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We derive a simplified version of the model of Fudenberg and Levine (2006, 2011) and
show how this approximate model is useful in explaining choice under risk. We show that
in the simple case of three outcomes, the model can generate indifference curves that ‘‘fan
out’’ in the Marschak–Machina triangle, and thus can explain the well-known Allais and
common ratio paradoxes that models such as prospect theory and regret theory are
designed to capture. At the same time, our model is consistent with modern macroeco-
nomic theory and evidence and generates predictions across a much wider set of domains
than these models.
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1. Introduction

Fudenberg and Levine (2006, 2011, 2012) develop a model of costly self-control that can explain many ways that ob-
served individual choice departs from the predictions of the ‘‘standard model’’ of maximizing expected discounted utility.
Their self-control model is based on the idea that a more rational ‘‘long run self’’ controls the impulses of a ‘‘short run self’’
that is very tempted by immediate rewards.1 Fudenberg and Levine (2006) points out that the self-control model can explain
‘‘time-domain’’ phenomena, such as a preference for commitment and time-inconsistent choice, and that when the model is
enriched with the assumption of mental accounts or ‘‘pocket cash constraints’’ it can also explain the very high levels of
small-stakes risk aversion seen in the lab, a quantitative puzzle that has become known as the Rabin paradox, after Rabin
(2000). Fudenberg and Levine (2011) show that the same model can also explain the interaction of risk and delay seen in such
experiments as Baucells and Heukamp (2010) and Keren and Roelofsma (1995). Moreover they move beyond the qualitative
tent with
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matching of theories and facts that is typical in this literature to a quantitative calibration of the model to both Rabin-paradox
data and the Allais paradox.2

Unfortunately the model of Fudenberg and Levine (2011) is fairly complex, which may obscure some of the key insights
and make it difficult for others to apply the model. Our purpose here it to develop an approximation to the FL model that is
easier to work with yet still accurate enough to be useful in applied work. After developing this approximation, we charac-
terize its theoretical properties and show how it helps explain observed behavior in the Allais and common ratio paradoxes
and examine the implications of the theory for intransitivity.

To study decision makers who act as if tempted by money winnings but also manage to save, as well as to explain the
level of risk aversion observed in lab experiments, Fudenberg and Levine (2006) use the idea of mental accounting: A deci-
sion maker reduces the cost of restraining impulsive decisions by using mental accounting to commit to daily expenditures –
the idea is that the mental account is set when the decision maker is in a ‘‘cool state’’ and not subject to temptation. By
assumption, the commitment is to net expenditures, and not to consumption per se, so small losses must be born out of daily
expenditures and small gains create a self-control problem, which leads the marginal propensity to consume out of small
gains to be equal to 1.3 Because small losses and small gains are applied entirely to daily expenditures and not spread over
the lifetime, the decision maker is much more risk averse over small unexpected lotteries than under the classical model, where
any change in wealth results in a much smaller permanent change in consumption over the individual’s lifetime.

A second consequence of this theory is that if there is an increasing marginal cost of self-control then the decision maker’s
utility is not linear in probabilities. Moreover, while any form of nonlinearity makes the model depart from expected utility,
the increasing-marginal-cost specification predicts the particular violations of the independence axiom seen in, for example,
the Allais, common-ratio and other related paradoxes, as detailed in Fudenberg and Levine (2011).

The approximate version of the theory that we develop here uses several simplifying assumptions. A key simplification is
the assumption that the long-run value function is risk neutral, that is, the marginal utility of savings is a constant. This is a
good approximation to decisions that have little impact on lifetime wealth; it simplifies the model by replacing an unknown
non-linear value function with a known linear value function. We also assume that the interest received over a single period
(the ‘‘temptation horizon’’ of the short run self) is small enough to be ignored; this fits with the usual calibration of this per-
iod length to be one to three days. We use the simplified model to explain how the theory ranks general small-stakes money
lotteries, and illustrate this in the context of lotteries with only three possible outcomes in the gains domain using the classic
Marschak–Machina depiction of indifference curves in the corresponding probability simplex. We also illustrate how the
model leads to intransitivity.

The structure of the paper is as follows. In Section 2 we derive the approximate version of the dual-self model. In Section 3
we study its properties using a series of propositions. In Section 4 we examine the special case of a single gamble with a
unique positive prize. Section 5 addresses the very interesting case of choices in menus of two lotteries, with three possible
outcomes. We show how the model predicts well-known paradoxes that violate expected utility and illustrate this in the
Marschak–Machina triangle. Section 6 provides a general discussion and concludes.

2. Deriving an approximate dual-self model

We will remind the reader of the main ingredients of the Fudenberg and Levine (2006, 2011) model, and then show how
the approximation of risk neutrality for wealth leads to a much more tractable model. There is an individual who makes a
consumption-savings decision, with a short-run utility function ux(x + c; x) each period, where x + c represents total con-
sumption, x is the planned level of consumption under the mental account (‘‘pocket cash’’), and c denotes ‘‘incremental con-
sumption’’: the additional (possibly negative if money is lost) consumption made possible by unexpected windfalls.

When studying a fixed individual and holding fixed that individual’s initial wealth and preferences, we can suppress the
dependence on x and take short-run utility to be u(c) = ux(x + c; x), where u0 > 0 and u00 < 0. In the remainder of the paper, the
term ‘‘consumption’’ will refer to this incremental consumption.

We are primarily interested in how the agent chooses lotteries Z from a fixed menu I, where each of the lotteries resolves
in the current period. For this, an important intermediate step is to analyze the agent’s optimal consumption ex post after a
particular lottery has been chosen.4 Let u� ¼maxZ2IEuðZÞ be the greatest available short-run utility. This ‘‘temptation’’ repre-
sents what the short-run self would like – to spend all the gains immediately. If the lottery Z has n outcomes, the choice of opti-
mal consumption entails choosing an optimal random consumption plan ~c with outcomes (c1, . . . ,cn), specifying one
consumption level for each possible lottery realization. Overall first period utility is given by Euð~cÞ � gðu� � Euð~cÞÞ where g is
2 One caveat is that the model described here, like Fudenberg and Levine (2006, 2011), assumes a short run self who lives only for a single period. For this
reason the model, like quasi-hyperbolic discounting, implies that only the current period’s rewards are tempting. This stark conclusion is not suitable for
analyzing some aspects of the timing of decisions, such as the marginal interest rates found in the experiment of Myerson and Green (1995). A more realistic
version of the model, in which short run selves are less patient than the long run self without being completely myopic, is developed in Fudenberg and Levine
(2012).

3 This is consistent with psychological evidence that people need justification in order to spend money on ‘‘vices’’, which offer short-term gratification but
low long-term benefit (Kivetz & Zheng, 2006). Earning small unexpected amounts provides such justification. Accordingly, people will tend to spend these
amounts immediately on temptation goods, which they would not otherwise purchase.

4 Notice that by assumption the self-control cost is incurred when the agent determines the consumption plan, so it depends on the expected utility of this
plan.
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the cost of self-control. In other words, current utility depends on current consumption and the cost of self-control, which is
increasing in ‘‘foregone utility’’, the difference between the utility the ‘‘short-run self’’ would have liked and what he actually
got: u� � Euð~cÞ. We assume that the cost of self-control g is a smooth, non-decreasing, weakly convex function satisfying g(0) = 0.

The model of Fudenberg and Levine (2006, 2011) is not static, but considers an infinite horizon problem. It is well known
that the recursive structure of the maximization problem allows us to represent future utility by means of a ‘‘value function’’
v, computed by optimizing beginning in period 2. This function has as its argument total wealth5 w2 at the beginning of the
second period, which will be distributed optimally over the lifetime as consumption. If the realization of the lottery is zi and
consumption is ci 6 zi then the realized wealth beginning in period 2 is w2 + zi � ci. The present value of utility starting in period
2 is Evðw2 þ Z � ~cÞ. If d is the discount factor, the overall objective function is
5 Stri
medica

6 Or
7 Thi

winning
8 Not

c�i < zi;

Please
nomic
Vð~c;u�; Z;w2Þ ¼ Euð~cÞ � gðu� � Euð~cÞÞ þ dEvðw2 þ Z � ~cÞ: ð1Þ
Following Fudenberg and Levine (2006, 2011) we assume that the lottery is unanticipated.6 Since pocket cash is chosen
when the agent is not subject to temptation, the agent can obtain the optimal consumption path of someone who faces no
self-control costs, without using any self-control. This is achieved by setting c = 0: in this case absent any windfalls the agent
is not able to consume more than the first-best consumption level, and so faces no temptation to consume more. Hence c = 0 is
the optimal level, and so u0(0) = dv0(w2). Define the function h by hðEuð~cÞ � u�Þ � Euð~cÞ � u� � gðu� � Euð~cÞÞ, and let us call this
the ‘‘self-control gain function’’. This function is non-positive, smooth, strictly increasing, weakly concave function on R� sat-
isfying h0(0) P 1. It inherits these properties from g. Also define Ucð~c;u�; ZÞ ¼ hðEuð~cÞ � u�Þ þ u0ð0ÞðEZ � E~cÞ:

We will now approximate V for small gambles. Recall that o(y) denotes a function such that limy?0o(y)/y = 0, and that
maxjZj is the largest value in the support of jZj.

Lemma 1. The objective function satisfies the equality Vð~c;u�; Z;w2Þ ¼ Ucð~c;u�; ZÞ þ u� þ dvðw2Þ þ oðmax jZjÞ:
Proof. Recall that Vð~c;u�; Z;w2Þ ¼ Euð~cÞ � gðu� � Euð~cÞÞ þ dEvðw2 þ Z � ~cÞ. Since v is differentiable under standard conditions
a first-degree Taylor approximation gives
Evðw2 þ Z � ~cÞ ¼ Efvðw2Þ þ v 0ðw2ÞðZ � ~cÞ þ oðmax jZjÞg ¼ vðw2Þ þ v 0ðw2ÞðEZ � E~cÞ þ oðmax jZjÞ:
Substituting this and the definition of Uc into the objective function gives the desired result. h

In comparison to Fudenberg and Levine (2006, 2011), this model assumes that no interest is paid on money found, earned,
or saved during the first period, which fits with the idea that the length of a period is measured in days. Further, as an
approximation, first period savings are assumed not to change the marginal present value of period two value. If in fact sav-
ings are an appreciable portion of lifetime wealth, this approximation understates risk aversion.

Observe that for a given menu I of lotteries u⁄ + d v(w2) is a constant, and since the agent will pick the optimal consump-
tion plan, for small Z the agent’s preferences over lotteries can be represented by the approximate objective function
max~cUcð~c; u�; ZÞ ¼max~c½hðEuð~cÞ � u�Þ þ u0ð0ÞðEZ � E~cÞ�.

Since consumption cannot exceed the amount earned by the prize, the problem is: choose ~c ¼ ðc1; . . . ; cnÞ to maximize
hðEuð~cÞ � u�Þ þ u0ð0ÞðEZ � E~cÞ subject to the constraints ci 6 zi, i = 1,2, . . . ,n.

Now let us define Uðu�; Z; zÞ � hðEuðZÞ � u� � E maxfuðZÞ � uðzÞ;0gÞ þ u0ð0ÞE maxfZ � z; 0g:
The following is our main theorem; we will explore its consequences in various settings using a series of follow-on

propositions.

Main Theorem. The approximate objective function max~cUcð~c; u�; ZÞ is equal to maxzU(u⁄, Z, z), and there is a threshold ẑ such
that if lottery’s outcome zi satisfies zi 6 ẑ then consumption is ci

⁄ = zi (so all of the unexpected winnings are saved) while if zi P ẑ
then c�i ¼ ẑ (so any amount over ẑ is saved, regardless of the size of zi.

7)
Proof. Maximizing with respect to ci for a given realization of the lottery zi, gives the consumption function ~c� as the implicit
solution of u0ðc�i Þh

0ðEuð~c�Þ � u�ÞP u0ð0Þ with equality if c�i < zi.8 For any specification of ~c, let ẑð~cÞ be the unique solution of
u0ðẑð~cÞÞh0ðEuð~cÞ � u�Þ ¼ u0ð0Þ ð�Þ
in (�x,1], where we assign ẑ ¼ 1 if there is no solution, that is, if u0ðẑð~cÞÞh0ðEuð~cÞ � u�Þ > u0ð0Þ for all ẑ 2 ð�x;1�. Then we
see that ~c� itself must have the property that if zi 6 ẑ then c�i ¼ zi, while if zi P ẑ then c�i ¼ ẑ.

Notice that the marginal propensity to consume out of income above the threshold is zero (this is a consequence of our
approximation assumption). Thus c�i ¼minfzi; ẑg, and therefore Euð~c�Þ ¼ E minfuðziÞ;uðẑÞg is non-decreasing in ẑ and
ctly speaking what matters is not total wealth and consumption but discretionary wealth and consumption, that is, net of expenditures such as rent and
l care that are committed in advance and do not pose a temptation.
that the probability is small enough not to have had an appreciable impact on the choice of pocket cash.
s stark conclusion comes from our simplifying assumption that the marginal utility of savings is constant, which is a good approximation only if the
s are not in fact too large.

ice that the aforementioned condition is exactly the same for every i = 1,2, . . . , n. Hence, if for two optimal c�i ; c
�
j the constraint is not binding (that is

c�j < zj) then it must be the case that c�i ¼ c�j .

cite this article in press as: Fudenberg, D., et al. An approximate dual-self model and paradoxes of choice under risk. Journal of Eco-
Psychology (2013), http://dx.doi.org/10.1016/j.joep.2013.02.007

http://dx.doi.org/10.1016/j.joep.2013.02.007


4 D. Fudenberg et al. / Journal of Economic Psychology xxx (2013) xxx–xxx
u0ðẑÞh0ðEuð~c�Þ � u�Þ is strictly decreasing in ẑ. Notice that at ẑ ¼ �x we have u0(�x)h0(u(�x) � u⁄) > u0(0), because u0(�x) > u0(0)
and h0(u(�x) � u⁄) P 1.9 Our objective is to express the consumer’s preferences for lotteries in terms of this unique threshold.
Adding and subtracting Eu(Z) inside of h and using the linearity of expectation we have:
9 Thi

Please
nomic
hðEuð~c�Þ � u�Þ þ u0ð0ÞðEZ � E~c�Þ ¼ hðEuðZÞ � u� � EðuðZÞ � uð~c�ÞÞÞ þ u0ð0ÞEðZ � ~c�Þ:
Using c�i ¼minfzi; ẑg we see that uðZÞ � uð~c�Þ ¼ maxfuðZÞ � uðẑÞ;0g and Z � ~c� ¼maxfZ � ẑ;0g. Substituting in gives the de-
sired result. h
3. Choice from menus of non-negative lotteries

We now suppose that the decision maker faces a menu I of lotteries on [�x,y] where x,y > 0 and y is ‘‘small’’ relative to
lifetime wealth. As above, we suppose that the agent does not expect to face this menu.

The approximate utility for opportunity set I, threshold z and lottery Z P 0 in the gain domain is given by the main The-
orem as Uðu�; Z; zÞ ¼ hðEuðZÞ � u� � E maxfuðZÞ � uðzÞ;0gÞ þ u0ð0ÞE maxfZ � z;0g:

To reiterate, the first term h represents the combination of utility received from immediate consumption and the cost of
controlling the desire to spend even more. The second term represents the long-term benefit of the amount that is saved:
this is not subject to a self-control problem, but is spread over the entire lifetime, and as indicated we approximate the cor-
responding risk as negligible so that the utility from savings is linear.

Notice that in general the ranking of lotteries is menu dependent, as it depends not only on the lottery Z that is being
assessed, but also the utility u⁄ from the lottery that yields the greatest short-run utility. This represents a temptation: spend
all the money right away, and choose the lottery that maximizes the expected utility from doing so. However, when h is lin-
ear the ranking does not depend on u⁄.

3.1. Properties of the approximate model

The next result shows how to determine the value of the threshold ẑ above which all of the (unexpected) lottery payoff is
saved.

Lemma 2. The arg maxzP0Uðu�; Z; zÞ � ẑ is characterized by h0ðEuðZÞ � u� � E maxfuðZÞ � uðẑÞ; 0gÞu0ðẑÞ ¼ u0ð0Þ which has a
unique solution. If h0(0) > 1 then ẑ > 0: Uðu�; Z; zÞ is differentiable with respect to z at z ¼ ẑ and the derivative is zero. The function
FðZ; zÞ ¼ h0ðEuðZÞ � u� � E maxfuðZÞ � uðzÞ;0gÞu0ðzÞ is strictly decreasing in z with left and right derivatives both bounded away
from zero.
Proof. The expression follows from plugging the solution c�i ¼minfzi; ẑg into the necessary first order condition (⁄). The
uniqueness of the solution follows from the fact that the left-hand side (LHS) of the expression is strictly decreasing. If
h0(0) > 1 then since h0 is decreasing, it follows that the solution satisfies u0ðẑÞ < u0ð0Þ which in turn implies ẑ > 0.

To see that U(u⁄,Z,z) is differentiable with respect to z at z ¼ ẑ we compute that its derivative is equal to zero. Observe first
that U(u⁄,Z, �) is certainly differentiable unless zi ¼ ẑ for some i and regardless, the left and right derivatives exist. We will
complete the proof by showing both are equal to zero at z ¼ ẑ. The derivative has the form
@Uðu�; Z; zÞ=@z ¼
X

i

pi½�h0ðEuðZÞ � u� � E maxfuðZÞ � uðzÞ;0gÞ@maxfuðziÞ � uðzÞ;0g=@zþ u0ð0Þ@maxfzi � z;0g=@z�
where the derivative of the max is understood to depend on the direction if zi = z. The key observation is that each individual
term in the sum vanishes at z ¼ ẑ. If zi < z this is immediate since near z the term does not depend on z. The same is true if zi

= z for the right-hand side derivative. When zi > z the term is h0ðEuðZÞ � u� � E maxfuðZÞ � uðzÞ;0gÞu0ðzÞ � u0ð0Þ
which vanishes at ẑ by the earlier characterization of ẑ. The same applies when zi = z in the negative direction.

The properties of F(Z,z) may be established by differentiating with respect to z. h
Proposition 1. If h is linear then the decision-maker ranks lotteries according to
E½h0ð0ÞminfuðzLÞ;uðZÞg þ u0ð0ÞmaxfZ � zL;0g�
where zL is the unique solution of u0(zL) = u0(0)/h0(0).
Proof. In this case the objective function is hð0Þ þ h0ð0ÞðEuðZÞ � u� � E maxfuðZÞ � uðẑÞ;0gÞ þ u0ð0ÞE maxfZ � ẑ;0g:
Discarding the irrelevant constant term h(0) � h0(0)u⁄, and observing that EuðZÞ � E maxfuðZÞ � uðẑÞ; 0g ¼ E minfuðẑÞ;uðZÞg
gives the expression for ranking lotteries. Substituting into (�) and solving gives the solution for zL. h
s is because h0(0) P 1 and h is weakly concave.
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In addition to menu independence, Proposition 1 shows that in the linear case the independence axiom is satisfied: lot-
teries are ranked according to an expected utility and the weak axiom of revealed preference is satisfied. However, the linear
model cannot explain choices such as the common ratio or Allais paradox that violate the independence axiom, nor can it
explain the interaction of risk and delay (Baucells & Heukamp, 2010; Keren & Roelofsma, 1995), or the ‘‘compromise effect’’
(Simonson, 1989).

Even when h is not linear, the preferences still correspond to an expected utility theory on particular pairs of lotteries,
namely those with ‘‘all small outcomes’’ and those all of whose outcomes are large. The next two propositions say this
formally:

Proposition 2. Define zC as the unique solution of h0 (u(zC) � u⁄)u0(zC) = u0(0). Then zC P zL and for all Z 2 I we have
argmaxzP0 U(u⁄,Z,z) P zC. Moreover, if all Z P zC then argmaxzP0U(u⁄,Z,z) = zC and lotteries are ranked according to EZ.10
Proof. Uniqueness follows from strict monotonicity of the LHS of the expression; zC P zL follows from the fact that u(zC) -
� u⁄, the argument of h0, is non-positive. Plugging the solution c�i ¼minfzi; ẑg into (�) we have
h0ðE minfuðẑÞ;uðZÞg � u�Þu0ðẑÞ ¼ u0ð0Þ. Observe also that minfuðẑÞ;uðZÞg 6 uðẑÞ so that h0ðuðẑÞ � u�Þu0ðẑÞ 6 u0ð0Þ and thus
zC
6 ẑ. Finally, if all Z P zC then min{u(zC), u(Z)} = u(zC), so h0(Emin {u(zC),u(Z)} � u⁄)u0(zC) = u0(0) meaning that the first order

condition is satisfied. Then, Lemma 2 implies that argmaxzP0U (u⁄,Z,z) = zC, and plugging back into the objective function, we
get maxzU(u⁄,Z,z) = h (u(zC) � u⁄) + u0(0)E(Z � zC), which is increasing in EZ. h

In other words, the decision-maker is risk neutral with respect to relatively large positive lotteries.

Proposition 3. If Z 6 zL for all Z 2 I then lotteries are ranked according to Eu(Z).
Proof. Observe that ẑ P zL since the argument in h0 of Lemma 2 is non-positive. Hence Z 6 zL implies Z 6 ẑ and so the objec-
tive function may be written as Uðu�; Z; ẑÞ ¼ hðEuðZÞ � u�Þ from which the result follows. h

In other words the decision maker uses the short-run utility function to evaluate sufficiently small lotteries.
The suggestion of these results is that if h is strictly concave rather than linear, then for lotteries with outcomes that do

not lie entirely above the cutoff zC or entirely below the cutoff zL the theory need not be an expected utility theory, and so
may exhibit reversals such as those exhibited in the Allais or common ratio paradoxes.

Proposition 4. Preferences over lotteries are consistent with stochastic dominance.
Proof. Quiggin (1989) has shown that one lottery first order stochastically dominates another if and only if the lotteries can
be realized as random variables on a common probability space, such that every realization of the dominant lottery is at least
as great as the corresponding realization of the dominated lottery. Hence it is sufficient to consider whether utility is non-
decreasing in the vector of values of Z. Since the objective function is U(u⁄,Z,z) = h(Emin {u(Z),u(z)} � u⁄)
+ u0(0)Emax{Z � z,0}, and this is non-decreasing in the vector of values of Z, the same is true for maxzU(u⁄,Z,z). h

In other words, our model predicts that people will tend to choose a lottery that is ‘‘clearly better’’ than another (dom-
inated) lottery. ‘‘Better’’ is in the sense that any given monetary payoff is offered with at least as high probability as in the
dominated lottery.

4. Found money

A key role in the analysis is played by the cutoff zL, which is the solution to u0(zL) = u0(0)/h0(0). To get an idea of how this
cutoff works, it is interesting to examine the simplest possible decision problem: that of found money. Here I is a singleton
containing a single lottery that delivers a certain amount f. This can correspond to finding the amount f on the street. While
in standard theory such gains will be spread over the entire lifetime, here when the amount is small, that is, less than the
cutoff zL, it will all be spent. Although this sounds like the description of the threshold ẑ, the cutoff zL is different, and we will
try to explain why.

When the agent finds money f the temptation is to spend all of it, so u⁄ = u(f). If the amount found is small, then the
approximation we have introduced is valid, and the agent will choose consumption c to maximize
Ucð~c;u�;~zÞ ¼ hðuðcÞ � u�Þ þ u0ð0Þðf� cÞ ¼ hðuðcÞ � uðfÞÞ þ u0ð0Þðf� cÞ.

The corresponding first order condition is h0(u(c) � u(f))u0(c) P u0(0) with equality if c < f. Notice that the threshold ẑ is
defined by h0ðuðẑÞ � uðfÞÞu0ðẑÞ ¼ u0ð0Þ, so it depends on the earned amount f. However, for ease of reading, as we explore this
dependence, we will write ẑ in place of ẑðfÞ in the next paragraphs.
10 We show below at the end of Section 4 that for empirically relevant parameters there can be a range of z which exceed this threshold yet are small enough
that the approximate objective function is still quite accurate.
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4.1. Example with logarithmic utility

Now we use an example to illustrate the role of the cutoff zL, which, unlike ẑ, does not depend on f. Assume logarithmic
utility u(c) = log(x + c), where x is the exogenously given pocket cash, and also that h(D) = �Aexp (�cD) with A P 1, c P 1. In
this case, u0(0) = 1/x, and the objective function is
Please
nomic
�A exp½cðlogðxþ fÞ � logðxþ cÞÞ� þ ðf� cÞ=x ¼ �A½ðxþ fÞ=ðxþ cÞ�c þ ðf� cÞ=x:
Setting the derivative of this with respect to c equal to zero gives Ac(x + f)c/(x + c)c+1 � (1/x) = 0. It follows that the value
of the threshold ẑ for each value of f is given by ẑ ¼ ½Axcðxþ fÞc�1=ðcþ1Þ � x. This has slope
dẑ=df ¼ ½Axc=ðxþ fÞ�1=ðcþ1Þc=ðcþ 1Þ > 0;
which is decreasing in f. So the ẑðfÞ line is continuous, strictly increasing and strictly concave in f, and
ẑð0Þ ¼ ðAcÞ1=ðcþ1Þx� x P 0.

Now specialize further to the case where c = 1, so that ẑ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1þ f=xÞ

p
� x, with dẑ=df ¼

ffiffiffi
A
p

=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f=xÞ

p
. Notice that if

f = 0, ẑ ¼ xð
ffiffiffi
A
p
� 1Þ. Optimal consumption for each level of f is depicted in the 2-dimensional plane in Fig. 1.

Remember that the role of the threshold ẑ is that if the realization of the lottery is higher than it, then consumption is ẑ,
but if the realization is less than ẑ, then consumption is equal to the realization. Here since the lottery is deterministic, the
realization corresponding to f is simply f. The ẑðfÞ line starts above zero, and it crosses the 45� line once at a point greater
than zero.

The cutoff point zL = x(A � 1), where it crosses this line, is critical for determining consumption. For the values of f where
ẑ > f (at the left of zL) the threshold is higher than f so optimal consumption is equal to f. For the values of f where ẑ < f (at
the right of zL) optimal consumption is equal to the threshold ẑ. Accordingly, optimal consumption is given by the thick line
in Fig. 1. Finally, notice that the cutoff satisfies h0(u(zL) � u(f))u0(zL) = u0(0), and zL = f, so that indeed u0(zL) = u0(0)/h0(0). Note in
particular that in this case consumption goes to infinity as found money goes to infinity, even though the fraction that is
spent goes to zero.

4.2. Accuracy of the approximation

Notice that in order for observed behavior to differ from that predicted by expected utility, f must exceed the threshold zL,
while on the other hand in order for the approximation to be accurate, f must not be ‘‘too large’’. Some computations show
that this intermediate range of f’s is nonempty and useful. In the calibration of Fudenberg and Levine (2006), the threshold zL

used to explain the Kahneman and Tversky version of the Allais paradox is about nine times the calibrated pocket cash of
$40, or $360, with a corresponding value of h0(0) = 21.4. The largest possible reward is $2500. From other data the time hori-
zon is calibrated as one day, with 1 � d = .00003 and lifetime disposable wealth at $1.33 million.

For computational simplicity, consider the case in which h0 is constant, and compare the approximate consumption func-
tion with the exact consumption function, assuming logarithmic utility in each case. Below the threshold both the exact and
approximate model predict that all found money f is consumed, and since in both cases the additional income in the second
period is zero, both models have exactly the same slope of the value function up until the threshold. This implies in particular
that the threshold zL is the same in both models.

Above the threshold, in the approximate case with linear h the model predicts zero propensity to consume out of f. Hence
for f > $360 the approximate model predicts consumption of $360.

From Fudenberg and Levine (2006) the exact marginal propensity to consume out of income is
Fig. 1. The consumption threshold as a function of the amount of found money.
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 Scenario I concerns the choice between s and r,
and s corresponds to a higher indifference curve. 
Scenario II concerns choice between s` and r`, and 
now r` is crossed by the higher indifference curve.
 This  generates the paradox: s is chosen in
 Scenario I and r` in Scenario II. 

Fig. 2. The Allais paradox and fanning-out curves.
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1� d

dþ h0ð0Þð1� dÞ
¼ :0064:
Notice that this is considerably higher than the marginal propensity to consume without a self-control problem, which is
.0003. Hence if f = $2500 the exact consumption is $361.37, very close to the approximation of $360. If f = $720, which is
twice the threshold, the exact consumption is $360.23, against the approximation of $360.

The basic conclusion is that for amounts likely to be seen in experiments the approximation is extremely good and that
calibrations of h and zL that can explain non-expected utility effects in experiments do not conflict with the approximation.

5. Three-outcome gambles

To better understand the implications of self-control preferences for choices among lotteries we examine lotteries with
just three outcomes. This very simple case is sufficient to illustrate some of the best-known departures from expected utility
theory, such as the Allais paradox11 and the common ratio effect12 (Allais, 1953; Kahneman & Tversky, 1979).

Assume that the possible lottery outcomes are z1 < z2 < z3, with probabilities p1, p2, p3 and corresponding short-run util-
ities u1 < u2 < u3, where ui = u(zi), i = 1, 2, 3. As is traditional for lotteries of this type, we will work in the Marschak–Machina
triangle: we take p2 = 1 � p1 � p3 and plot p1, p3. Machina (1987) illustrates how the above stated anomalies, which violate
the expected utility benchmark, can be captured by indifference curves that ‘‘fan out’’, or become steeper as one moves to-
wards the northwest part of the triangle. Figs. 2 and 3 illustrate and explain how fanning-out curves can generate the Allais
paradox and the common ratio effect (respectively). Our objective in this section is to show that indifference curves with
these characteristics can also be generated by our simple model, which therefore captures these departures from expected
utility.

For simplicity and because the Allais and common ratio paradoxes have this form, we consider only the gains domain, and
moreover assume that the worst possible outcome is zero (z1 = 0). We assume that h0(0) > 1 so that by Lemma 2 z1 < ẑ.13 Also
recall from Proposition 3 that if z3 6 zL then preferences are just those of the short-run self. To avoid this uninteresting case we
assume that z3 > zL so that u0(z3) < u0(0)/h0(0) and z3 > ẑ; the discussion at the end of the previous section shows this is consistent
with the approximating assumptions for plausible parameter values.14

As benchmarks, consider first constant expected value curves (those of a risk neutral agent) so that indifference curves in
the triangle are given by lines of the form p3(z3 � z2) � p1(z2 � z1) = k. As a second benchmark, consider indifference curves
for the short-run self which are given by lines of the form p3(u3 � u2) � p1(u2 � u1) = k. Because the short run self is risk
averse, his indifference curves have a steeper slope than those of the risk neutral agent.
paradox concerns choices between pairs of lotteries. We will remind readers of the original Allais experiment, which involves two choice scenarios. In
o I, Lottery s gives $1 m (one million) with probability 1.00 and Lottery r gives $1 m with probability 0.89, $5 m with probability 0.10 and $0 with
lity 0.01. In Scenario II, Lottery s0 gives $1 m with probability 0.11 and $0 with probability 0.89 and Lottery r0 gives $5 m with probability 0.10 and $0
obability 0.90. Some subjects choose Lottery s in Scenario I but Lottery r0 in Scenario II, which violates expected utility. The Allais paradox is part of a
neral effect, called the ‘‘common consequence’’ effect.

xperiments of the common ratio effect, there is also choice among pairs of lotteries, where each lottery involves the zero outcome and either outcome A
ere 0 < A < B. In Scenario 1, the small outcome (A) offered with a high probability (p) is preferred over the large outcome (B) with a low probability (q).
r, when in Scenario 2 the probability for both positive outcomes is multiplied by the same number 0 < n < 1, the choice is reversed in favor of the lottery

e large outcome.
s highlights a special role of 0: it is less than the threshold ẑ except in the non-self-control case where h0(0) = 0.
ee that the last inequality follows, note that if z3 6 ẑ then plugging in (�) would imply that zL ¼ ẑ, which entails a contradiction to our assumption that

cite this article in press as: Fudenberg, D., et al. An approximate dual-self model and paradoxes of choice under risk. Journal of Eco-
Psychology (2013), http://dx.doi.org/10.1016/j.joep.2013.02.007

http://dx.doi.org/10.1016/j.joep.2013.02.007


1 

                                        Increasing  

                                            Utility 

p3 r

`r

1           s`                           1 

 Scenario I concerns the choice between s and r 
and Scenario II concerns the choice between s` and r`.
The paradox involves the choice of s in Scenario I 
and of  r` in Scenario II. This can also be captured by
indifference curves that “fan out”, as can be seen in the figure.  

Fig. 3. The common ratio paradox and fanning-out curves.
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Turning to the self-control case, we will consider choices between pairs of gambles, that is menus with two items, p = (p1,
p3), q = (q1, q3), which we shall index k 2 {p, q}. The utility to the gamble p in the menu {p, q} is given by
15 In p
16 Not

Please
nomic
Vðp; qÞ � max
z

UðmaxfEuðZpÞ; EuðZqÞg; Zp; zÞ:
We may now define the indifference set I(p) � {qjV(p, q) = V(q, p)} and the corresponding indifference relation q � p if
q 2 I(p). Notice that this relation is reflexive but need not be transitive. To understand more clearly the indifference set, con-
sider that it is defined implicitly by
max
z

UðmaxfEuðZpÞ; EuðZqÞg; Zp; zÞ �max
z

UðmaxfEuðZpÞ; EuðZqÞg; Zq; zÞ ¼ 0:
We wish to examine the slope of this indifference set in the Marschak–Machina triangle. For this, we need to invoke the
implicit function theorem and therefore need to show that this expression is continuously differentiable, at least in some
neighborhood. The following is proven in the Appendix:

Lemma 3. Uðq1; q3Þ ¼ Uðu�; Zp; ẑpÞ � Uðu�; Zq; ẑqÞ is differentiable with respect to q in an open neighborhood of q = p and at all
points where Eu(Zp) – Eu(Zq).

In order for the indifference curves to fan out in such a manner that they explain the paradoxes, we need their slope to
increase as we move towards the northwest of the triangle. We shall show that this is the case, because as we move in that
direction the threshold ẑ increases. Intuitively we expect that higher ẑ corresponds to a more difficult self-control problem
and that this should result in preferences – that is slopes of indifference curves – less like that of the long-run risk neutral self
and more like the steeper sloped short-run indifference curves. This is verified by the next result.

Proposition 5. The slope of I(p) at the point q = p, denoted S(p), is positive and greater than the slope of risk neutral indifference
curves. The slope depends on p only through ẑ and is increasing in ẑ.15
Proof. It will be convenient to normalize so that u1 = 0, u2 = z2. Then the slope of the risk neutral indifference curves is z2
z3�z2

:

We now compute the slope of the actual indifference curves at p, that is S(p). To do so we use the implicit function theorem,
computing the derivatives of Uðq1; q3Þ ¼ Uðu�; Zp; ẑpÞ � Uðu�; Zq; ẑqÞ. Notice that dU/du⁄ = 0 at q = p. Hence in our computation
we may treat u⁄ as constant. Since p is also constant the first term Uðu�; Zp; ẑpÞ depends only on p and not on q, so that the
partial derivatives of U with respect to qi may be computed by the (negative of) the derivatives of Uðu�; Zq; ẑqÞ.

First the expressions for Uðu�; Zq; ẑqÞ may be written as
Uðu�; Zq; ẑqÞ ¼ hðE minfuðZqÞ;uðẑqÞg � u�Þ þ u0ð0ÞE maxfZq � ẑq;0g
¼ hðð1� q1 � q3Þminfuðz2Þ;uðẑqÞg þ q3uðẑqÞ � u�Þ þ u0ð0Þ½ð1� q1 � q3Þmaxfz2 � ẑq;0g þ q3ðz3 � ẑqÞ�:
From this we may compute16
@Uðu�; Zq; ẑqÞ=@q1ju� ¼ �h0ðE minfuðZqÞ;uðẑqÞg � u�Þ½minfuðz2Þ;uðẑqÞg� � u0ð0Þ½maxfz2 � ẑq;0g�
¼ �minfuðz2Þ;uðẑqÞgh0ðð1� q1 � q3Þminfuðz2Þ;uðẑqÞg þ q3uðẑqÞ � u�Þ � u0ð0Þðmaxfz2 � ẑq;0gÞ:
articular, it can be written as a function SðpÞ ¼ RðẑðpÞÞ where R is strictly increasing in ẑ.
e that the point at which the derivative is evaluated is given as the argument of U.
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@Uðu�; Zq; ẑqÞ=@q3ju� ¼ h0ðE minfuðZqÞ;uðẑqÞg � u�Þ½uðẑqÞ �minfuðz2Þ;uðẑqÞg� þ u0ð0Þ½z3 � ẑq �maxfz2 � ẑq;0g�
Using h0ðE minfuðZqÞ;uðẑqÞg � u�Þu0ðẑqÞ ¼ u0ð0Þ we have the proportionality where the common factor u0ð0Þ=u0ðẑqÞ omitted.
@Uðu�; Zq; ẑqÞ=@q1ju� ¼ �½minfuðz2Þ;uðẑqÞg� � u0ðẑqÞ½maxfz2 � ẑq;0g�
@Uðu�; Zq; ẑqÞ=@q3ju� ¼ ½uðẑqÞ �minfuðz2Þ;uðẑqÞg� þ u0ðẑqÞ½z3 � ẑq �maxfz2 � ẑq;0g�
There are two cases.

Case 1: z3 > ẑq > z2
@Uðu�; Zq; ẑqÞ=@q1ju� ¼ �½minfuðz2Þ; uðẑqÞg� � u0ðẑqÞ½maxfz2 � ẑq;0g� ¼ �z2

@Uðu�; Zq; ẑqÞ=@q3ju� ¼ ½uðẑqÞ � z2� þ u0ðẑqÞ½z3 � ẑq�:
Applying the implicit function theorem, this gives for the slope of indifference curve
dp3=dp1 ¼
z2

½uðẑqÞ � z2� þ u0ðẑqÞ½z3 � ẑq�
¼ z2

z3 � z2 � ðz3 � uðẑqÞÞ þ u0ðẑqÞ½z3 � ẑq�
:

This will be steeper than in the risk neutral case provided that z3 � uðẑqÞ > u0ðẑqÞ½z3 � ẑq�:Since uðẑqÞ < ẑq it follows that
z3 � uðẑqÞ > z3 � ẑq. We normalized so that u1 = 0, u2 = z2 and since ẑq > z2 it follows that u0ðẑqÞ < 1. This gives the desired
inequality.

Differentiating the denominator with respect to ẑq we see that
df½uðẑqÞ � z2� þ u0ðẑqÞ½z3 � ẑq�g=dẑq ¼ u0ðẑqÞ þ u00ðẑqÞ½z3 � ẑq� � u0ðẑqÞ ¼ u00ðẑqÞ½z3 � ẑq� < 0:
Thus, the indifference curves indeed get steeper as ẑ increases.

Case 2: z2 > ẑq
@Uðu�; Zq; ẑqÞ=@q1ju� ¼ �uðẑqÞ � u0ðẑqÞ½z2 � ẑq�
@Uðu�; Zq; ẑqÞ=@q3ju� ¼ u0ðẑqÞ½z3 � z2�:
It follows that the slope of an indifference curve is z2�ẑqþuðẑqÞ=u0 ðẑqÞ
z3�z2

:

Since ẑq < z2 and u(z2) = z2 by strict risk aversion uðẑqÞ > ẑq. Again using the mean value theorem, since u(0) = 0 and by strict
risk aversion, it follows that u0ðẑqÞẑq < uðẑqÞ. This implies slope steeper than risk neutral.

Rewriting the slope we have
z2 � ẑq þ uðẑqÞ=u0ðẑqÞ
z3 � z2

¼
z2 þ ẑq

uðẑqÞ
u0 ðẑqÞẑq

� 1
� �

z3 � z2

d½�ẑq þ uðẑqÞ=u0ðẑqÞ�=dẑq ¼ �1þ 1� uðẑqÞu00ðẑqÞ=½u0ðẑqÞ�2 ¼ �uðẑqÞu00ðẑqÞ=½u0ðẑqÞ�2 > 0:
This gives the desired result. h

Now that we have shown that the slope is increasing in ẑ, we need to examine how ẑ behaves as p3 increases and p1 de-
creases (as we move in the northwest direction). In the following, we will be evaluating ẑ at the point where p = q.

Proposition 6. The ẑp (corresponding to the singleton menu {p}) is increasing in p3, and there is a critical value p̂3 such that if
p3 6 p̂3 then ẑp is decreasing in p1, while if p3 > p̂3 then ẑp is independent of p1.
Proof. We work with the alternative version of the condition defining ẑ:
h0ðE minfuðZpÞ;uðẑpