
Two-Armed Restless Bandits with Imperfect Information:

Stochastic Control and Indexability∗

Roland G. Fryer, Jr.

Harvard University and NBER

Philipp Harms

ETH Zurich

May 2015

Abstract

We present a two-armed bandit model of decision making under uncertainty where the

expected return to investing in the “risky arm” increases when choosing that arm and decreases

when choosing the “safe” arm. These dynamics are natural in applications such as human capital

development, job search, and occupational choice. Using new insights from stochastic control,

along with a monotonicity condition on the payoff dynamics, we show that optimal strategies

in our model are stopping rules that can be characterized by an index which formally coincides

with Gittins’ index. Our result implies the indexability of a new class of restless bandit models.
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1 Introduction.

Bandit models are decision problems where, at each instant of time, a resource like time, effort,

or money has to be allocated strategically between several options, referred to as the arms of the

bandit. When selected, the arms yield payoffs that typically depend on unknown parameters. Arms

that are not selected remain unchanged and yield no payoff. The key idea in this class of models is

that agents face a tradeoff between experimentation (gathering information on the returns to each

arm) and exploitation (choosing the arm with the highest expected value).

Over the past sixty years, bandit models have become an important framework in economic

theory, applied mathematics and probability, and operations research. They have been used to

analyze problems as diverse as market pricing, the optimal design of clinical trials, product search

and the research and development activities of firms (Rothschild [56], Berry and Fristedt [7], Bolton

and Harris [8], and Keller and Rady [30]). To understand how firms set prices without a clear un-

derstanding of their demand curves, Rothschild [56] posits that firms repeatedly charge prices and

observe the resulting demand. Setting prices too high or too low is costly for firms (experimenta-

tion), but allows them to learn about the optimal price (exploitation). In the optimal design of

clinical trials, Berry and Fristedt [7] formulate the problem as: given a fixed research budget, how

does one allocate effort among competing projects, whose properties are only partially known at

a given point in time but may be better understood as time passes. In product search, customers

sample products to learn about their quality. Their optimizing behavior can be described as in

Bolton and Harris [8, 9]. In these models, news about the quality of the product arrive continuously.

The situation where news arrive only occasionally, e.g. in the form of break-throughs in research,

is modeled by Keller et al. [31, 30].

An important assumption in the classical bandit literature is that the reward distribution of

arms that are not chosen does not evolve; they rest (Gittins, Glazebrook, and Weber [21]). This

assumption seems natural in many applications. Yet, in many other important scenarios, it seems

overly restrictive.1 Consider, for instance, the possibility of dynamic complementarities in human

capital production.2 Imagine a student who has the choice of whether or not to invest effort into

her school work. Today’s effort is rewarded by being more at ease with tomorrow’s course work, or

the ability to glean a deeper understanding from class lectures. As Cunha and Heckman [11] note,

“learning begets learning.” Conversely, not doing one’s assignments today might give instantaneous

gratification, but makes tomorrow’s school work harder. More generally, this dynamic can be found

in the context of human capital formation when early investments in human capital increase the

expected payoff of future investments, while a lack of early investments has the reverse effect. These

dynamics require arms that evolve, even when they are not used.

As a second example, consider an unemployed worker looking for a job. With every job applica-

tion, she gathers both information about the job market and experience in the application process,

1The importance of relaxing this assumption has been recognized early on in the seminal work of Whittle [68],
who proposed clinical trials, aircraft surveillance, and assignment of workers to tasks as potential applications.

2Cunha et al. [12] make a similar argument in a different context.
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which typically increases her chances of successful future job applications. Conversely, not actively

searching for a job may decrease the probability of finding a job in future applications. This could

be due to market penalties for unemployment spells, being disconnected from the changing charac-

teristics of the job market and the application process, or be considered a signal of low motivation

by potential employers.

Bandits whose inactive arms are allowed to evolve are known as restless bandits.3 Generally,

optimal strategies for restless bandits are unknown.4 Nevertheless, when a certain indexability

condition is met, Whittle’s index [68] can lead to approximately optimal solutions (Weber and

Weiss [65, 64]). This index plays the same fundamental role for restless bandits that Gittins’ index

[20] has for classical ones: it decomposes the task of solving multi-armed bandits into multiple

tasks of solving bandits with one safe and one risky arm. The safe arm yields constant rewards

and can be interpreted as a cost of investment in the risky arm. Deriving conditions that identify

general classes of indexable restless bandit models is an important contribution – permitting more

complete analysis of decision problems in which choices jointly effect instantaneous payoffs as well

as the distribution of those payoffs in the future – and the subject of this paper.

The origins of this work are the classical bandit models of Bolton and Harris [8], Keller and Rady

[30], and Cohen and Solan [10], that we extend to the restless case. In these works, the reward

from the risky arm is Brownian motion, a Poisson process, or a Levy process. The unobserved

quantity is a Bernoulli variable. Our model is an extension of these models containing them as

special cases.5 Namely, we allow the same generality of reward processes with both volatility and

jumps, but make the reward distribution dependent on the type of the agent and the history of

past investments. The latter dependence is mediated by a real valued variable that increases while

the agent invests in the risky arm and decreases otherwise. In line with our motivating examples

of human capital formation and job search, we call this variable the agent’s human capital.

The bandit model is first formulated as a problem of stochastic optimal control under partial

observations in continuous time.6 Standard formulations of the control problem with partial obser-

vations do not work for restless bandit models. However, we show that the frameworks of Fleming

and Nisio [18], Wonham [69], and Kohlmann [33] can be used and extended to general controlled

Markov processes. We describe these issues in detail in Section 2.2, since they are rarely discussed

in the context of bandit problems.

The first result in this paper is a separation theorem (Theorem 1) that establishes the equivalence

of the control problem with partial observations to a control problem with full observations called

the separated control problem. This equivalence is crucial for the solution of the problem and is

3Bandits where the active and passive action have opposite effects on payoffs are called bi-directional bandits
(Glazebrook, Kirkbride, and Ruiz-Hernandez [22]), and our model falls into this class.

4Numerical solutions can be obtained by (possibly approximate) dynamic programming or a linear programming
reformulation of the problem (Kushner and Dupuis [38], Powell [52], and Nino-Mora [46]).

5However, some of these works focus on strategic equilibria involving multiple agents, whereas we only treat the
single agent case.

6Modeling time as continuous allows one to treat discrete-time models with varying step sizes in a unified frame-
work. We show in Theorem 1 that discrete-time versions of the model converge to the continuous-time limit. This is
not true in some other and recent approaches (see Remarks 1 and 3).
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implicitly used in many works, including Bolton and Harris [8], Keller and Rady [30], and Cohen

and Solan [10]. The separated problem is derived from the partially observable one by replacing the

unobserved quantity by its filter, which is its conditional distribution given the past observations.

Put differently, the filter is the belief of the agent in being of the high type. In the separated

problem, admissibility of controls is defined without the strong measurability constraints present

in the control problem with partial observations. Therefore, standard results about the existence

of optimal controls and the equivalence to dynamic and linear programming can be applied.

Our second, and main, result (Theorem 2) is the optimality of stopping rules, meaning that it

is always better to invest first in the risky arm and then in the safe arm instead of the other way

round. This result hinges on the monotonic dependence of payoffs on past investment. Intuitively,

the sequence of investments matters for two reasons. First, investments in the risky arm reveal in-

formation about the distribution of future rewards. The sooner this information becomes available,

the better. Second, early investments in the safe arm deteriorate the rewards of later investments

in the risky arm. By contrast, early investments in the risky arm do not make the safe arm any

less profitable.

We present an unconventional approach to show the optimality of stopping rules. The work

horse of most of the bandit literature is either the Hamilton-Jacobi-Bellman (HJB) equation or

a setup using time changes. The inclusion of human capital as a state variable turns the HJB

equation into a second order partial differential-difference equation. It seems unlikely that explicit

solutions of this equation can be found. Moreover, the approach using time changes is not well

adapted to the new dynamics of our model. We circumvent these difficulties by investigating the

sample paths of optimal strategies. More specifically, we discretize the problem in time and show

that any optimal strategy can be modified such that the agent never invests after a period of not

investing and such that the modified strategy is still optimal. This interchange argument has been

originally developed by Berry and Fristedt [7] for classical bandits. It turns out that the monotonic

dependence of the payoffs on the amount of past investment is exactly what is needed to generalize

the argument to restless bandits.

Once the optimality of stopping rules is established, it follows easily that optimal strategies

can be characterized by an index rule. Formally, the index is the same as the one proposed in

the celebrated result by Gittins [20] on classical bandits, but inactive arms are allowed to evolve.

The explicit formula for the index yields comparative statics of the frontier with respect to the

parameters of the model. Most importantly, subsidies of the safe arm enlarge the set of states where

the safe arm is optimal, which means that our bandit model is indexable in the sense of Whittle [68].

More generally, any arm of a multi-armed restless bandit that satisfies our monotonicity condition

is indexable. To our knowledge, this is the first time that a sufficient condition for indexability

of a general class of restless bandits with continuous state space and a corresponding rich class of

reward processes has been formulated.7

7Some sensor management models are indexable and have a continuous state space after their transformation
to fully observed Markov decision problems (Washburn [63]). This is, however, not the case in their formulation as
control problems with partial observations.
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To explain the structure of optimal strategies, we consider how information is processed by

agents in our model. We work in a Bayesian setting where the agent has a prior about being either

“high” or “low type.” Rewards obtained from the risky arm depend on this type and are used by

the agent to form a posterior belief. The current levels of belief and human capital determine at

each stage whether it is optimal to invest in the risky or safe arm. Namely, there is a curve in the

belief–human capital domain such that it is optimal to invest in the risky arm if the current level

of belief and human capital lies to the right and above the curve. Otherwise, it is optimal to invest

in the safe arm. The curve is called the decision frontier.

Similar to classical bandit models, the region below the decision frontier is absorbing: agents

do not obtain any new information, and their belief remains constant, while their human capital

decreases continually. There is, however, an important, and potentially empirically relevant, differ-

ence. Not only is the safe arm absorbing – it is depreciating; agents drift further and further away

from the frontier. Empirically, this implies that there are very few “marginal” agents. Programs

(e.g. lower class size, school choice, financial incentives) designed to increase student achievement

at the margin are likely to be ineffective unless: (a) they are initiated when students get close to the

decision frontier, or (b) force inframarginal students to invest in the risky arm (e.g. some charter

schools, see Dobbie and Fryer [14]). Consistent with Cunha et al. [12], our model predicts that, on

average, the longer society waits to invest, the more aggressive the investment needs to be.

The situation is different for agents above the frontier. They continually obtain new information

about their type and update their posterior belief accordingly. At the same time, their level of

human capital increases. In the long run, there are two possibilities. Either there is some point in

time where they hit the frontier. This happens when they encounter a series of bad outcomes from

the risky arm and their belief level drops down far enough. In this case, they meet the same fate as

agents who originally started out below the frontier. Or they never reach the frontier. In this case,

they invest in the risky arm forever and learn their true type in the limit. In fact, under reasonable

assumptions, investing in the risky arm for an infinite amount of time is necessary and sufficient for

asymptotic learning to occur (see Proposition 3). To summarize, agents of the low type eventually

end up choosing the safe arm, which is optimal for them. High type agents, however, can get

discouraged by bad luck and stop investing in the risky arm, even though the risky arm would be

optimal.

The paper is structured as follows. Section 2 provides a brief review of the bandit literature

in economics and applied mathematics. Section 3 contains the definitions of the control problems

and the separation theorem. Section 3 specializes the general framework of the previous section

to restless bandit models satisfying the monotonicity condition and establishes the optimality of

stopping rules characterized by Gittins’ index. Finally, Section 5 concludes.
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2 Previous literature.

2.1 Bandit models.

Originally developed by Robbins [55], bandit models have been used to analyze a wide range of

economic and applied math problems.8 The first paper where a bandit model was used in an

economic context is Rothschild [56], in which a single firm facing a market with unknown demand

has to determine optimal prices. Subsequent applications of bandit models include partner search,

effort allocation in research, clinical trials, network scheduling and voting in repeated elections

(McCall and McCall [44], Weitzman [66], Berry and Fristedt [7], Li and Neely [41], and Banks and

Sundaram [3]).

Classical bandits with reward processes driven by Brownian motion or a Poisson process were

first solved by Karatzas [28] and Presman [54]. Subsequently, Bolton and Harris [8, 9] and Keller

e.a. [31, 30, 29] derived explicit formulas for optimal strategies in the case where the unobservable

quantity is a Bernoulli variable and treated strategic interactions of multiple agents. Cohen and

Solan [10] unified the formulas obtained for the single agent case and solved a bandit model where

the reward is driven by a Levy process with unknown Levy triplet.

Many extensions and variations of classical bandit problems have been proposed, including:

bandits with a varying finite or infinite numbers of arms (Whittle [67] and Banks and Sundaram

[3]), bandits where an adversary has control over the payoffs (Auer et al. [2]), bandits with depen-

dent arms (Pandey, Chakrabarti, and Agarwal [48]), bandits where multiple arms can be chosen

at the same time (Whittle [68]), bandits whose arms yield rewards even when they are inactive

(Glazebrook, Kirkbride, and Ruiz-Hernandez [22]), and bandits with switching costs (Banks and

Sundaram [4]).

