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Abstract

We develop an index of segregation based on two premises: (1) a measure of seg-
regation should disaggregate to the level of individuals, and (2) an individual is more
segregated the more segregated are the agents with whom she interacts. We present an
index which satisfies (1) and (2), and that is based on agents’ social interactions: the
extent to which Blacks interact with Blacks, Whites with Whites, etc. We use the index
to measure school and residential segregation. Using detailed data on friendship net-
works, we calculate levels of within-school racial segregation in a sample of US schools.
We also calculate residential segregation across major US cities, using block-level data
from the 2000 US Census.
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I Introduction

Ethnic and racial segregation is an important and well-studied social phenomenon. For over

50 years, social scientists have been concerned with measuring the extent, and estimating

the impact of, segregation in education, housing, and the labor market. The result of this

scholarship has been nearly 20 different indices of segregation, and a consensus that the

spatial separation of many minorities from jobs, role models, health care, and quality local

public goods is a leading cause of racial and ethnic differences on many economic, social,

and health related outcomes (Almond, Chay, and Greenstone [2003], Borjas [1995], Case and

Katz [1991], Kain [1968], Cutler and Glaeser [1997], Massey and Denton [1993], Collins and

Williams [1999]).

We propose a new approach to measuring segregation based on two premises: (1) a

measure of segregation should disaggregate to the level of individuals, and (2) an individual

is more segregated the more segregated are the agents with whom she interacts. Having a

measure of segregation with the flexibility to disaggregate to the level of individuals opens up

windows of opportunity for empirical work, and a better understanding of the mechanisms

by which social interactions affect economic and social outcomes. We also desire a measure

that gives a larger level of segregation for individuals whose contacts are more segregated.

Consider Figure 1, which depicts the distribution of blacks across metropolitan Detroit,

Michigan. There is a large oval in the center of the city containing almost exclusively black

households. Any measure of segregation should report that the household in the epicenter is

more segregated than a household close to the edge, even when each household has all black

neighbors.

insert figure 1

We use social networks – individuals and their connections – as our mathematical frame-

work. In this framework, we propose three specific properties that any measure of segregation

in a network should satisfy. We prove that one and only one index satisfies these properties

and the two broad principles above; which we label the “Spectral Segregation Index” (SSI).
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The properties require that: (a) [Monotonicity] if all individuals in Network A have a larger

share of their interactions with agents of the same group than in Network B, then Network

A is more segregated than B; (b) [Linearity] an individual is more segregated the more

segregated are the agents with whom she interacts, and this relationship takes on a linear

form; and (c) [Homogeneity] if all individuals in a network have half of their interactions

with members of the same group, the index of segregation is one-half. The latter condition

normalizes the index.

We defer a formal definition of the SSI to Section IV. Informally, the SSI measures the

connectedness of individuals of the same group. Consider the following recursion. Define

“first-order segregation” as the share of one’s social interactions that are with individuals of

their own group. Let “second-order segregation” be the average over all own-group social

interactions of their first order segregation. Following this line, an agent’s nth order segrega-

tion is the average over own group connections of their n − 1 order segregation, and so on.

The SSI of an individual is the limit, as n →∞, of that individual’s nth order segregation.

The SSI has important advantages over existing measures of segregation. First, as a gauge

of residential segregation, it is invariant to arbitrary partitions of a city; existing measures

are not. Second, it allows one to investigate how segregated multiple minority groups are,

permitting comparisons of Asians, Blacks, Hispanics, Native Americans, and so on, within

and across cities. The SSI makes it possible to compare Hispanic segregation across cities,

compare the Hispanics of east Los Angeles from the Hispanics in south Los Angeles, or

compare them to Blacks in Chicago. Third, our index allows one to analyze the full distri-

bution of segregation, allowing researches to move beyond aggregate statistics, which can be

misleading. The typical Black household is more segregated than the typical Hispanic house-

hold, yet the most segregated Hispanics are orders of magnitude more segregated than any

Blacks. Fourth, there are inherent multiplicative effects captured by SSI which other indices

omit. An individual’s susceptibility to group-transmitted influences depends on how many

contacts the individual has with members of the group, the susceptibility of her contacts,

the susceptibility of their contacts, and so on.
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The SSI has some disadvantages as well. It depends on the quality of the information one

can obtain about social interactions. In the case of residential segregation, for example, the

information is restricted to where individuals live within a city and not how they interact.

Unlike other indices, however, as better information on the nature of social interactions is

obtained, the SSI becomes a sharpened proxy of those interactions. Second, it is sensitive to

the fraction of individuals in a network who have the race/ethnicity under study. We address

this issue by calculating a “baseline,”and adjusting actual SSI taking this into account.

Finally, implementing the SSI can be computationally demanding, though our applications

demonstrate that the computational tasks are often feasible.

After formally deriving the SSI, we apply the index to two well-known social phenom-

ena: measuring the extent of school and residential segregation. We begin by measuring

within-school segregation patterns, by race, using data on friendship networks available in

the National Adolescent Study of Health (Addhealth). Our analysis unearths a rich set

of new facts. First, the relationship between the share of black students in a school and

their segregation is non-linear: When black students are relatively scarce in a school, their

friendship networks tend to be integrated. As their share of the student population increases,

segregation increases dramatically, plateauing when blacks comprise roughly twenty-five per-

cent of the student population. Schools that have twenty-five percent or more black students

exhibit severe within school racial segregation of social interactions. This phenomenon un-

dermines the intuition that a school that has equal shares of black and white students is well

integrated. A similar, though less pronounced, pattern exists among Asians and Hispanics,

and is weaker still for Whites. The common practice of using the percentage of a racial

group in a school as a proxy for within school segregation measures for that group is deeply

problematic.

We also calculate the extent of segregation across major cities in the US, using block-

level data from the 2000 Census. We find that, on average, Blacks are more segregated

than any other racial group, but the most segregated Hispanics are more segregated than

the most segregated Blacks. A virtue of the SSI is the ability to measure segregation at
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disaggregated levels, allowing one to measure the intensity of same-race clusters or uncover

the most segregated city blocks in America. For example, we find that the largest minority

ghetto in the US consists of Hispanics in Los Angeles, CA – 17,909 blocks are connected to

each other. It is important to emphasize that these dissagregated results cannot be obtained

with any of the existing measures of segregation. We also use SSI to correlate segregation

with several MSA-level variables, and replicate Cutler and Glaeser’s [1997] classic work on

gettoes.

We compare our results to existing calculations applying commonly-used measures. The

rank correlation between the SSI and the popular dissimilarity index is .42. The rank cor-

relation with the index of isolation is .93. Our index can be interpreted as a measure of

segregation as isolation that is rooted in a social-interactions framework.

The organization of the paper is as follows. Section II provides a brief discussion of

existing segregation indices. Section III provides an example that previews our general

results. Section IV derives the SSI. Section VI uses the SSI to estimate the prevalence of

within-school and residential segregation. Section VII concludes. There are two appendices.

Appendix A contains the technical proofs of all formal results and additional theoretical

results omitted from the text. Appendix B presents a guide to the programs we used to

compute our index.

II Background and Previous Literature

At an abstract level, segregation is the degree to which two or more groups are separated

from each other. However, practical definitions can be quite distinct from one another,

conceptually and empirically. Massey and Denton [1988] group existing indices into five

classes: evenness, exposure, concentration, centralization, and clustering, which they take

to resemble the totality of what is usually meant by “segregation.” Evenness refers to the

differential distribution of two groups across areas in a city. Measures of exposure are

designed to approximate the amount of potential contact and interaction between members

of different groups. Concentration indices measure the relative amount of physical space
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occupied by a minority group. Centralization is the extent to which a group is located near

the center of an urban area, and clustering measures the degree to which geographic units

inhabited by minority members abut one another, or cluster spatially. Of the five dimensions

of segregation, only two are used in the vast majority of applied work in the social sciences:

evenness and exposure. Economists ultimately care about the degree to which segregation

affects social interactions. For this purpose, concentration and centralization are inadequate,

and measures of clustering are largely avoided due to their sensitivity to the number and

population of census regions.

The most popular measure of segregation is the “dissimilarity” index (developed by Jahn,

Schmid, and Schrag [1947]), a measure of evenness. Suppose a city is divided into N sections.

The dissimilarity index measures the percentage of a group’s population that would have to

change sections for each section to have the same percentage of that group as the whole city.

In symbols:

(1)

index of dissimilarity =
1

2

N∑
i=1

∣∣∣∣ blacki

blacktotal

− nonblacki

nonblacktotal

∣∣∣∣ ,

where blacki is the number of blacks in area i, blacktotal is the total number of blacks in the

city as a whole, nonblacki is the number of non-blacks in area i, and nonblacktotal is the

number of non-blacks in the city. The dissimilarity index has the appealing feature that it

is invariant to the size of a minority group.

A second commonly-used measure of segregation is “isolation,” a measure of exposure.

As Blau [1977] recognized, Blacks can be evenly distributed among residential areas in a

city, but experience little exposure to non-Blacks if they are a relatively large proportion

of the city. Isolation measures the extent to which Blacks are exposed only to one other,

rather than to non-Blacks. The index is computed as the minority-weighted average of each

section’s minority population:

index of isolation =
∑

i

(
blacki

blacktotal

· blacki

personi

)
,
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where personi refers to the total population of area i.

insert figure 2

Dissimilarity and isolation possess at least two undesirable properties. First, they explic-

itly depend on the arbitrary ways in which cities are partitioned into sections (e.g. census

tracts). That is, fixing the location of minorities and non-minorities in a city and re-drawing

the sections can drastically change the measure of segregation. An exaggerated example is

depicted in Figure 2. The city depicted in the figure has a dissimilarity index of 0 – perfect

integration – when sections are drawn vertically and has a dissimilarity index of 1 – extreme

segregation – when sections are drawn horizontally; no household has moved. Similarly, ver-

tical partitions yield an isolation index of .5 whereas horizontal partitions produce an index

of 1. This is a highly undesirable property of any segregation index, as it may artificially

indicate that a city is more or less segregated as a function of how the tracts are drawn. The

key flaw is that there is no theory of how the city should be partitioned. Intuition suggests

that the more disaggregated the better, but complete disaggregation results in all sections

having only one race: maximum segregation, regardless of the city.

