understand what generated the price in period t− 1, as this is
the price they are extracting new information from.
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where:

ã ≡ φτ̃I
φτ̃I + (1− φ)τ̃U

= ζ̃

1 + ζ̃
(35)

b̃ ≡ (1− φ)τ̃U
φτ̃I + (1− φ)τ̃U

= 1
1 + ζ̃

(36)

c̃ ≡ AZ
φτ̃I + (1− φ)τ̃U

(37)

and since the only source of price variation perceived by PET agents is given by changes

in informed agents’ beliefs, we can rewrite this as:

∆Pt−1 = ãũt−1 (38)

This expression micro-founds the reduced-form mapping in (9), and shows that when

agents think in partial equilibrium they attribute any price change they observe to new

information alone. This also shows PET agents’ understanding that new information is

incorporated more strongly into prices when informed agents’ informational edge is higher,

so that a given price change reflects a less extreme piece of news when this is the case.

PET agents then invert the mapping in (38) to extract ũt−1 from prices:

ũt−1 =
(1
ã

)
∆Pt−1 (39)

which leads to the following posterior beliefs:

EU,t[DT ] = EU,t−1[DT ] + θ∆Pt−1 (40)

where:

θ ≡ 1
a

=
(

1 + 1
ζ̃

)
(41)

These expressions make clear that PET provides a micro-foundation for the type of price

extrapolation considered in (10), where the extrapolation parameter is decreasing in un-

informed agents’ perception of informed agents’ edge. Since the informational edge is

itself increasing in the fraction of informed agents in the market, and in the confidence of
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informed agents relative to uninformed agents, the strength of the feedback effect is also

decreasing in these quantities. We summarize this in the following proposition.

Proposition 2 (Micro-foundation of Price Extrapolation). The strength with which PET

agents extrapolate past price changes is decreasing in uninformed agents’ perception of in-

formed agents’ informational edge (ζ̃). Specifically, PET agents extrapolate more strongly

when there are fewer informed agents in the market (φ), and when their perception of

informed agents’ relative confidence is lower (τ̃I/τ̃U).

To understand why PET agents extrapolate more strongly when informed agents have

a greater edge, notice that informed agents’ edge is not related to the amount of informa-

tion that uninformed agents can learn from prices, ut−1 ∼ N(0, σ2
u), as ζ̃ =

(
φ

1−φ

)
τ̃I
τ̃U

=(
φ

1−φ

)
1
β2 is independent of σ2

u.11 Instead, ζ̃ only captures how strongly a given piece of

information is incorporated into prices. When informed agents have a greater edge, they

trade more aggressively on a given piece of news, leading to a greater price change. PET

agents then recognize that they should extrapolate prices less strongly to recover that

information.

Finally, it is worth noticing that the rational mapping takes the following form, as

discussed in Section 1:

ũt−1 = 1
a

∆Pt−1︸ ︷︷ ︸
extrapolation

− b

a
ũt−2︸ ︷︷ ︸

lagged response

(42)

and since PET agents are not misspecified about other agents’ second moment beliefs, a =

ã. We then see that it is rational to extrapolate from price changes if uninformed agents

are constrained to learn from past prices, and it is also rational for this extrapolation

parameter to be decreasing in informed agents’ edge. Comparing this to the PET mapping

in (39) shows that the bias in PET agents’ beliefs isn’t coming from how strongly they

extrapolate past prices, but from omitting the correction term which accounts for the

price variation due to the lagged response of all other uninformed agents. This bias

is then decreasing in informed agents’ edge, as a lower edge increases the influence on
11Moreover, since prices are fully revealing, uninformed agents are able to directly extract ũt−1, and

not a noisy signal of it, so the informativeness of the information PET agents extract from prices is also
independent of informed agents’ edge. Appendix B shows how the extrapolation parameter changes when
we introduce noise traders, so that prices are only partially revealing.
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prices of uninformed agents’ beliefs, leading PET agents to omit a greater source of price

variation.

2.4 Properties of Equilibrium Outcomes

Combining the expressions in (28) and (39), and using the fact that ã = a since PET

agents are not misspecified about other agents’ second moment beliefs, we find that

changes in prices and in beliefs evolve as an AR(1), as we saw in Section 1:

ũt−1 = ut−1 +
(
b

ã

)
ũt−2 (43)

∆Pt = aut +
(
b

ã

)
∆Pt−1 (44)

where the strength of the feedback effect (b/a) now takes the following form:

b

ã
=
(

1
1 + ζ

)(
1 + 1

ζ̃

)
(45)

This expression makes clear that the strength of the feedback between outcomes and

beliefs is decreasing both in the true informational edge (ζ), and in uninformed agents’

perception of it (ζ̃). Intuitively, in Section 2.2 we showed that when uninformed agents’

perception of the informational edge is low, they extrapolate past price changes more

strongly, as they think that prices are more sensitive to news. Moreover, the greater is

the true informational edge, the lower is the influence on prices of uninformed agents’

biased beliefs. Both these forces contribute to fuelling the feedback between outcomes

and beliefs. We summarize these results in the following proposition.

Proposition 3 (Strength of the Feedback Effect). When agents think in partial equilib-

rium, the strength of the feedback between outcomes and beliefs is decreasing both in the

true informational edge (ζ), and in uninformed agents’ perception of it (ζ̃). The strength

of the feedback effect is stronger when there are fewer informed agents in the market (φ),

and when the true and perceived confidence of informed agents relative to uninformed

agents is low ( τI
τU

, τ̃I
τ̃U

).
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Equation (43) shows that in response to a one-off shock PET delivers over-reaction,

and that the deviation from rationality is increasing in the strength of the feedback effect.

Intuitively, when b and 1
ã

are higher, the lagged response to information which PET agents

neglect is greater, thus leading to a greater bias. This testable empirical prediction holds

both in the cross-section, and over time.

Proposition 4 (Deviations from Rationality). When agents think in partial equilibrium,

deviations from rationality in both prices and beliefs are decreasing in the true and per-

ceived informational edges (ζ, ζ̃). Specifically, environments with a smaller fraction of

informed agents (φ), and with a lower true and perceived confidence of informed agents

relative to uninformed agents (τI/τU , τ̃I/τ̃U) exhibit greater departures from rationality.

Turning to the conditions for stability, since in normal times τi = τ̃i for i ∈ {I, U}, it

follows that ζ̃ = ζ, and the strength of the feedback effect reduces to:

b

ã
= 1
ζ

(46)

so that for the response of the economy to normal times shocks not to be explosive it

must be that the aggregate confidence of informed agents is greater than the aggregate

confidence of uninformed agents.

b

ã
< 1 ⇐⇒ ζ > 1 ⇐⇒ φτI > (1− φ)τU (47)

Corollary 1. When agents think in partial equilibrium, stability in normal times requires

the aggregate confidence of informed agents to be greater than the aggregate confidence of

uninformed agents.

Figure 3 compares the path of equilibrium outcomes when the economy is in a stable

region (left panel) and when it is in an unstable region (right panel). As intuited in Section

1, as long as the feedback between outcomes and beliefs is constant, the economy either

responds to shocks by monotonically converging to a new state-dependent steady state,

or it accelerates away from fundamentals, leading prices and beliefs to become extreme.12

12Notice that PET outcomes do not converge to the rational expectations equilibrium as t → ∞.
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Figure 3: Impulse response functions following a normal times shock. This Figure compares
the path of equilibrium prices following a one-off fundamental shock u1 > 0 under rational expectations
(REE) and under partial equilibrium thinking (PET). Panel (a) plots the impulse response function when
the economy is in a stable region, with b/̃a < 1, and shows that prices gradually converge to a new steady
state level. Panel (b) plots the impulse response function when the economy is in an unstable region, with
b/̃a > 1, and shows that prices accelerate away from fundamentals in a convex way, and are unbounded.
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Since empirically shocks are not explosive in normal times, the economy is in a stable

region. Figure 3 shows that when this is the case partial equilibrium thinking delivers

momentum in response to permanent shocks.13 Moreover, while the PET impulse response

function exhibits over-reaction relative to the rational expectations equilibrium at each

point in time, the bias in both prices and beliefs increases over time following a one-

off shock. In other words, in normal times PET achieves momentum via delayed over-

reaction, and not via under-reaction relative to rational outcomes. However, if we were to

run a standard Coibion and Gorodnichenko (2015) regression of forecast errors on forecast

revisions, we would find a positive coefficient as positive forecast errors are associated with

positive forecast revisions. While the literature often attributes such a positive coefficient

to evidence of under-reaction, we caution against such an interpretation, as argued more

forcefully in Bastianello and Fontanier (2021a).

In the next section, we show how displacements can generate time-variation in the

Conditional on not observing the liquidating dividend, PET agents never unlearn their misinferred in-
formation, as in Gagnon-Bartsch and Rabin (2016). In this respect, PET is attentionally stable in the
sense of Gagnon-Bartsch et al. (2021).

13In Appendix C we consider alternative setups which also allow us to consider the response of the
economy to temporary shocks, and we find that in these cases partial equilibrium thinking delivers mo-
mentum and reversals.
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feedback effect, and shift the economy across stable and unstable regions, leading to the

formation of bubbles and endogenous crashes.

3 Displacements

“Displacement is some outside event that changes horizons, expectations, profit opportu-

nities, behavior – some sudden advice many times unexpected. Each day’s events produce

some changes in outlook, but few significant enough to qualify as displacements” (Kindle-

berger (1978)). The nature of the displacement varies from one bubble episode to the

next. Examples include the widespread adoption of a ground-breaking discovery - rail-

roads in the 1840s, radio and automobiles in the 1920s, internet in the 1990s -, financial

liberalization in Japan in the 1980s, or financial innovations such as securitization prior

to the 2008 financial crisis.

Whatever the source of the displacement, the novelty associated with these shocks

means that their full implications for long term outcomes can only be understood grad-

ually over time, as more information becomes available (Pástor and Veronesi (2009)).

When the internet was first made available to the public in 1993, investors were aware of

this new technology, but at the time nobody knew the full potential of this invention. The

development of blockchains as decentralized ledgers has paved the way for cryptocurren-

cies. However, we are yet to learn how wide-spread their adoption will be in the future,

and assets that are associated with them have indeed been prone to bubbly behavior.

This seems to be in stark contrast to normal times shocks. When sophisticated in-

vestors see a new earnings announcement, they are better able to understand the impli-

cations of same store sales for long term outcomes. The uninformed agents can learn

about this more slowly by seeing how the market reacts to such announcements. Since

informed agents are always one step ahead of uninformed agents, their informational edge

is constant. On the other hand, following a displacement, the informational edge of in-

formed agents is wiped out, as not even the most informed agents know what such shocks

really mean for long term fundamentals. As the new technology becomes better estab-

lished, sophisticated investors regain their informational edge as they are better placed to
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learn information about it, for example through access to management of the companies

developing the technology.

In this section we show how the time-variation in informed agents’ edge leads to a time-

varying extrapolation parameter, and a time-varying feedback between prices and beliefs,

which can shift the economy between stable and unstable regions. When the displacement

first materializes, informed agents’ edge is wiped out, thus increasing the influence on

prices of uninformed agents’ beliefs and the strength with which they extrapolate. Both

of these forces fuel the feedback between prices and beliefs. If the uncertainty associated

with the displacement is high enough, the economy can enter the unstable region, leading

prices and beliefs to accelerate away from fundamentals. As informed agents learn about

the new technology and regain their edge, the feedback effect weakens, and the economy

re-enters the stable region. This leads the bubble to burst and prices and beliefs to return

back towards fundamentals.

We conclude this section by discussing how the speed of information arrival shapes the

duration and amplitude of bubbles, as well as alternative ways of modeling a displacement.

3.1 Displacement Shocks

We model displacements as an uncertain positive shock to long-term outcomes that agents

can learn about only gradually over time. Starting from a normal-times steady state where

uninformed agents’ beliefs are consistent with the price they observe, in period t = 0 both

informed and uninformed traders learn that there is “something new under the sun”, but

do not know the exact implications of such shock for long-term outcomes. Specifically, in

period t = 0, all agents learn that the terminal dividend changes by an uncertain amount

ω ∼ N(µ0, τ
−1
0 ), where µ0 > 0:

DT = D̄ +
∞∑
j=0

βjuj + ω (48)

Initially, all agents share the same unconditional prior over ω. Starting in period t =

1, each period informed agents observe a common signal that is informative about the

displacement, st = ω+ εt with εt ∼iid N(0, τ−1
s ). Uninformed agents do not observe these
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signals but can learn information from past prices.

We solve the model using the same three steps we used in normal times: first, we specify

what truly generates price changes agents observe. Second, we specify what uninformed

agents think is generating these price changes, and find the mapping PET agents use to

extract information from prices. Third, we solve the model recursively, and discuss the

properties of equilibrium outcomes.

3.2 True Price Function following a Displacement

Following a displacement, informed agents observe new signals ut and st in each period,

and they revise their beliefs accordingly, via standard Bayesian updating:

EI,t[DT ] = EI,t

D̄ +
t∑

j=1
ut−j + ut +

∞∑
h=1

βhut+h + ω

 = EI,t−1[DT ] + ut + wt (49)

VI,t[DT ] = VI,t

[ ∞∑
h=1

βhut+h + ω

]
= VI + (tτs + τ0)−1 (50)

where wt ≡ EI,t[ω]−EI,t−1[ω] = τs
tτs+τ0

(st − EI,t−1[ω]) is informed agents’ revision of their

beliefs about the displacement ω in light of the new signal st. Equation (50) shows that

when the displacement is announced, informed agents face greater uncertainty, but their

confidence gradually rises back towards its steady state level as they learn about the

displacement over time.