One of the most mathematically challenging extensions is to allow inactive arms to evolve. Such

bandits are often referred to as “restless bandits.”9 This term was coined in the seminal paper

of Whittle [68]. Beyond mathematical intrigue, there are many practical applications: aircraft

surveillance, sensor scheduling, queue management, clinical trials, assignment of workers to tasks,

robotics, and target tracking (Ny, Dahleh, and Feron [47], Veatch and Wein [62], Whittle [68],

Faihe and Müller [17], and La Scala and Moran [39]). In aircraft surveillance, Ny, Dahleh, and

Feron [47] discuss the problem of surveying ships for possible bilge water dumping. A group

of unmanned aerial vehicles can be sent to the sites of the ships. The rewards are associated

with the detection of a dumping event. The problem falls into the class of sensor management

problems, where a set of sensors has to be assigned to a larger set of channels whose state evolves

stochastically. In queue management, Veatch and Wein [62] consider the task of scheduling a make-

to-stock production facility with multiple products. Finished products are stored in an inventory.

Too small an inventory risks incurring backorder or lost sales costs, while too large an inventory

8Basu, Bose, and Ghosh [5], Bergemann and Välimäki [6], and Mahajan and Teneketzis [42] provide excellent
surveys of the literature on bandit models. The monographs by Presman and Sonin [53], Berry and Fristedt [7] and
Gittins, Glazebrook, and Weber [21] contain more detailed presentations.

9Some bandits with switching costs can be modeled as restless bandits (Jun [27]).
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increases holding costs. In robotics, Faihe and Müller [17] consider the behaviors coordination

problem in a setting of reinforcement learning: a robot is trained to perform complex actions that

are synthesized from elementary ones by giving it feedback about its success.

2.2 Optimal control with partial observations.

In control problems with partial observations, strategies are not allowed to depend on the hidden

state. To enforce this constraint, one requires them to be measurable with respect to the sigma

algebra generated by the observations. In continuous time, this measurability condition is not

strong enough to exclude pathological cases like Example 1 in this paper.

This problem was solved in a setting with additive, diffusive noise by requiring the existence of

a change of measure, called Zakai’s transform (Fleming and Pardoux [19]), which transforms the

observation process into standard Brownian motion. Unfortunately, this approach is not amenable

to bandit models, where such a change of measure does not exist because the volatility of the

observation process depends on the strategy. Another approach, which was applied successfully

to classical bandit models, is to define strategies as time changes (El Karoui and Karatzas [15]).

Unfortunately, this technique does not work for restless bandit problems, where inactive arms are

allowed to evolve.

Our approach can be seen as a generalization of Fleming and Nisio [18], Wonham [69], and

Kohlmann [33]. In these works, the strategies are required to be Lipschitz continuous to ensure

well-posedness of the corresponding martingale problem. This excludes discontinuous strategies

like cut-off rules, which are typically encountered in bandit problems. We replace the Lipschitz

condition by the weaker and more direct requirement that the martingale problem is well-posed.

The resulting class of admissible strategies is large enough to contain optimal strategies of classical

bandit models and of the restless bandit model in Section 4. It is also small enough to exclude

degeneracies like Example 1 and to admit approximations in value by piecewise constant controls

(see Theorem 1). For piecewise constant controls the definition of admissibility is unproblematic.

2.3 Optimality of stopping rules.

For classical bandit models with one safe and one risky arm, the optimality of stopping rules is a

well-known result (Berry and Fristedt [7] and El Karoui and Karatzas [15]). Several approaches to

establish this result can be found in the literature. In one approach, the rewards of each arm are

fixed in advance and strategies are time changes. The reward that is obtained under a strategy is the

time change applied to the reward process. This setup, which has been proposed by Mandelbaum

[43], allows a very simple formulation of the measurability constraints on the strategies. It is,

however, not well-suited to bandits with evolving arms. In a second approach, one solves the

Hamilton-Jacobi-Bellman (HJB) equation for the value function. When this succeeds, the explicit

form of the value function can be used to establish the optimality of stopping rules (Bolton and

Harris [8], Keller, Rady, and Cripps [31], and Cohen and Solan [10]). In our model, however, the

dynamics of the reward distribution introduce an additional state variable, which turns the HJB
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equation into a non-local partial differential equation which we cannot solve directly. Moreover, the

value function might not be a solution in a classical sense. Pham [51, 50] showed that under suitable

assumptions, the value function is a viscosity solution of the HJB equation. It remains open how

this could be used to show that stopping rules are optimal. The third approach is to rewrite the

problem as a linear programming problem. This makes both classical and restless bandit problems

amenable to efficient numerical computations and can also yield some qualitative insight (Nino-

Mora [46]).10 The fourth approach (and the one we emulate) is based on a direct investigation of

the sample paths of optimal strategies and an evaluation of the benefits of investing in the risky

arm sooner rather than later. While this interchange argument was originally developed by Berry

and Fristedt [7] for classical bandit models, it turns out that the monotonicity assumption on the

payoffs is what is needed to make the argument work in the more general setting of restless bandits.

2.4 Indexability.

Gittins [20] characterized optimal strategies in classical bandit models by an index that is assigned

to each arm of the bandit at each instant of time. The optimal strategy is to always choose the

arm with the highest index. The indices can be calculated for each arm separately, which reduces

the complexity of multi-armed bandits to that of two-armed bandits with one safe and one risky

arm.

In general, optimal strategies in restless bandit models do not admit an index representation.

Nevertheless, a Lagrangian relaxation of the problem proposed by Whittle [68] yields index strate-

gies that are approximately optimal (Weber and Weiss [65, 64]). The corresponding “Whittle

index” (Whittle [68]) is the Lagrange multiplier in a constrained optimization problem and has

an economic interpretation as a subsidy for passivity or a fair charge for operating the arm. A

major challenge to the deployment of Whittle’s index is that it can only be defined when a certain

indexability condition is met. In this condition, each arm of the restless bandit is compared to a

hypothetical arm with known and constant reward. The indexability condition holds if the set of

states where the safe arm is optimal is increasing in the reward from the safe arm.11

The question of indexability of restless bandit models is subtle and not yet fully understood.

Gittins, Glazebrook, and Weber [21] give an overview of various approaches to establish the index-

ability of restless bandit models. Partial answers are known for bandits with finite or countable

state spaces. Indexability of such models can be tested numerically in a linear programming re-

formulation of the Markov decision problem (Klimov [32]). In another line of research, Nino-Mora

[46] showed that indexability holds for restless bandits satisfying a partial conservation law, which

can be verified by running an algorithm. While this can be used to test the indexability of specific

restless bandit problems, it does not provide much qualitative insight into which restless bandits

are indexable. One would like to have conditions that identify general classes of indexable restless

10Another numerical approach is dynamic programming/value function iteration.
11This is a monotonicity condition on the optimal strategy, which is not to be confounded with our monotonicity

condition on the payoffs and the evolution of human capital.
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bandit models – this is the subject of this paper.12

3 Stochastic control with partial observations.

Section 3.1 provides the general setup. The control problem is formulated in Sections 3.2–3.3.

Section 3.4 contains all assumptions and Section 3.5 the main result. Some general notation can

be found in Appendix A in the Appendix.

3.1 Setup.

X = {0, 1}, Y is a finite dimensional vector space, and U is a finite set.13 The hidden state is modeled

by an X-valued random variable X. The observations are modeled by a càdlàg Y-valued process Y .

The rewards at time t are given by b(Ut, X, Yt) for some measurable function b : U × X × Y → R.

Rewards are discounted exponentially at rate ρ > 0 and the aim is to maximize expected discounted

rewards.

The evolution of Y depends on a càglàd U-valued process U and on the hidden state X. More

specifically, the joint distribution of X and Y will be characterized by a controlled martingale

problem associated to a linear operator

A : D(A) ⊆ B(X× Y)→ B(U× X× Y).

The posterior probability that X = 1 given {FYt } is denoted by P , i.e., P is a [0, 1]-valued càdlàg

version of the martingale E[X | FYt ]. Mathematically speaking, P is called filter of X, and eco-

nomically speaking, the agent’s belief in X = 1. The joint evolution of (P, Y ) will be characterized

by a linear operator

G : D(G) ⊆ B([0, 1]× Y)→ B(U× [0, 1]× Y).

More specific assumptions on A, G, and the payoff function b will be made in Section 3.4.

3.2 Control problem with partial observations.

Definition 1 (Martingale problem for (A, F )). Let F be a càglàd adapted U-valued process on

Skorokhod space DY[0,∞) with its natural filtration. (X,Y ) is a solution of the martingale problem

for (A, F ) if there exists a filtration {Ft}, such that X is an F0-measurable X-valued random

12Some results in this direction have been obtained for various bandit models related to sensor management, see
the survey of Washburn [63]. Other classes of indexable problems are the dual speed problem of Glazebrook, Nino-
Mora, and Ansell [23], the maintenance models of Glazebrook, Ruiz-Hernandez, and Kirkbride [24], and the spinning
plates and squad models of Glazebrook, Kirkbride, and Ruiz-Hernandez [22]. The spinning plates model is most
similar to ours. It satisfies the same monotonicity condition as our model, but has a different reward structure and
assumes perfect information.

13Our proofs can be generalized to finite state spaces X at the cost of heavier notation and to compact control
spaces U at the cost of additional criteria ensuring the existence of optimal non-relaxed controls for the discretized
separated problem (see e.g. the discussion after Theorem 1.21 in Seierstad [58]).
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variable, Y is an {Ft}-adapted càdlàg Y-valued process, and for each f ∈ D(A),

f(X,Yt)− f(X,Y0)−
∫ t

0
Af(F (Y )s, X, Ys)ds

is an {Ft}-martingale. The martingale problem is called well-posed if existence and local uniqueness

holds under the conditions X = x and Y0 = y, for all x ∈ X and y ∈ Y.14

Definition 2 (Control with partial observations). A tuple (U,X, Y ) is called a control with partial

observations if U = F (Y ) holds for some process F as in Definition 1, the martingale problem for

(A, F ) is well-posed, and (X,Y ) solves the martingale problem for (A, F ).

Definition 3 (Value of controls with partial observations). The value of a control (U,X, Y ) with

partial observations is defined as

Jp.o.(U,X, Y ) = E
[∫ ∞

0
ρe−ρtb(Ut, X, Yt)dt

]
.

The set of controls with partial observations satisfying E[X] = p and Y0 = y is denoted by Cp.o.
p,y .

The value function for the control problem with partial observations is

V p.o.(p, y) = sup
{
Jp.o.(U,X, Y ) : (U,X, Y ) ∈ Cp.o.

p,y

}
.

Remark 1 (Well-posedness condition). Every càglàd {FYt }-adapted process U coincides up to a

null set with F (Y ) for some process F as in Definition 1 (see Delzeith [13]). Well-posedness of the

martingale problem for (A, F ) is, however, a much stronger condition. From the agent’s perspective,

it requires the control to uniquely determine the outcome. From a mathematical perspective, it

excludes pathological cases like the one presented in Example 1 below. It also ensures that controls

can be approximated in value by piecewise constant controls, where such degeneracies cannot occur

(see Theorem 1).

Example 1 (Degeneracy in continuous time). Let X = U = {0, 1}, Y = R, Af(u, x, y) = u(2x −
1)fy(x, y) + 1

2ufyy(x, y) for each f ∈ D(A) = C2
b (X×Y). The aim is to maximize E[

∫ t
0 ρe

−ρtdYt] =

E[
∫∞

0 ρe−ρtb(Ut, X, Yt)dt] over controls (U,X, Y ) of the problem with partial observations, where

b(u, x, y) = u(2x − 1). The following tuple (U,X, Y ) satisfies all conditions of Definition 2 except

for the well-posedness condition: X is a Bernoulli variable, W is Brownian motion independent

of X, Yt = (t + Wt)X, Ut = 1(0,∞)(t)X, F (Y )t = 1(0,∞)([Y, Y ]t). Nevertheless, U depends on

the supposedly unobservable state X. Actually, (U,X, Y ) is optimal for the control problem with

observable X, and should not be admitted as a control for the problem with unobservable X.

Remark 2 (Topology on the set of controls). So far, there is no topology on the set of controls with

partial observations. To get existence of optimal controls, one typically relaxes the control problem

14For reference, existence and local uniqueness of the above martingale problem are defined in Appendix B in the
Appendix.
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by allowing measure-valued controls and shows that the resulting set of admissible controls is

compact under some weak topology [36, 16]. In control problems with partial observations involving

strong admissibility conditions as in Definition 2, the difficulty is that the set of admissible controls

is not weakly closed. This difficulty can be avoided by transforming the problem into a standard

problem with full observations, i.e., the separated problem.

3.3 Separated control problem.

Definition 4 (Separated controls). A tuple (U,P, Y ) is called a separated control if there exists

a filtration {Ft} such that U is an adapted, càglàd U-valued process, (P, Y ) is an adapted, càdlàg

[0, 1]× Y-valued process, and for each f ∈ D(G), the following process is an {Ft}-martingale:

f(Pt, Yt)− f(P0, Y0)−
∫ t

0
Gf(Us, Ps, Ys)ds.

Definition 5 (Value of separated controls). The value of a separated control (U,P, Y ) is

J se.(U,P, Y ) = E
[∫ ∞

0
ρe−ρtb(Ut, Pt, Yt)dt

]
,

where b(u, p, y) = pb(u, 1, y) + (1 − p)b(u, 0, y). The set of controls Cse.
p,y and the value function

V se.(p, y) are defined similarly as in Definition 2.