Second, existing measures are not defined when trying to measure segregation at the

level of individuals. It is difficult to correctly identify the relationship between segregation

and outcomes without individual-level variation in segregation. As a descriptive matter,

individual segregation may be more useful than city-wide segregation. Rather than corre-

late individual economic outcomes with city-wide segregation, one can correlate individual

outcomes with individual measures of segregation. On the other hand, the right level of

aggregation depends on the problem at hand; group-level, neighborhood, or city-level seg-

regation may be the appropriate level of aggregation in many applications. It is an open

empirical question, one that cannot be answered without a measure that disaggregates to

the individual level.

The literature in economics involving the measurement of segregation is small (Phillipson

[1993], Hutchens [2001], Frankel and Volij [2004]). Similar to our exercise, their approach
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is axiomatic – identifying desirable properties that an index should possess. The literature

takes an arbitrary partition of a city as given, and uses the partition to identify indices

axiomatically. There is little in common with our approach.

III A Motivating Example

insert figure 3

Before moving to a full description of the model, we present a stark example which

previews the Spectral Index and discusses (informally) some of its properties.

Consider City 1, depicted in Figure 3. The nodes in City 1 represent households. Each

household can be one of two races: black or white. In the figure, household (A, 1) is white,

(B, 1) is black, and so on.

Our measure of segregation is based on the social network of the members of a race.

Consider the black households in City 1. For the purposes of this example, we use the in-

formation on where an individual lives to infer whom she interacts with, and trace out a

network of social interactions based on residential patterns. Suppose that each individual

interacts only with her immediate neighbors; (A, 1) interacts with (B, 1) and (A, 2); (D, 4)

interacts with (C, 4), (E, 4) , (D, 3) , and (D, 5) , and so on. The resulting network of black

households is shown on the right in Figure 3. The thickness of a line connecting two in-

dividuals reflects the intensity of their relationships; thicker lines imply a node is at least

one-third of an individual’s social interactions. Here, (B, 2) has four neighbors, so she has a

less intense relation to each one of them than (B, 1), who has only three neighbors.

Black households are partitioned in two separate networks. We call each of these sub-

networks a connected component. The fact that social networks are often partitioned in such

connected components is of practical importance; components often correspond to ghettos or

other natural clusterings of individuals. Let the connected component on the left, comprising

eight households, be denoted Component 1, and the component on the right, with three

households, Component 2.
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We envision segregation as the degree of connectivity of the race’s social network. The

potential effects of segregation arise because Blacks tend to interact with Blacks, and Whites

with Whites. The idea that segregation is synonymous with same-race interactions has—once

a network of social interactions is constructed—a formal expression in network connectivity.

The SSI is one measure of network connectivity. It arises as the unique measure that

satisfies certain properties, the most important of which is a requirement that an individ-

ual be more segregated the more segregated are his direct neighbors. Concretely, that an

individual’s segregation is the weighted sum of her neighbors’ segregation, weighted by how

much she interacts with each one of them. We discuss the properties in detail in the next

section.

insert table 1

The SSI for blacks in City 1 is in Table 1. Note that Component 1 is more segregated than

Component 2, which reflects that the network in Component 1 is more connected than that

in Component 2. The SSI also lets us disaggregate the component-wide SSI into individual

household SSI: the component-wide SSI is the average of the individual SSI. Note that (C, 1)

is the most segregated household in this example, which captures that this is an individual

who only interacts with blacks. On the other hand, (D, 4) is the most integrated household

in Component 1.

Individual SSI should be interpreted as the distribution of component-wide SSI within

a network. So a particular individual’s SSI is relative to the SSI of the component she is

in. Note how (D, 4)’s share in Component 1’s segregation is small, while the distribution

of segregation in Component 2 is quite even. So (C, 4)s SSI is smaller than (C, 5)s. The

component’s SSI is the average of the individual SSIs; hence, an individual’s SSI may be

much larger than the SSI of her connected component.

Finally, we remark that the SSI is invariant to the size of the population of blacks. If we

double the size of City 1 by adjoining a copy of the city to itself, SSI will not change. We

would have two new components and their respective SSIs, and the city SSI would be the
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weighted average of the four components.

IV Measuring Segregation Based on Social

Interactions

A. The Social Interactions Framework

The basic building blocks for our measure of segregation is a set of individuals V and

information on whether (and, possibly, how much) any two individuals interact. Hence, the

measure depends on the network of social interactions among the individuals in V . Our

measure identifies segregation of the members of a group with the intensity of the social

interactions among the members of that group.

Given any two individuals, suppose we know whether they interact with each other and

the intensity of their interaction. For any two individuals v and v′ in V , let the number

rvv′ ≥ 0 represent the nature of their relationship. If rvv′ = 0, then there is no relation

between v and v′; if rvv′ > 0 then v and v′ have a relationship. Abusing notation, we use

V to refer to the number of elements in the set V . The information on interactions is then

summarized in a V × V matrix R, with typical element rvv′ .

We make two important assumptions about the numbers rvv′ in R. First, we assume that

individuals face a budget constraint for their social interactions:

∑
v′∈V

rvv′ = 1

for all v in V . Think of rvv′ as the fraction of time that v spends with v′. Second, we assume

that if rvv′ = 0, then rv′v = 0, though we allow rvv′ and rv′v to be different when they are not

zero. We allow for rvv′ 6= rv′v because a relationship can have a different level of importance

or intensity to v and to v′. In fact, this comes up in empirical applications of SSI: v may

interact only with v′, in which case rvv′ = 1, while v′ may split his time equally among n

other relationships, so rv′v = 1/n.
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Now, suppose that we know the race of each individual v ∈ V . For the rest of the section,

fix one race, called race h, and drop from the set V all individuals from races other than h.

Form the matrix B from the matrix R by retaining only those rvv′ for which both v and v′

belong to race h. The matrix B (a submatrix of R) reflects the network of same-race social

interactions among the members of race h.

Let us briefly discuss two examples, which preview our empirical applications in Section 6.

First, suppose we construct B using information on residential patterns (and only information

on residential patters). We would need to set a criterion for who is a neighbor of whom,

and set rv,v′ = 0 when v and v′ are not neighbors. The criterion could be that v and v′ are

neighbors if they live sufficiently close to each other. We can then suppose, in the absence of

additional information on social interactions, that the relation with each of his neighbors is

equally important to v, and set rvv′ to be the inverse of the number of v’s neighbors. Finally,

we keep only those agents that belong to the race under analysis (race h). Second, suppose

we construct B from a survey on social interactions where individuals are asked to name

their 10 closest friends. We would then set rvv′ = 0 if v and v′ do not name each other as

friends, and set rvv′ to be the inverse of the number of v’s friends, supposing the survey does

not let us infer the relative importance of each friendship. The two examples are developed

in detail empirically in Section 6.

It is important to note that, while we focus on the network of same-race interactions,

the intensity of those interactions is affected by cross-race connections through rvv′ . For

example, let v be a member of race h. If v interacts only with v′, and v′ is in race h, then

rvv′ = 1 and 1 will be the only non-zero element of v’s row of rvv′s in B. On the other hand,

if v interacts with 9 members of another race, besides v′, then rvv′ = 1/10 and 1/10 will be

the only non-zero element of v’s row of rvv′s in B. This difference implies that v is more

integrated when he has relations with individuals of other races. We discuss this feature of

our measure in Section 5.C.

A segregation index for race h is a function that assigns a real number Sh(B) to each

matrix B of same-race interactions, along with functions assigning a real number sh
v(B) for
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each individual member v of race h, such that Sh(B) is the average of the individual sh
v(B).

Our definition of a segregation index reflects our desire that segregation be measured at

the individual level. Individual segregation is measured in the same units as racial segrega-

tion; race-h segregation is the average of the segregation of all individuals of race h.

B. Three Properties Which Define The Spectral Segregation Index

We present three properties that jointly define our measure of segregation.

The first property requires that an increase in the intensity of same-race interactions imply

an increase in segregation. Concretely, say that a matrix B′ has more intense interactions

than matrix B if all the entries of the matrix B′ are at least as large as those of B. Then,

if B = (rvv′) and B = (r′vv′) we have rvv′ ≤ r′vv′ for all v and v′. A segregation index

satisfies the property of monotonicity if, whenever B′ has more intense interactions than B,

Sh(B) ≤ Sh(B′).

The second property is a normalization of the index. Let d > 0 be a real number. A

matrix B is homogeneous of degree d if, for all v in race h,
∑

v′ rvv′ = d. An example of a

homogeneous of degree 3/4 matrix is

 0 1/4 1/2
1/4 0 1/2
1/2 1/4 0


A segregation index is homogeneous if, whenever B is homogeneous of degree d, Sh(B) = d.

Homogeneous networks rarely occur in practice, but the property gives an interpretation

to the segregation of networks one encounters in applications. For example, a measure of

0.8 can be read as the segregation race-h individuals would have if they spent 80% of their

time with individuals of the same race. Homogeneity also provides a “scale free” property:

If City A has more households than City B, but each household in both cities has the same

fraction of same-race neighbors, the index will report the same level of segregation for both

cities.

Our third property is the most substantial and potentially controversial. We want the

segregation of an individual i to depend on the segregation of the individuals with whom
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she interacts. We require that this dependence takes a linear form. We need some auxiliary

concepts to present the third property.

Let Nv be the set of individuals of race h that v interacts with: the set of v′ in race

h with rvv′ > 0. In a similar vein, consider the set of individuals who interacts with the

members of Nv, and those that interact with those that interact with the members of Nv,

and so on. The resulting set of individuals, with direct or indirect interactions with v, is

called the connected component of B that v belongs to; denote this set of individuals by Cv.

The third property requires that sh
v(B) be the average of sh

v′(B) among v’s race-h social

interactions, relative to the average segregation of the individuals in v’s connected compo-

nent. If SCv is the average segregation of individuals in Cv, say that a segregation index

satisfies linearity if

sh
v(B) =

1

SCv

∑
v′∈Nv

rvv′s
h
v′(B).