On the other hand, in each period t, uninformed agents are interested in learning

ũt−1 + w̃t−1 from the price change they observe in period t− 1, and their posterior beliefs

are given by:

EU,t[DT ] = EU,t−1[DT ] + ũt + w̃t (51)

VU,t[DT ] = VU,t

[
ut +

∞∑
h=1

βhut+h + ω

]
= VU + ((t− 1)τs + τ0)−1 (52)

where (50) shows that uninformed agents also face greater uncertainty when the displace-

ment is announced, but their confidence also rises back towards its steady state level as

they learn about ω from past prices over time. Specifically, after t periods, PET agents

have learnt about the displacement from (t− 1) price changes.
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Combining the information in (50) and (52), informed agents’ edge is initially diluted

by the increase in aggregate uncertainty, but then gradually rises back to its steady state

level:

ζt =
(

φ

1− φ

)(
VU + ((t− 1)τs + τ0)−1

VI + (tτs + τ0)−1

)
(53)

Given these beliefs, the true market clearing price function which generates the price

agents observe is given by:

Pt = at (EI,t−1[DT ] + ut + wt) + bt (EU,t−1[DT ] + ũt−1 + w̃t−1)− ct (54)

where:

at ≡
ζt

1 + ζt
bt ≡

1
1 + ζt

(55)

and ct ≡ AZ
φτI,t+(1−φ)τU,t , so that (55) shows that the time-variation in informed agents’ edge

generates changes in the relative influence on prices of informed and uninformed agents’

beliefs. The left panel of Figure 4 shows that the influence on prices of uninformed

agents’ biased beliefs (bt) initially rises and then gradually falls, as informed agents’

edge is originally wiped out by the increase in aggregate uncertainty, and then slowly

increases back to its steady state level as uncertainty about the displacement is resolved

and informed agents regain their edge.

We can re-write the true price function in changes:

∆Pt = at (ut + wt) + bt (ũt−1 + w̃t−1) +
(
Pt|t−1 − Pt−1

)
(56)

where we see that following a displacement, there is an additional source of price variation

relative to normal times, as (Pt|t−1 − Pt−1) captures the change in prices due to changes

in agents’ levels of confidence, fixing their mean beliefs:

(Pt|t−1 − Pt−1) = (at − at−1)EI,t−1[DT ] + (bt − bt−1)EU,t−1[DT ]︸ ︷︷ ︸
change in average belief<0

−(ct − ct−1)︸ ︷︷ ︸
change in risk-premium>0

(57)

The first term in this expression reflects changes in prices due to changes in average

beliefs. To understand why this term is negative, notice that as the informational edge
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Figure 4: Time variation in bt and 1/̃at−1 following a displacement. Panel (a) plots how the
influence on prices of uninformed agents’ beliefs (bt) varies over time following a displacement: bt initially
rises and then gradually declines. Panel (b) plots how the strength with which PET agents extrapolate
past prices (1/̃at) varies over time following a displacement: when the displacement is announced, PET
agents initially extrapolate past prices more aggressively, and then the degree with which they extrapolate
declines over time. Comparing panels (a) and (b) shows that the extrapolation parameter declines at a
faster rate than the influence on prices of uninformed agents’ beliefs.
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rises over time, informed agents receive more weight. Since informed agents are less

optimistic than uninformed PET agents, and they receive a greater weight in prices over

time, the average belief becomes less optimistic, pushing towards lower prices. On the

other hand, the second term shows that as agents become more confident over time, the

risk-premium decreases, and this contributes to higher prices. The overall sign of this

expression depends on the relative strength of these two forces.

3.3 Micro-Founding Time-varying Extrapolation

Just as we did in Section 2, to understand what information uninformed agents extract

from past prices, we start by specifying what uninformed agents think is generating the

price they observe. This, in turn, requires us to work out PET agents’ beliefs about other

agents’ actions and beliefs. Following a displacement, PET agents think that in period

t−1 informed agents trade on all signals they have received up until period t−1, {ũj}t−1
j=0

and {s̃j}t−1
j=1:

ẼI,t−1[DT ] = ẼI,t−2[DT ] + ũt−1 + w̃t−1 (58)
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ṼI,t−1[DT ] = VI + ((t− 1)τs + τ0)−1 (59)

where (59) reflects that after (t− 1) periods informed agents have observed (t− 1) price

changes which incorporate (t−1) signals about the displacement. Notice that ṼI,t−1[DT ] it

time-varying as uninformed agents recognize that informed agents’ confidence decreases

when the displacement is announced, and then increases over time as they learn more

about it.

Moreover, PET agents think that all other uninformed agents do not learn information

from prices, and instead trade on fixed prior beliefs:

ẼU,t−1 = D̄ + µ0 (60)

ṼU,t−1 = VU + (τ0)−1 (61)

where (61) shows that following a displacement PET agents believe that other uninformed

agents face greater and constant uncertainty as they do not learn new information after

the displacement is announced.

Combining the information in (59) and (61), PET agents’ perception of informed

agents’ edge (ζ̃t−1) is initially diluted by the rise in aggregate uncertainty due to the

displacement, and then gradually rises over time as informed agents learn more about it:

ζ̃t−1 =
(

φ

1− φ

)(
VU + (τ0)−1

VI + ((t− 1)τs + τ0)−1

)
(62)

Notice that the initial fall in informed agents’ edge is increasing in the amount of un-

certainty generated by the displacement, (τ0)−1, and that ζ̃t rises at a faster rate than

ζt. Intuitively, since PET agents think that uninformed agents are not learning, they

think that informed agents regain their edge over uninformed agents at a faster rate:

PET agents think informed agents know t more signals than uninformed agents, when in

reality all uninformed agents learn from past prices, so that informed agents are only one

period ahead of uninformed agents.

Given these beliefs, the price function which PET agents think is generating the price
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they observe is given by:

Pt−1 = ãt−1
(
ẼI,t−2[DT ] + ũt−1 + w̃t−1

)
+ b̃t−1

(
D̄ + µ0

)
− c̃t−1 (63)

where ãt−1 ≡ ζ̃t−1
1+ζ̃t−1

, b̃t−1 ≡ 1
1+ζ̃t−1

= 1− ãt−1, c̃t−1 ≡ AZ
φτ̃I,t−1+(1−φ)τ̃U′

, so uninformed agents

think that the influence on price of informed (uninformed) agents’ beliefs initially falls

(rises) as informed agents’ informational edge is diluted, and then gradually rises (falls)

as informed agents learn over time.

According to PET agents, price changes now reflect two components:

∆Pt−1 = ãt−1 (ũt−1 + w̃t−1) +
(
P̃t−1|t−2 − Pt−2

)
(64)

where
(
P̃t−1|t−2 − Pt−2

)
captures an additional source of variation relative to their normal

times mapping in (38), and this reflects uninformed agents’ perception of price changes

due to changes in confidence:

(
P̃t−1|t−2 − Pt−2

)
= (ãt−1 − ãt−2)ẼI,t−2[DT ] + (b̃t−1 − b̃t−2)(D̄ + µ0)︸ ︷︷ ︸

change in average belief >0

−(c̃t−1 − c̃t−2)︸ ︷︷ ︸
change in risk-premium >0

> 0

(65)

This term is unambiguously positive. Intuitively, PET agents think that informed agents

are more optimistic than other uninformed agents. As the perceived informational edge

rises over time, and optimistic informed agents receive more weight, PET agents think

that the average belief in the market is becoming more optimistic. Moreover, as agents

become more confident over time, the risk-premium component decreases, which also

contributes to higher prices due to time-varying confidence levels.

PET agents then invert this mapping, and attribute the unexpected part of the price

change they observe to new information (ũt−1 + w̃t−1), leading to the following posterior

beliefs:

EU,t[DT ] =EU,t−1[DT ] + θt
(
Pt−1 − P̃t−1|t−2

)
(66)
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where:

θt ≡
1
ãt−1

= 1 + 1
ζ̃t−1

(67)

Following a displacement, PET agents extrapolate unexpected price changes with a time-

varying extrapolation parameter, as is also shown in the right panel of Figure 4. Intu-

itively, PET agents adjust their mapping to reflect that following the increase in uncer-

tainty associated with the displacement, prices are initially less sensitive to new infor-

mation as informed agents’ edge is diluted, and then gradually become more sensitive to

information as informed agents regain their edge.

Proposition 5 (Time-varying Extrapolation). Following a displacement, the degree of

extrapolation with which PET agents extrapolate unexpected price changes is time-varying.

The extrapolation coefficient rises when the displacement is announced, and then gradually

declines as uncertainty is resolved over time. Upon impact, the rise in the extrapolation

parameter is increasing in the uncertainty introduced by the shock (τ−1
0 ) and decreasing in

the fraction of informed agents in the market (φ).

As well as being consistent with empirical evidence that documents a time-varying

extrapolation parameter (Cassella and Gulen (2018)), micro-founding the extrapolation

parameter in this way allows us to understand the assumptions implicit in models of con-

stant price extrapolation. A constant extrapolation parameter requires uninformed agents

to think that a given piece of information is always incorporated into prices with the same

strength. In our model, this requires uninformed agents to think that informed agents’

edge is constant over time, which in turn requires them to think that the composition of

agents in the market and agents’ relative confidence are also constant over time. This

assumption seems to be a good characterization of investors’ beliefs in normal times, in

response to regular earnings announcements.

However, following a Kindleberger type displacement, these assumptions become coun-

terfactual, as these shocks generate large changes to how information is incorporated into

equilibrium prices. In this case, as uninformed agents think about what generates the

prices they are learning from, they adjust the mapping they use to infer information from

prices, thus leading to time-varying extrapolation.
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3.4 Displacement, Bubbles and Crashes

By combining the results from Sections 3.2 and 3.3, we find that following a displacement

PET agents’ beliefs evolve as follows:

(ũt−1 + w̃t−1) =
(
at−1

ãt−1

)
(ut−1 + wt−1) +

(
bt−1

ãt−1

)
(ũt−2 + w̃t−2)− 1

ãt−1

(
P̃t−1|t−2 − Pt−1|t−2

)
(68)

This expression is reminiscent of the AR(1) process in (43), with two key differences. First,

the strength of the feedback between outcomes and beliefs is now time-varying, allowing

the economy to shift between stable and unstable regions. Second, this process now also

has an additional correction term, which captures the bias in PET agents’ forecasts of

price changes due to changes in confidence levels. This pull back force eventually leads

uninformed agents’ beliefs to be disappointed, leading to a crash. We now discuss both

of these differences in detail.

Substituting (55) and (67) into the pseudo-AR(1) coefficient in (68), we find that the

strength of the feedback effect now takes the following form:

bt−1

ãt−1
=
(

1
1 + ζt−1

)(
1 + 1

ζ̃t−1

)
(69)

Figure 5 shows that when the displacement materializes in period t = 0, the strength of the

feedback effect initially increases as the economy is flooded with uncertainty, and both the

true and the perceived informational edges are diluted. However, as agents start learning

about the displacement, the strength of the feedback effect gradually declines. Starting

from a stable region in normal times, if the increase in uncertainty generated by the

displacement is large enough, the economy enters an unstable region (bt/̃at > 1), allowing

prices and beliefs to accelerate away from fundamentals. In the long run the economy

always returns into a stable region, as limt→∞ bt/̃at < b/̃a < 1 since limt→∞(bt− b) = 0 and

limt→∞(ãt − ã) > 0, with prices and beliefs converging to a new steady state.

It is the last term in (68) that allows for reversals, as we need uninformed agents’ beliefs

to revert back towards fundamentals for the bubble to burst. This can only happen if
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their forecasts are disappointed, and they attribute this to bad news, ũt−1 + w̃t−1 < 0. We

show that this can only happen once the economy returns to a stable region. Substituting

(57) and (65) into (68), we find that beliefs evolve as follows:

ũt−1+w̃t−1 =
(
at−1

ãt−1

)
(EI,t−1[DT ]− E0[DT ])−

(
1− bt−1

ãt−1

)
(EU,t−1[DT ]− E0[DT ])+ 1

ãt−1
(c̃t−1 − ct−1)

(70)

where E0[DT ] = D̄ + µ0 is agents’ unconditional prior belief when the displacement is

announced. For the bubble to burst, we need ũt−1 + w̃t−1 to eventually turn negative.

If we consider a one-off positive shock, such that EI,t−1[DT ] = EI,1[DT ] > E0[DT ] for all

t ≥ 1, this expression makes clear that as long as the economy is in a unstable region and
bt−1
ãt−1

> 1, PET agents continue to extract positive information from prices, and therefore

become increasingly optimistic. In other words, when the economy is in an unstable

region, the lagged response of uninformed agents always raises prices by more than what

uninformed agents would expect from changes in confidence alone. On the other hand, this

is no longer the case once the economy returns to a stable region and the feedback between

outcomes and beliefs runs out of steam. At the peak of the bubble uninformed agents’

beliefs vastly exceed fundamentals, and the term in (EU,t−1[DT ]− E0[DT ]) dominates in

determining the sign of the news that uninformed agents extract from past prices in (70).