Remark 3 (Filtered martingale problem). Following Stockbridge [60], one could try the alternative

approach of defining separated controls as solutions of the filtered martingale problem for A, i.e.,

the process

Πt(dx) = Ptδ1(dx) + (1− Pt)δ0(dx)

is {FYt }-adapted and for each f ∈ D(A), the process∫
X
f(x, Yt)Πt(dx)−

∫
X
f(x, Y0)Π0(dx)−

∫ t

0

∫
X
Af(Us, x, Ys)Πs(dx)ds

is a martingale with respect to some filtration containing {FYt }. Unfortunately, this definition does

not rule out the pathological control presented in Example 1, and cannot be used for this reason.

Remark 4 (Topology on the set of controls). The set of separated controls can be topologized

by regarding them as probability measures on the canonical space LU[0,∞)×D[0,1]×Y[0,∞), sub-

ject to the condition that the coordinate process solves the martingale problem in Definition 4.

Compactness and existence of optimal controls can be obtained by relaxing the control problem.

This amounts to replacing LU[0,∞) by the space of measures on U × [0,∞) with [0,∞)-marginal

equal to the Lebesgue measure and endowing this space with the vague topology [25, 16]. It should

be noted, however, that relaxed separated controls are not filters of relaxed controls with partial

observations (see Appendix C in the Appendix). In other words, filtering is a non-linear operation

on control problems, which does not commute with relaxation.
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3.4 Specification of the generators and assumptions.

We fix a truncation function χ : Y → Y, which is bounded, continuous, and coincides with the

identity on a neighborhood of zero.

Assumption 1 (Operator A). D(A) = C2
b (X× Y) and

Af(u, x, y) = ∂yf(x, y)β(u, x, y) +
1

2
∂2
yf(x, y)σ2(u, y)

+

∫
Y

(
f(x, y + z)− f(x, y)− ∂yf(x, y)χ(z)

)
K(u, x, y, dz),

where β : U × X × Y → Y, σ2 : U × Y → Y ⊗ Y, and K is a transition kernel from U × X × Y to

Y \ {0}.

Assumption 2 (Boundedness). The expressions

b(u, x, y), β(u, x, y), σ2(u, y),

∫
Y

(
|z|2 ∧ 1

)
K(u, x, y, dz)

are bounded over (u, x, y) ∈ U× X× Y.

Assumption 3 (Girsanov). There exist functions φ1 : U×Y→ Y and φ2 : U×Y×Y→ R satisfying

σ2(u, y)φ1(u, y) = β(u, 1, y)− β(u, 0, y)−
∫
R

(
φ2(u, y, z)− 1

)
χ(z)

(
K(u, 1, y,dz) +K(u, 0, y,dz)

)
,

φ2(u, y, z) =
K(u, 1, y, dz)(

K(u, 1, y, dz) +K(u, 0, y, dz)
)
/2
.

Assumption 4 (Operator G). D(G) = C2
b ([0, 1]× Y) and

Gf(u, p, y) = ∂yf(p, y)β(u, p, y) +
1

2
∂2
pf(p, y)p2(1− p)2φ1(u, y)>σ2(u, y)φ1(u, y)

+ ∂p∂yf(p, y)p(1− p)σ2(u, y)φ1(u, y) +
1

2
∂2
yf(p, y)σ2(y, u)

+

∫
Y

(
f(p+ j(u, p, y, z), y + z)− f(p, y)

− ∂pf(p, y)j(u, p, y, z)− ∂yf(p, y)χ(z)
)
K(u, p, y, dz),

where

β(u, p, y) = pβ(u, 1, y) + (1− p)β(u, 0, y),

K(u, p, y, dz) = pK(u, 1, y,dz) + (1− p)K(u, 0, y, dz),

j(u, p, y, z) =
pφ2(u, y, z)

pφ2(u, y, z) + (1− p)
(
2− φ2(u, y, z)

) − p,
and where it is understood that j(u, p, y, z) = 0 if p ∈ {0, 1}.
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Assumption 5 (Novikov-style condition). The following expression is bounded in (y, u) ∈ Y× U:

Φ(u, y) =
1

8
φ1(u, y)>σ2(u, y)φ1(u, y)

+

∫
Y

(
1−

√
φ2(u, y, z)

(
2− φ2(u, y, z)

)) (
K(u, 1, y,dz) +K(u, 0, y,dz)

)
.

Assumption 6 (Continuity). The expressions

β(u, x, y), σ2(u, y), φ1(u, y),

∫
Y
g(j(u, p, y, z), z)K(u, p, y, dz)

are continuous in (y, u) for all x ∈ X, p ∈ [0, 1], and g ∈ Cb([0, 1]×Y) satisfying g(x) = O(|x|2) as

|x| → 0.

Assumption 7 (Condition on big jumps).

lim
a→∞

sup
{
K
(
u, x, y, {z ∈ Y : |z| > a}

)
: (u, x, y) ∈ U× X× Y

}
= 0.

Assumption 8 (Well-posedness for the problem with partial observations). The martingale prob-

lem for (A, F ) is well-posed for all deterministic functions F : [0,∞)→ U.

Assumption 9 (Well-posedness for the separated problem). The martingale problem for (G, u) is

well-posed15 for all u ∈ U.

Remark 5. • The structure of the operator A in Assumption 1 allows Y to be a general

Markovian semimartingale, whereas X is constant. The formula of G in Assumption 4 comes

from Lemma 1, where it is shown that the filter satisfies a martingale problem associated to

G.

• The bounds in Assumption 2 guarantee in a simple way that the value functions are finite

and reduce technicalities in the proofs.

• The existence of functions φ1, φ2 in Assumption 3 is related to Girsanov’s theorem applied to

the conditional law of Y givenX. Assumption 5 is based on a condition in Lépingle and Mémin

[40, Théorème IV.3], which establishes uniform integrability of a stochastic exponential. The

condition has also an information-theoretic interpretation, see Remark 8.

• Assumptions 6–9 guarantee existence of solutions of martingale problems related to A and G,

and continuous dependence of these solutions on parameters (see e.g. the proof of Lemma 2).

3.5 Separation and approximation result

Theorem 1 (Separation and approximation). The following statements hold under Assumptions

1–9:
15The martingale problem for (G, F ) is defined in analogy to the one for (A, F ), see Appendix B in the Appendix.
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(a) The value functions of the control problems agree:

V (p, y) := V p.o.(p, y) = V se.(p, y) <∞.

(b) Controls can be approximated arbitrarily well in value by piecewise constant controls:

V (p, y) = sup
δ>0

V δ(p, y),

where V δ(p, y) = V p.o.,δ(p, y) = V se.,δ(p, y) is the value function obtained by restricting to

control process U which are piecewise constant on a uniform time grid of step size δ > 0.

Remark 6. The importance of Theorem 1 lies in its capacity to transform the control problem

with partial observations into a problem which can be analyzed and solved by standard methods

like dynamic programming or linear programming. The approximation result guarantees that the

class of admissible strategies is small enough to exclude degeneracies like Example 1. It is also large

enough to guarantee the existence of optimal strategies in the restless bandit problem presented in

Section 4. In the general case, existence of optimal strategies can be guaranteed by the standard

technique of allowing relaxed (measure-valued) controls, as described in Remark 4.

Theorem 1 follows from a sequence of lemmas, which can be found in Appendix D in the

Appendix. We now give a verbal proof of the theorem, highlighting the role that each individual

lemma plays.

Proof of Theorem 1. By Assumption 2 the reward function b is bounded, which implies that all

value functions are finite. If (U,X, Y ) is a control with partial observations and P is a càdlàg

version of the martingale E[X | FYt ], then (U,P, Y ) is a separated control with the same value by

Lemma 1. Taking the supremum over all controls or step controls, one obtains that

V p.o.(p, y) ≤ V se.(p, y), V p.o.,δ(p, y) ≤ V se.,δ(p, y).

By Lemma 2, separated controls can be approximated arbitrarily well in value by separated step

controls. Formally, this is expressed by the equation

sup
δ>0

V se.,δ(p, y) = V se.(p, y).

In Lemma 3, it is shown that Markovian step controls of the separated problem can be transformed

into controls of the problem with partial observations of the same value. This is done by a recursive

construction, stitching together solutions (X,Y ) of the martingale problem associated to A under

constant controls corresponding to each step of the control process. As optimal Markovian controls

exist for the discretized separated problem,

V se.,δ(p, y) ≤ V p.o.,δ(p, y).
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Taken together, this implies that

V se.,δ(p, y) = V p.o.,δ(p, y)

and

V p.o.(p, y) ≤ V se.(p, y) = sup
δ
V se.,δ(p, y) = sup

δ
V p.o.,δ(p, y) ≤ V p.o.(p, y).

4 A restless bandit model.

The restless bandit model is formulated in Section 4.1 and solved in Section 4.2. Implications about

asymptotics of the filter and strategy are presented in Sections 4.3–4.6.

4.1 Setup and assumptions.

The bandit model has a “safe” arm with constant payoffs and a “risky” arm with stochastic payoffs

depending on the unobserved “type” X of the agent and her level of “human capital” H, which

is determined by the amount of past investment in the risky arm. The only departure from Lévy

bandits (see Cohen and Solan [10]) is that the Lévy increments of the risky payoff process depend

on the investment history.

The general framework of Section 3, including Assumptions 1–9, remains in place. The following

structural assumption encodes that (a) the observation process Y = (H,R) takes values in H×R =

R2, (b) the process H has deterministic increments depending only on U and H, (c) under a choice

U = 0 of the safe arm, the reward process R has constant increments, and (d) under a choice U = 1

of the risky arm, the reward process R has stochastic increments depending on X and H.

Assumption 10 (Structural assumption). U = {0, 1}, Y = H × R = R2, Y = (H,R). The

coefficients (β, σ,K) of the generator A in Assumption 1 are of the form

β(1, x, h, r) =

(
βH(1, h)

βR(x, h)

)
, β(0, x, h, r) =

(
βH(0, h)

k

)
,

σ2(1, h, r) =

(
0 0

0 σ2
R(h)

)
, σ2(0, h, r) =

(
0 0

0 0

)
,

K(1, x, h, r,dh,dr) = δ0(dh)KR(x, h,dr), K(0, x, h, r, dh,dr) = 0,

where

k ∈ R, βH : U×H→ H, βR : X×H→ R, σR : H→ R,

and KR is a transition kernel from X×H to R \ {0} satisfying supx,h
∫
R |r|

2 ∧ |r|KR(x, h,dr) <∞.

In line with the literature on Lévy bandits, the rewards received at time t are given by the
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infinitesimal increment dRt, i.e., the aim is to maximize

E
[∫ ∞

0
ρe−ρtdRt

]
= E

[∫ ∞
0

ρe−ρtb(Ut, X,Ht)dt

]
,

where the reward function b is given as in Assumption 11 below (see Lemma 4).

Assumption 11 (Reward function). The reward function b : U× X×H is given by

b(u, x, h) =


βR(x, h) +

∫
R

(
r − χ(r)

)
KR(x, h,dr), if u = 1,

k, if u = 0.

By the following assumption, investment in the risky arm makes future investments in the

risky arm more profitable. This dependence is mediated by the process H, which increases with

investment in the risky arm and decreases otherwise.

Assumption 12 (Monotonicity condition). The condition βH(0, h) ≤ 0 ≤ βH(1, h) holds for all

h ∈ H. Moreover, the reward b(1, x, h) of the risky arm is non-decreasing in x ∈ X and h ∈ H.

4.2 Reduction to optimal stopping.

Definition 6 (Gittins’ index). Gittins’ index G is defined by16

G(p, h) = inf

{
s : sup

T
E
(∫ T

0
ρe−ρt(dRt − sdt)

)
≤ 0

}
= sup

T

E
(∫ T

0 ρe−ρtdRt

)
E
(∫ T

0 ρe−ρtdt
) ,

where (1, P,H,R) is a separated control with constant control process U ≡ 1 and initial condition

(P0, H0) = (p, h), and where the suprema are taken over all {FP,Ht }-stopping times T .

Theorem 2 (Optimal stopping). The following statements hold under Assumptions 1–12.

(a) The value function V (see Theorem 1) does not depend on the initial value of the process R

and can be written as V = V (p, h).

(b) The strategy U∗t = 1J0,T ∗K(t) is optimal, where

T ∗ = inf{t ≥ 0 : V (Pt, Ht) ≤ k} = inf{t ≥ 0 : G(Pt, Ht) ≤ k}.

Remark 7. • The intuition behind Theorem 2 is that choosing the risky arm early rather than

late has two advantages: first, it reveals useful information about the hidden state X early on,

and second, it makes future rewards from the risky arm more profitable without depreciating

rewards from the safe arm.

16The index does not depend on the initial value of R (see Lemma 5). The two expressions for G in Definition 6
are shown to be equivalent in El Karoui and Karatzas [15].
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• The elimination of the state variable r is possible because of Assumption 10, which asserts

that the drift, volatility, and jump measure of the reward process only depend on P and H.

• At the heart of Theorem 2 lies the assertion that any optimal control of the discretized

problem can be transformed into a stopping rule of at least the same value (Lemma 8). The

argument is based on Berry and Fristedt [7, Theorem 5.2.2], but in our setting rewards may

depend on the history of experimentation with the risky arm. This dependence is subject

to the monotonicity properties in Assumption 12. Our proof shows that these properties are

exactly what is needed to adapt the argument of Berry and Fristedt [7] to a restless bandit

setting.

• The strategy U∗ is well-defined and optimal for the separated problem as well as the problem

with partial observations.

Theorem 2 follows from a sequence of lemmas, which can be found in Appendix E in the

Appendix. The following proof explains the rôle that each individual lemma plays.

Proof of Theorem 2. The value function does not depend on the initial value of R by Lemma 5.

Therefore, it can be written as V (p, h). The discrete-time value function V δ(p, h) is non-decreasing

in (p, h) and convex in p. This is established in Lemma 6 using the monotonicity properties in

Assumption 12. The result is used in Lemma 7 to prove a sufficient condition for the optimality of

the risky arm in the discretized problem: if the myopic payoff is higher for the risky than for the safe

arm, then choosing the risky arm is uniquely optimal. This sufficient condition is used in Lemma 8

to prove that V δ(p, h) is a supremum of values of stopping rules. The approximation result of

Theorem 1 implies that V (p, y) is also a supremum of values of stopping rules. The stopping time

T ∗ = inf{t ≥ 0: V (Pt, Ht) ≤ k} is optimal by Lemma 9. The alternative characterization of T ∗

in terms of Gittins’ index is well-known, see e.g. Morimoto [45, Theorem 2.1] or El Karoui and

Karatzas [15, Proposition 3.4].

An immediate consequence of Theorem 2 is a characterization of optimal strategies by a curve

which is typically called the decision frontier.

Proposition 1 (Decision frontier). There is a curve in the (p, h)-domain such that it is optimal to

invest in the risky arm if (Pt, Ht) lies to the right and above of the curve. Otherwise, it is optimal

to invest in the safe arm.

Proof. The value function V (p, h) is non-decreasing in its arguments by Lemma 6 and bounded from

below by the constant k. The desired curve is the boundary of the domain {(p, h) : V (p, h) > k}.
The characterization of optimal strategies via the position of (Pt, Ht) relative to the curve follows

from Theorem 2.
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4.3 Indexability.

Another consequence of Theorem 2 is the indexability of our restless bandit model in the sense of

Whittle [68].

Definition 7 (Indexability). Consider a two-armed bandit problem with a safe and a risky arm.

The bandit problem is called indexable if the set of states where the safe arm is optimal is increasing

in the payoff k of the safe arm.

Proposition 2 (Indexability). The restless bandit model of Section 4.1 is indexable.

Proof. Gittins’ index G(p, h) depends only on the payoff of the risky arm. Therefore, the set

{(p, h) : G(p, h) ≤ k} where the safe arm is optimal has the required properties.

4.4 Asymptotic learning.

Definition 8 (Asymptotic learning and infinite investment). For any ω ∈ Ω, we say that asymptotic

learning holds if limt→∞ Pt(ω) = X(ω). We say that the agent invests an infinite amount of time

in the risky arm if
∫∞

0 Ut(ω)dt =∞.

Assumption 13 (Bounds on the flow of information). The initial belief is non-doctrinaire, i.e.,

P0 ∈ (0, 1). The measures KR(1, h, ·) and KR(0, h, ·) are equivalent, for all h ∈ H. The function

Φ(1, ·) defined in Assumption 2 is bounded from below by a positive constant.

Proposition 3 (Asymptotic learning). Under Assumptions 1–13, the following statements hold:

(a) Under any control, asymptotic learning occurs if and only if the agent invests an infinite

amount in the risky arm.

(b) Under the optimal control of Theorem 2, asymptotic learning takes place if and only if (P,H)

remains above the decision frontier for all time.

Proof. (a) follows from Lemma 10. (b) follows from (a) and the characterization of optimal controls

in Proposition 1.

Remark 8. • The limit limt→∞ Pt exists almost surely because P is a bounded martingale. If

the belief P0 ∈ {0, 1} is doctrinaire, then the belief process P is constant and equal to the

hidden state X.

• Agents can learn their true type X in two ways: either through a jump of the belief process

to X, or through convergence to X without a jump to the limit. The first kind of learning

is excluded by the equivalence of KR(1, h, ·) and KR(0, h, ·). The second kind of learning

is characterized by divergence of the Hellinger process of the measures P1 and P0. The

Hellinger process is closely related to the function Φ(u, y), which can be interpreted as the

informativeness of the arm u about the state X. The upper and lower bounds on Φ in

Assumptions 5 and 13 establish an equivalence between divergence of the Hellinger process

and divergence of the accumulated amount of investment in the risky arm (see Lemma 10).
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• If the measures KR(1, H, ·) and KR(0, H, ·) are not equivalent, the belief process P jumps to

the true state X with positive probability on any finite interval of time where the risky arm

is chosen. For example, this is the case in the exponential bandits model of Keller, Rady, and

Cripps [31].

• Proposition 3 can be contrasted with the strategic experimentation model of Bolton and

Harris [9] and the social learning model of Acemoglu et al. [1, Example 1.1]. In these models,

asymptotic learning always takes place because agents continuously receive information about

the hidden state, regardless of whether they choose to invest or not.

4.5 Comparison to the full-information case.

By the full-information case, we mean the bandit model where the otherwise hidden state variable X

is fully observable. This model is equivalent to the model with partial observations and P0 ∈ {0, 1}.
It follows from Theorem 2 and the monotonicity condition in Assumption 12 that the optimal

strategy in the full-information case is constant in time and given by 1V (X,H0)>k.

Definition 9 (Asymptotic efficiency). For any t ≥ 0 and ω ∈ Ω, Ut(ω) is called efficient if it

coincides with 1V (X(ω),H0)>k. Moreover, U(ω) is called asymptotically efficient if Ut(ω) is efficient

for all sufficiently large times t.

Assumption 14 (Decision frontier stays away from p = 0 and p = 1). There is ε > 0 such that

for all h ∈ H, V (ε, h) = k and V (1, h) > k.

Proposition 4 (Asymptotic efficiency). Let Assumptions 1–14 hold, let U be the optimal strategy

provided by Theorem 2, and assume that (P0, H0) lies above the decision frontier. Conditional on

X = 0, asymptotic efficiency holds almost surely. Conditional on X = 1, however, asymptotic

efficiency may hold and fail with positive probability.

Proof. If X = 0, investment in the risky arm can’t continue forever. Otherwise, Pt would converge

to zero by Proposition 3. As the decision frontier is strictly bounded away from the set p = 0,

(Pt, Ht) would eventually drop below the decision frontier, a contradiction. Thus, investment stops

at some finite point in time. This is efficient given X = 0 because V (0, H0) = k.

If X = 1, then (P,H) may or may not drop below the frontier at some point in time. Both

cases may happen with positive probability. In the former case, the agent stops investing, which

is inefficient because V (1, H0) > 0. In the latter case, the agent never stops investing, which is

efficient.

Remark 9. • Efficiency holds if there is some time t where the agent’s plan for future invest-

ments is the same as if she had known X from the beginning. Of course, this still leaves open

the possibility that some early investment decisions were inefficient.

• The intuition behind Proposition 4 is that a sequence of bad payoffs can lead agents to refrain

from experimentation with the risky arm. For agents of the type X = 0, this is efficient, but
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for agents with X = 1, it is not. In this regard, the restless bandit model behaves as a

standard bandit model.

• It follows that in the long run, compared to a setting with full information, agents invest

too little in the risky arm. This points to the importance of policies designed to increase

investment in the risky arm.

• Assumption 14 limits the influence of H on the rewards from the risky arm: the safe arm is

optimal if X = 0 is known for sure, regardless of how high H is, and similarly the risky arm

is optimal if X = 1 is known for sure, regardless of how low H is.

• Without Assumption 14, it is still possible to characterize asymptotic efficiency using the

necessary and sufficient conditions of Lemma 10, but there are more cases to distinguish.

Some of them have no counterpart in classical bandit models. For example, there can be low-

type agents who invest in the risky arm at all times. This can be either efficient or inefficient,

depending on whether V (0, H0) exceeds k. Similarly, it can be efficient or inefficient for

high-type agents to stop investing, depending on V (1, H0).

4.6 Evolution of a population of agents.

Assume that there is a population of agents with idiosyncratic (P0, H0). Moreover, assume that

agents have independent types, such that learning from others is impossible. Alternatively, learning

could be precluded by making actions and rewards private information. Then all agents behave

as in the single player case. The distribution of agents in the (p, h)-domain evolves over time and

converges to the distribution of (P∞, H∞).

Proposition 5. Let Assumptions 1–14 hold, let p∗(h) denote the decision frontier, and consider a

population of agents with (P0, H0) above the decision frontier.

(a) In a restless bandit model with β(0, h) < 0 < β(1, h), (P∞, H∞) satisfies

P∞ ∈ [0, p∗(−∞)] and H∞ = −∞ or P∞ = 1 and H∞ =∞.

(b) In a classical bandit model where β(0, h) = β(1, h) = 0 and ∆P ≥ −ε for some ε ≥ 0,

P∞ ∈ [p∗(H0)− ε, p∗(H0)] and H∞ = H0.

Proof. (a) If (P,H) drops below the decision frontier, P is frozen and H decreases to −∞. Other-

wise, P increases to 1 and H to ∞. (b) H is constant and P either converges to 1 or drops below

the decision frontier and remains there forever.

Remark 10. • Proposition 5 shows that agents in classical bandit models accumulate at or

near the decision frontier, whereas they drift away from the frontier in restless bandit models.
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• It follows that in restless bandit models, even large shifts of the decision frontier have negligible

effects on average investment if they are carried out late in time. In contrast, even small shifts

of the decision frontier have large effects on average investment in classical bandit models,

where agents accumulate near the frontier.

• Our model provides an explanation for the ineffectiveness of subsidies designed to boost

investment in projects with uncertain payoffs. Our explanation does not rely on switching

costs.

5 Conclusions.

We presented an extension of classical bandit models of investment under uncertainty motivated

by dynamic aspects of resource development. The extension is new and has economic significance

in a wide range of real world settings.

We dealt with the delicate issue of setting up the control problem with partial observations

in continuous time. As explained in Section 2.2, recent standard formulations of optimal control

under partial observation do not apply in our general setting. In addition to its importance to the

theory of optimal control, our solution is also a contribution to the bandit literature.

Our framework encompasses both the exponential bandit model of Keller, Rady, and Cripps

[31], where jumps can occur only for high type agents, and the Poisson and Levy bandit models of

Keller and Rady [30, 29] and Cohen and Solan [10], where it is assumed that one jump measure is

absolutely continuous with respect to the other.

We solved the restless bandit model by an unconventional approach. Instead of using the HJB

equation or a setup using time changes, we discretized the problem in time and showed that any

optimal strategy can be modified such that the agent never invests after a period of not investing

and such that the modified strategy is still optimal.

Our models constitute a new class of indexable restless bandit models. While other classes

of indexable bandits are known, they either involve no learning about one’s type (Glazebrook,

Kirkbride, and Ruiz-Hernandez [22]), do not allow history-dependent payoffs (Washburn [63]), or

are restricted to very specific reward processes (e.g. finite-state Markov chains as in Nino-Mora

[46]).

A Notation.

For any Polish space S, B(S) will denote the space of R-valued Borel-measurable functions on S,

C(S) the continuous functions, Cb(S) the bounded continuous functions, and P(S) the space of

probability measures on S. DS[0,∞) denotes the space of S-valued càdlàg functions on [0,∞) with

the Skorokhod topology, LS[0,∞) the càglàd functions, and CS[0,∞) the subspace of continuous

functions. If S is endowed with a differentiable structure, then Ckb (S) denotes the functions with k

bounded continuous derivatives.
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Throughout the paper, all filtrations are assumed to be complete, and all processes are assumed

to be progressively measurable. The law of a random variable X is denoted by L(X). The comple-

tion of the filtration generated by a process Y is denoted by {FYt }. If Y has left-limits, they are

denoted by Y−, i.e., Yt− = lims↗t Yt. If Y is of finite variation, Var(Y ) denotes its variation process.

H • Y denotes stochastic integration of a predictable process H with respect to a semimartingale

Y and H ∗µ with respect to a random measure µ. I denotes the identity process It = t. When T is

a stopping time, we write Y T and µT for the stopped versions of Y and µ. Stochastic intervals are

denoted by double brackets, e.g., J0, T K ⊂ [0,∞] × Ω. Y c denotes the continuous local martingale

part of Y . A superscript > denotes the transpose of a matrix or vector.

B Controlled martingale problems.

Definition 10 (Martingale problem for (A, F )). Let F be a càglàd adapted U-valued process on

the space DY[0,∞) with its canonical filtration.

(i) (X,Y, T ) is a solution of the stopped martingale problem for (A, F ) if there exists a filtration

{Ft}, such that X is an F0-measurable X-valued random variable, Y is an {Ft}-adapted

càdlàg Y-valued process, T is an {Ft}-stopping time, and for each f ∈ D(A),

f(X,Yt∧T )− f(X,Y0)−
∫ t∧T

0
Af(F (Y )s, X, Ys)ds (1)

is an {Ft}-martingale.

(ii) If T =∞ almost surely, then (X,Y ) is a solution of the martingale problem for (A, F ).

(iii) (X,Y ) is a solution of the local martingale problem for (A, F ) if there exists a filtration {Ft}
and a sequence of {Ft}-stopping times {Tn} such that Tn →∞ almost surely and for each n,

(X,Y, Tn) is a solution of the stopped martingale problem for (A, F ).

(iv) Local uniqueness holds for the martingale problem for (A, F ) if for any solutions (X ′, Y ′, T ′),

(X ′′, Y ′′, T ′′) of the stopped martingale problem for (A, F ), equality of the law of (X ′, Y ′0) and

(X ′′, Y ′′0 ) implies the existence of a solution (X,Y, S′ ∨S′′) of the stopped martingale problem

for (A, F ) such that (X·∧S′ , S
′) has the same distribution as (X ′·∧T ′ , T

′), and (X·∧S′′ , S
′′) has

the same distribution as (X ′′·∧T ′′ , T
′′).