There are two qualitative assumptions behind the linearity property. The first is that v’s

segregation depends on his neighbors’ segregation. As described in the Introduction, if one

considers Figure 1, which depicts the distribution of blacks across metropolitan Detroit, it

seems evident that individuals in the center of the city’s black ghetto should be measured

as more segregated than those closer to the edge. Linearity is one embodiment of this

requirement. In section 5.D we discuss the implications of relaxing this assumption. Note

that, while the weights rv,v′ must add to one, an individual’s SSI is not bounded by 1.

The second qualitative property is that the dependence is modulated by the connected

component’s segregation. That is, a decrease in the segregation of one of v’s neighbors will

affect v less if v lives in a highly segregated component. The key idea is that v receives the

effects of segregation from her different neighbors, and any one neighbor is less important

when the component is highly segregated.

It is not possible to relax linearity, while retaining the linear influence of neighbors’

segregation. Suppose that v’s segregation depends directly on her neighbor’s segregation,
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but that it does not take the form assumed in the linearity property. Suppose that the

component’s segregation does not play a role, and that v’s segregation depends directly on

the sum of neighbor’s segregation. Then, an increase in a neighbors’ segregation gives a one-

for-one increase in v’s segregation, and this in turn directly impacts v’s neighbor. The result

does not necessarily (in fact, generally will not) converge to new levels of segregation. Our

use of the components’ segregation guarantees that the effect of an increase in segregation for

a neighbor does not impact fully on v, at least not for large values of segregation, ensuring

that there is a solution to the problem of determining all individuals’ segregation measures.

The three properties described above jointly define our index. The spectral segregation

index (SSI) is the (unique) segregation index that satisfies the properties of monotonicity,

homogeneity, and linearity (Theorem 1, Appendix A).

On a connected component, SSI is the largest eigenvalue of the corresponding irreducible

submatrix of B. The individual SSI are obtained by distributing the component’s SSI among

individuals using the eigenvector corresponding to the largest eigenvalue. Thus, SSI results

from familiar matrix operations and is easy to compute using standard software, such as

MATLAB. The irreducible submatrices of B are often very sparse, meaning that many of

its entries are zeroes. There are efficient algorithms for computing the largest eigenvalues

of sparse matrices, and MATLAB comes with one such algorithm incorporated in its eigs

command.

V Analysis of the Spectral Segregation Index

The previous section described three properties which provide the precise assumptions un-

derlying the SSI. In this section, we provide further properties and features of SSI, illuminate

an alternative interpretation for the index, discuss other ways to incorporate cross-race in-

teractions, and describe the implications of relaxing the linearity property.

14



A An Alternative Interpretation of SSI.

An alternative way to interpret the SSI is through a model of group-specific capital trans-

mission. SSI is a measure of how fast same-group influences are disseminated purely as a

result of social contacts.

Suppose that the matrix of same group social interactions, B, has only one connected

component (without this assumption, the result will hold in each connected component of

B.) Let xv be a measure of how much group-specific capital an individual v has. We think

of this capital as the depth of one’s group identity; something that arises from repeated

social interaction with people of one’s own group. There is an inherent difference between

visiting a church once to listen to their gospel choir and interacting constantly with people

who are involved with gospel music. The intensity with which one experiences the same

social phenomenon is the key to this difference. Segregation is related to this intensity, and

one can show how SSI captures the intensity of same-group social phenomena.

Suppose that, in each period t, individual i’s h-capital grows depending on how much

h-specific capital her contacts have, and on how much v interacts with them. Specifically,

suppose that

(2)

xvt = xvt−1 +
∑
v′∈B

rvv′xv′t−1,

and that xv0 is given, for all v.

The law of motion in (2) is our assumption that capital reflects the intensity of v’s own-

race identity. Similar models have been used to capture cultural transmission in networks;

see Brueckner and Smirnov [2004].

Proposition 1

For all vectors (xv′0)v′ of initial stocks of capital, and all v,

lim
t→∞

xvt

xvt−1

= 1 + Sh(B)
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Proposition 1 shows that we can interpret SSI as the rate of growth of group-specific

influences. It follows from a familiar calculation in Perron-Froebenius theory; recall that SSI

is the largest eigenvalue of B in the case where we have only one connected component. In

economics the result is reminiscent of the balanced growth result in the theory of Leontief

systems (see e.g. Samuelson and Solow [1953]).

Examples of this type of group-specific capital transmission may include language (Lazear

[1999]) and the choice of first names (Fryer and Levitt [2004]. In a simple model of culture

and language, Lazear [1999] shows that incentives to assimilate by learning to speak the

native language are decreasing in the size of an ethnic enclave. Fryer and Levitt [2004]

argue that the choice of distinctive first names is a cultural investment, and show that this

practice is more common in highly segregated areas. Both of these papers are consistent

with the basic model of group-specific capital transmission described above and, ipso facto,

our measure of segregation.

B General Properties

We discuss here some important and more subtle properties of SSI.

First, SSI identifies isolated individuals by marking them as perfectly integrated. If v

has no connections (rvv′ = 0) to individuals of his group, then sh
v(B) = 0. If v has relations

with at least one individual of his same group, sh
v(B) > 0 (Proposition 3, Appendix VIII).

Perfectly-integrated groups are rare, but we do observe perfectly integrated individuals in

our applications. These are individuals who only interact with others of different races. SSI

singles them out by assigning them a measure of zero.

Second, small changes in the structure of social interactions will entail small changes in

SSI. SSI is a continuous function of the elements of B (Proposition 5, Appendix VIII).

Third, SSI is related to a calculation of connections between individuals. If v has a

relation to v′, and v′ has one to v′′, then information can travel from v to v′′ by the path

v−v′−v′′. It is intuitive to think of the number of such paths as a measure of how connected

v is to v′′. Segregation, on the other hand, is the extent to which individuals of the same
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group are connected, so counting paths between individuals gives rise to a natural measure

of segregation. It turns out that SSI has a close connection to the number of paths that exist

between individuals. Counting paths gives another interpretation of SSI.

We flesh out this connection in Appendix A. Here we give some simple calculations

suggesting the nature of the relationship between counting paths between individuals within

the same group and SSI.

Consider the following special case: each non-zero rvv′ takes the same value, so rvv′ is

either 0 or r ∈ (0, 1). Let Nk
v be the set of individuals for which there is a path to v with at

most k individuals. Then,

sh
v(B) =

∑
v′∈Nk

v

αvv′s
h
v′(B),

where αvv′ is proportional to the number of paths between v and v′. Note how all the v′

in the same component as v affect v’s segregation. The weight of each v′ is affected by the

number of paths between v and v′. Concretely, αvv′ is obtained as the number of paths of

length k (with k individuals) from v to v′ multipled by rk/(Sh(B))k. The number of paths

from v to v′, in turn, is the vv′ entry of the matrix 1
rk Bk.

Fourth, and related to the previous property, SSI captures certain multiplier effects in the

social interactions network. An individual’s susceptibility to own-group influences (patterns

of speech, names, and other group-specific behavior) depends on how many contacts the

individual has with his or her own-group and the susceptibility of those contacts.

insert figure 4

Consider the following thought experiment, depicted in Figure 4. We show the effect of

changing the race of one individual in a network, the resulting changes in SSI capture the

essence of the multiplier effects. Network A has 3 black individuals who are connected to

each other, and all of which are also connected to one white individual. To illustrate the

multiplier effects captured in SSI, Network B changes the race of Individual 4 so she is also
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black now. To keep the calculations transparent, we assume that 4 also has three neighbors

in total. Table 2 shows the levels of segregation before and after Individual 4 changes race.

insert table 2

C More on Cross-race Interactions

We argued that SSI captures cross-race interactions by their effect on the intensity of same-

race interactions. We expand on this point here using a simple example, and then discuss

alternative ways of incorporating cross-race interactions.

We have argued that, if v interacts only with v′, and v′ is in race h, then v would be more

segregated than if she interacts with 9 other individuals who are not in race h. We make

the same point here with a concrete example. Consider Figure 5. The blacks in the city on

the left have a SSI of 0.83. If we add white neighbors, to obtain the city on the right, the

blacks have a much lower SSI of 0.5. The change is purely the result of the lower intensity of

same-race interactions due to a decrease in rvv′s. Note that the SSI for the city on the right

follows immediately because all black agents spend exactly 1/2 their time with other blacks.

insert figure 5

An alternative way to incorporate cross-race interactions would be to explicitly let the

segregation of individual v depend on the segregation of the neighbors that are not the same

race as her. There are two potential problems with this. First, we would need to decide

whether a more segregated white neighbor makes a black agent more or less segregated.

There are simple arguments for both effects: a black agent may be expected to interact less

with a highly segregated white, and thus be more isolated from whites, or she may get more

white specific capital from a segregated white, and become less isolated from whites. Our

approach is agnostic with respect to the effect of one race’s segregation on another, and

allows for the possibility of deciding the matter empirically.

The second objection is practical. The computational complexity of calculating SSI

depends critically on the dimensions of the matrices B. If we need to allow explicitly for
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the interactions that each v has with all her neighbors, we would tend to get much more

connected networks, and thus much larger matrices B. As a result, the already slow task

of calculating SSI would become extremely time consuming and likely infeasible in many

applications.

D Relaxing Linearity

Without assuming linearity, we would be unable to derive a unique numerical index. If,

for example, the linearity assumption is replaced with a monotonicity condition – higher

segregation among i’s same-race neighbors imply higher sh
i (β) – one cannot pin down a

specific numerical index. The situation is analogous to that of income distribution measures,

where general properties lead to orderings of Lorenz curves, that do not allow one to compare

any two distributions. In our framework a Lorenz-curve-type ordering is readily obtained:

group h is more segregated in β than in β′ if the distribution of (
∑

j r′ij) dominates that

of (
∑

j rij). Something similar arises in the measurement of income distribution. Atkinson

[1970] presents a partial order on income distributions, in which two distributions may not

be comparable in terms of income inequality. When Lorenz curves cross, one has to decide

how much weight to assign to each side of the intersection. Rather than choose adhoc

weights which could differ for each application (which, some have argued, is the main reason

researchers do not use the Atkinson index as a measure of segregation, Massey and Denton

[1988]), we get implicit weights through the Linearity property.

VI Two Applications of SSI: Measuring School and

Residential Segregation

Here we develop two illustrative applications of SSI: estimating racial segregation of friend-

ship networks in schools and residential segregation.
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A School Segregation

There is an impressive literature on the effects of segregation across schools on achievement.

Jonathan Guryan [2004] estimates that half of the decline in black dropout rates between

1970 and 1980 is attributable to desegregation plans. Robert Crain and Jack Strauss [1985]

find that students randomly offered the chance to be bussed to a suburban school were more

likely to work in professional jobs nearly 20 years after the experiment. Christopher Jencks

et al. [1972] estimate that desegregation raises black achievement by 2-3 percent. Based

on a meta-analysis of ninety-three studies, Robert Crain and Rita Mahard [1981] conclude

that desegregation has a significant effect on black achievement, especially younger children,

though other meta-analyses are less conclusive (St. John [1975]).

Yet, in the spirit of Martin Luther King, who dreamed that one day “little black boys

and black girls will be able to join hands with little white boys and white girls and walk

together as sisters and brothers,” some argue that society should strive for integration within

schools not just across them (Lucas [1999], Mickelson [2001]. Within school segregation,

commonly referred to as “second-generation segregation,” is thought to be as important as

segregation across schools in inhibiting the educational opportunities of racial and ethnic

minorities (Mickelson [2001]). Previous studies use traditional measures of segregation (such

as exposure and dissimilarity) to measure segregation across schools. These measures do

not disaggregate to the individual level and cannot use information on students’ actual

social contacts – limiting our ability to understand the relationship between within-school

segregation and outcomes.

A.1 Data

The National Longitudinal Study of Adolescent Health (Addhealth) database is a nationally

representative sample of 90,118 students entering grades 7 through 12 in the 1994-1995

school year. A stratified random sample of 20,745 students was given an additional in-home

interview; 17,700 parents of these children were also interviewed. Thus far, information has
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been collected on these students at 3 separate points in time: 1995, 1996, and 2002. There

are 175 schools from 80 communities included in the sample, with an average of more than

490 students per school, allowing within school analysis. Students who are missing data on

race, grade level, or friendships are dropped from the sample.

A wide range of data are gathered on the students, as described in detail on the Addhealth

website (http://www.cpc.unc.edu/projects/addhealth). Our primary outcome variables are

divided between measures of academic achievement and those that are more associated with

social behaviors. The social variables include smoking, skipping school (without a valid

excuse), interracial dating, and whether or not a student is happy at their school. Smoking

and skipping school are answers to the question, “During the past 12 months, how often

did you...” Answer choices range from never to nearly everyday. Interracial dating is a

dichotomous variable equal to 1 if the student reports ever dating interracially and zero

otherwise. Happiness measures whether or not students report being happy at their school.

The academic variables include: Peabody Vocabulary Test (PVT) scores, whether or not a

student plans to attend college, grades in the previous grading period, and a measure of how

much effort the student exerts. All responses (including grades) are self-reported. For each

student, grades were calculated by aggregating grades in 4 subjects: math, history, science,

and English.

To measure school segregation, we make use of the information on friendship networks

within schools available in the Addhealth. All students contained in the in-school survey

were asked, “List your closest male/female friends. List your best male/female friend first,

then your next best friend, and so on.” Students were allowed to list as many as 5 friends

from each sex. Each friend can be linked in the data and the full range of covariates in the

in-school survey (race, gender, grade point average, etc) can be gleaned from each friend.

Friendship links are defined as unions: student A is considered to be “friends” with student

B if A lists B as a friend, B lists A as a friend, or both.
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A.2 Analysis

The school-level spectral segregation index is calculated by taking, for each racial group, the

average SSI of each connected component (CC) in the school that consists of students from

that group, weighted by the size of those connected components. In other words, to calculate

the black group SSI for school 1, assuming there are two black connected components in that

school 1, we find: [(SSI of CC1)(size of CC1) + (SSI of CC2)(size of CC2)]/[size of CC1 +

size of CC2]. Students who are singletons (who do not have any friends from their racial

group) are considered to be connected components of size 1 with SSI equal to 0 – completely

integrated.

In order to make individual SSI comparable across connected components each individual

SSI is multiplied by the size of the connected component of which it is a part.

insert figure 6

Figure 6 depicts the relationship between the percentage of a racial group in a school and

the level of segregation for that racial group in that school, using the Addhealth database.

Each observation is a school. Grade levels 7-12 are combined. School level segregation ranges

from .014 to .848 across the 175 schools in AddHealth. The mean level of segregation is .618;

the standard deviation is .146.

Many researchers assume the relationship between the segregation of a racial group within

a school and the percentage of that group in the school is linear (see, for example, Orfield

[1983]). This approximation is a good first pass for Whites (though we find nearly all White

data points above the 45◦ line), but less true for Hispanics and Asians. For Blacks, the

relationship between percent own-race in a school and own-race segregation is even more non-

linear. As the percentage of black students increases from zero to twenty-five percent, black

segregation rises sharply. Above twenty-five percent, Blacks are near complete segregation.

It is important to emphasize that our data do not allow one to disentangle why these

patterns exist. The segregation observed in Figure 6 could be a result of own-race preferences

for social interactions or the response to external discrimination or racism. Understanding
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the causal model underlying these observations is of great importance to our understanding

of social interactions, bussing programs, and the optimal organization of schools, among

other things.

insert table 3

Table 3 presents estimates of the relationship between individual-level measures of segre-

gation and individual outcomes. Individual level segregation ranges from 0 to 174.973 with

a mean of .618 and standard deviation of 2.48.

We estimate models of the form:

outcomei,j = αj + Xiβ + γsegregationi + ξ1black · segregationi

+ξ2asian · segregationi + ξ3hispanic · segregationi + εi,j,(3)

where i indexes individuals, j indexes schools, Xi represents a set of individual level controls,

and αj denotes school fixed-effects. The coefficient γ measures the relationship between the

segregation of individual i and a given outcome for i. We concentrate on ξi, which measures

the differential effect of individual segregation for group i relative to whites, and γ+ξi which

captures the overall relationship between segregation and outcomes for group i.

For Blacks, individuals who are more segregated are less likely to smoke (a behavior

predominant among white teens) and have lower test scores. Segregated Asians are less

likely to skip school, more likely to have high test scores, put in more effort, and report

being happier. Segregated Hispanics are less likely to smoke, more likely to have low test

scores, low grades, and low probability of attending college. Not surprisingly, students of all

races are less likely to date interracially when schools are more segregated. Similar results

are obtained when one excludes school fixed-effects.

B Residential Segregation

The ideal data to estimate residential segregation would contain information on the nature

of each household’s interactions with other households. In lieu of this, we proceed like we
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did for the imaginary city of the example in Section III: we use geographical distance to infer

social interactions. In addition, since we lack individual-level data we work with block-level

data from the 2000 US Census. We restrict our sample to the 313 Metropolitan Statistical

Areas (MSAs). The data are available from Geolytics Inc. (see http://www.geolytics.com/).

Census blocks contain, on average, 300 households, and are approximately 100 meters in

radius. We identify a block with the race/ethnicity of the majority of its inhabitants. This

assumption is not too problematic, as blocks are strikingly homogeneous: 94.3% of Iowans

live in a homogeneous census block and so do 77% of Texans. Save Washington DC, more

than 60% of the blocks in all states contain households of only one race (for half the states,

80% or more of the blocks contain only one race).

We assume that two blocks are neighbors if they are within one kilometer of each other.

From this, we know when rij should be non-zero. The next step is to calculate the intensities

of social interactions; the values of rij. We obtain the total number, di, of neighbors of block

i, i.e. the number of blocks that are within one kilometer of i, independent of race. Absent

further information on the structure of social interactions in neighborhoods and consistent

with the budget constraint described in Section 4, let rij = 1/di. With the resulting matrix

B, we are in a position to calculate SSI using the characterization we present in the appendix.

An important caveat to our application of SSI to residential segregation is that it ignores

block density. To correct for this, one could assign all individuals in a census block to

the centroid of that block, and run the resulting individual-level estimation. This method,

however, is computationally very costly.

B.1 Baseline Residential Segregation

Since SSI for race h is a measure of the connectivity of the race-h network it will tend to

be larger in cities with larger fractions of race-h individuals, even if individuals located at

random in the city.

We refer to the SSI one would expect to see in a city when individuals locate at random

as Baseline SSI. We provide estimates of both SSI, and of the SSI in excess of Baseline SSI.
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We have obtained measures of Baseline SSI by simulating random assignment of races

to large regular (in a graph-theoretic sense) cities with the corresponding fraction of race-h

inhabitants. Concretely, for each fraction p = 0.01, 0.02, . . . 0.99 we simulated 1, 000 cities of

100 households each, where each household is of race h with probability p.

insert figure 7

Figure 7 shows the results of our simulations. On the horizontal axis is the fraction of

race-h inhabitants, while the vertical axis shows the average SSI. When the share of race-h

inhabitants in a city is relatively small, SSI mirrors the percent race-h in a city closely. This

is to be expected. When race-h inhabitants are relatively few and assigned to a city at

random, linearity has little power to alter SSI from percent black. As the fraction of race-h

individuals increases, however, SSI significantly departs from the percentage of race-h in a

city. We have used only large cities, as we can prove (See Appendix B) that baseline SSI

converges as a city grows. In fact the simulations show the convergence to be quite fast.