Once the economy returns into a stable region and bt−1
ãt−1

< 1, PET agents expect higher

price rises than the ones they observe. As their beliefs are disappointed, they become

more pessimistic (ũt−1 + w̃t−1 < 0) and the bubble bursts.

Figure 6 describes the formation of bubbles as the economy enters unstable regions fol-

lowing a displacement, with prices and beliefs accelerating in a convex way, and reaching

levels several multiples of the fundamental value of the asset (Greenwood et al. (2019)).

This stage of the bubble is also associated with high trading volume (Barberis (2018),

Hong and Stein (2007), DeFusco et al. (2020)). As the strength of the feedback effect

weakens, and the economy re-enters a stable region, PET agents’ expectations are dis-

appointed, leading the bubble to burst, and prices and beliefs to converge back towards

fundamentals.

Finally, the duration of the bubble is longer and its amplitude is greater when the
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Figure 5: Time variation in the strength of the feedback effect following a displacement.
This figure shows how the strength of the feedback between outcomes and beliefs varies over time following
a displacement. The dotted line at b/̃a = 1 separates the stable region (b/̃a < 1) from the unstable region
(b/̃a > 1). Starting from a normal times steady state where the strength of the feedback effect is less
than one, a displacement is announced in period t = 0, and this leads the strength of the feedback
effect to initially rise and then gradually decline over time. The initial increase in b/̃a is increasing in the
uncertainty associated with the displacement (τ0)−1, and this figure depicts a scenario where (τ0)−1 is
large enough to initially shift the economy to an unstable region. Eventually, as informed agents learn
more about the displacement, the strength of the feedback effect weakens and the economy returns to a
stable region.
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informativeness of the signals that informed agents receive is low and uncertainty takes

longer to resolve over time (τs is low). We summarize these results in the following

proposition.

Proposition 6 (Displacements, Bubbles and Crashes.). Following a displacement-type of

shock, the strength of the feedback between outcomes and beliefs increases on impact, and

then gradually falls as uncertainty is resolved over time. If the rise in uncertainty produced

by the displacement is large enough, the economy enters an unstable region, allowing prices

and beliefs to accelerate away from fundamentals and leading to the formation of bubbles.

As agents learn more about the displacement, the strength of the feedback effect weakens,

the economy re-enters a stable region, and the bubble bursts. The duration of the bubble

is decreasing in the speed at which uncertainty is resolved (τs), and in the fraction of

informed agents in the market (φ).

Partial equilibrium thinking naturally delivers these key characteristics of bubbles by
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exploiting the properties of unstable regions.

Figure 6: Bubbles and crashes following a displacement. Starting from a normal times steady
state, a displacement ω ∼ N(µ0, τ

−1
0 ) is announced in period t = 0. Informed agents then receive a

signal st = ω + εt each period, where ε1 > 0 and εt = 0 ∀t > 1. This figure compares the path of
equilibrium prices, uninformed agents’ beliefs, trading volume and agents’ positions in the risky asset
following a displacement which temporarily shifts the economy into an unstable region, under rational
expectations and under partial equilibrium thinking. As the economy shifts into an unstable region when
the displacement is announced, prices and beliefs accelerate away from fundamentals. This phase of the
bubble is also associated with high trading volume, and PET agents being long the asset. Eventually,
as the strength of the feedback effect weakens, the economy returns to a stable region and uninformed
agents’ beliefs are disappointed, leading to a crash.
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3.5 Frequency of Information Arrival

By assuming that informed agents receive new information in each period following a dis-

placement, we are implicitly assuming that uninformed agents understand the frequency

with which informed agents receive new information. However, if we change the fre-

quency of information arrival, the true confidence of informed agents becomes decoupled

from uninformed agents’ perception of it.

In our model, following a displacement, uninformed agents observe a price change

in each period, and they attribute each price change to new information. Regardless

of the frequency of information arrival, having observed t price changes after t periods,

uninformed agents’ perception of informed agents’ confidence is given by:

τ̃I,t =
(
VI,0 + (tτs + τ0)−1

)−1
(71)

If informed agents receive news in each period, then τ̃I,t = τI,t. Suppose instead that

after t period, informed agents have received only nt < t signals. Their true confidence is

now given by:

τI,t =
(
VI,0 + (ntτs + τ0)−1

)−1
< τ̃I,t (72)

With this information structure, informed agents need to receive only a finite number

of signals for the bubble to burst. Let n∞ be the total number of signals informed agents

receive about the displacement over the whole lifetime of the asset. Long run stability

then requires:

n∞ > n̄ (73)

where n̄ = 1
τs

(
1

VI,0(ζ̃∞ζ0−1) − τ0

)
. This implies that bubbles may burst even if the true

confidence of informed agents is lower than the true confidence of uninformed agents. This

is not the case with models of constant price extrapolation, which instead rely on changes

in the true relative confidence of informed and uninformed agents in order to generate

bubbles and crashes.

To illustrate this point, Figure 7 shows the response of the economy if informed agents

receive a single signal in period t = 1, and then receive no further information about
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the displacement thereafter, so that n∞ = 1. When this is the case, the confidence of

uninformed agents rises relative to the confidence of uninformed agents, as shown in the

top left panel of Figure 7. However, even though the influence on prices of uninformed

agents’ biased beliefs rises over time, the economy can still return to a stable region

because the strength with which PET agents extrapolate past prices falls over time.

Intuitively, PET agents still attribute any price change they observe to additional news

about the displacement, and thus think that informed agents’ edge is rising over time.

Comparing the path of equilibrium prices in the bottom right panel of Figure 7 to the

one in Figure 6 we see that when informed agents receive a single shock, the bubble is

much more accentuated and takes much longer to die out as the market spends more time

in the unstable region. However, the key take-away is that a time-varying extrapolation

coefficient allows for bubbles and endogenous crashes that are not driven by changes in

agents’ relative confidence levels, which would instead be necessary with constant price-

extrapolation.

More generally, the frequency of information arrival determines the shape of the bub-

ble, as it affects how misspecified uninformed agents are about the informativeness of the

price changes they observe. A relevant case to consider is one where informed agents

learn sparse information during the formation of the bubble, and information is instead

revealed at a higher frequency once the bubble bursts. This feature would lead to a slower

rise of the bubble, and a faster collapse, in line with empirical evidence. Either way, the

example in Figure 6 shows that the arrival of new information, and a rising confidence

of rational informed agents need not be the catalyst of the reversal once we allow for

time-varying extrapolation.

3.6 Other Types of Displacements

A key lesson from our analysis so far is that shocks that generate bubbles and crashes

must have two properties: they must shift the economy to an unstable region, and such a

shift must be temporary. So far, we have considered one possible way to achieve this via

a positive shock that creates uncertainty, which gradually resolves over time. However,

the sources of variation in bt
ãt

discussed in Proposition 3 are informative about other types
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Figure 7: Response of the economy when informed agents receive a single signal in period
t = 1, and no further information thereafter. Starting from a normal times steady state, a
displacement ω ∼ N(µ0, τ

−1
0 ) is announced in period t = 0, and then informed agents receive a single

signal s1 = ω+ε1 with ε1 > 0 and no more signals thereafter. Panels (a) and (b) show how the components
of the feedback effect vary over time given this information structure, and Panels (c) and (d) show the
evolution of the strength of the feedback effect and of equilibrium prices. Even though b rises over time,
the degree of extrapolation still falls after its initial rise, thus allowing the strength of the feedback effect
to return to a stable region (b/̃a¡1). Panel (d) shows that the bubble is much more accentuated than the
one in Figure 6, as the economy spends longer in the unstable region.
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of shocks which may contribute to the formation of bubbles and crashes.

Specifically, we can write the strength of the feedback effect as follows:

bt
at

=
(

1
1 + ζt

)(
1 + 1

ζ̃t

)
< 1 ⇐⇒

(
φt

1− φt
τI,t
τU,t

)(
φ̃t

1− φ̃t
τ̃I,t
τ̃U,t

)
> 1 (74)

which generalizes our earlier expressions by allowing the fraction of informed agents in the

38



market to be time-varying, and by allowing uninformed agents to be misspecified about

this quantity (φ̃t 6= φt). There are four components of the information structure that

can then lead to time-variation in the strength of the feedback effect: the true and the

perceived confidence of informed agents relative to uninformed agents, and the true and

the perceived composition of agents in the market. Temporary shocks to these quantities

can also contribute to the time-varying strength of the feedback effect.

For example, displacements may lead to large changes in the composition of agents

in the market, either because of the increased attention generated by media coverage, or

because of the nature of the displacement itself, as with the introduction of securitization,

which led to an expansion in credit during the most recent financial crisis. Changes in

investor horizons, in the form of an increased speculative drive, may also generate changes

in relative confidence levels and contribute to a stronger feedback effect during bubble

episodes.

4 Speculative Motives

A noted feature of bubbles neglected so far is the role of destabilizing speculation. When

explaining the stage of ‘euphoria’ characteristic of bubbles, Kindleberger (1978) describes

how “[i]nvestors buy goods and securities to profit from the capital gains associated with

the anticipated increases in the prices of these goods and securities”.

To model speculative motives, we change agents’ objective function to have CARA

utility over next period wealth. In this case, agents forecast next period payoffs: with

probability ρ the asset is alive next period, and is worth Pt+1, and with probability (1−ρ)

the asset dies, and pays out a terminal dividend Dt:

Πt+1 = ρPt+1 + (1− ρ)Dt (75)

Agents now trade according to the following asset demand function, given their beliefs:

Xi,t = E[Πt+1|Ii,t]− Pt
AV[Πt+1|Ii,t]

(76)
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In Appendix A we solve the model with speculative motives using the same three

steps as in Section 3, and show that the true price function is linear in agents’ beliefs,

and that partial equilibrium thinking still provides a micro-foundation for price-based

extrapolation:

Pt = atEI,t[Πt+1] + btEI,t[Πt+1]− ct (77)

EU,t[Πt+1] = EU,t−1[Πt+1] + θt
(
Pt−1 − P̃t−1|t−2

)
(78)

where at, bt, ct and θt are once again time-varying and deterministic. While these coeffi-

cients still depend on the properties of the environment, their functional form depends on

agents’ higher order beliefs. Specifically, since agents are forecasting future endogenous

outcomes, they need to forecast other agents’ future beliefs. While partial equilibrium

thinking helps to pin down uninformed agents’ higher order beliefs (they simply assume

that all agents trade on their own private information and that this is common knowledge),

it allows for more flexibility about informed agents’ higher order beliefs.

In this section, we consider two cases. First, we let informed agents understand unin-

formed agents’ biased beliefs, which in turn means that they understand that mispricing

is predictable. Second, we consider the case where informed agents mistakenly believe

that all other agents are rational and extract the right information from prices. We refer

to the first type of speculators as being “PET-aware”, and to the second type as being

“PET-unaware”. This lines up with the distinction in practical asset management be-

tween investors who concentrate on the gap between market prices and their estimates of

fundamentals, and those who also think about the behavioral biases in the market.

Figure 8 contrasts the dynamics of equilibrium outcomes following a displacement

with and without speculative motives. When informed agents understand other agents’

biases, they engage in destabilizing speculation and amplify the bubble. Intuitively, when

informed agents realize that mispricing is predictable, they understand that higher prices

today translate into more optimistic beliefs by uninformed agents and higher prices tomor-

row. This increases informed agents’ expected capital gains and induces them to demand

more of the asset today, inflating prices further (De Long et al. (1990)).
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Figure 8: Bubbles and crashes with “PET-aware” and “PET-unaware” speculators. Start-
ing from a normal times steady state, a displacement ω ∼ N(µ0, τ

−1
0 ) is announced in period t = 0.

Informed agents then receive a signal st = ω + εt in each period, where ε1 > 0 and εt = 0 ∀t > 1. This
figure compares the path of equilibrium prices, uninformed agents’ beliefs, trading volume and agents’
positions in the risky asset under rational expectations, partial equilibrium thinking, “PET-aware” spec-
ulation, and “PET-unaware” speculation. “PET-aware” speculation amplifies the bubble relative to the
case with no speculative motives, while “PET-unaware” speculation arbitrages the bubble away.
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To take advantage of predictable mispricing, “PET-aware” speculators require a high

level of understanding of other agents’ actions and beliefs. Alternatively, we can consider

the case where informed agents mistakenly believe that they live in a rational world and

think that uninformed agents are able to recover the right information from past prices.

In this case, informed agents believe that any current mispricing will be corrected next

period. This leads them to trade more aggressively on their own information, thus keeping
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prices closer to fundamentals, and effectively arbitraging the bubble away.

This analysis highlights the importance of higher order beliefs in the formation of

bubbles: only if investors think that mispricing is likely to persist do they engage in

destabilizing speculation. If instead they think mispricing is temporary, they engage in

fundamental speculation and arbitrage it away.

5 Conclusion

In this paper we provide a micro-foundation for the degree of price extrapolation with a

theory of “Partial Equilibrium Thinking” (PET), in which uninformed agents mistakenly

attribute any price change they observe to new information alone, when in reality part

of the price change is due to other agents’ buying/selling pressure. We show that when

agents think in partial equilibrium the degree of extrapolation varies with the information

structure, and is decreasing in informed agents’ informational edge.

This micro-foundation provides a unifying theory of both weak departures from ra-

tionality in normal times, and extreme bubbles and crashes following a displacement.