(v) The martingale problem for (A, F ) is well-posed if local uniqueness holds for the martingale

problem for (A, F ) and for each ν ∈ P(X × Y), there exists a solution (X,Y ) of the local

martingale problem for (A, F ) such that the law of (X,Y0) is ν.

Definition 11 (Martingale problem for (G, F )). Let F be a càglàd adapted U-valued process on

D[0,1]×Y[0,∞) with its canonical filtration.

22



(i) (P, Y, T ) is a solution of the stopped martingale problem for (G, F ) if there exists a filtration

{Ft}, such that (P, Y ) is an {Ft}-adapted càdlàg [0, 1] × Y-valued process, T is an {Ft}-
stopping time, and for each f ∈ D(G),

f(Pt∧T , Yt∧T )− f(P0, Y0)−
∫ t∧T

0
Af(F (P, Y )s, Ps, Ys)ds (2)

is an {Ft}-martingale.

(ii) Solutions of the (local) martingale problem, local uniqueness, and well-posedness are defined

in analogy to Definition 10.

C Noncommutativity of filtering and relaxation.

To see the non-commutativity between filtering and relaxation, let us tentatively define relaxed

controls with partial observations as tuples (Λ, X, Y ) such that for each f ∈ D(A),

f(X,Yt)− f(X0, Y0)−
∫ t

0

∫
U
Af(u,X, Ys−)Λs(du)ds (3)

is a martingale, where Λ is a {FYt }-predictable P(U)-valued process. If a well-posedness condition

similar to the one in Definition 2 holds and Pt = E[X | FYt ] is the filter, then it can be shown17

that a jump ∆Yt of the observable process leads to a jump ∆Pt = j(Λt, Pt−, Yt−,∆Yt) of the filter,

where

j(λ, p, y, z) =

∫
U pφ2(u, y, z)λ(du)∫

U

(
pφ2(u, y, z) + (1− p)

(
2− φ2(u, y, z)

))
λ(du)

− p. (4)

Thus, ∆Pt is uniquely determined by ∆Yt and the information before t. In contrast, this is not

the case in the relaxation of the separated control problem, where a jump ∆Yt can lead to different

values of ∆Pt. Indeed, the jump measure of (P, Y ) is compensated by the predictable random

measure

ν(dp,dy) =

∫
Y
δj(u,Pt−,Yt−,y)(dp)K(u, Pt−, Yt−, dy)Λt(du). (5)

An interpretation is that the two cases differ in how uncertainty regarding u is handled. In the

former case, the control u in the support of Λt is treated as unknown in the process of updating the

filter. Therefore, the jump height of the filter depends on Λt, but not on a random choice of u in

the support of Λt. In the latter case, however, u is treated as known but random. Different choices

of u in the support of Λt might lead to different probabilities for a jump ∆Yt, and consequently to

different jumps of the filter.

17This follows by adapting the proof of Lemma 1 to relaxed control processes.
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D Proofs of Section 3.

Lemmas 1–3 below are used to establish Theorem 1. Assumptions 1–9 are in place.

Lemma 1 (Filtering). If (U,X, Y ) is a control with partial observations and P is a càdlàg version

of the martingale E[X | FYt ], then (U,P, Y ) is a separated control of the same value as (U,X, Y ).

Proof. Step 1 (Filter as change of measure from P to P1). If P0 ∈ {0, 1}, then Pt ≡ P0 is constant

and equal to X. In this case it is trivial to check that (U,P, Y ) is a separated control of the

same value as (U,X, Y ). In the sequel, we assume that 0 < P0 < 1. Then the measure P can be

conditioned on the event X = x, for all x ∈ X. This yields measures Px such that

P1(X = 1) = 1, P0(X = 0) = 1, P = P0P1 + (1− P0)P0. (6)

The process P/P0 is the {FYt }-density process of P1 relative to P because for all A ∈ FYt ,∫
A
PtdP =

∫
A
E[X|FYt ]dP =

∫
A
XdP = P0P1(A). (7)

Step 2 (Stochastic exponential relating the martingale problems under P and P1). For each

f ∈ D(A), let Af be the average of Af over x ∈ X with weights p and (1− p),

Af(u, p, y) = pAf(u, 1, y) + (1− p)Af(u, 0, y). (8)

Let f ∈ D(A) and set g(x, y) = f(1, y). Then g ∈ D(A) and g is constant in x ∈ X. By Definition 2,

the process

g(1, Y )− g(1, Y0)−Ag(U,X, Y ) • I (9)

is a martingale under P. Taking {FYt }-optional projections, one obtains that the process

M = g(1, Y )− g(1, Y0)−Ag(U,P, Y ) • I (10)

is an {FYt }-martingale under P. Moreover, as X = 1 holds P1-a.s., the process

M̃ = g(1, Y )− g(1, Y0)−Ag(U, 1, Y ) • I (11)

is an {FYt }-martingale under P1. The difference between these two processes is given by

M − M̃ = ∂yg(1, Y )
(
β(U, 1, Y )− β(U,P, Y )

)
• I

+

∫
Y

(
g(1, Y + z)− g(1, Y )− ∂yg(1, Y )χ(z)

)(
K(U, 1, Y, dz)−K(U,P, Y,dz)

)
• I. (12)

For any p > 0, let ψ1 and ψ2 be defined by

ψ1(u, p, y) = (1− p)φ1(u, y), ψ2(u, p, y, z) =
φ2(u, y, z)

pφ2(u, y, z) + (1− p)
(
2− φ2(u, y, z)

) , (13)
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where φ1, φ2 stem from Assumption 5. Then the following relations hold for any p > 0:

β(u, 1, y)− β(u, p, y) = σ2(u, y)ψ1(u, p, y) +

∫
Rn

(
ψ2(u, p, y, z)− 1

)
χ(z)K(u, p, y, dz),

K(u, 1, y,dz) = ψ2(u, p, y, z)K(u, p, y, dz)

(14)

For any n ∈ N, let Tn be the stopping time

Tn = inf{t ≥ 0: Pt < 1/n or Pt− < 1/n or |Yt| > n} ∧ n. (15)

Since P > 0 holds on any interval J0, TnJ, Equation (14) can be used to rewrite Equation (12) as

MTn − M̃Tn = ∂yg(1, Y )
(
σ2(U, Y )ψ1(U,P, Y )

)
1J0,TnK • I

+

∫
Y

(
g(1, Y + z)− g(1, Y )

)(
ψ2(U,P, Y, z)− 1

)
K(U,P, Y, dz)1J0,TnK • I. (16)

Let µ be the jump measure of Y , ν its {FYt }-compensator under P, and

Ln = ψ1(U,P−, Y−)1J0,TnK • Y c +
(
ψ2(U,P−, Y−, z)− 1

)
1J0,TnK ∗

(
µ− ν

)
(dz,dt). (17)

Then Ln is a local {FYt }-martingale under P. Keeping track of the terms in Itō’s formula the same

way as in the proof of Jacod and Shiryaev [26, Theorem II.2.42] shows that

M = ∂yg(1, Y−) • Y c +
(
g(1, Y− + z)− g(1, Y−)

)
∗
(
µ− ν

)
(dz, dt) (18)

is the decomposition of M into its continuous and purely discontinuous local martingale parts. It is

now easy to calculate the predictable quadratic covariation of MTn and Ln. Indeed, a comparison

with Equation (16) shows that

MTn − M̃Tn = 〈MTn , Ln〉. (19)

Equivalently, letting Dn = E(Ln) denote the stochastic exponential of Ln,

M̃Tn = MTn − 〈MTn , Ln〉 = MTn − 1

Dn
−
• 〈MTn , Dn〉. (20)

Step 3 (Martingale property of stochastic exponential). We will show that the local martingale

Dn is a martingale by verifying the conditions of Lépingle and Mémin [40, Théorème IV.3]. For

any w ∈ [0, 1],
p(1− p)

pw + (1− p)(1− w)
≤ p(1− p)
p ∧ (1− p)

≤ 1 (21)

holds because the nominator on the left-hand side is a convex combination of p and (1−p). Replacing
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w by φ2(u, y, z)/2 in Equation (21) one obtains

(
ψ2(u, p, y, z)− 1

)2
=

(
2(1− p)(φ2(u, y, z)− 1)

pφ2(u, y, z) + (1− p)
(
2− φ2(u, y, z)

))2

≤ 1

p2

(
φ2(u, y, z)− 1

)2
. (22)

This inequality relates the values of φ2, ψ2 under the transformation w 7→ (w − 1)2. It can equiva-

lently be expressed in terms of the functions w 7→ w log(w)−w+ 1 or w 7→ 1−
√
w(2− w) because

for all w ∈ [0, 2],

w log(w)− w + 1 ≤ (w − 1)2 ≤ 4
(
w log(w)− w + 1

)
, (23)

1−
√
w(2− w) ≤ (w − 1)2 ≤ 2

(
1−

√
w(2− w)

)
. (24)

Actually, the first inequality in Equation (23) holds for all w ≥ 0, which implies that∫ (
ψ2(u, p, y, z) log

(
ψ2(u, p, y, z)

)
− ψ2(u, p, y, z) + 1

)
K(u, p, y, dz)

≤
∫ (

ψ2(u, p, y, z)− 1
)2
K(u, p, y, dz) ≤ 1

p2

∫ (
φ2(u, y, z)− 1

)2
K(u, p, y, dz)

≤ 2

p2

∫ (
1−

√
φ2(u, y, z)

(
2− φ2(u, y, z)

))
K(u, p, y, dz)

≤ 4

p2

∫ (
1−

√
φ2(u, y, z)

(
2− φ2(u, y, z)

))
K(u, 1

2 , y,dz). (25)

By Assumption 5, this expression is bounded as long as p stays away from zero. Moreover, by the

same assumption, the following expression is bounded:

ψ1(u, p, y)>σ2(u, y)ψ1(u, p, y) = (1− p)2φ1(u, y)>σ2(u, y)φ1(u, y). (26)

Therefore,

E
[
exp

(
1

2
〈Ln,c, Ln,c〉∞ +

(
(1 + z) log(1 + z)− z

)
∗ νTn∞

)]
<∞, (27)

which is the condition of Lépingle and Mémin [40, Théorème IV.3] implying that Dn = E(Ln) is a

uniformly integrable martingale. Therefore, Dn
Tn
P is a probability measure.

Step 4 (Identification of stochastic exponential and filter). By Definition 2, U = F (Y ) for a

process F on DY[0,∞). We will use the well-posedness of the martingale problem for (A, F ) to

show that Dn
Tn
P agrees with P1 on FYTn . By Girsanovs’ theorem and Equation (20), M̃Tn is an

{FYt }-martingale under Dn
Tn
P. The process M̃ can be written as

M̃ = f(1, Y )− f(1, Y0)−Af(U, 1, Y ) • I (28)

because A has no derivatives or non-local terms in the x-direction. As f ∈ D(A) was chosen arbi-

trarily, the tuple (1, Y ) under the measure Dn
Tn

solves the martingale problem for (A, F ) stopped at
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Tn. The same can be said about the tuple (X,Y ) under the measure P1. Moreover, the distribution

of (1, Y0) under Dn
Tn
P coincides with the distribution of (X,Y0) under P1. According to Definition 2,

local uniqueness holds for the martingale problem. It follows that Dn
Tn
P coincides with P1 on FYTn .

The characterization of P/P0 as the density process of the measure P1 relative to P obtained in

Step 1 implies that P = P0D
n
Tn

holds on J0, TnK.
Step 5 (Filter solves the martingale problem with generator G). To show that (U,P, Y ) is a

separated control, one has to prove that for any f ∈ D(G),

N = f(P, Y )− f(P0, Y0)− Gf(U,P, Y ) • I

is an {FYt }-martingale under P. On the interval J0, TnK, P agrees with P0D
n and consequently

satisfies P = P− • Ln. Therefore, the jumps of P on this interval are

∆P = P− ∆Ln = P−
(
ψ2(U,P−, Y−,∆Y )− 1

)
1∆Y 6=0 = j(U,P−, Y−,∆Y )1∆Y 6=0, (29)

where the function j is defined in Assumption 4. Moreover, on the same interval J0, TnK,

〈P c, P c〉 = P 2
− • 〈Ln,c, Ln,c〉 =

∑
i,j

P 2
−ψ1,i(U,P−, Y−)ψ1,j(U,P−, Y−) • 〈Y i,c, Y j,c〉

= P 2(1− P )2φ1(U, Y )>σ(U, Y )2φ1(U, Y ) • I

〈P c, Y c〉 = P 2
− • 〈Ln,c, Y c〉 = P 2

−ψ1(U,P−, Y−)> • 〈Y c, Y c〉 = P 2ψ1(U,P, Y )>σ2(U, Y ) • I

〈Y c, Y c〉 = σ2(U, Y ) • I.

(30)

It follows from Itō’s formula and the definition of G in Assumption 4 that the stopped process NTn

is an {FYt }-local martingale under P. It is also bounded by Assumption 2, so it is a martingale.