B.2 The Extent of Segregation Across Cities

Detroit is the most segregated city for Blacks; Lowell, MA for whites; McAllen, TX for

Hispanics and Honolulu, HI for Asians. The list seems quite intuitive. It also confirms that

SSI is correlated with the size of a minority group. The latter point begs for a distinction

between SSI and “adjusted” SSI: the segregation in excess of baseline SSI. It is unclear which

is most closely related to economic outcomes. Adjusted SSI tells us more about preferences,

while the original SSI is a better measure of the pure connectedness in a network. The

most segregated cities using adjusted SSI for Asians, Blacks, Hispanics, and Whites are: Los

Angeles, CA; Milwaukee, WI; Flagstaff, AZ; and Pine Bluff, AR, respectively. Approximately

11% of households in Milwaukee are black, implying an expected SSI of .1145 if blocks were

allocated at random. The actual measure of segregation is a factor of 9 larger. To generate

the level of segregation in Milwaukee, assuming blocks were assigned a race at random,

Blacks need to comprise 80% of the population.
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We have emphasized how the SSI allows one to consider more disaggregated units than

the city. One of the most interesting units is the agglomeration of same-race blocks: racially

homogenous ghettos, which SSI identifies endogenously as connected components (see Sec-

tion 4). This is related to city-wide SSI, but SSI weights the ghetto’s SSI against members

of the same race in other parts of the city, who are more integrated. For Blacks and Whites,

the largest ghetto is Detroit – implying an enormous amount of city-wide segregation. Re-

markably, 87% of black blocks in Detroit comprise one large ghetto. The largest connected

component is San Francisco for Asians, and Los Angeles for Hispanics. Hispanics in Los An-

geles comprise the largest minority ghetto in America; 17,909 Hispanic blocks are connected.

Along with the variation across cities in SSI, there are several MSA level characteristics

which are associated with higher levels of racial segregation. For instance, cities which exhibit

higher segregation for blacks tend to be larger cities, have a high percentage of female-headed

households, and are less likely to be in the West.

insert table 4

Table 4 presents a correlation matrix of popular measures of segregation. These measures

include dissimilarity, isolation, Gini coefficient, exposure, entropy, and interaction. Also

included in the matrix are SSI, SSI minus the baseline, and the ranking of cities based solely

on the their fraction of Blacks. All measures were calculated using data at the census block

level for 326 MSAs. The Spectral index has surprisingly little correlation with dissimilarity,

gini, entropy, and interaction – averaging less than .5 – and high correlation with isolation

and exposure; averaging more than .90. Given the nature of the isolation and exposure

indexes, it is not surprising that SSI is more correlated with the measures relative to the

others. As a measure of residential segregation, our measure is very similar to existing

measures of exposure with the added ability to disaggregate to the level of individuals, and

a well-understood theoretical foundation. Adjusted SSI becomes even less correlated with

dissimilarity and isolation. The fraction black in a city is highly correlated with SSI, but the

linearity property assures that this correlation is less than perfect.
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B.3 The Relationship Between Residential Segregation and Outcomes

The economic literature on the effects of segregation on outcomes is impressive. Case and

Katz [1991] show that youths in a central city are affected by the characteristics of their

neighbors. Almond, Chay, and Greenstone [2003] show that segregation of hospitals in the

Jim Crow era had a significant negative effect on infant mortality. Using evidence from the

Moving to Opportunity experiment, Katz, Kling, and Liebman [2001] and Kling, Liebman,

and Katz [2005] provide evidence that moving individuals to lower poverty neighborhoods

has substantial effects on mental and physical health of parents and children.

Cutler and Glaeser [1997] is one of the most influential papers in economics on the

impact of segregation. They use the dissimilarity index as a measure of segregation. We

re-estimate the impact of black segregation on economic outcomes with Cutler and Glaeser’s

specification. Econometrically, we estimate models of the form:

outcomei = X
′

iβ + β1segregationj

+β2segregationj ∗ blacki + εi,(4)

where outcomei is measured at the individual level and segregationj is measured at the MSA

level, and compare the results obtained with SSI and the dissimilarity index.

Identical to Cutler and Glaeser [1997], we correlate measures of segregation with various

economic and social outcomes for young people aged 20-30. We choose to focus on younger

individuals for three reasons. First, they are most susceptible to group level influences as a

result of social interactions. Second, the problems of mobility across metropolitan areas is

more easily avoided. Third, and most importantly, it mirrors the specifications in Cutler and

Glaeser [1997]. For identical reasons, we drop individuals born in a foreign country. Data

from the 1990 1% Census Public Micro Use Sample are used. Our sample contains 97, 976

individuals aged 20-24 and 139, 715 individuals between the ages of 25 and 30 residing in the

204 MSAs with at least 100,000 people and 10,000 blacks in 1990. This sample is identical

to Cutler and Glaeser [1997].

Outcome measures are divided into 3 categories: educational attainment, labor market,
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and social outcomes. Educational attainment is measured as the probability an individual

graduates from high school or college. There are two measures of labor market outcomes.

The first is whether or not an individual is idle (not working and not employed). The second

is earnings (sum of wages, salary, and self-employment income). In all specifications, we

use the natural logarithm of earnings, conditional on the individual not being in school and

reporting positive earnings. The final outcome variable is a social outcome – whether a

woman is an unmarried mother.

insert table 5

Tables 5 presents a series of ordinary least squares estimates of the relationship between

segregation and outcomes for persons aged 20-24 and 25-30, using the dissimilarity index

and the SSI – controlling for the standard set of individual and MSA-level covariates used

by Cutler and Glaeser [1997]. Each measure of segregation has been normalized such that

they have a mean of zero and a standard deviation of one.

The top panel of Table 5 replicates Cutler and Glaeser’s [1997] results using the dissim-

ilarity index. The bottom panel estimates the same specification using SSI. Results differ

slightly between SSI and dissimilarity. On each outcome, cities with higher dissimilarity in-

dices have inferior outcomes: less likely to graduate from high school or college, more likely

to be unemployed and not in school, earn less money, and more likely to be a single mother.

SSI paints a similar portrait, though the magnitudes are slightly weaker. No qualitative con-

clusions are unchanged. In all cases, the R-squared from regressions using the dissimilarity

index and those using the Spectral index are remarkably similar.

VII Conclusion

For decades, social scientists have used measures of evenness and exposure to estimate the

prevalence and impact of segregation in housing, firms, and schools. These measures have

many limitations, which we have discussed throughout. This paper develops a new measure

of segregation based on two key ideas: a measure of segregation should disaggregate to the

28



level of individuals, and an individual is more segregated the more segregated are the agents

with whom they interact. Developing three properties that any segregation measure should

satisfy, our main result shows that one and only one segregation index satisfies our three

properties and the two aims mentioned above—the Spectral Segregation Index. To illustrate

the potential of the index, it is applied to two well-known social problems: measuring within-

school and residential segregation and several new facts and insights are gleaned. We hope

the Spectral index will be a useful tool for applied researchers interested in the agglomeration

of individuals in networks.

VIII Appendix A: Technical Proofs

We present formally the results stated in Sections IV and V.

Fix a race h. Let Ck, k = 1, 2, . . . K, be the connected components of B. Abusing

notation, let Ck also denote the submatrix of B with columns (and rows) indexed by the

elements of Ck. Let λk be the largest eigenvalue of Ck, and xk be its associated eigenvector,

normalized so its entries add to one.

The Spectral Segregation Index (SSI) is the index

B 7→
(
Ŝh(B), (ŝi(B))i∈h

)
,

where Ŝh(B) =
∑

i∈h
ŝi(B)

V
and ŝi(B) = λkxki |Ck| .

Theorem 2

A segregation index satisfies Monotonicity, Homogeneity and Linearity if and only if it
is the Spectral Segregation Index.

We note that the properties of Monotonicity, Homogeneity and Linearity are independent,

in the sense that no pair of properties imply the third.

We state two additional properties of SSI. Proposition 3 was stated informally in Sec-

tion IV. Proposition 4 is informative about SSI, and used in the proofs below.
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Proposition 3

If v has at least one same-race neighbor, ŝh
v(B) > 0. If v has no same-race neighbors,

ŝh
v(B) = 0.

Proof. If i ∈ h has at least one same-race neighbor, then i is in Ck, for some irreducible

submatrix Ck. Let λk be the largest eigenvalue of Ck, and xk be its associated eigenvector.

By Lemma 6, xk is strictly positive, so xki > 0. Since λk > 0 (Lemma 6), the definition of

ŝh
i (B) implies that ŝh

i (B) > 0. Q.E.D.

Proposition 4

If Ck, k = 1 . . . K are the connected components (the irreducible submatrices) of B, then

Ŝh(B) =
K∑

k=1

(
|Ck|
V

)
ŜCk ,

and SCk is the largest eigenvalue of Ck. So Ŝh(B) is the weighted average of the com-
ponents’ largest eigenvalues.

Proof. We show that SCk is the largest eigenvalue of Ck. SCk =
∑

i∈Ck
si(B)/ |Ck| =

λk

∑
i∈Ck

xi. Since x was normalized so that
∑

i∈Ck
xi = 1, it follows that SCk = λk. That

Sh(B) is the weighted average of the SCk follows immediately by definition of Sh(B) and

SCk . Q.E.D.

Proposition 5

Ŝh(B) is a continuous function of the entries of B

Proof. This is a direct consequence of Theorem 2 and the result in Appendix D of Horn

and Johnson [1985]. Q.E.D.
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A Proof of Theorem 2

The proof of Theorem 2 proceeds by stating and proving 5 lemmas that together establish

the theorem.

The first lemma unifies some standard results about irreducible matrices.

Lemma 6

Let C be a real, non-negative, irreducible matrix. Then A has a real, positive, eigenvalue
λ with associated eigenvector y. Such that

1. y is strictly positive, so yi > 0 for all i, and y is the unique, up to a scalar multiple,
strictly positive eigenvector of C;

2. λ is larger than |σ|, for any other eigenvalue σ of C; in particular, λ is larger than
any other real eigenvalue.

Proof. By the Perron-Froebenius Theorem (Theorem 8.4.4 in Horn and Johnson [1985]),

C has a real, strictly positive, eigenvalue, λ, with associated strictly positive eigenvector y.

The multiplicity of λ is one and λ is larger than |σ|, for any other eigenvalue σ of C (λ is

the spectral radius of C).

Let z be any strictly positive eigenvector, by Corollary 8.1.30 in Horn and Johnson, z is

associated to eigenvalue λ. The z is a scalar multiple of y, as λ has multiplicity one.Q.E.D.

Now we verify that the spectral segregation index satisfies our three axioms.

Lemma 7

The Spectral Segregation Index satisfies Montonicity.

Proof. Let B′ have more intense interactions than B. Let C ′ = (c′ij) be an irreducible

submatrix of B′ Then the set of rows in C ′ is the union of the rows in some collection

C1, C2, . . . CL of irreducible submatrices of B. Let C = (cij) be the block-diagonal matrix
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with C1, C2, . . . CL in its diagonal. Let x′ be an eigenvector associated to the largest eigen-

value λ′ of C ′. Then C ′x′ = λ′x′, xi > 0 for all i (Lemma 6), and B′ having more intense

interactions than B imply that

(5)

λ′ =
1

x′i

∑
j∈C′

c′ijx
′
j ≥

1

x′i

∑
j∈C′

cijx
′
j

Let λ = max {|σ| : σ is an eigenvalue of C} be the spectral radius of C. Then, by Horn

and Johnson’s Theorem 8.1.26,

(6)

λ ≤ max
i∈C

1

x′i

∑
j∈C

cijx
′
j.

Statements (5) and (6) imply that λ ≤ λ′. But λ′ is SC′
(Proposition 4); so λ ≤ ŜC′

.

Now we prove that ŜCl ≤ λ, for l = 1 . . . L. Let λl be the largest real eigenvalue of Cl.

Let xl be an eigenvector of Cl, associated to λl; Let y = (yi)i∈C be the vector obtained from

xl by letting yi = xli if i ∈ Cl and 0 otherwise. Then, since C is block-diagonal, λl is an

eigenvalue of C, with associated eigenvector y. By definition of λ, since λl is real, λl ≤ λ.

But Proposition 4 implies that λl = ŜCl , so ŜCl ≤ λ, for l = 1 . . . L.

Let C ′
k, k = 1, . . . K be the irreducible submatrices of Bh′, and let each C ′

k be the union

of Lk irreducible submatrices of Bh, C ′
kl with l = 1, . . . Lk. By Proposition 4

Ŝh(B) =
K∑

k=1

Lk∑
l=1

|Ck|
V

ŜCkl

≤
K∑

k=1

ŜC′
k

Lk∑
l=1

|Ck|
V

=
K∑

k=1

ŜC′
k(B′)

|Ck|
V (B′)

= Ŝh(B′) Q.E.D.

Lemma 8

The Spectral Segregation Index satisfies homogeneity.
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Proof. Let a ∈ A be h-homogeneous of degree d. Let y = 1, then homogeneity says

that Ay = d1, so d is an eigenvalue with eigenvector y. By Lemma 6 d must coincide

with λ, the largest eigenvalue of B, and the rescaled eigenvector must coincide with x. So

Ŝh(B) = d. Q.E.D.

Lemma 9

The Spectral Segregation Index satisfies linearity.

Proof. By Proposition 4, ŜCk is an eigenvalue with eigenvector (xi), the eigenvector in

the definition of the spectral index. The, for any i, si(B) = SCkxi |Ck| = |Ck| (Ck · x|i). So

si(B) =
∑
j∈Ck

|Ck| rijxj

=
1

λk

∑
j∈Ck

|Ck| rijxjλk

=
1

SCk

∑
j∈Na

i

sj(B) Q.E.D.

Second, we prove that any index that satisfies the three axioms must coincide with the

spectral index. Let
(
Sh(B), (si(B))i∈h

)
be a segregation index that satisfies the three axioms.

Lemma 10

If B has bij = 0 for all i and j, then si(B) = ŝi(B) for all i.

Proof. By Homogeneity, Sh(B) = 0, so we must have and si(B) = 0 for all i, as si(B) ≥ 0

and Sh(B) is the average si(B). Thus the index coincides with the Spectral Segregation

Index. Q.E.D.

Lemma 11

For any B, si(B) = ŝi(B) for all i.
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Proof. If B is such that bij = 0 for all i and j, we are done by Lemma 10. Suppose that

bij > 0 for at least one i and j.

Let γ = min {bij : bij > 0} . Let D = (dij) be the matrix defined by dij = 0 if bij = 0, and

dij =
γ

|{j : bij > 0}|

if bij > 0.

Note that
∑

j dij = γ for all i, so D is homogeneous of degree γ. Then Homogeneity

implies that Sh(D) = γ. Now, by definition of D, D has more intense interactions than B.

So Monotonicity implies that Sh(B) ≥ Sh(D) = γ. Hence, Sh(B) > 0.

Fix a component Ck such that SCk > 0; since Sh(B) > 0 there must exist at least one such

component. For i ∈ Ck, let xi =
sh
i (B)

|Ck|Sh(B)
. Note that, by definition of SCkxi,

∑
i∈Ck

xi = 1.

Then SCkxi = si(B)/ |Ck| = 1
|Ck|

∑
j∈Na

i
rijsj/S

Ck , by Linearity. Then SCkxi =
∑

j∈Na
i
rijxj.

So SCkx = Ckx; SCk is an eigenvalue of Ck with eigenvector x.

Now, si(B) > 0 for all i. Since si(B) = 0 for some i would imply, by Linearity, that all

j ∈ Ni have sj(B) = 0. Then, by recursion, sj(B) = 0 for all j ∈ Ck, which would contradict

that SCk > 0. Hence x is a strictly positive eigenvector.

By Proposition 4 and Lemma 6 now SCk = ŜCk , and by the rescaling
∑

i∈Ck
xi = 1,

x must coincide with the defining eigenvector in the definition of the spectral segregation

index. Then, si(B) = ŝi(B) for all i.

Finally, take a component with SCk = 0. Then Monotonicity and Lemma 10 imply that

bij = 0 for all i and j in Ck. Q.E.D.

Lemmas (7) through (11) establish the theorem.

B Results in Section V

We first prove Proposition 1, we then state and prove additional results that were infor-

mally announced in Section V. The results are formalizations of the discussion of network

connectivity in Section V.
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Proof of Proposition 1. Let I denote the V × V identity matrix. Let D = I + B. Then

equation 2 implies that the vector xt = (xit)i satisfies xt = Dxt−1, for all t. So xt = Dtx0.

By Lemma 8.4.2 in Horn and Johnson [1985), 1 + Ŝh(B) is the largest eigenvalue of D. By

Lemma 8.2.7 in Horn and Johnson, there is a matrix L such that

lim
t→∞

(1 + Ŝh(B))−tDt = L

Then,

xit

xit−1

= (1 + Ŝh(B))
((1 + Ŝh(B))−tDtx0)i

((1 + Ŝh(B))−t+1Dt−1x0)i

→ (1 + Ŝh(B))

We provide two results that help interpret the SSI. The first relates SSI to how many

neighbors individuals have. The second result shows how SSI measures the connectivity of

the h-race network. Both results hold in the neighborhood model, where rij is either 0 or

r > 0.

Here we interpret B as graph, denoted G, for which the vertexes are the individuals and

there is an edge (link) between two indexes i and j if rij > 0 The degree of a vertex i, d (i) ,

is the number of edges at i. Let dmin = min {d (v) |v ∈ V } denote the minimum degree of

G, dmax = max {d (v) |v ∈ V } represents its maximum degree, and d = 1
|V |

∑
v∈V d (v) the

average degree of G.

Proposition 12

Let dmin, d and dmax be the minimum, average, and maximum degrees of Bh, respectively.
Then

dmin ≤ d ≤ Ŝh ≤ dmax

Proof. See Cvetkovic and Rowlinson [1990]. Q.E.D.

Let di be the number of same-race neighbors of household i. Proposition 12 proves that,

Homogeneity notwithstanding, Ŝh(B) is larger than the average di over the individuals with

a (i) = h.
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Now we use walks in a graph to bring out the relation between SSI and network connec-

tivity. A walk of length k is a sequence of (not necessarily different) vertexes v1, v2, ..., vk,

vk+1 such that for each i = 1, 2, ..., k there is an edge from vi to vi+1. A walk is closed if

vk+1 = v1. Let W θ
i be the number of walks of length θ that individual i ∈ V can take in B,

and define W θ =
∑

i W
θ
i . Let W θ

ij be the number of walks of length θ between individual

i ∈ V and j ∈ V . A graph is bi-partite if its vertex-set admits a partition into 2 classes such

that every edge has its ends in different classes. The graphs one encounters in applications

of SSI are never bi-partite.

Proposition 13

For θ sufficiently large: (1)
W θ

i

(Ŝh(B))θ−1
is approximately proportional to ŝh

i (B), and the

constant of proportionality is independent of i; (2) θ
√

W θ/nh approximates Ŝh(B); and

(3) if B is non-bipartite, W θ
ij is approximately proportional to (Ŝh(B))θ−2ŝh

i (B)ŝh
j (B).

Proof. Let U = (ui) be the eigenvectors of B, normalized to form an orthonormal basis, so

UT U = I. Let D be the matrix with the eigenvalues of B on the diagonal, and 0 everywhere

else. So A = UDUT .

If 1 is the vector with 1 in all its entries, the vector of θ-long walks (W θ
i ) is defined by

(W θ
i ) = Aθ1. So (W θ

i ) = UDθUT 1. The (ui) vectors form a basis, so there are scalars (ξi)

such that 1 =
∑

i ξiui.

Then (W θ
i ) =

∑
i ξiUDθUT ui. But UT ui = ei, the vector with i-th entry 1, and 0

elsewhere. So (W θ
i ) =

∑
i ξiλ

θ
i Uei =

∑
i ξ

θ
iλiui. Let λ1 = Sh; λ1 has multiplicity 1, as B has

a unique non-trivial eigenvector (Theorem 2.1.3 in Cvetkovic, Rowlinson and Simic [1997]).

So Sh (β) > λi, i = 2, 3 . . . |h|.

Then

1

(Sh(B))θ−1
(W θ

i ) = Sh(β)
∑

i

ξi

λθ
i

λθ
1

ui(7)

→ Sh(B)ξ1ui,(8)
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as λθ
i /λ

θ
1 → 0 for all i 6= 1. Since u1 is a scalar multiple of the (xi) vector in the definition

of the spectral index, Sh(B)ξ1u1 is a scalar multiple of sh
i .

The second statement is a theorem of Cvetkovic, stated in the survey by Cvetkovic and

Rowlinson [1990]. The third statement is essentially Theorem 2.2.5 in Cvetkovic, Rowlinson

and Simic. Q.E.D.

Proposition 13 (1) says that, as θ grows, W θ
i (Ŝh(B))θ−1 converges. Thus Ŝh measures

the growth in the number of walks that i can take. Further, it converges to something

proportional to ŝi, thus individual SSI measures explain the differences, among individuals,

in how many walks they can take relative to Ŝ. Statement (2) in Proposition 13 says that

W θ ∼ V
(
Ŝh(β)

)θ

. The total number of walks will grow at rate Ŝh(B) (a statement which

is similar, and has a similar proof, to that of Proposition 1). Finally, (3) says that two

individuals’ measures are related to how many walks there are between the two individuals,

relative to the total number of walks (given by Ŝh(B), in light of Statement (2)).

C Baseline Segregation

Here we present a theoretical justification for our “baseline” simulations. SSI converges as a

city’s size grows, so we can estimate SSI for relatively large cities (the size of 6400 is enough

in our simulations).

Let H = {0, 1} be the set of races. We are interested in only one race here, so working

with H = {0, 1} is without loss of generality. Let Vn be set of households, such that if n ≤ m

then Vn ⊆ Vm.

Let Ωn = HVn be the set of possible assignments of households to races. Abusing notation,

let ω ∈ Ωn represent the resulting Vn × Vn matrix of social interactions. Endow the power

set of Ωn with the probability measure pk obtained by letting each household be race 1 with

probability π ∈ (0, 1), independently of the races of other households.
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Let

EnŜ
h =

∑
ω∈Ωn

Ŝh(ω)pn(ω)

be the expected value of the SSI.

Proposition 14

There is S such that En ↑ S as n →∞.

Proof. We shall prove that, if n ≤ m, then

∑
ω∈Ωn

Ŝh(ω)pn(ω) ≤
∑

ω∈Ωm

Ŝh(ω)pm(ω).

Since the EnŜ
h are bounded above by 1, the result follows.

Let qn,m be the probability distribution on HVm\Vn induced by letting each household

be race 1 with probability π ∈ (0, 1), independently of the races of other households.

Abusing notation, we shall use qn,m for the probability distribution induced by qn,m on{
ω ∈ Ωm : ω|Vn = {0}Vn

}
. Then,

∑
ω∈Ωm

Ŝh(ω)pm(ω) =
∑

ω′∈Ωn

pn(ω′)

 ∑
{ω∈Ωm:ω|Vn=ω′}

qn,m(ω − ω′)Ŝh(ω)


≥

∑
ω′∈Ωn

pn(ω′)

 ∑
{ω∈Ωm:ω|Vn=ω′}

qn,m(ω − ω′)Ŝh(ω′)


=

∑
ω′∈Ωn

pn(ω′)Ŝh(ω′)
∑

{ω∈Ωm:ω|Vn=ω′}

qn,m(ω − ω′)

=
∑

ω′∈Ωn

pn(ω′)Ŝh(ω′) Q.E.D.
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IX Appendix B: A Brief Guide to Programs

Calculating the Spectral Index

All programs to calculate the Spectral Index are in Matlab. There are three files which are

used: callspec.m, neighbors.m, and blockspectral.m. We briefly describe each below. The

version of the programs described is for geographic analysis of census blocks at the MSA

level. Programs can be easily adapted for use in myriad applications.

callspec.m is the shell program that calls the other programs. It allows you to run the

SSI algorithm on a list of cities. The list should be in a text file called list#.txt, where # is

an identification string (does not necessarily need to be a number). For instance, you might

want to create a list of five cities, and denote it list1.txt. The contents of list1.txt might be:

“001”

“002”

“003”

This list, when supplied as an input to callspec.m, would tell the program to calculate

the SSI for cities whose identification numbers are 001, 002, 003, 100, and 369. Identification

numbers should be in double quotes, and each should be on a new line. The file list1.txt

should be placed in the same folder as callspec.m and the other m-files.

To run the program, simply type ’callspec’ at the Matlab prompt. You will receive a

prompt for list number. In this case, you would type ’1’ to call the above list.

Next you will receive a prompt to specify which race you wish to calculate SSI for. As

the program stands, you can choose any of four races (or they could be non-race groups,

depending on your application), or you can choose to calculate all four at once.

Finally, you are prompted to supply a neighbor radius, in kilometers. When constructing

the neighbor matrix, neighbors will be considered anyone within this radius.

callspec.m will call blockspectral.m sequentially on each of the identification numbers in

list#.txt, which in turn calls neighbors.m in order to construct the matrix. To construct

this matrix, it must reference a set of files named msa #.txt, where # stands in for the
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city identifiers. In the case of list1.txt, you would need files msa 001.txt, msa 002.txt,

msa 003.txt, msa 100.txt, and msa 369.txt. All files should again be in the same folder.

These files should have the following structure: each line is a census block (or whatever your

geographic unit of reference is) and four comma-separated columns. The first column is an

identifier and should be in double quotes. The second is latitude. The third is longitude.

The fourth is the group identifier for that block. For example, msa 369.txt might be:

“360150102006073”,42.24114,-76.81282,1

“360150108003016”,42.13062,-76.82308,1

“360150102003009”,42.20382,-76.88979,2

This would correspond to city 369 having 8 census blocks, of which 5 are majority group

1, 2 are majority group 2, and 1 is majority group 4. neighbors.m uses this information to

make the neighbor matrix needed to calculate the SSI.

The program generates two main types of output. Summary data appears in matrix called

sipartial.mat. Information about individual blocks appears in output files called si #.txt,

where again # is the city identifier. The sipartial.mat matrix has 12 columns:

Column 1: city identifier

Column 2: group identifier

Column 3: SSI for group for city

Column 4: number of connected components for group

Column 5: number of singletons for group

Column 6: median connected component size for group

Column 7: largest connected component size for group

Column 8: smallest connected component size for group

Column 9: total number of blocks of group

Column 10: percent of blocks belonging to group

Column 11: average number of neighbors for group

Column 12: average number of same-group neighbors for group

As you can see, columns 1 and 2 identify the unique city/group combination; column 3
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gives the SSI; and columns 4-12 give supporting statistics.

If you wish to find the SSI for each individual block you must look at the si #.txt output

files. These files have five columns each:

Column 1: city identifier

Column 2: connected component identifier

Column 3: block identifier

Column 4: SSI for block

Column 5: SSI for connected component

For example, to find the individual SSI for block 360150102006073 in city 369 you would

look in the file si 369.txt for the row that has 360150102006073 in the third column. The

individual SSI is the value in the fourth column.

If you wish to adapt these files for use in a non-geographic application, the main point

of modification would be at line 38 of neighbors.m, which is the linking rule. If you wished

to study the segregation of, for instance, a social network, this line of code (which currently

calculates geographic distance and compares it with the “neighbor radius” solicited earlier)

would be replaced by code that checks whether two people have a link in the social network.

Other code would have to change too of course (for instance, latitude and longitude might

be replaced by a list of friends’ IDs), but the essential thing that determines the type of

application is the linking rule.
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XI Notes

1. Groups can be defined in terms of gender, political affilation, educational attain-
ment, race/ethnicity, and so on. Our empirical applications are to race/ethnicity.

2. As a practical matter, we use the most disaggregated data publicly available: census
blocks.

3. Another way to analyze multiple groups with existing indices is to calculate the
weighted average of several dichotomous indices (see Reardon and Firebaugh [2002]). It
is not clear how to interpret the findings from such an exercise.

4. We have posted results from some of the more computationally intense calculations
on the authors’ webpages: http://www.hss.caltech.edu/~fede/ (Echenique);
http://post.economics.harvard.edu/faculty/fryer/projects.html (Fryer)

5. Other measures of evenness include the Gini coefficient (the mean absolute differ-
ence between minority proportions weighted across all pairs of geographic units, ex-
pressed as a proportion of the maximum weighted mean difference), the Atkinson index
(similar to Gini coefficient, but allows researchers to decide how to weight geographic
units which are over or under the city-wide distribution), and Entropy (the weighted
average of each geographic units deviation from the racial entropy of the city as a whole).

6. Another commonly used measure of exposure is the interaction index, which is the
inverse of the isolation index presented above.

7. We are not the first to draw attention to this flaw in measures of segregation, see
Cowgill and Cowgill [1951], Appendix A in Taeuber and Taeuber [1965], and Massey
and Denton [1988]. While this property is problematic for measures of residential segre-
gation, it is less likely to effect measures of occupational or school segregation – where
there is a natural clustering of individuals.

8. This critique is conceptual – not purely data driven. Existing measures are not
equipped to measure segregation at the level of individuals, irrespective of the available
data.

9. The SSI is the weighted average of the SSI by connected component (SCv), weighting
each component by how many individuals it has. One may be interested in identifying
highly segregated components, even where the overall population is not highly segre-
gated. In residential segregation, components can be interpreted as ghettos, and in
school segregation as same-race cliques.

10. We thank Erzo Luttmer for suggesting this interpretation.
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11. The model in Brueckner and Smirnov [2004] is slightly different, as they allow xvt

to be a weighted average of xvt−1 and xv′t−1. The statement in Proposition 1 holds for
their model with θ + Sh(B) instead of 1 + Sh(B), where θ is the inverse of the number
of neighbors each agent has.

12. Fryer and Torelli [2005] provide another natural application of SSI: measuring social
popularity in schools.

13. We have used one kilometer radii because one kilometer is the median radius of
a census tract (1.03), and tracts are the traditional notion of a neighborhood in the
literature. Our results alter little when we change criterion to 0.5 or 1.5 kilometers.

14. We need to calculate the largest eigenvalue of (each connected component of) B.
The Matlab programs to calculate all indices reported in the paper are available at
http://post.economics.harvard.edu/faculty/fryer/fryer.html

15. This likely induces little error in the estimates of segregation, given our definition
of neighbor usually encompasses several blocks. In areas such as New York, however,
this limitation may be quite restrictive.