These are simply different manifestations of the same two-way feedback between prices

and beliefs. In normal times, informed agents’ edge is constant, and PET delivers con-

stant price extrapolation. By contrast, following a displacement, informed agents’ edge is

temporarily wiped out, and PET agents’ degree of extrapolation is stronger at first, but

then gradually dies down, leading to bubbles and endogenous crashes.

While this paper provides a first step in micro-founding the degree of price extrap-

olation, our analysis leaves several open avenues for future work. First, a quantitative

assessment of our theory would shed light on the extent of amplification that time-varying

extrapolation can provide in explaining departures from rationality, and would clarify the

importance of this channel. Second, by looking at the variation in the degree of price

extrapolation and in individual level forecasts, our model offers two predictions that dis-

tinguish it from models of constant price extrapolation, and of fundamental extrapolation:

i) unlike models of constant price extrapolation, when agents think in partial equilibrium

the degree of price extrapolation is stronger when there are fewer informed agents in
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the market, and when informed agents’ edge is greater; ii) unlike models of fundamen-

tal extrapolation, when agents think in partial equilibrium the bias in individual level

forecasts depends on the composition of agents in the market, as this affects the extent

of misspecification. These predictions can be tested both in the cross-section and over

time. As the literature moves to incorporating non rational expectations into macro and

finance models, and to studying their quantitative and policy implications, distinguishing

between these sources of irrationality is increasingly important, and evidence that sheds

light on these issues is a fruitful avenue for future research.
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A Adding Speculative Motives

We now add speculative motives, so that agents have Constant Absolute Risk Aversion

(CARA) utility over next period wealth, and trade according to the following asset demand

function, given their beliefs:

Xi,t = Ei,t[Πt+1]− Pt
AVi,t[Πt+1] (A.1)

where Πt+1 is the expected payoff next period:

Πt+1 = βPt+1 + (1− β)Dt (A.2)

where this expression reflect the fact that with probability β the asset is alive next period,

and it is worth Pt+1, and with probability (1−β) the asset dies and pays out its terminal

dividend Dt.

Since agents are forecasting prices, which are endogenous outcomes, they now need

to forecast other agents’ future beliefs. Therefore, in solving the model with speculative

motives, we need to specify agents’ higher order beliefs. While partial equilibrium thinking

helps to pin down uninformed agents’ higher order beliefs (they simply assume that all

agents trade on their private information alone, and that this is common knowledge), it

allows for more flexibility about informed agents’ higher order beliefs.

We consider two cases. In Section A.1 we let informed agents be “PET-aware”, so

that they perfectly understand uninformed agents’ biased beliefs. In Section A.2, we

consider a case where informed agents are “PET-unaware” and mistakenly believe that

all other agents are rational, and that uninformed agents extract the right information

from prices. Therefore, the distinction lies in whether informed agents understand the

behavioral biases in the market as well as the fundamental information they possess.

This lines up with the distinction in practical asset management between investors who

concentrate on the gap between market prices and their estimates of fundamentals, and

those who also think about the behavioral biases in the market.
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A.1 “PET−aware” Speculation

In solving the model, we proceed in five steps. First, we specify the mapping that un-

informed agents use to extract information from prices. This allows us to pin down

uninformed agents’ beliefs. Second, given both informed and uninformed agents’ beliefs,

we compute agents’ demand function and impose market clearing. Third, we solve for the

steady state in normal times (from which we start the economy), and for the new steady

state after the uncertainty surrounding the displacement has been resolved. Fourth, we

solve the model back backward induction. Fifth, we solve the model forward.

Step 1: Mapping to Infer Information from Prices. Just as in the baseline model

without speculation, PET agents think that in period t informed agents trade on the infor-

mation they have received so far, {uj}tj=1, {sj}tj=1, and that uninformed agents and only

trade on their prior beliefs. Therefore, we can guess their beliefs about the equilibrium

price function takes the following form:

Pt = Ãt(D̃t + W̃t) + B̃t(D̄ + µ0)− K̃t (A.3)

where we define Dt ≡ D̄+∑t
j=1 ut and Wt ≡ τ0

tτs+τ0
µ0 + τs

tτs+τ0

∑t
j=1 s̃t be informed agents’

beliefs in period t of the normal times shocks and of the displacement, so that D̃t =

D̄+∑t
j=1 ũj and W̃t = τ0

tτs+τ0
µ0 + τs

tτs+τ0

∑t
j=1 s̃t are uninformed agents’ beliefs about these

quantities, respectively. Moreover, Ãt, B̃t and K̃t are time-varying and deterministic

coefficients that depend on the properties of the environment.

To verify that this is the price function which would arise in equilibrium if agents

traded on their own private information alone, notice that, given this price function,

informed agents’ beliefs would take the following form:

ẼI,t[Πt+1] =ẼI,t[β
(
Ãt+1(D̃t+1 + W̃t+1) + B̃t+1(D̄ + µ0)− K̃t+1

)
+ (1− β)(D̃t + ω̃)]

(A.4)

=(1− β + βÃt+1)(D̃t + W̃t) + βB̃t+1(D̄ + µ0)− βK̃t+1 (A.5)
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ṼI,t[Πt+1] =ṼI,t

[
βÃt+1ũt+1 + βÃt+1

(
τs

(t+ 1)τs + τ0

)
(ω̃ + ε̃t+1) + (1− β)ω̃

]
(A.6)

=
(
βÃt+1

)2
σ2
u +

(
βÃt+1

(
τs

(t+ 1)τs + τ0

))2

(τs)−1

+
(

1− β + βÃt+1

(
τs

(t+ 1)τs + τ0

))2

(tτs + τ0)−1 = ṼI,t (A.7)

where ṼI,t is time-varying and deterministic. Turning to PET agents’ beliefs of other

uninformed agents:

ẼU,t[Πt+1] = (1− β + βÃt+1 + βB̃t+1)(D̄ + µ0)− βK̃t+1 (A.8)

ṼU,t[Πt+1] =ṼI,t

[
βÃt+1(ũt+1 + ũt) + βÃt+1

(
τs

(t+ 1)τs + τ0

)
(2ω̃ + ε̃t + ε̃t+1) + (1− β)(ũt + ω̃)

]
(A.9)

=
(
βÃt+1

)2
σ2
u +

(
1− β + βÃt+1

)2
σ2
u + 2

(
βÃt+1

(
τs

(t+ 1)τs + τ0

))2

(τs)−1

+
(

1− β + 2βÃt+1

(
τs

(t+ 1)τs + τ0

))2

(τ0)−1 = ṼU,t (A.10)

where VU,t is time-varying and deterministic. Notice that in order to solve for the variance

of uninformed agents, we assume that uninformed agents are only uncertain about future

(and not past) shocks.

Given these beliefs, the market clearing condition which PET agents think is generat-

ing the price that they observe is given by:

φ

(
ẼI,t[Πt+1]− Pt
AṼI,t[Πt+1]

)
+ (1− φ)

(
ẼU,t[Πt+1]− Pt
AṼU,t[Πt+1]

)
= Z (A.11)

and the resulting market clearing price function is given by:

Pt =
(

φṼU,t

φṼU,t + (1− φ)ṼI,t

)
ẼI,t[Πt+1]

+
(

(1− φ)ṼI,t

φṼU,t + (1− φ)ṼI,t

)
ẼU,t[Πt+1]
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− AZṼI,tṼU,t

φṼU,t + (1− φ)ṼI,t

(A.12)

Since ẼI,t[Πt+1] is linear in (D̃t+W̃t) and (D̄+µ0), ẼU,t[Πt+1] is linear in (D̄+µ0) and all

other terms are deterministic, we see that given PET agents’ beliefs about other agents,

the price function which generates the prices they observe does indeed take the form in

(A.3). Substituting (A.5), (A.7), (A.8) and (A.10) into (A.12), and equating coefficients,

yields:

Ãt =
(

φṼU,t

φṼU,t + (1− φ)ṼI,t

)
(1− β + βÃt+1) (A.13)

B̃t =
(

φṼU,t

φṼU,t + (1− φ)ṼI,t

)
βB̃t+1 +

(
(1− φ)ṼI,t

φṼU,t + (1− φ)ṼI,t

)
(1− β + βÃt+1 + βB̃t+1)

(A.14)

K̃t =
(

φṼU,t

φṼU,t + (1− φ)ṼI,t

)
βK̃t+1+(

(1− φ)ṼI,t

φṼU,t + (1− φ)ṼI,t

)
βK̃t+1 −

AZṼU,tṼI,t

φṼU,t + (1− φ)ṼU,t

(A.15)

These expressions give recursive equations for the coefficients with determine equilib-

rium prices at each point in time. Therefore, to solve for this mapping, we need to solve

the model by backward induction. We can do this by using the new steady state after the

uncertainty generated by the displacement is resolved. Specifically, uninformed agents

think that the new steady state is given by:

Ã′ =
(

φṼ′U
φṼ′U + (1− φ)Ṽ′I

)
(1− β + βÃ′) (A.16)

B̃′ =
(

φṼ′U
φṼ′U + (1− φ)Ṽ′I

)
βB̃′ +

(
(1− φ)Ṽ′I

φṼ′U + (1− φ)Ṽ′I

)
(1− β + βÃ′ + βB̃′) (A.17)

K̃ ′ =
(

φṼ′U
φṼ′U + (1− φ)Ṽ′I

)
βK̃ ′+

(
(1− φ)Ṽ′I

φṼ′U + (1− φ)Ṽ′I

)
βK̃− AZṼ′U Ṽ′I

φṼ′U + (1− φ)Ṽ′U
(A.18)
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where we denote with a ′ quantities associated with the new steady state after uncertainty

is resolves, so that for example Ṽ′I and Ṽ′U are uninformed agents’ beliefs of the variance

of informed and uninformed agents respectively in the new steady state when uncertainty

is resolved:

Ṽ ′I [Πt+1] = lim
t→∞

ṼI,t = (βÃ)2σ2
u (A.19)

Ṽ ′U [Πt+1] = lim
t→∞

ṼU,t = (βÃ)2σ2
u + (1− β + βÃ)2σ2

u + (1− β)2(τ0)−1 (A.20)

Using this steady state as our end point, we can then solve for the mapping uninformed

agents use to extract information from prices by backward induction.

Given this mapping, uninformed agents extract the following information from prices:

D̃t−1 + W̃t−1 = Pt−1 − B̃t−1(D̄ + µ0) + K̃t−1

Ãt−1
(A.21)

Or, given their information set in period t:

ũt−1 + w̃t−1 = 1
Ãt−1

(Pt−1 − EU,t−1[Pt−1]) (A.22)

where w̃t−1 = W̃t−1 − W̃t−2.

Step 2: True Market Clearing Price Function. To determine the true market

clearing condition which determines the prices agents observe, we know that in reality all

uninformed agents learn information from past prices using the mapping we just described.

Therefore, we can guess that the true price function takes the following form:

Pt = At(Dt +Wt) +Bt(D̃t−1 + W̃t−1)−Kt (A.23)

where At, Bt and Kt are time-varying and deterministic coefficients that depend on the

properties of the environment.

To verify our guess, notice that if informed agents are aware of uninformed agents’
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bias, their beliefs about next period payoff are given by:

EI,t[Πt+1] = (1−β+βAt+1)(Dt +Wt) +βBt+1

(
Pt − B̃t(D̄ + µ0) + K̃t

Ãt

)
︸ ︷︷ ︸

EI,t[D̃t+w̃t]

−βKt+1 (A.24)

VI,t[Πt+1] = (βAt+1)2 σ2
u +

(
βAt+1

(
τs

(t+ 1)τs + τ0

))2

(τs)−1

+
(

1− β + βAt+1

(
τs

(t+ 1)τs + τ0

))2

(tτs + τ0)−1 = VI,t (A.25)

Turning to uninformed agents’ beliefs:

EU,t[Πt+1] = (1− β + βÃt+1)(D̃t−1 + W̃t−1) + βB̃t+1(D̄ + µ0)− βK̃t+1 (A.26)

VU,t[Πt+1] =VU,t

[
βÃt+1

(
ut+1 + ut + 2τs

(t+ 1)τs + τ0
ω + τs

(t+ 1)τs + τ0
(εt+1 + εt)

)
+ (1− β)(ut + ω)

]
(A.27)

=(βÃt+1)2σ2
u + (1− β + βÃt+1)2σ2

u

+
(

1− β + βÃt+1
2τs

(t+ 1)τs

)2

((t− 1)τs + τ0)−1 + 2
(

τsβÃt+1

(t+ 1)τs + τ0

)2

(τs)−1 = VU,t

(A.28)

where VU,t is deterministic and time-varying.

Given these beliefs, the true market clearing condition which generates the prices

agents observe is given by:

φ

(
EI,t[Πt+1]− Pt
AVI,t[Πt+1]

)
+ (1− φ)

(
EU,t[Πt+1]− Pt
AVU,t[Πt+1]

)
= Z (A.29)

and the resulting market clearing price function is given by:

Pt =
(

φVU,t

φVU,t + (1− φ)VI,t

)
EI,t[Πt+1]
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+
(

(1− φ)VI,t

φVU,t + (1− φ)VI,t

)
EU,t[Πt+1]

− AZVI,tVU,t

φVU,t + (1− φ)VI,t

(A.30)

Since EI,t[Πt+1] is linear in (Dt+Wt) and (D̃t−1 +W̃t−1), EU,t[Πt+1] is linear in (D̃t−1 +

W̃t−1) and all other terms are deterministic, we see that the true price function does indeed

take the form in (A.23). Substituting (A.24), (A.25), (A.26) and (A.28) into (A.30), and

matching coefficients, yields:

At =

(
φVU,t

φVU,t+(1−φ)VI,t

)
1−

(
φVU,t

φVU,t+(1−φ)VI,t

)
βBt+1

Ãt

(1− β + βAt+1) (A.31)

Bt =

( (1−φ)VI,t
φVU,t+(1−φ)VI,t

)
1−

(
φVU,t

φVU,t+(1−φ)VI,t

)
βBt+1

Ãt

(1− β + βÃt+1) (A.32)

Kt =

(
φVU,t

φVU,t+(1−φ)VI,t

)
1−

(
φVU,t

φVU,t+(1−φ)VI,t

)
βBt+1

Ãt

(
βKt+1 + β

Bt+1

Ãt

(
−B̃t(D̄ + µ0) + K̃t

))

+

( (1−φ)VI,t
φVU,t+(1−φ)VI,t

)
1−

(
φVU,t

φVU,t+(1−φ)VI,t

)
βBt+1

Ãt

(
−βB̃t+1(D̄ + µ0) + βK̃t+1

)

+
AZVU,tVI,t

φVU,t+(1−φ)VU,t

1−
(

φVU,t
φVU,t+(1−φ)VI,t

)
βBt+1

Ãt

(A.33)

These expressions give recursive equations for the coefficients which determine equi-

librium prices at each point in time. To solve for this mapping, we then need to solve the

model by backward induction. We can do this by using the new steady state after the

uncertainty generated by the displacement is resolved as the end point. Specifically, the

new steady state is given by:

A′ =

(
φV′U

φV′U+(1−φ)V′I

)
1−

(
φV′U

φV′U+(1−φ)V′I

)
βB

′

Ã′

(1− β + βA′) (A.34)
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B′ =

(
(1−φ)V′I

φV′U+(1−φ)V′I

)
1−

(
φV′U

φV′U+(1−φ)V′I

)
βB

′

Ã′

(1− β + βÃ′) (A.35)

K ′ =

(
φV′U

φV′U+(1−φ)V′I

)
1−

(
φV′U

φV′U+(1−φ)V′I

)
βB

′

Ã′

(
βK ′ + β

B′

Ã′

(
−B̃′(D̄ + µ0) + K̃ ′

))

+

(
(1−φ)V′I

φV′U+(1−φ)V′I

)
1−

(
φV′U

φV′U+(1−φ)V′I

)
βB

′

Ã′

(
−βB̃′(D̄ + µ0) + βK̃ ′

)

+
AZV′UV

′
I

φV′U+(1−φ)V′U

1−
(

φV′U
φV′U+(1−φ)V′I

)
βB

′

Ã′

(A.36)

where Ã′, B̃′ and K̃ ′ are the coefficients of the mapping PET agents use to extract

information from prices in the new steady state in (A.16), (A.17) and (A.18) respectively,

and V′I and V′U are the variances of informed and uninformed agents respectively in the

new steady state when uncertainty is resolved, and :

V′I [Πt+1] = lim
t→∞

VI,t = (βA′)2σ2
u (A.37)

V′U [Πt+1] = lim
t→∞

VU,t = (βÃ′)2σ2
u + (1− β + βÃ′)2σ2

u (A.38)

Using this steady state as our end point, we can then solve for the true price function

which generates the prices agents observe by backward induction.

Step 3: Solving the Model Recursively. We can also solve for the normal times

steady state before the displacement is announced by solving the system of equations in

(A.16), (A.17), (A.18) and (A.34), (A.35), (A.36), using normal times variances.

ṼI =(βÃ)2σ2
u (A.39)

ṼU =(βÃ)2σ2
u + (1− β + βÃ)2σ2

u (A.40)

VI =(βA)2σ2
u (A.41)
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VU =(βÃ)2σ2
u + (1− β + βÃ)2σ2

u (A.42)

Starting from the normal times steady state, we can then simulate the equilibrium

path of our economy forward for a given set of signals.

A.2 “PET−unaware” Speculation - Mistakenly Rational

If informed agents are not omniscient, and instead mistakenly believe that the world is

rational, and that uninformed agents are able to recover the correct information form

prices, then their posterior beliefs in (A.24) should be replaced by:

EI,t[Πt+1] = (1− β + βAt+1)(Dt +Wt) + βBt+1(Dt +Wt)− βKt+1 (A.43)

Following the same steps as in Section A.1 above, it follows that the equilibrium price

becomes:

Pt = At(Dt +Wt) +Bt(D̃t−1 + W̃t−1)−Kt (A.44)

where

At =
 φ

VI,t
φ

VI,t
+ 1−φ

VU,t

 (1− β + βAt+1 + βBt+1) (A.45)

Bt =
 1−φ

VU,t
φ

VI,t
+ 1−φ

VU,t

 (1− β + βÃt+1) (A.46)

Kt =
 φ

VI,t
φ

VI,t
+ 1−φ

VU,t

 βKt+1+
 1−φ

VU,t
φ

VI,t
+ 1−φ

VU,t

(−βB̃t+1(D̄ + µ0) + K̃t+1
)
+ AZVU,tVI,t

φVU,t + (1− φ)VI,t

(A.47)

We can then solve the model by backward induction using the new steady state when

uncertainty is resolved as the end point. This allows us to find the coefficients of the true

price function, which we can then use the simulate the model forward, for a given set of

shocks, as we did in Section A.1.
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B Partially Revealing Prices

When prices are fully revealing, we showed that the extrapolation parameter used by PET

agents is decreasing in the informational edge of informed agents. Intuitively, PET agents

recognize that when informed agents are more confident, they trade more aggressively

on the new information they receive. This leads to greater price changes, leading PET

agents to extrapolate less strongly to recover that information. In this section, we study

how the extrapolation parameter produced by partial equilibrium thinking changes if we

allow for noise, so that prices are no longer fully revealing.

B.1 Setup

As in the baseline model, assume that the expected terminal dividend conditional on

future shock realizations, is given by:

DT = Dt +
∞∑
j=1

βjut+j (B.1)

where β is the probability that the asset lives for another period, and ut+j
iid∼ N(0, σ2

u) is

how much the asset produces in period t+ j conditional on being alive in that period. As

in the baseline model, informed agents observe {uj}tj=1, while uninformed agents do not

observe any fundamental shock and instead can learn information from past prices.

To consider the effect of noise on PET agents’ inference, we assume that supply is

no longer fixed, but is stochastic and given by: zt
iid∼ N(Z, σ2

z). One can think of the

stochastic supply as being generated by the exogenous demand of noise traders.

Moreover, to simplify the analysis, assume that agents learn about the realization of

the supply of the risky asset after two periods. In other words, in each period, all agents

observe zt−2. Therefore, even though one period lagged prices are partially revealing,

prices become fully revealing at further lags. This assumptions allows us to keep the

variance faced by uninformed agents constant over time, and simplifies the inference
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problem, while still allowing us to study the effect of noise.14

B.2 Inference Problem with Noise

When prices are fully revealing, uninformed agents think they are able to extract the

exact information that informed agents have from prices. This is no longer true if we

introduce i.i.d. stochastic supply. Specifically, in normal times, uninformed agents think

that prices take the following form:

Pt−1 = ã
(
ẼI,t−2[DT ] + ũt−1

)
+ b̃D̄ − c̃zt−1 (B.4)

where ã = φτ̃I
φτ̃I+(1−φ)τ̃U , b̃ = (1−φ)τ̃U

φτ̃I+(1−φ)τ̃U and c̃ = A
φτ̃I+(1−φ)τ̃U . Since prices are fully revealing

in period t− 2, but they are partially revealing in period t− 1, uninformed agents extract

the following signal from prices:15

Pt−1 − ãD̃t−2 − b̃D0 + c̃Z

ã
= ũt−1 −

c̃

ã
(zt−1 − Z) (B.5)

and we can re-write this more simply as:

(1
ã

)
(Pt−1 − Et−1[Pt−1]) = ũt−1 −

c̃

ã
(zt−1 − Z) (B.6)

14To be more concrete, the variance of uninformed agents in period t is given by:

VU,t[DT ] = VU,t

 t∑
j=1

uj

+ β2

1− β2σ
2
u (B.2)

When prices were fully revealing, the variance of the first term is simply zero, as all uninformed agents
can learn that information with certainty from prices. However, since prices are now partially revealing,
uninformed agents can only learn noisy signals of fundamentals from prices, as opposed to the exact
information. This makes VU,t[

∑t
j=1 uj ] 6= 0 and increasing over time, as the number of realized shocks

uninformed agents are uncertain about increases linearly with t. In order to avoid having this term
increasing over time, we assume that prices become fully revealing after two lags, so that VU,t

[∑t−1
j=1 uj

]
=

0, and the variance of uninformed agents is constant over time:

VU,t[DT ] = VU,t[ut] +
(

β2

1− β2

)
σ2
u (B.3)

15The assumption that prices are fully revealing in period t − 2 means that uninformed agents think
they know the exact value of ẼI,t−2[DT ] = D̃t−2, as opposed to being uncertain about it.
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In other words, uninformed agents now attribute the unexpected price change they observe

to new information, as well as to the stochastic supply of noise traders.

Given the noisy information that uninformed agents extract from prices, their beliefs

in period t are given by:

EU,t[DT ] = D̃t−2 +

 σ2
u

σ2
u +

(
c̃
ã

)2
σ2
z

(1
ã

)
(Pt−1 − EU,t−1[Pt−1]) (B.7)

and since D̃t−2 contains information learnt from Pt−2 conditional on knowing zt−2, we can

re-write this expression as:

EU,t[DT ] = EU,t−1[DT ] + (1− w)
ã

(Pt−2 − Et−2[Pt−2]) + w

ã
(Pt−1 − Et−1[Pt−1]) + c̃

ã
(zt−2 − Z)

(B.8)

where w =
(

σ2
u

σ2
u+( c̃ã)

2
σ2
z

)
. This simply reflects the fact that in period t uninformed agents

now learn both from prices in t− 1 and also revise their beliefs of previous period shocks

in light of the new information about zt−2.

What the expression in (B.8) shows is that the extrapolation parameter on Pt−1 now

depends on two components:

θ =

 σ2
u

σ2
u +

(
1
φτ̃I

)2
σ2
z


︸ ︷︷ ︸

1 weight

(
1 +

(
1− φ
φ

)
τ̃U
τ̃I

)
︸ ︷︷ ︸

2 inference

(B.9)

where (τ̃U)−1 =
(

1
1−β2

)
σ2
u = (τ̃I)−1 + σ2

u and (τ̃I)−1 =
(

β2

1−β2

)
σ2
u.

First, notice that when σ2
z = 0, we are back to our baseline model since component

1 is equal to 1 and (τ̃U)−1 = σ2
u

1−β2 . The second point to notice is that the extrapolation

parameter is decreasing in the level of noise σ2
z , as both components 1 and 2 are

decreasing in noise. Intuitively, greater noise increases the informational edge of informed

agents. This decreases 2 as informed agents’ beliefs are incorporated more strongly

into prices, so that a given price change is associated with less extreme news. Moreover,
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greater noise also reduces the weight that uninformed agents put on the information they

extract from prices 1 : since prices are a noisy signal, uninformed agents put less weight

on them, when updating their prior beliefs.

Turning to the informational edge of informed agents, the extrapolation parameter is

no longer proportional to this quantity, as the confidence of informed agents also affects

the weight component 1 . Specifically, increasing the confidence of informed agents while

holding fixed the perceived confidence of uninformed agents has two contrasting effects.

First, it makes prices more responsive to news, and therefore decreases 2 , as in the

baseline model with no noise. Second, it makes the signal that uninformed agents extract

from prices more informative, and therefore increases 1 . This is, of course, a thought

experiment since τ̃U and τ̃I are related.

We can instead perform comparative statics with respect to the primitives of the

model. Specifically, if we substitute the expressions for τ̃I and τ̃U into (B.9), we can

re-write the extrapolation parameter in terms of the primitives of the model:

θ =

 1
1 +

(
1
φ

)2 ( β2

1−β2

)2
σ2
uσ

2
z


︸ ︷︷ ︸

1 weight

(
1 +

(
1− φ
φ

)
β2
)

︸ ︷︷ ︸
2 inference

(B.10)

From this expression, we see that the extrapolation parameter is decreasing in all sources

of noise: σ2
u and σ2

z , as this reduces the informativeness of the signal uninformed agents

extract from prices.

On the other hand, increasing the perceived information advantage 1/β2 and the frac-

tion of informed agents in the market φ both have two competing roles. Specifically,

increasing 1/β2 (or φ) decreases 2 as prices are more sensitive to news, but it increases

1 , as prices are a more informative signal. For small enough noise, the first effect dom-

inates, and the extrapolation parameter is decreasing in the informational edge, and in

the fraction of informed agents in the market. On the other hand, if there is too much

noise in prices, the second effect dominates and the comparative statics are reversed.
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C Normal Times and Displacements in Other Setups

In this section, we consider alternative setups to study how partial equilibrium thinking

leads to momentum and reversals following a temporary shock, and to show how the

results we uncovered in our main model are robust to altering the setup.

C.1 Temporary Shocks

C.1.1 Setup

Assets. Consider an economy where agents are solving a portfolio choice problem be-

tween a risky and a riskless asset. The risk-free asset is in zero net supply, and we

normalize its price and risk free rate to one, Pf = Rf = 1. The risky asset is in fixed net

supply Z, and pays off a stream of dividends vt each period.

vt = (1− ρ)v̄ + ρvt−1 + ut (C.1)

where v̄ is the unconditional mean of the fundamental value of the asset, ρ ∈ [0, 1] is the

persistence coefficient, and ut ∼ N(0, τ−1
u ).

Agents and Preferences. There is a continuum of measure one of agents. All agents

live for one period. There are no bequest motives, so agents are myopic. Moreover, we

assume that all agents are only concerned with the fundamental value of the asset, so

that at time t they have the following demand function for the risky asset:

Xit = Eit[vt+1]− Pt
AV arit[vt+1] (C.2)

where Eit[·] and V arit[·] characterize agent i’s beliefs about next period fundamental payoff

given the information set they have at time t. Notice that capital gains don’t show up in

agents’ demand functions. While we could extend this framework to allow for speculative

motives, we make this assumption to study the basic mechanism in the simplest possible

framework, and we can think of this being consistent with myopic agents who have CARA

utility over next period wealth, and who face a 100% capital gain tax/rebate. Moreover,
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we assume that uninformed agents do not observe the history of vt and they only observe

their own realized payoff once they leave the market in period t+ 1.

Information Structure in Normal Times. All agents know v̄, as well as all other

parameters of the unconditional distribution of vt and ut. Moreover, a fraction φ of agents

are informed, and they observe the whole history uj for j ≤ t before making their portfolio

choice in each period. A fraction (1−φ) of agents are uninformed, and they do not observe

ut, vt nor their history. However, they can learn information from past prices.

Equilibrium. In equilibrium, uninformed agents’ beliefs must be consistent with past

prices they observe, given their model of the world. Moreover, all agents trade according

to their demand functions in (C.69) given their beliefs, and markets clear.

Pt = atEI,t[vt+1] + btEU,t[vt+1]− ct (C.3)

where at ≡
(

φVU,t
φVU,t+(1−φ)VI,t

)
, bt ≡

( (1−φ)VI,t
φVU,t+(1−φ)VI,t

)
and ct ≡

(
VI,tVU,t

φVU,t+(1−φ)VI,t

)
AZ Vi,t =

Vari,t[vt+1] for i ∈ {I, U}. Therefore, in order to find the equilibrium price, we need to

pin down informed and uninformed agents’ beliefs about vt+1.

C.1.2 Normal Times

Informed Agents’ Beliefs. Informed agents’ beliefs are simply given by:

EI,t[vt+1] = (1− ρ)v̄ + ρvt (C.4)

VI,t[vt+1] = σ2
u (C.5)

Uninformed Agents’ Beliefs. To compute uninformed agents’ beliefs, we start by

determining what information they extract from past prices.

Misspecified Mapping used to Extract Info from Past Prices. To construct this map-

ping, we need to write down uninformed agents’ beliefs of the price function which gen-

erates the prices they observe. This, in turn, requires us to specify uninformed agents’
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beliefs of other agents’ beliefs about next period fundamentals. We denote by ·̃ uninformed

agents’ beliefs about a variable. When agents think in partial equilibrium:

ẼI,t−1[vt] = (1− ρ)v̄ + ρṽt−1 (C.6)

ṼI,t−1[vt] = σ2
u (C.7)

Moreover, PET agents think that all other uninformed agents do not learn information

from prices, and instead trade on the unconditional mean and variance:

ẼU,t−1[vt] = v̄ (C.8)

ṼU,t−1[vt] = σ2
u

1− ρ2 (C.9)

Substituting these expressions into (C.3), we obtain the price function which uninformed

agents think is generating the price that they observe.

Pt−1 = aCE ((1− ρ)v̄ + ρṽt−1) + bCE v̄ − cCE (C.10)

where aCE ≡ φṼU,t
φṼU,t+(1−φ)ṼI,t

=
φ

(
σ2
u

1−ρ2

)
φ

(
σ2
u

1−ρ2

)
+(1−φ)σ2

u

, bCE ≡ (1−φ)ṼI,t
φṼU,t+(1−φ)ṼI,t

= (1−φ)σ2
u

φ

(
σ2
u

1−ρ2

)
+(1−φ)σ2

u

,

cCE ≡ ṼI,t−1ṼU,t−1
φṼU,t+(1−φ)ṼI,t

AZ =
σ2
u

(
σ2
u

1−ρ2

)
φ

(
σ2
u

1−ρ2

)
+(1−φ)σ2

u

AZ. Therefore, uninformed agents invert

(C.10) to extract information from prices:

(1− ρ)v̄ + ρṽt−1 = 1
aCE

Pt−1 −
bCE

aCE
v̄ + cCE

aCE
(C.11)

Uninformed Agents’ Beliefs. Having determined what information uninformed agents

extract from past prices they observe, we can compute their beliefs:

EU,t[vt+1] =(1− ρ)v̄ + ρ ((1− ρ)v̄ + ρṽt−1) (C.12)

=
(

ρ

aCE

)
Pt−1 +

(
1− ρ− ρbCE

aCE

)
v̄ + ρcCE

aCE
(C.13)
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VU,t[vt+1] = (1 + ρ2)σ2
u (C.14)

So uninformed agents’ beliefs resemble some form of extrapolation:

EU,t[vt+1] = θ1Pt−1 + θ2 (C.15)

where:

θ1 = ρ

aCE
(C.16)

Equilibrium. Substituting agents’ beliefs in (C.4), (C.5), (C.13), (C.14) into (C.3), we

obtain the path of equilibrium prices:

Pt =
(
bρ

aCE

)
Pt−1 + a(1− ρ)(vt − v̄) + P̄

(
1− bρ

aCE

)
(C.17)

where a ≡ φVU,t
φVU,t+(1−φ)VI,t = φ(1+ρ2)σ2

u

φ(1+ρ2)σ2
u+(1−φ)σ2

u
, b ≡ (1−φ)VI,t

φVU,t+(1−φ)VI,t = (1−φ)σ2
u

φ(1+ρ2)σ2
u+(1−φ)σ2

u
,

c ≡ VU,tVI,t
φVU,t+(1−φ)VI,tAZ = σ2

u(1+ρ2)σ2
u

φ(1+ρ2)σ2
u+(1−φ)σ2

u
and P̄ is the unconditional mean of prices when

agents think in partial equilibrium, and is such that P̄
(
1− bρ

aCE

)
≡
(
a+ b

(
1− ρ− ρbCE

aCE

))
v̄+

bρc
CE

aCE
−c. Let L denote the lag operator. Then, using the fact that (vt− v̄) = (1−ρL)−1ut,

and rearranging, we can re-write the dynamics of equilibrium prices as follows:

(
Pt − P̄

)
= a(1− ρ)

(1− ρL)
(
1− bρ

aCE
L
)ut (C.18)

This makes clear that the equilibrium price follows an AR(2) process. Moreover, for

this process to be stationary, we need the roots of the characteristic equation to lie outside

the unit circle:

ρ < 1 b

aCE
ρ < 1 (C.19)

Rational Expectations Equilibrium Comparison. We can compare the PET im-

pulse response function to the impulse response function which would arise if agents had

rational expectations and were able to extract the correct information from past prices.

In this case, informed agents’ beliefs are as in (C.4) and (C.13), while uninformed
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agents’ beliefs are as follows:

EU,t[vt+1] = (1− ρ2)v̄ + ρ2vt−1 (C.20)

and with the same conditional variance as in (C.14). Substituting these beliefs into (C.3),

we get the following expression for the path of equilibrium prices:

Pt =a((1− ρ)v̄ + ρvt) + b((1− ρ)v̄ + ρvt−1)− c (C.21)

=aρ(vt − v̄) + bρ(vt−1 − v̄) + (a+ b)v̄ − c (C.22)

We can rewrite this as:

(Pt − P̄ ) =
aρ
(
1− b

a
L
)

1− ρL ut (C.23)

Therefore, with rational expectations, the equilibrium price follows an ARMA(1,1). More-

over, stationarity of an ARMA process depends entirely on the autoregressive parameters,

and not on the moving average parameters. Specifically, whenever the roots of (1−ρz) = 0

lie outside the unit circle, this system is stationary. In other words, whenever ρ < 1, the

rational expectations equilibrium is stationary, while this was not enough to guarantee

stationarity of the price dynamics when agents think in partial equilibrium.

Simulation. We simulate the CE, REE and PET equilibrium. We start all three cases

from a steady state with v0 = v̄, such that uninformed agents’ beliefs are consistent with

the prices they observe.

Steady State. For the REE and CE equilibrium concepts, uninformed agents’ beliefs in

steady state are simply equal to EU,0[v1] = v̄. On the other hand, for PET agents’ beliefs

to be consistent with the steady state price they observe, it must be that the steady state

extracted fundamental ṽss satisfies both these expressions:

P PET
0 = av̄ + b ((1− ρ)v̄ + ρ ((1− ρ)v̄ + ρṽss)) (C.24)

PCE
0 = aCE ((1− ρ)v̄ + ρṽss) + bCE v̄ − cCE (C.25)
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so that:

(1− ρ)v̄ + ρṽss =

(
a+ b(1− ρ)− bCE

)
v̄ − c+ cCE

aCE − bρ
(C.26)

EPETU,0 [v1] = (1− ρ)v̄ + ρ


(
a+ b(1− ρ)− bCE

)
v̄ − c+ cCE

aCE − bρ

 (C.27)

Impulse Response Function. We then shock the economy in period 1 with u1 = 5 and

ut = 0 for t > 1, and we compute the impulse response function for each equilibrium

concept. We plot the demeaned price path to study the response to shocks while taking

into account the difference in steady states.

Figure 9: Normal Times Demeaned Price Path. Impulse response function following a shock to
the fundamental value of the asset u1 = 5.
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This impulse response function shows PET’s ability to generate momentum and re-

versal to “normal-times” shocks.

C.1.3 Displacement

Information Structure after a Displacement. Kindleberger-style displacements are

associated with periods of uncertainty about long term outcomes, and this uncertainty

gradually resolves over time. We model a displacement as an unanticipated and uncertain

shock to the unconditional mean of the fundamental value of the asset. Specifically, we
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can write the evolution of the fundamental value of the asset as follows:


vt = (1− ρ)v̄ + ρvt−1 + ut if t ≤ 0

vt = (1− ρ)(v̄ + ω) + ρvt−1 + ut if t > 0
(C.28)

When the displacement is “announced” in period t = 0, all agents have the same prior

unconditional distribution, ω ∼ (µ0, τ
−1
0 ). Starting from period t = 1 informed agents

receive a signal st = ω + εt, with εt ∼iid N(0, τ−1
s ) each period, and they also continue

to observe ut. Uninformed agents do not observe these signals, and can still only learn

information from past prices.

Starting from the steady state equilibrium, let the shock be announced in period t = 0,

we can then write the evolution of the fundamental value of the asset as follows:

vt = (1− ρt)(v̄ + ω) + ρtv0 +
t−1∑
j=0

ρjut−j (C.29)

We can re-write this as:

vt = (1− ρt)(v̄ + ω) + ρtv0 + Ut−1 + ut (C.30)

where Ut−1 = ∑t−1
j=1 ρ

jut−j.

Informed Agents’ Beliefs. Informed agents’ beliefs are given by:

EI,t[vt+1] = (1− ρt+1)

v̄ +
(

tτs
tτs + τ0

St + τ0

tτs + τ0
µ0

)
︸ ︷︷ ︸

EI,t[ω]

+ ρt+1v0 + Ut (C.31)

VI,t[vt+1] = (1− ρt+1)2 (tτs + τ0)−1︸ ︷︷ ︸
VI,t[ω]

+σ2
u (C.32)

where St ≡
∑t
j=1 sj, and since sj = ω + εj, we can re-write this as a stationary AR(1)

process with mean ω and AR(1) coefficient
(
t−1
t

)
: (St − ω) = 1

t(1−( t−1
t )L)εt.
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Uninformed Agents’ Beliefs. Turning to uninformed agent’s beliefs, we proceed in

the same two steps as when solving the model in normal times: first, we determine what

unbiased signal uninformed agents extract from prices; second, we determine how they

use this information to compute their forecasts about next period fundamentals.

Misspecified Mapping used to Extract Info from Past Prices. Unlike in normal times,

uninformed agents now have to gain information about two shocks (ut and εt) from prices,

and both these shocks are incorporated into prices via informed agents’ beliefs. Therefore,

uninformed agents extract Ei,t−1[vt] from Pt−1. To do so, they must form beliefs about

what generates the prices they observe, which in turn requires them to from beliefs about

all other agents’ beliefs. Specifically, they correctly understand how informed agents form

their beliefs:

ẼI,t−1[vt] = (1− ρt)
(

(t− 1)τs
(t− 1)τs + τ0

St + τ0

(t− 1)τs + τ0
µ0

)
+ ρtv0 + Ut (C.33)

ṼI,t−1[vt] = (1− ρt)2((t− 1)τs + τ0)−1 + σ2
u (C.34)

but they mistakenly think that all other uninformed agents do not infer information from

prices:

ẼU,t−1[vt] = (1− ρt)(v̄ + µ0) + ρtv̄ (C.35)

ṼU,t−1[vt] = (1− ρt)2τ−1
0 + σ2

u

1− ρ2 (C.36)

Given these beliefs, they think that market clearing prices are generated by:

Pt−1 = aCEt−1ẼI,t−1[vt] + bCEt−1ẼU,t−1[vt]− cCEt (C.37)

where aCEt−1 ≡
φṼU,t−1

φṼU,t−1+(1−φ)ṼI,t−1
, bCEt−1 ≡

(1−φ)ṼI,t−1
φṼU,t−1+(1−φ)ṼI,t−1

, cCEt−1 ≡
ṼU,t−1ṼI,t−1AZ

φṼU,t−1+(1−φ)ṼI,t−1
, and

where ṼI,t−1[vt+1] and ṼU,t−1[vt+1] are given by (C.34) and (C.36) respectively.

Importantly, notice that the mapping that uninformed agents use to extract informa-

tion from prices is now time-varying (since aCEt−1, bCEt−1 and cCEt−1 are all time-varying). The

time variation in these coefficients stems from the fact that uninformed agents understand

that displacements generate changes in uncertainty.
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Uninformed agents then invert this mapping to infer information from prices:

ẼI,t−1[vt] = 1
aCEt−1

Pt−1 −
bCEt−1
aCEt−1

ẼU,t−1[vt] + cCEt
aCEt−1

(C.38)

Uninformed Agents’ Beliefs. We are now left to pin down how uninformed agents
update their beliefs given the information they extract from prices. For ease of notation,
let ṽt|t−1 ≡ ẼI,t−1[vt] from (C.38). We can then write this as:

ṽt|t−1 = (1− ρt)
(
v̄ +

(
(t− 1)τs

(t− 1)τs + τ0

(
ω +

∑t−1
j=1 εj

t− 1

)
+ τ0

(t− 1)τs + τ0
µ0

))
+ ρtv0 + Ut−1 (C.39)

Uninformed agents’ forecasts are then given by:

EU,t[vt+1] = (1− ρt+1)
(
v̄ + EU,t[ω|ṽt|t−1]

)
+ ρt+1ṽ0 + ρEU,t[Ut−1|ṽt|t−1] (C.40)

VU,t[vt+1] = (1−ρt+1)2VU,t[ω|ṽt|t−1]+ρ2VU,t[Ut−1|ṽt|t−1]+2(1−ρt+1)ρCovU,t[ω,Ut−1|ṽt|t−1]+(1+ρ2)σ2
u

(C.41)

where:

EU,t

 ω

Ut−1

 =

 E[ω] + Cov(ω,ṽt|t−1)
Var(ṽt|t−1)

(
ṽt|t−1 − E[ṽt|t−1]

)
E[Ut−1] + Cov(Ut−1,ṽt|t−1)

Var(ṽt|t−1)
(
ṽt|t−1 − E[ṽt|t−1]

)
 (C.42)

CovU,t

 ω

Ut−1

=

 Var(ω)−
(Cov(ω,ṽt|t−1))2

Var(ṽt|t−1) Cov(w,Ut−1)−
Cov(ω,ṽt|t−1)Cov(Ut−1,ṽt|t−1)

Var(ṽt|t−1)

Cov(w,Ut−1)−
Cov(ω,ṽt|t−1)Cov(Ut−1,ṽt|t−1)

Var(ṽt|t−1) V(Ut−1)−
(Cov(Ut−1,ṽt|t−1))2

Var(ṽt|t−1)

 (C.43)

and

E


ω

Ut−1

ṽt|t−1

 =


µ0

0

(1− ρt)µ0 + ρtṽ0

 (C.44)

Cov


ω

Ut−1

ṽt|t−1

=


τ−1

0 0 (1−ρt)
(

(t−1)τs
(t−1)τs+τ0

)
τ−1

0

0
(

1−ρ2(t−1)

1−ρ2 ρ2σ2
u

) (
1−ρ2(t−1)

1−ρ2 ρ2σ2
u

)
(1−ρt)

(
(t−1)τs

(t−1)τs+τ0

)
τ−1

0

(
1−ρ2(t−1)

1−ρ2 ρ2σ2
u

)
(1−ρt)2

(
(t−1)τs

(t−1)τs+τ0

)2(τ−1
0 +((t−1)τs)−1)+

(
1−ρ2(t−1)

1−ρ2

)
ρ2σ2

u


(C.45)

Therefore, we can write uninformed agents’ beliefs as:

EU,t[vt+1] = θ1,tPt−1 + θ2,t (C.46)
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where:

θ1,t =
(

(1− ρt+1)Cov(ω, ṽt|t−1)
Var(ṽt|t−1) + ρ

Cov(ω, Ut−1)
Var(ṽt|t−1)

)
1
aCEt−1

(C.47)

Equilibrium. Given agents’ beliefs, equilibrium prices are given by:

Pt = Ct +
(

(1− ρt+1)Cov(ω, ṽt|t−1)
Var(ṽt|t−1) + ρ

Cov(ω, Ut−1)
Var(ṽt|t−1)

)
bt
aCEt−1

Pt−1

+ at

(
tτs(1− ρt+1)
tτs + τ0

)
1

t
(
1−

(
t−1
t

)
L
)εt (C.48)

Pt = Ct + btθ1,tPt−1 + at

(
tτs(1− ρt+1)
tτs + τ0

)
1

t
(
1−

(
t−1
t

)
L
)εt (C.49)

where Ct is deterministic. This resembles an AR(2) process, but this time with time-

varying roots.

Rational Expectations Equilibrium Comparison. To solve for the rational ex-

pectations equilibrium, we compute similar steps as above, with the one difference that

uninformed agents are able to recover vt|t−1 = E1,t−1[vt] from past prices.

Solving for the equilibrium price, we find that:

PREE
t = CREE

t +
(

(1− ρt+1)Cov(ω, ṽt|t−1)
Var(ṽt|t−1) + ρ

Cov(ω, Ut−1)
Var(ṽt|t−1)

)
btvt|t−1+atvt+1|t−1 (C.50)

PREE
t = CREE

t + at

(
1−

(
(1− ρt+1)Cov(ω, ṽt|t−1)

Var(ṽt|t−1) + ρ
Cov(ω, Ut−1)
Var(ṽt|t−1)

)
bt
at
L
)
vt+1|t (C.51)

(
PREE
t − P̄

)
=
(
at(1− ρt+1)tτs

tτs + τ0

) (1−
(

(1− ρt+1)Cov(ω,ṽt|t−1)
Var(ṽt|t−1) + ρCov(ω,Ut−1)

Var(ṽt|t−1)

)
bt
at
L
)

t
(
1−

(
t−1
t

)
L
) εt

(C.52)

so that the REE equilibrium price resembles an ARMA(1,1) process with time-varying

coefficients. Once again, notice that the AR roots are always less than one.
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Impulse Response Function. We initiate the economy at the same steady state as

in normal times. In period t = 0, a displacement is announced, and all agents share the

same unconditional distribution of the shock to the unconditional mean of the fundamental

value of the asset: ω ∼ N(µ0, τ
−1
0 ). Finally, starting in period t = 1, informed agents

receive a signal st which is informative about the fundamental value of the asset.

Period t = 0. In period t = 0 agents learn that starting next period the unconditional

mean of the fundamental value of the asset is v̄ + ω, where ω ∼ N(µ0, τ
−1
0 ). For all

equilibrium concepts, informed agents’ posterior beliefs are given by:

EI,0[v1] = (1− ρ) (v̄ + µ0) + ρv0 (C.53)

VI,0[v1] = (1− ρ)2(τ0)−1 + σ2
u (C.54)

Uninformed agents’ posterior beliefs differ depending on the equilibrium concept:

EU,0[v1] = (1− ρ) (v̄ + µ0) + ρ ((1− ρ)v̄ + ρṽss0) (C.55)

ECEU,0 [v1] = EREEU,0 [v1] = (1− ρ) (v̄ + µ0) + ρv̄ (C.56)

VU,0[v1] = VREE
U,0 [v1] = (1− ρ)2(τ0)−1 + (1 + ρ2)σ2

u (C.57)

VCE
U,0 [v1] = (1− ρ)2(τ0)−1 + σ2

u

1− ρ2 (C.58)

where ṽss0 is the same steady state as in the normal times case, in (C.26). Given these

beliefs, we can construct P0, PCE
0 , PREE

0 using (C.3), and we can also obtain the mapping

that uninformed agents use to extract information from P0 (this is given by the CE price

function).

Period t = 1. Informed agents obtain s1 and their posterior beliefs are given by:

EI,1[v2] = (1− ρ2)
(
v̄ + τs

τs + τ0
S1 + τ0

τs + τ0
µ0

)
+ ρ2v0 + ρu1 (C.59)

VI,t[v2] = (1− ρ2)2(τs + τ0)−1 + σ2
u (C.60)

Uninformed PET agents learn information about u0 from P0 by extracting ṽ0 from

71



prices.

EU,1[v2] = (1− ρ2)(v̄ + µ0) + ρ2ṽ0 (C.61)

VU,1[v2] = (1− ρ2)2(τ0)−1 + (1 + ρ2)σ2
u (C.62)

where:

ṽ0 =
P0 − bCE0 ECE0,U [v1] + cCE0

aCE0
(C.63)

Similarly, uninformed agents’ beliefs for the CE and REE equilibrium concpets are given

by:

EREEU,1 [v2] = (1− ρ2)(v̄ + µ0) + ρ2v0 (C.64)

VREE
U,1 [v2] = (1− ρ2)2(τ0)−1 + (1 + ρ2)σ2

u (C.65)

ECEU,1 [v2] = (1− ρ2)(v̄ + µ0) + ρ2v̄ (C.66)

VCE
U,1 [v2] = (1− ρ2)2(τ0)−1 + σ2

u

1− ρ2 (C.67)

Given these beliefs, we can solve for the CE, PET and REE equilibrium prices in period

t = 1.

Period t > 1. Starting in period t = 2, uninformed agents gain information about

both Ut and St by learning from past prices, and the economy evolves as described above.

Figure 10: Displacement Demeaned Price Path and Extrapolation Parameter. Impulse
response function following a displacement, modeled as an uncertain shock to the unconditional mean of
the process.
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C.2 Permanent Shocks - Random Walk Fundamentals

The way I have modelled normal times shocks and displacements draws a distinction

between permanent and transitory shocks. In what follows, I relax this distinction by

considering the case where fundamentals evolve according to a random walk, so that both

normal times and displacement shocks are permanents.

In this case, displacement shocks differ to normal times shocks because displacements

are shocks for which informed agents gain more information about over time (while normal

time shocks are effectively revealed next period, so there is no sense in which agents

gradually gain more information about these shocks over time, other than by observing

their realization).

C.2.1 Setup

Assets. Consider an economy where agents are solving a portfolio choice problem be-

tween a risky and a riskless asset. The risk-free asset is in zero net supply, and we

normalize its price and risk free rate to one, Pf = Rf = 1. The risky asset is in fixed net

supply Z, and the fundamental value of the asset evolves according to a random walk:

vt = vt−1 + ut (C.68)

where ut ∼ N(0, τ−1
u ).

Agents and Preferences. There is a continuum of measure one of agents, and we

assume that they are only concerned with the fundamental value of the asset, so that at

time t they have the following demand function for the risky asset:

Xit = Eit[vt+1]− Pt
AV arit[vt+1] (C.69)

where Eit[·] and V arit[·] characterize agent i’s beliefs about next period fundamental given

the information set they have at time t.
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Information Structure in Normal Times. All agents know the unconditional dis-

tribution of ut. Moreover, a fraction φ of agents are informed, and they observe the whole

history uj for j ≤ t before making their portfolio choice in each period. A fraction (1−φ)

of agents are uninformed, and they do not observe ut, vt nor their history. However, they

can learn information from past prices.

Equilibrium. In equilibrium, uninformed agents’ beliefs must be consistent with past

prices they observe, given their model of the world. Moreover, all agents trade according

to their demand functions in (C.69) given their beliefs, and markets clear.

Pt = atEI,t[vt+1] + btEU,t[vt+1]− ct (C.70)

where at =
(

φVU,t
φVU,t+(1−φ)VI,t

)
, bt =

( (1−φ)VI,t
φVU,t+(1−φ)VI,t

)
, ct =

(
VI,tVU,t

φVU,t+(1−φ)VI,t

)
AZ, and Vi,t =

Vari,t[vt+1] for i ∈ {I, U}. Therefore, in order to find the equilibrium price, we need to

pin down informed and uninformed agents’ beliefs about vt+1.

C.2.2 Normal Times

Agents’ Beliefs. Informed agents’ beliefs are simply given by:

EI,t[vt+1] = vt−1 + ut (C.71)

VI [vt+1] = σ2
u (C.72)

Since prices in our economy are fully revealing, uninformed agents’ beliefs are given by:

EU,t[vt+1] = ṽt−1 (C.73)

VU [vt+1] = 2σ2
u (C.74)

where ṽt−1 is uninformed agents’ beliefs of previous period fundamental, which they ex-

tract from past prices.

To understand what information uninformed agents extract from prices, we need to pin
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down what uninformed agents think is generating the price that they observe. Suppose

that uninformed agents use a simple heuristic, and think that prices are increasing in

fundamentals and decreasing in a constant risk premium component δ as follows:

Pt−1 = γṽt−1 − δ =⇒ ṽt−1 = 1
γ
Pt−1 + δ

γ
(C.75)

We can then re-write uninformed agents’ beliefs as:

EU,t[vt+1] = θPt−1 + θδ (C.76)

where θ = 1
γ
. By learning from past prices in this way, uninformed agents extrapolate

prices to learn about fundamentals, and θ captures the degree of price-based extrapolation.

Partial Equilibrium Thinking. In normal times, PET provides a micro-foundation

for θ. This allows to make predictions about the extent of biases in individual level beliefs,

depending on the environment.

Equilibrium. By substituting these expressions for agents’ beliefs in (C.70), we find

that equilibrium prices evolve according to:

Pt = avt + bθPt−1 + bθδ − c (C.77)

Starting from a steady state where the fundamental value of the asset is constant at v0,

if we study the impulse response function to a shock u1 6= 0, we have that:

Pt =
t−1∑
j=1

(βθ)j(av1 + bθδ − c) + (βθ)t (C.78)

The economy will converge to a new steady state if and only if βθ < 1. Otherwise, prices

and uninformed agents’ beliefs become extreme and decoupled from fundamentals.

Impulse Response Function. We plot the impulse response function in Figure 11.
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Figure 11: Path of Equilibrium Prices and Extrapolation Parameter when fundamentals
evolve according to a random walk.
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C.2.3 Displacement

Displacement Shock and Information Structure. We model a displacement as a

one-off shock to fundamentals, ω, whose realization no agent can observe. Instead, agents

have a prior distribution of ω ∼ N(µ0, τ
−1
0 ). The shock is announced in period t = 0, and

comes into effect in period t = 1.

vt = v0 + ω +
t∑

j=1
ut (C.79)

Starting in period t = 1, all informed agents receive a common signal st = ω+εt where

εt ∼ N(0.τ−1
s ). Uninformed agents do know see the signals, but can still learn information

from past prices.

Agents’ Beliefs. In period t = 0, when the displacement is announced, agents’ beliefs

are as follows:

EI,0[v1] = v−1 + µ0 + u0 (C.80)

VI,0[v1] = τ−1
0 + σ2

u (C.81)

EU,0[v1] = ṽ−1 + µ0 (C.82)

VU,0[v1] = τ−1
0 + 2σ2

u (C.83)
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Starting in period t = 1, agents’ beliefs are given by:

EI,t[vt+1] = v0 +
(

tτs
tτs + τ0

St + τ0

tτs + τ0
µ0

)
+

t∑
j=1

uj (C.84)

VI,t[vt+1] = (tτs + τ0)−1 + σ2
u (C.85)

EU,t[vt+1] = ẼI,t−1[vt] (C.86)

VU,t[vt+1] =
(
VU,t−1[vt] + σ2

u

)
−

((
(t−1)τs

(t−1)τs+τ0

)
τ−1

0 + (t− 1)σ2
u

)2

(
(t−1)τs

(t−1)τs+τ0

)2 (
τ−1

0 + ((t− 1)τs)−1
)

+ (t− 1)σ2
u

(C.87)

Once again, we need to specify what information uninformed agents extract from

prices. When agents think in partial equilibrium, we can write their beliefs as follows:

EU,t[vt+1] = θtPt−1 + θtδt (C.88)

where PET provides a micro-foundation for the time-varying extrapolation coefficients.

We solve for PET solving the same steps as usual. The one step that requires us

to make additional assumptions regards the uncertainty faced by uninformed agents.

Specifically, the unconditional variance of the process for fundamentals is infinity given

the process is a random walk. Instead, we assume that cursed agents have the same

variance as uninformed PET agents.

Equilibrium. If we turn off all normal time shocks, on average, in equilibrium, prices

evolve as follows:

Pt = at(v0 + ω) + btθtPt−1 + btθtδt − ct (C.89)

For simplicity, let δt = ct = v0 = 0. Then, we can write prices as:

Pt =
at +

t−1∑
j=1

j∏
i=1

(θtbt+1−i) at−j

ω +
t∏

j=1
(θtbt+1−j)P0 (C.90)

Impulse Response Function. We plot the impulse response function of the displace-

ment shock in Figure 12.
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Figure 12: Path of Equilibrium Prices and Extrapolation Parameter when fundamentals
evolve according to a random walk.
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C.3 Unobservable Growth Rate of Dividends

In this section we consider an alternative setup, where uninformed agents can observe

dividends, and they are instead learning about the unobservable growth rate of dividends.

Fundamentals and Shocks. All agents solve a portfolio choice problem between a

riskless asset in zero net supply where we normalize the price and risk free rate to 1,

and a risky asset in fixed supply Z which pays a stream of dividends Dt+1 each period.

Dividends evolve as follows:

Dt+1 = Dt + gt+1 + ξt+1 (C.91)

gt+1 = (1− ρ)ḡ + ρgt + ut+1 (C.92)

where ξt+1 ∼ N(0, σ2
ξ ) and ut+1 ∼ N(0, σ2

u). Following a displacement, the process for

dividend growth is shocked such that:

gt+1 = (1− ρ)ḡ + ρgt + ω + ut+1 (C.93)

where ω ∼ N(µ0, τ
−1
0 ). Therefore this displacement shock is equivalent to shocking the

unconditional mean of the growth rate of dividends by
(

ω
1−ρ

)
.
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Agents and Preferences. We consider an OLG economy where all agents live for one

period, and have the following demand function for the risky asset:

Xit = Eit[Dt+1]− Pt
AVit[Dt+1] (C.94)

In this economy, agents are concerned with next period payoff, but we shut down specu-

lative motives to keep things tractable.

Information Structure. In normal times, all agents know ḡ, ρ, the distribution of ξt
and ut, and all agents also observe Dt. Moreover, informed agents observe ut+1. Unin-

formed agents can learn information from past prices.

Displacements are unanticipated shocks that are announced in period t = 0, at which

point all agents share the same unconditional distribution for ω ∼ N(µ0, τ
−1
0 ). Starting in

period t = 1, informed agents receive signals st = ω+ εt where εt ∼ (N, τ−1
s ) each period.

Uninformed agents do not observe st, but can learn information from past prices.

For tractability, we assume that no agent uses the history of Dt to learn information

about gt. This assumptions allows us to not have to deal with an additional signal that

agents receive about gt, and which they would be combining with the information they

either receive or learn from past prices. One way to rationalize this is to think of σ2
u as

being extremely large, so that ∆Dt provides too noisy a signal of gt+1.

C.3.1 Normal Times

Informed Agents’ Beliefs. In normal times informed agents’ beliefs are given by:

EI,t[Dt+1] = Dt + gt+1 (C.95)

VI [Dt+1] = σ2
ξ (C.96)

Cursed Agents’ Beliefs and Cursed Equilibrium Mapping. Uninformed agents’

beliefs depend on the equilibrium concept. We assume that cursed agents form their
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beliefs based on the unconditional mean of the unobservable growth rate of dividends.

ECEU,t [Dt+1] = Dt + ḡ (C.97)

VCE
U,t [Dt+1] = σ2

u

1− ρ2 + σ2
ξ (C.98)

The cursed equilibrium price function is therefore given by:

PCE
t = Dt + aCEgt+1 + bCE ḡ − cCE (C.99)

where aCE =
(

φVCEU,t
φVCEU,t +(1−φ)VI,t

)
, bCE =

(
(1−φ)VI,t

φVCEU,t +(1−φ)VI,t

)
, cCE =

(
AZVI,tVCEU,t

φVCEU,t +(1−φ)VI,t

)
. There-

fore, notice that the price dividend “ratio” evolves as an AR(1) process which is stationary

so long as ρ < 1. (
PCE
t −Dt

)
− P −DCE = ut+1

1− ρL (C.100)

where P −DCE = ḡ − cCE is the unconditional mean of PCE
t −Dt.

PET Agents’ Beliefs and Equilibrium Prices. We assume that PET agents learn

information from prices under the mistaken belief that all other agents are cursed. Let

·̃ denote uninformed agents beliefs about a variable. Uninformed agents then extract g̃t
from prices as follows:

g̃t = PCE
t−1 −Dt−1 − bCE ḡ + cCE

aCE
(C.101)

So actually there is a sense in which agents are learning information about fundamentals

from past price dividend ratios. Uninformed agents mistakenly think that high price

dividend ratios reflect periods of high growth.

EU,t[Dt+1] = Dt + (1− ρ)ḡ + ρg̃t (C.102)

VU,t[Dt+1] = σ2
u + σ2

ξ (C.103)
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The PET equilibrium price is then given by:

Pt = Dt + agt+1 + b ((1− ρ)ḡ + ρg̃t)− c (C.104)

where a =
(

φVU,t
φVU,t+(1−φ)VI,t

)
, b =

( (1−φ)VI,t
φVU,t+(1−φ)VI,t

)
, c =

(
AZVI,tVU,t

φVU,t+(1−φ)VI,t

)
. Rearranging this

expression, and using the results above, we can rewrite the price dividend ratio as an

AR(2).

(Pt −Dt)− P −D = a
ut+1

(1− ρL)
(
1− ρb

aCE
L
) (C.105)

where P −D = (ḡ − c) − bρ
aCE

(ḡ − cCE). For the price dividend ratio to be stationary in

normal times, we need both roots of the autoregressive coefficients to lie outside the unit

circle: ρ < 1 and ρb
aCE

< 1.

REE Agents’ Beliefs and Equilibrium Prices. Finally, rational uninformed agents

also learn from past prices, but are able to extract the right information from them.

EREEU,t [Dt+1] = Dt + (1− ρ)ḡ + ρgt (C.106)

VREE
U,t [Dt+1] = VU,t[Dt+1] (C.107)

The REE equilibrium is then given by:

PREE
t = Dt + agt+1 + b((1− ρ)ḡ + ρgt)− c (C.108)

where a, b and c are the same coefficients as in PET, as agents have the same conditional

variance in PET and REE.

Rearranging and using the results above, we see that in normal times REE prices

evolve according to an ARMA(1,1), which is stationary as long as ρ < 1:

(PREE
t −Dt)− P −D

REE = a

(
1 + bρ

a
L
)

(1− ρL) ut+1 (C.109)

where P −DREE = ḡ − c.
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Simulation. Figure 13 simulates the path of equilibrium prices in this economy when

ḡ = 0 (left panel) and for ḡ > 0 right panel.

Figure 13: Path of equilibrium prices in normal times with an unobservable growth rate
of dividend. In the left panel ḡ = 0, while in the right panel ḡ > 0.

C.3.2 Displacement and Normal Times Nested

Shock. Starting from the normal times steady state, suppose a displacement shifts the

unconditional mean of the growth rate of dividends from ḡ to ḡ + ω
1−ρ .

Dt+1 = Dt + gt+1 + ξt+1 (C.110)

gt+1 = (1− ρ)ḡ + ρgt + ω + ut+1 (C.111)

In period t = 0, all agents learn about the existence of this shock, and have the same

unconditional prior over it ω ∼ N(µ0, τ
−1
0 ). Starting in period t = 1, informed agents

receive signals st = ω + εt each period, where εt ∼ N(0, τ−1
s ). Uninformed agent do not

observe this signal, and instead continue to learn information from past prices.

Period t > 1. To solve the the model for period t > 1 it is convenient to rewrite the

process for dividends conditional on the information set in period t = 0:

Dt+1 = Dt + (1− ρt+1)
(
ḡ + ω

1− ρ

)
+ ρt+1g0 + Ut+1 + ξt+1 (C.112)
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where Ut+1 = ∑t
j=0 ρ

jut+1−j = ρtu1 +∑t−1
j=1 ρ

jut+1−j + ut+1 = ρUt + ut+1.

Informed Agents. In period t > 2, informed agents’ beliefs are given by:

EI,t[Dt+1] = Dt + (1− ρt+1)
(
ḡ +

tτs
tτs+τ0

St + τ0
tτs+τ0

µ0

1− ρ

)
+ ρt+1g0 + Ut+1︸ ︷︷ ︸

gt+1|t

(C.113)

VI,t[Dt+1] =
(

1− ρt+1

1− ρ

)2

(tτs + τ0)−1 + σ2
ξ (C.114)

CE Agents’ Beliefs and Equilibrium. Uninformed cursed agents’ beliefs are given by:

ECEU,t [Dt+1] = Dt + (1− ρt+1)
(
ḡ + µ0

1− ρ

)
+ ρt+1ḡ (C.115)

VCE
U,t [Dt+1] =

(
1− ρt+1

1− ρ

)2

(τ0)−1 + σ2
u

1− ρ2 + σ2
ξ (C.116)

The cursed equilibrium price is then given by:

PCE
t = Dt + aCEt gt+1|t + bCEt ḡ − cCEt (C.117)

PET Agents’ Beliefs and Equilibrium. PET agents’ beliefs are given by:

EU,t[Dt+1] = Dt+(1−ρt+1)
(
ḡ + EU,t[ω|g̃t|t−1]

1− ρ

)
+ρt+1g̃0 +ρtũ1 +ρEU,t[Ut|g̃t|t−1] (C.118)

VU,t[Dt+1] =
(

1− ρt+1

1− ρ

)2

VU,t[ω|g̃t|t−1]+ρ2VU,t[Ut|g̃t+1|t]+2
(

1− ρt+1

1− ρ

)
ρCovU,t(ω, Ut|g̃t|t−1)+σ2

u+σ2
ξ

(C.119)

Simulation. Figure 14 simulates the path of equilibrium prices in this economy when

ḡ = 0 (left panel) and for ḡ > 0 right panel. Parameters are the same as in the normal

times simulations.
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Figure 14: Path of equilibrium prices following a displacement when dividends evolve
with an unobservable growth rate. In the left panel ḡ = 0, while in the right panel ḡ > 0.
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