Setting g(x, y) = f(0, y), one has g ∈ D(A), and the process

M = g(0, Y )− g(0, Y0)−Ag(U,P, Y ) • I (31)

is a martingale. Then it holds for any bounded stopping time S and each n ∈ N that

E
[
NS

]
= E

[
NS∧Tn +NS∨Tn −NTn

]
= E

[
NS∧Tn +MS∨Tn −MTn +Rn

]
= E

[
Rn
]
, (32)

with a remainder Rn given by

Rn =
(
NS∨Tn −NTn

)
−
(
MS∨Tn −MTn

)
. (33)

Let ω ∈ Ω and

T = lim
n→∞

Tn = inf{t ≥ 0: Pt = 0 or Pt− = 0}. (34)

If PT−(ω) = 0, then Tn(ω) < T (ω) holds for all n ∈ N. Otherwise, there is k ∈ N such that
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Tn(ω) = T (ω) holds for all sufficiently large n. Therefore,

lim
n→∞

Rn =


(NT− −NT−)− (MT− −MT−), if PT− = 0 and t < T,

(NS −NT−)− (MS −MT−), if PT− = 0 and t ≥ T,

(NS∨T −NT )− (MS∨T −MT ), if PT− 6= 0.

(35)

It can be seen from the definitions of A and G in Assumptions 1 and 4 that Gf(u, 0, y) = Ag(u, 0, y).

Therefore, N = M holds on the interval JT,∞J, where P = 0. Moreover, NT− = MT− holds if

PT− = 0. This implies that limn→∞Rn = 0. The processes MS and NS are bounded, which follows

from Assumption 2 and the boundedness of S. Therefore,

Rn = 1Tn<S

(
(NS −NS∧Tn)− (MS −MS∧Tn)

)
(36)

is bounded by a constant not depending on n. By the dominated convergence theorem, E[NS ] =

limn→∞ E[Rn] = 0. As this holds for all bounded stopping times S, we conclude that N is a

martingale. As f ∈ D(G) was chosen freely, (U,P, Y ) is a separated control.

Step 6 (Value of separated control). (U,P, Y ) has the same value as (U,X, Y ) because b(U,P, Y )

is the {FYt }-optional projection of b(U,X, Y ).

Lemma 2 (Approximation). Separated controls can be approximated arbitrarily well in value by

separated step controls:

V se.(p, y) = sup
δ
V se.,δ(p, y). (37)

Here V se.,δ denotes the value function obtained by admitting only processes U which are piecewise

constant on an equidistant time grid of step size δ > 0 in the separated control problem.

Proof. Step 1 (Filtered martingale problem). Let U be deterministic and let (P, Y ) be a càdlàg

process with values in [0, 1]× Y. We identify P with the P(X)-valued process Π given by

Πt(dx) = Ptδ1(dx) + (1− Pt)δ0(dx), (38)

where δx denotes the Dirac measure at x ∈ X. In line with Kurtz and Ocone [34], we say that

(Π, Y ) is a solution of the filtered martingale problem for (A, U) if∫
X
f(x, Y )Π(dx)−

∫
X
f(x, Y0)Π0(dx)−

∫
X
Af(U, x, Y )Π(dx) • I (39)

is a martingale, for each f ∈ D(A), and Π is {FYt }-adapted.

We will use Kurtz and Nappo [37, Theorem 3.6] to show that uniqueness holds for the filtered

martingale problem. Thus, we have to verify points (i)-(vi) of Condition 2.1 in this paper. These

are conditions on the operator Af(U, x, y) in (39), interpreted as a time-dependent generator of

(X,Y ). To put everything into a time-homogeneous framework, we work with the time-augmented
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process (I,X, Y ). Its generator AU is given by

D(AU ) = C2
b (R× X× Y), AUg(t, x, y) = ∂tg(t, x, y) +Agt(Ut, x, y), (40)

where gt(x, y) = g(t, x, y). For point (i), there is nothing to prove. For point (ii), one has to show

that Af(u, x, y) is continuous in (u, x, y), for each f ∈ D(A). To see this, let

m(u, x, y) = 1 +

∫
Rd

(
|z|2 ∧ 1

)
K(u, x, y, dz), (41)

f̂(u, x, y, z) = m(u, x, y)
f(x, y + z)− f(x, y)− ∂yf(x, y)χ(z)

|z|2 ∧ 1
, (42)

K̂(u, x, y, dz) =

(
|z|2 ∧ 1

)
K(u, x, y, dz)

m(u, x, y)
. (43)

Then everything is set up such that∫
Y

(
f(x, y + z)− f(x, y)− ∂yf(x, y)χ(z)

)
K(u, x, y, dz) =

∫
Y
f̂(u, x, y, z)K̂(u, x, y, dz). (44)

Now let (un, xn, yn)n∈N be a sequence in U × X × Y converging to (u, x, y). By Assumption 6,

m(u, x, y) is continuous and the measures K̂(un, xn, yn, dz) are weakly convergent. A version of Sko-

rokhod’s representation theorem for measures instead of probability measures (for example Startek

[59]) implies that there are mappings (Zn)n∈N and Z with values in Y, all defined on the same mea-

sure space with finite measure, such that for each n ∈ N, Zn has distribution K̂(un, xn, yn, dz), Z

has distribution K̂(u, x, y, dz), and Zn → Z almost surely. By the dominated convergence theorem,

E
[
f̂(un, xn, yn, Zn)

]
→ E

[
f̂(u, x, y, Z)

]
, (45)

which shows that the expression in (44) is continuous in (u, x, y). This settles point (ii). Point (iii) is

satisfied with ψ = 1 by Assumption 2. Points (iv) and (vi) are satisfied for D(AU ) = C2
b (R×X×Y).

Finally, point (v) is satisfied because of Assumption 8, which guarantees that for each constant,

deterministic control U and all initial conditions, there exists a càdlàg solution of the martingale

problem for AU (cf. the discussion before Theorem 2.1 in Kurtz [35]). Moreover, by Assumption 8,

uniqueness holds for the martingale problem for AU , which coincides with the martingale problem

for (A, U) from Definition 1. Thus, all conditions of Kurtz and Nappo [37, Theorem 3.6] are fulfilled

and uniqueness holds for the filtered martingale problem.

Step 2 (Projecting separated controls to solutions of the filtered martingale problem). Let

(U,P,X) be a separated control with deterministic control process U . Let f ∈ D(G) be affine

in the first variable p, i.e.,

f(p, x) = pf(1, x) + (1− p)f(0, x). (46)
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Then Gf(u, p, x) is also affine in p, i.e.,

Gf(u, p, x) = pGf(u, 0, x) + (1− p)Gf(u, 0, x) = pAf(u, 0, x) + (1− p)Af(u, 0, x). (47)

This can be verified using the definition of φ1 and φ2, noting that all quadratic terms in p cancel

out in the expression of Gf(u, p, x). Identifying P with Π as in Step 1, one obtains that the process

f(P, Y )− f(P0, Y0)− Gf(U,P, Y ) • I

=

∫
X
f(x, Y )Π(dx)−

∫
X
f(x, Y0)Π0(dx)−

∫
X
Af(U, x, Y )Π(dx) • I (48)

is a martingale. If Π̃ denotes the {FYt }-optional projection of Π, then∫
X
f(x, Y )Π̃(dx)−

∫
X
f(x, Y0)Π̃0(dx)−

∫
X
Af(U, x, Y )Π̃(dx) • I (49)

is also a martingale. Thus, (Π̃, Y ) is a solution of the filtered martingale problem. By the previous

step, the law of (Π̃, Y ) is uniquely determined. An important consequence is that all separated

controls sharing the same deterministic control process U have the same value:

E
[∫ ∞

0
ρe−ρtb(Ut, Pt, Yt)dt

]
= E

[∫ ∞
0

ρe−ρtb(Ut, P̃t, Yt)dt

]
=: J(U), (50)

where P̃ is the {FYt }-optional projection of P .

Step 3 (Tightness of separated controls). Let (Un, Pn, Y n) be separated controls with determin-

istic control processes Un and let Un → U in the stable topology, i.e.,∫ ∞
0

g(Unt , t)dt→
∫ ∞

0
g(Ut, t)dt (51)

for all bounded measurable functions g : U×[0,∞)→ R with compact support which are continuous

in u. The stable topology coincides with the vague topology, checked on continuous functions with

compact support. For more details on the vague and stable topology we refer to El Karoui, Nguyen,

and Jeanblanc-Picqué [16] and Jacod and Mémin [25]. We will use Jacod and Shiryaev [26, Theorem

IX.3.9] to show that the laws of (Pn, Y n) are tight. Thus, we have to verify the conditions of this

theorem. By the same estimates as in Step 3 of the proof of Lemma 1, one obtains that∫
Y

(
|j(u, p, y, z)|2 + |z|2

)
∧ 1 K(u, p, y, dz)

≤ 2

∫
Y
j(u, p, y, z)2 K(u, p, y, dz) + 2

∫
Y
|z|2 ∧ 1 K(u, p, y, dz)

≤ 2

∫
Y

(
φ2(u, y, z)− 1

)2
K(u, p, y, dz) + 2

∫
Y
|z|2 ∧ 1 K(u, p, y, dz)

≤ 4

∫
Y

(
1−

√
φ2(u, y, z)

(
2− φ2(u, y, z)

))
K(u, p, y, dz) + 2

∫
Y
|z|2 ∧ 1 K(u, p, y, dz).

(52)
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By Assumptions 2 and 5, the integrals on the last line above are bounded by a constant which does

not depend on (u, p, y). By Assumptions 2 and 5, also the drift and the diagonal entries of the

volatility matrix

β(u, p, y), p2(1− p)2φ1(u, y)>σ2(u, y)φ1(u, y), σ2(u, y) (53)

are bounded by a constant not depending on (u, p, y). It follows that Condition IX.3.6 (the strong

majoration hypothesis) is satisfied. Condition IX.3.7 (the condition on the big jumps) follows from

Assumption 7. By the stable convergence of Un to U , using Assumption 6 and the bounds which

were just shown, the following convergence holds for all t ≥ 0, (P, Y ) ∈ D[0,1]×Y[0,∞), and functions

g ∈ Cb([0, 1]× Y) vanishing near the origin:

β(Un, P, Y ) • It → β(U,P, Y ) • It,

P 2(1− P )2φ1(Un, Y )>σ2(Un, Y )φ1(Un, Y ) • It → P 2(1− P )2φ1(U, Y )>σ2(U, Y )φ1(U, Y ) • It
P (1− P )σ2(Un, Y )φ1(Un, Y ) • It → P (1− P )σ2(U, Y )φ1(U, Y ) • It

σ2(Un, Y ) • It → σ2(U, Y ) • It,∫
Y
g
(
j(Un, P, Y, z), z

)
K(Un, P, Y,dz) • It →

∫
Y
g
(
j(U,P, Y, z), z

)
K(U,P, Y, dz) • It.

(54)

It follows from Lemma IX.3.4 that the conditions of Theorem IX.3.9 are satisfied. Thus, the laws

of (Pn, Y n) are tight. Moreover, any limit (P, Y ) of a weakly converging subsequence of (Pn, Y n)

solves the martingale problem for (G, U) and defines a separated control (U,P, Y ). This follows

from Jacod and Shiryaev [26, Theorem IX.2.11] by the same assumptions.

Step 4 (Step controls). For any δ > 0, the mapping

Ψδ : LU[0,∞)→ LU[0,∞), (ΨδU)t =
∞∑
i=0

Uiδ1(iδ,(i+1)δ](t) (55)

approximates deterministic control processes by step control processes of step size δ. Indeed,

limδ→0(ΨδU)t = Ut holds for each t ≥ 0. Moreover, by dominated convergence, ΨδU converges

stably to U . Let

L0
U[0,∞) =

⋃
δ>0

{
ΨδU : U ∈ LU[0,∞)

}
⊂ LU[0,∞) (56)

denote the set of all step control processes. For any step control process U ∈ L0
U[0,∞), there is a

control with partial observations (U,X, Y ) by Assumption 8 and a corresponding separated control

(U,P, Y ) by Lemma 1. Let QU denote the law of (P, Y ) under U . If Un ∈ L0
U[0,∞) converges

stably to a step control U ∈ L0
U[0,∞), then QUn converges weakly to QU by the arguments in Step

2 and by Assumption 9 ensuring uniqueness of the martingale problem for (G, U). As continuity

implies measurability, Q is a transition kernel from L0
U[0,∞) with the Borel sigma algebra of stable

convergence to Skorokhod space D[0,1]×Y[0,∞).
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Step 5 (Approximation of deterministic controls). Let U ∈ LU[0,∞) and define Un = Ψ1/nU ,

for each n ∈ N. By Assumption 8 there are controls with partial observations (Un, Xn, Y n) and

by Lemma 1 corresponding separated controls (Un, Pn, Y n). By the tightness result of Step 3, any

subsequence along which J(Un) converges contains another subsequence, still denoted by n, such

that (Pn, Y n) converge weakly to some solution (P, Y ) of the martingale problem for (G, U). By

Skorokhod’s representation theorem we may assume after passing to yet another subsequence that

(Pn, Y n) and (P, Y ) are defined on the same probability space and that (Pn, Y n) converge to (P, Y )

almost surely. As ∆Pt = 0 holds almost surely for each fixed t ≥ 0, it follows from the dominated

convergence theorem and the pointwise convergence of Unt to Ut that

lim
n→∞

J(Un) =

∫ ∞
0

ρe−ρt lim
n→∞

E
[
b(Unt , P

n
t , Y

n
t )
]

dt =

∫ ∞
0

ρe−ρt E
[
b(U,Pt, Yt)

]
dt = J(U). (57)

Step 5 (Approximation of arbitrary controls). The law of any separated control (U,P, Y ) is

a probability measure P on the space LU[0,∞) × D[0,1]×Y[0,∞). We will work on this canonical

probability space in the sequel. Using disintegration, P can be written in the form

P(dU,dP,dY ) = P(dU)PU (dP,dY ). (58)

Accordingly, the value of the control can be expressed as

J se.(U,P, Y ) =

∫
LU[0,∞)

EPU

[∫ ∞
0

ρe−ρtb(Ut, Pt, Yt)dt

]
P(dU) (59)

For P-a.e. U , the process (P, Y ) under the measure PU solves the martingale problem for (G, U).

Moreover, the process U is deterministic under the measure PU . By Step 2, all solutions of the

martingale problem (G, U) with deterministic control process U have the same value J(U). This

allows one to express the value of the control as

J se.(U,P, Y ) =

∫
LU[0,∞)

J(U)P(dU). (60)

By Step 4 and dominated convergence,

J se.(U,P, Y ) = lim
n→∞

∫
LU[0,∞)

J(Ψ1/nU)P(dU) = lim
n→∞

J se.(Un, Pn, Y n), (61)

where (Un, Pn, Y n) is the coordinate process on LU[0,∞) × D[0,1]×Y[0,∞) under the measure

QΨ1/nU (dP,dY )P(dU). Thus, (Un, Pn, Y n) is a sequence of separated step controls approximating

(U,P, Y ) in value.

Lemma 3 (From separated to partially observed controls). For every separated step control, there

exists a step control with partial observations of at least the same value, implying V p.o.,δ(p, y) ≥
V se.,δ(p, y).
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Proof. Step 1 (Reduction to Markovian step controls). To distinguish the separated and the par-

tially observed versions of the problem, we will mark objects of the separated problem with a

tilde. By Assumption 9, the discretized separated problem is that of controlling the Markov chain

(P̃ti , Ỹti), where (ti)i∈N is a uniform time grid of step size δ > 0. It is well-known that optimal

Markov controls exist for such problems (see e.g. Berry and Fristedt [7] and Seierstad [58]). We

will prove the lemma by showing that every Markov control for the discretized, separated problem

corresponds to a step control for the problem with partial observations which has the same value.

So we start with a Markovian step control (Ũ , P̃ , Ỹ ) with control process Ũ given by

Ũt = Fi(P̃ti , Ỹti), if t ∈ (ti, ti+1], (62)

for some functions Fi : [0, 1]× Y→ U, i ∈ N.

Step 2 (Construction of a candidate control with partial observations). To construct the control

for the problem with partial observations, we work on the canonical space Ω = X×DY[0,∞) with

its natural sigma algebra and filtration. The coordinates on this space are denoted by (X,Y ).

When T is a (strict) stopping time, P is a probability measure on Ω, and Q is an FT -measurable

random variable with values in the space of probability measures on Ω, then we let P⊗T Q denote

the unique probability measure on Ω such that (i) the law of the stopped process (X,Y T ) is equal to

P on the sigma algebra FT and (ii) the FT -conditional law of the time-shifted process (X,YT+t)t≥0

is Q. This notation is explained and relevant results are proven in Stroock and Varadhan [61, 6.1.2,

6.1.3 and 1.2.10] for continuous processes. For processes with jumps, the relevant results are Jacod

and Shiryaev [26, Lemmas III.2.43-48], but the notation P⊗T Q is not used there.

By Assumption 8, we get for each (u, x, y) ∈ U× X× Y a unique probability measure Qu(x, y)

on Ω such that X = x and Y0 = y holds almost surely and such that (X,Y ) solve the martingale

problem for (A, u) under Qu(x, y). By Jacod and Shiryaev [26, Theorem IX.3.39], Qu(x, y) is weakly

continuous, thus measurable, in (u, x, y). Verifying the conditions of the theorem can be done as in

the proof of Lemma 2, but it is easier in the present situation. We now define inductively for each

n ∈ N a probability measure Pn and a càdlàg process Pn on Ω as follows.

P0 = P0QF0(P0,Y0)(1, Y0) + (1− P0)QF0(P0,Y0)(0, Y0), P 0
t = EP0 [X | FYt ],

Pn = Pn−1 ⊗tn QFn(Pn−1
tn

,Ytn )(X,Ytn), Pnt = EPn [X | FYt ].
(63)

It follows that the measures Pn and Pm agree on Ftn∧tm and that the processes Pn and Pm agree

almost surely on [0, tn ∧ tm]. Therefore, there is a unique measure P which coincides with Pn on

Ftn , for all n. Furthermore, there is a unique càdlàg process P that is almost surely equal to Pn

on [0, tn], for all n. If U is defined as

Ut =

∞∑
i=0

Fi(Pti , Yti)1(ti,ti+1](t), (64)
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then by construction, the process

f(X,Y )− f(X,Y0)−Af(U,X, Y ) • I (65)

is a martingale, for each f ∈ D(A) (see also Jacod and Shiryaev [26, Lemma III.2.48]).

Step 3 (Verification of the well-posedness condition). As P is the {FYt }-optional projection

of X, it is indistinguishable from G(Y ) for some càdlàg process G on DY[0,∞) by Delzeith [13].

It follows from Equation (64) that U is indistinguishable from F (Y ) for some càglàd process F

on DY[0,∞). The martingale problem (A, F ) is well-posed by Assumption 8 because F is a step

process. Thus, the well-posedness condition of Definition 2 is satisfied.

Step 4 (Value of the control with partial observations). The process P defined in Step 2 is the

{FYt }-optional projection of X. By Lemma 1, (U,P, Y ) defines a separated control of the same

value as (U,X, Y ). Assumption 9 implies that (U,P, Y ) is equal in law to (Ũ , P̃ , Ỹ ). Therefore,

(U,X, Y ) has the same value as (Ũ , P̃ , Ỹ ).

E Proofs of Section 4.

The setup of Section 4.1, including Assumptions 1–12, holds.

Lemma 4 (Payoff function). For any control (U,X,H,R) of the problem with partial observations,

E
[∫ ∞

0
ρe−ρtdRt

]
= E

[∫ ∞
0

ρe−ρtb(Ut, X,Ht)dt

]
, (66)

where b is given by Assumption 11.

Proof. By the integrability condition on KR in Assumption 10, the process R is a special semi-

martingale. Its canonical decomposition is

R = R0 + b(U,X,H) • I +Rc + r ∗ (µ− ν), (67)

where µ is the integer-valued random measure associated to the jumps ofR and ν = 1U=1KR(X,H, ·)
is the compensator of µ. For ζt = ρe−ρt one obtains that

ζ •R− ζb(U,X,H) • I = ζ •Rc + ζr ∗ (µ− ν) (68)

is a local martingale. Equation (66) holds if it is a true martingale.

Let χR(r) = χ(0, r). The processes ζ •Rc and ζχR(r)∗ (µ−ν) are square integrable martingales

by the Burkholder-Davis-Gundy inequality because their quadratic variations are integrable:

E
[
[ζ •Rc]∞

]
= E

[
ζ2
1U=1σR(H)2 • I∞

]
<∞,

E
[
[ζχR(r) ∗ (µ− ν)]∞

]
= E

[
ζ2χR(r)2 ∗ µ∞

]
= E

[
ζ2χR(r)2 ∗ ν∞

]
<∞.

(69)
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This follows from the bounds on σR and KR in Assumptions 2 and 10. Furthermore, the process

(r−χR(r))∗(µ−ν) is a uniformly integrable martingale on [0, t] because it is of integrable variation:

E
[

Var(ζ(r − χR(r)) ∗ (µ− ν))∞
]
≤ E [ζ|r − χR(r)| ∗ µ∞] + E [ζ|r − χR(r)| ∗ ν∞]

= 2 ∗ E [ζ|r − χR(r)| ∗ ν∞] <∞.
(70)

This follows from the bound on KR in Assumption 10. Therefore, the process in Equation (68) is

a martingale, and Equation (66) holds.

Lemma 5 (Elimination of the state variable r). The value functions V (p, h, r), V δ(p, h, r) do not

depend on r and can be written as V (p, h), V δ(p, h).

Proof. For any s ∈ R and f ∈ D(A), let fs(x, h, r) = f(x, h, r + s). Then fs ∈ D(A), and

by Assumption 10, Af(u, x, h, r + s) = Afs(u, x, h, r). If (U,X,H,R) is a control with partial

observations, then the equation

f(X,H,R+ s)− f(X,H0, R0 + s)−Af(U,X,H,R+ s) • I

= fs(X,H,R)− fs(X,H0, R0)−Afs(U,X,H,R) • I (71)

shows that (U,X,H,R + s) is also a control with partial observations. Moreover, the two controls

have the same value. The same argumentation applies to separated controls.

Lemma 6. The value functions V (p, h) and V δ(p, h) are convex, non-decreasing in p, and non-

decreasing in h.

Proof. Recall from Step 5 in the proof of Lemma 2 that the value of any separated control can be

written as

J se.(U,P,H,R) =

∫
LU[0,∞)

J(U)P(dU), (72)

where P(dU) is the marginal distribution of U ∈ LU[0,∞) and J(U) is the value of a deterministic

control process U . In the definition of J(U) in Equation (50), P is a martingale and (U,H) are

deterministic. Therefore,

J(U) = E
[∫ ∞

0
ρe−ρtb(Ut, Pt, Ht)dt

]
= P0

∫ ∞
0

ρe−ρtb(Ut, 1, Ht)dt+ (1− P0)

∫ ∞
0

ρe−ρtb(Ut, 0, Ht)dt. (73)

This expression is linear in P0 and non-decreasing in (P0, H0) by Assumption 12. Taking the supre-

mum over all controls or step controls with fixed initial condition (P0, H0), one obtains convexity

in P0 and monotonicity in (P0, H0).

35



Lemma 7 (Sufficient condition for optimality of the risky arm). In the discretized separated prob-

lem, the risky arm is uniquely optimal as an initial choice if its expected first-stage payoff exceeds

the first-stage payoff of the safe arm.

Proof. We fix δ > 0 and only allow control processes which are piecewise constant on the uniform

time grid of step size δ. The expected first-stage payoff is denoted by

b
δ
(u, p, h) = E

[∫ δ

0
ρe−ρtb(u, Pt, Ht)dt

]
, (74)

where (P,H) stems from a separated control with initial condition (P0, H0) = (p, h) and constant

control process Ut ≡ u. By Bellman’s principle, optimal initial choices U0 for the discretized

separated problem are maximizers of

max
u∈U

b
δ
(u, p, h) + e−ρδ E

[
V δ(Pδ, Hδ)

∣∣∣ (U0, P0, H0) = (u, p, h)
]
. (75)

Thus, the optimal initial choice depends on the sign of the quantity

b
δ
(1, p, h)− bδ(0, p, h) + e−ρδ E

[
V δ(Pδ, Hδ)

∣∣∣ (U0, P0, H0) = (1, p, h)
]

− e−ρδ E
[
V δ(Pδ, Hδ)

∣∣∣ (U0, P0, H0) = (0, p, h)
]
, (76)

which is the advantage of the risky arm over the safe arm. For each u ∈ U, let hu be the deterministic

value which Hδ attains after an initial choice of u. By Assumption 12, the inequality h0 ≤ h ≤ h1

holds. Furthermore, Pδ = P0 holds under an initial choice u = 0. By the monotonicity and

convexity result of Lemma 6,

E
[
V δ(Pδ, Hδ)

∣∣∣ (U0, P0, H0) = (1, p, h)
]
− E

[
V δ(Pδ, Hδ)

∣∣∣ (U0, P0, H0) = (0, p, h)
]

= E
[
V δ(Pδ, h1)

∣∣∣ (U0, P0, H0) = (1, p, h)
]
− V δ(p, h0)

≥ E
[
V δ(Pδ, h1)

∣∣∣ (U0, P0, H0) = (1, p, h)
]
− V δ(p, h1) ≥ 0.

(77)

It follows that (76) is strictly positive if b
δ
(1, p, h) > b

δ
(0, p, h). In this case, the initial choice of

the risky arm is uniquely optimal.

Lemma 8 (Optimality of stopping rules). For each δ > 0, V δ(p, h) is a supremum over values of

stopping rules.

Proof. Step 1 (Discrete setting). We fix δ > 0 and work on the uniform time grid ti = iδ, i ∈ N.

The one-stage payoff of the problem with partial observations is given by

bδ(u, x, h) =

∫ δ

0
ρe−ρtb(u, x,Ht)dt, (78)
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where H stems from a control with partial observations with constant control process Ut ≡ u and

initial condition (X,H0) = (x, h). The one-stage payoff of the safe arm is

kδ = bδ(0, x, h) =

∫ δ

0
ρe−ρtkdt. (79)

By abuse of notation, we identify indices i ∈ N with times ti, writing Ui for the value of U on

(ti, ti+1] and (Pi, Hi, Ri) for the value of (P,H,R) at ti.

Step 2 (Finite horizon). We truncate the problem with partial observations to a finite time

horizon n. In the truncated problem, the value of a control (U,X,H,R) is given by

Jp.o.(U,X,H,R) = E

[
n∑
i=0

e−ρδibδ(Ui, X,Hi)

]
. (80)

We will show by induction on n that there exists an optimal stopping rule, i.e., a control that never

switches from safe to the risky arm. For n = 0, there is nothing to prove. Now let (U,X,H,R) be

an optimal control for the problem with horizon n + 1 constructed via Lemma 3 from an optimal

Markovian control for the truncated separated problem. As H evolves deterministically given U ,

it is possible to write U = F (R) for a piecewise constant process F on the path space DR[0,∞).18

The inductive hypothesis allows one to assume that for i ≥ 1, Ui never switches from the safe to

the risky arm. If U0 indicates the risky arm, the proof is complete. Otherwise, U has the form

Ui =

{
0, if i = 0 or i > T,

1, if 1 ≤ i ≤ T,
(81)

for some stopping time T . Given that the safe arm is chosen initially, the reward process R is

deterministic during the first stage. Therefore, there is a modification of F that does not depend

on the path of R on the interval [0, δ]. This makes it possible to define an adapted process F ∗

which skips the first action of F . Then F is a stopping rule. Formally, F ∗ can be defined as

F ∗(R) = SδF
(
S−δR

)
, (82)

where for any process Z, (SδZ)t = Z(t+δ)∨0 is a shift of Z by δ. As the martingale problem

(A, F ∗) is well-posed, there is a corresponding control (U∗, X∗, H∗, R∗) with U∗ = F ∗(R∗) and

initial condition E[X∗] = E[X], H∗0 = H0. For comparison, we also define (U0, X0, H0, R0) as the

control where the risky arm U0 ≡ 0 is chosen all the time, still with the same initial condition

E[X0] = E[X], H0
0 = H0. The values of the controls are denoted by J, J∗, and J0, respectively.

18This is easily seen for U0, which is deterministic. For Ui+1, it follows by induction because Hi+1 is a deterministic
function of Ui.
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Then

J∗ − J0 = E

(
T−1∑
i=0

e−ρδi
(
bδ(1, X,H∗i )− kδ

))
≥ E

(
T∑
i=1

e−ρδ(i−1)
(
bδ(1, X,Hi)− kδ

))
, (83)

J − J0 = E

(
T∑
i=1

e−ρδi
(
bδ(1, X,Hi)− kδ

))
≥ 0. (84)

The first inequality holds because choosing the safe arm decreases H, see Assumption 12. The

second inequality holds because the value J of the optimal control is at least as high as J0. Thus,

J∗ − J ≥ E

[
T∑
i=1

(
e−ρδ(i−1) − e−ρδi

) (
bδ(1, X,Hi)− kδ

)]

=
∞∑
i=1

(
e−ρδ(i−1) − e−ρδi

)
E
[
1i≤T

(
bδ(1, X,Hi)− kδ

)]︸ ︷︷ ︸
=:bi

. (85)

The increments of (bi)i∈N are given by

bi+1 − bi = E
[
1i≤T

(
bδ(1, X,Hi+1)− bδ(1, X,Hi)

)]
+ E

[
1i=T

(
kδ − bδ(1, X,Hi+1)

)]
. (86)

The first summand on the right-hand side is non-negative for i ≥ 1 because H increases while the

risky arm is played. By the FRi+1-measurability of 1i=T and Hi+1, the second summand can be

written as

E
[
1i=T

(
kδ−bδ(1, X,Hi+1)

)]
= E

[
1i=T

(
kδ−bδ(1, Pi+1, Hi+1)

)]
= E

[
1i=T

(
kδ−bδ(1, PT+1, HT+1)

)]
,

(87)

where b
δ
(u, p, h) is defined in Equation (74). As it is optimal under U (see Equation (81)) to choose

the safe arm at stage T + 1, the inequality kδ ≥ bδ(1, PT+1, HT+1) holds by Lemma 7. This proves

bi+1 ≥ bi, for all i ≥ 1. By Equation (84), we also have

∞∑
i=1

e−ρδibi ≥ 0. (88)

By Berry and Fristedt [7, Equation (5.2.8)] this implies

J∗ − J =

∞∑
i=1

(
e−ρδ(i−1) − e−ρδi

)
bi ≥ 0, (89)

since truncated geometric discount sequences are regular. Thus we have constructed an optimal

stopping rule (U∗, X∗, H∗, R∗) for the truncated problem with horizon n+ 1.

Step 2 (Infinite horizon). We have shown that stopping rules are optimal for each discretized

problem with finite horizon n. It follows by approximation that the value function V δ(p, h) of the
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discretized problem with infinite horizon is a supremum over stopping rules. The argument can be

found in the proof of Berry and Fristedt [7, Theorem 5.2.2].

Lemma 9 (Description of optimal stopping rules). The stopping time T ∗ = inf{t : V (Pt, Ht) ≤ k}
is optimal for the separated problem.

Proof. For each (p, h) ∈ [0, 1]×H, there is a unique solution (P,H,R) of the martingale problem for

(G, 1) by Assumption 9. The family (P,H) of processes, indexed by the initial condition (p, h), is a

Feller process. This follows from Jacod and Shiryaev [26, Theorem IX.4.39] using similar arguments

as in Step 3 of the proof of Lemma 2. Let (P̃ , H̃) be the killed version of (P,H) with killing rate ρ

and let ∆ denote the “cemetery point” of the killed process. We refer to Peskir and Shiryaev [49,

Section II.5.4] for the terminology. Let b(u,∆) = 0 and

At = A0 +

∫ t

0

(
b(1, P̃t, H̃t)− k

)
dt. (90)

Then Z = (P̃ , H̃, A) is a Feller process on the state space Z = ([0, 1]×H ∪ {∂})× R. Let (Pz)z∈Z
denote the family of laws of Z starting from the initial condition Z0 = z. There is an associated

family of stopping problems

W (z) = sup
T

Ez(AT ), (91)

where the supremum is taken over all {FZt }-stopping times. For any z = (p, h, a) 6= ∆,

W (z) = sup
T

E(p,h,a)[AT ] = sup
T

E(p,h,0)[AT ] + a

= sup
T

E(p,h,0)

[∫ T

0
ρe−ρt

(
b(1, Pt, Ht)− k

)
dt

]
+ a = V (p, h)− k + a,

(92)

because V (p, y) is a supremum of values of stopping rules by part (a) of Theorem 2. The stopping

set D ⊂ Z is defined as in Peskir and Shiryaev [49, Equation (2.2.5)] by

D =
{
z = (p, h, a) ∈ Z : W (z) ≤ a

}
=
({

(p, h) ∈ [0, 1]×H : V (p, h) ≤ k
}
∪ {∆}

)
× R. (93)

The last equality holds because W (∂, a) = a by definition. The function W is lower semi-continuous

by Peskir and Shiryaev [49, Equation (2.2.80)] because (P̃ , H̃, A) is Feller. Therefore, the set D is

closed. Then the right-continuity of the filtration implies that

T ∗ = inf{t ≥ 0 : Xt ∈ D} = inf{t : V (Pt, Ht) ≤ k} (94)

is a stopping time. Note that ∆ ∈ D, which implies P(T ∗ < ∞) = 1. Then Peskir and Shiryaev

[49, Corollary 2.9] implies that T ∗ is optimal.

Lemma 10 (Asymptotic learning). Assume 0 < P0 < 1. Then the following statements hold

for any control (U,X,H,R) of the problem with partial observations and the corresponding belief
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process P .

(a) Assume that the measures KR(1, h, ·) and KR(0, h, ·) are equivalent for all h. Then learning

in finite time is impossible, i.e., 0 < Pt < 1 holds a.s. for all t ≥ 0. Moreover, asymptotic

learning does not occur if the agent invests only a finite amount into the risky arm, i.e.,

{
∫∞

0 Utdt <∞} ⊆ {0 < P∞ < 1} P-a.s. (95)

(b) Assume that Φ(1, ·) is bounded from below by a positive constant. Then asymptotic learning

is guaranteed if the agent invests an infinite amount in the risky arm, i.e.,

{
∫∞

0 Utdt =∞} ⊆ {P∞ = X} P-a.s. (96)

(c) If the conditions of (a) and (b) are satisfied, then asymptotic learning occurs if and only if

the agent invests an infinite amount in the risky arm:

{
∫∞

0 Utdt =∞} = {P∞ = X} P-a.s. (97)

Proof. Step 1 (Hellinger process). Let P1 and P0 be defined by conditioning the measure P on the

events X = 1 and X = 0, respectively. We want to calculate the Hellinger process h(1
2) of order

1
2 of the measures P1 and P0. Let Pt = E[X | FYt ] be the belief process. By Equation (7), P/P0

is the density process of P1 relative to P. Similarly, (1 − P )/(1 − P0) is the density process of P0

relative to P. For all p, q ∈ R, let

ψ(p, q) =
p+ q

2
−√pq (98)

and let ν(dt,dp,dq) be the compensator of the integer-valued random measure associated the jumps

of (P, 1− P ). Let S be the first time that P or P− hits zero or one,

S = inf
{
t ≥ 0 : Pt ∈ {0, 1} or Pt− ∈ {0, 1}

}
. (99)

By Jacod and Shiryaev [26, Lemma III.3.7], P is constant on JS,∞J. Therefore, on this interval,

〈P c, P c〉 is constant and ν has no charge. After canceling out the terms P0 and (1−P0), the formula
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for h(1
2) given in Jacod and Shiryaev [26, Theorem IV.1.33] reads as

h(1
2) =

1

8

(
1

P 2
−
• 〈P c, P c〉 − 2

P−(1− P−)
• 〈P c, 1− P c〉+

1

(1− P−)2
• 〈1− P c, 1− P c〉

)
+ ψ

(
1 +

p

P−
, 1 +

q

1− P−

)
∗ ν(dt,dp,dq)

=
1

8

(
1

P−
+

1

1− P−

)
• 〈P c, P c〉

+ ψ

(
1 +

j(U,P−, Y−, z)

P−
, 1− j(U,P−, Y−, z)

1− P−

)
∗K(U,P−, Y−,dz)dt

=
1

8
φ1(U, Y )>σ2(U, Y )φ1(U, Y ) • IS

+ ψ

(
φ2(U, Y−, z)

P−φ2(U, Y−, z) + (1− P−)
(
2− φ2(U, Y−, z)

) ,
2− φ2(U, Y−, z)

P−φ2(U, Y−, z) + (1− P−)
(
2− φ2(U, Y−, z)

))1J0,SK ∗K(U,P−, Y−,dz)dt

=
1

8
φ1(U, Y )>σ2(U, Y )φ1(U, Y ) • IS

+

∫ 1−
√
φ2(U, Y, z)

(
2− φ2(U, Y, z)

)
Pφ2(U, Y, z) + (1− P )

(
2− φ2(U, Y, z)

)K(U,P, Y,dz) • IS

=
1

8
φ1(U, Y )>σ2(U, Y )φ1(U, Y ) • IS

+

∫ (
1−

√
φ2(U, Y, z)

(
2− φ2(U, Y, z)

))
K(U, 1/2, Y, dz) • IS = Φ(U, Y ) • IS ,

(100)

where Φ is defined in Assumption 5.

Step 2 (Finite investment prevents asymptotic learning). We define stopping times T and Tn as

in Equations (34) and (15). T is the first time that P or P− hits zero and Tn announces T . Let us

assume for contradiction that P jumps to zero, i.e., PT− > 0. Then Tn = T holds for all sufficiently

large n. Consequently, the process Dn = E(Ln) = P Tn/P0 defined in Equation (17) also jumps to

zero. Therefore, Ln has a jump of height −1. This is not possible because φ2(u, y, z) > 0 holds by

the assumption that K(u, 1, y, ·) and K(u, 0, y, ·) are equivalent. This proves that P does not jump

to zero. A similar argument where the rôles of P0 and P1 are reversed shows that P cannot jump

to one. It follows that for any stopping time τ ,

{h(1
2)τ =∞} = {S ≤ τ, PS− = 0} = {Pτ = 0} = {Pτ = 0 or Pτ = 1} P0-a.s., (101)

{h(1
2)τ =∞} = {S ≤ τ, PS− = 1} = {Pτ = 1} = {Pτ = 0 or Pτ = 1} P1-a.s. (102)

In Equations (101) and (102), the first equality holds by Schachermayer and Schachinger [57,

Theorem 1.5]. This theorem states that the divergence of the Hellinger process is equivalent to

the mutual singularity of the measures P1 and P0, but in such a way that the singularity is not
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obtained by a sudden jump of the density process to zero or one. The second equality holds because

such jumps are not possible by the previous claim. For the third equality, see Jacod and Shiryaev

[26, Proposition III.3.5.(ii)]. By Assumption 10, the safe arm reveals no information about the

hidden state X, resulting in Φ(0, y) = 0. Together with Assumption 5 bounding Φ from above,

Equations (101) and (102) imply

{
∫∞

0 Utdt <∞} ⊆ {h(1
2)∞ <∞} = {0 < P∞ < 1} P-a.s. (103)

This proves (a).

Step 3 (Infinite investment induces asymptotic learning). Let τ be a stopping time. If S does

not occur before τ and
∫ τ

0 Utdt =∞, then h(1
2)τ =∞ because of the lower bound infy Φ(1, y) > 0.

Therefore,

{
∫ τ

0 Utdt =∞} ⊆ {h(1
2)τ <∞} ∪ {S ≤ τ}. (104)

Moreover, it follows from Schachermayer and Schachinger [57, Theorem 1.5] that

{h(1
2)τ <∞} ∪ {S ≤ τ} = {S ≤ τ, PS− = 0} ∪ {S ≤ τ} = {Pτ = X} P0-a.s., (105)

{h(1
2)τ <∞} ∪ {S ≤ τ} = {S ≤ τ, PS− = 1} ∪ {S ≤ τ} = {Pτ = X} P1-a.s. (106)

It follows that

{
∫ τ

0 Utdt =∞} ⊆ {Pτ = X} P-a.s., (107)

which proves (b). Finally, (c) follows from (a) and (b).
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