16. For a few values of p we ran simulations of much larger cities, with 2, 500 nodes,
and we obtain the same results. For the simulation of the full range of p we chose size
100 because the larger simulations are very time intensive. All simulations were done
in Matlab; the code is available from the authors.

17. For a complete list of the most and least segregated cities, see
http://post.economics.harvard.edu/faculty/fryer/fryer.html.

18. Following Cutler and Glaeser (1997), we omit people in school from the earnings
regression, since these individuals are expected to have low income.

19. Note that λk and xk must exist by the Perron-Froebenius Theorem.

20. We use the most basic notions in Graph Theory. A reader can consult any graph-
theory textbook, for example Diestel [1997]. Some of the ideas we use are from the field
of Spectral Graph Theory; see e.g. Cvetković, D., Rowlinson, P., and Simić, S. [1997]
for a comprehensive treatment.

48



Figure I: Segregation in Metropolitan Detroit

Notes: Figure I is based on block-level data from the 2000 U.S. Census.
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Figure V: A Change in the Number of White Neighbors.
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Figure VI: The Relationship Between Group Size and Group Segregation, By Race
Notes: Figure VI is based on data from the National Study of Adolescent Health. Each data point represents segregation calculated at the school 
level based on students’ responses about who their friends are. 



Figure VII: Simulating the Baseline Spectral Segregation Index

Notes: We have obtained measures of Baseline SSI by simulating random assignment of races to large regular (in a graph-theoretic sense) cities 
with the corresponding fraction of race-h inhabitants. For each fraction p=0.01,0.02,…0.99 we simulated 1,000 cities of 100 households each, 
where each household is of race h with probability p.



Table I: Spectral Segregation of Blacks in City 1.

Component 1 (B, 1) (B, 2) (C, 1) (C, 2) (D, 1) (D, 2) (D, 3) (D, 4) SSI

0.87 0.62 1.26 0.92 0.93 0.75 0.29 0.10 0.72

Component 2 (C, 5) (B, 5) SSI

0.25 0.25 0.25

City 1 SSI

0.63



1 2 3 4 Ŝ

Before 0.67 0.67 0.67 0 0.67

After 0.78 0.78 0.91 0.42 0.72

Table II: SSI Before and After the Change.



Smoking Skip School Interracial Dating Happiness PVT Scores No College Grades Effort
Black -0.143** -0.010** 0.085** -0.091** -0.424** -0.013* -0.216** 0.027**

(.004) (0.003) (0.017) (0.007) (0.026) (0.006) (0.011) (0.002)
Asian -0.081** -0.008* 0.372** -0.025* -0.303** -0.047** 0.258** 0.036**

(0.006) (0.004) (0.029) (0.01) (0.042) (0.007) (0.015) (0.003)
Hispanic -0.040** 0.026** 0.460** -0.016* -0.426** 0.065** -0.182** 0.003

(0.005) (0.003) (0.017) (0.007) (0.026) (0.006) (0.01) (0.002)
Individual SSI (*1000) 0.007 -0.355 -6.765** 0.1075 1.3224 -0.0154 0.739 0.3019

(0.611) (0.214) (2.379) (0.814) (3.1877) (0.679) (1.038) (0.2452)
Black*Individual SSI (*1000) -2.914* -1.133 -4.311 3.2127 -25.453* 0.1921 0.212 0.0713

(1.167) (0.664) (9.126) (2.9947) (12.8544) (2.6717) (4.729) (0.9232)
Asian*Individual SSI (*1000) -6.377 -8.038** -66.776** 21.111** -101.626** 0.1172 17.450 4.374*

(5.173) (1.834) (16.963) (5.791) (30.061) (6.619) (14.144) (2.081)
Hispanic*Individual SSI (*1000) -6.355* -1.608 -14.584 4.0361 -47.409** 12.410** -13.103** 3.867**

(2.958) (2.202) (14.042) (4.243) (13.754) (3.126) (3.552) (1.401)
Age 0.029** 0.009** -0.002 -0.037** -0.034** 0.021** -0.024** -0.011**

(0.001) (0.001) (0.003) (0.001) (0.006) (0.001) (0.002) (0.001)
Male -0.002 0.019** 0.004 0.047** 0.124** 0.085** -0.184** -0.047**

(0.003) (0.002) (0.008) (0.004) (0.014) (0.003) (0.006) (0.001)
Mother College Educated -0.024** -0.002 0.001 0.031** 0.099** -0.080** 0.154** 0.006**

(0.004) (0.002) (0.01) (0.005) (0.019) (0.004) (0.008) (0.002)
Father College Educated -0.032** -0.010** 0.014 0.021** 0.078** -0.075** 0.163** 0.013**

(0.004) (0.002) (0.012) (0.005) (0.021) (0.004) (0.008) (0.002)
Mother Professional -0.002 -0.001 0.011 -0.006 0.067** -0.024** 0.062** 0.003*

(0.004) (0.002) (0.01) (0.005) (0.019) (0.004) (0.007) (0.002)
Father Professional -0.008* 0 0.018 0.022** 0.127** -0.048** 0.114** 0.001

(0.004) (0.002) (0.011) (0.005) (0.02) (0.004) (0.008) (0.002)
Constant -0.220** -0.108** 0.117* 1.134** 0.725** -0.125** 3.216** 0.989**

(0.017) (0.011) (0.049) (0.022) (0.088) (0.019) (0.035) (0.008)
Observations 78075 77903 9553 73837 14387 69257 72744 79599
R-squared 0.07 0.04 0.37 0.05 0.28 0.1 0.18 0.08
Mean of Dependent Variable .166 .049 .303 .580 .055 .211 2.798 .810
SD of Dependent Variable .372 .215 .460 .494 .975 .408 .809 .171

Table III: The Relationship Between Individual Level Segregation and Outcomes

Social Academic



In all cases, dummy variables for missing values and school fixed effects are included. Robust standard errors are beneath the coefficients. * significant 
at 5%; ** significant at 1%.

Notes: All regression use data from the National Longitudinal Survey of Adolescent health. Dependent variables vary by column. Smoking and Skip 
School are binary variables taking the value 1 if the student does the activity once a week or more. Interracial Dating is a binary variable equal to one if a 
student reports ever dating someone of a different race. Happiness is a binary value taking the value of one if the student agrees or strongly agrees that 
they are happy to be at their school. No college is a binary variable that equals one if the student reports a probability of .5 or greater that she will attend 
college. Effort is an ordered categorical variable that takes values .25 if student never tries at all, .50 if they don't try very hard, .75 if the student reports 
they try hard enough, but not as hard as they could, and 1 if the student reports they try very hard to do their best. Test scores are adjusted to be standard 
normal. Grade composites are constructed from 4 reported grades: English/languages arts, mathematics, history/social studies, and science. Grades are 
first converted to their equivalent on a 4-point scale: A=4, B=3, C=2, D=1. 



SSI Dissimilarity Isolation Exposure Entropy Gini % Black Interaction SSI-Baseline
SSI 1
Dissimilarity 0.419 1
Isolation 0.9283 0.5594 1
Exposure 0.9097 0.594 0.9538 1
Entropy 0.4726 -0.3811 0.3614 0.3434 1
Gini 0.4563 0.9953 0.6009 0.6266 -0.365 1
Percent Black 0.8973 0.3055 0.9224 0.8432 0.5633 0.3498 1
Interaction 0.4684 -0.3518 0.3743 0.3398 0.9835 -0.3328 0.5678 1
SSI-Baseline 0.8913 0.3882 0.7382 0.8007 0.2 0.4112 0.6149 0.1823 1

Table IV: Correlation Between Existing Measures of Segregation and the Spectral Index

Notes: All calculations performed using block-level data from from all 313 MSAs in the 2000 US Census. The sample includes all census blocks in all MSAs. 
Baseline SSI calculated from simulations described in Section 5.1.B. 



Social Social
High School 

Graduate
College 

Graduate Idle Earnings
Single 
Mother

High School 
Graduate

College 
Graduate Idle Earnings

Single 
Mother

Dissimilarity Index
    Segregation .002 .008 -.001 -.008 .001 .003 -.002 .000 -.008 -.003

(.004) (.005) (.002) (.009) (.004) (.003) (.008) (.003) (.008) (.003)
    Segregation*Black -.041 -.010 .041 -.093 .045 -.032 -.006 .035 -.064 .059

(.006) (.004) (.006) (.019) (.008) (.006) (.007) (.005) (.015) (.007)
Spectral Segregation Index
   Segregation -.002 .007 -.002 .002 -.001 -.001 .000 -.004 .012 -.001

(.005) (.007) (.003) (.009) (.004) (.004) (.011) (.004) (.007) (.004)
   Segregation*Black -.036 -.008 .024 -.091 .070 -.041 -.008 .025 -.051 .073

(.010) (.005) (.009) (.027) (.013) (.008) (.009) (.008) (.023) (.013)
Summary Statistics
   N 97,976 97, 976 97, 976 56, 627 49, 038 139,715 139,715 139,715 105, 997 71,531
   R-squared .034 / .034 .093 / .093 .050 / .048 .090 / .089 .108 / .108 .031 / .031 .040 / .040 .050 / .048 .092 / .091 .109 / .108

Notes: All regressions are estimated using the 1990 1% Census Pums. Dependent variables vary by column. Idleness is defined as not working and not 
enrolled in school. Earnings are the sum of wage, salary, and self-employment income in 1989. The sample for earnings consists of individuals who are not 
working, not enrolled in school, and have non-negative earnings. All regressions include the following covariates: an exhaustive set of racial dummy 
variables, gender, single year age dummy variables, log of population, percent black, log median household income, and manufacturing share. The latter 
four covariates are also interacted with a black dummy. Standard errors, reported in parentheses, are corrected for heteroskedasticity and intra-MSA 
clustering of the residuals.

Table V: The Relationship Between Segregation and Outcomes

Education Income
Age 20-24 Age 25-30

Education Income
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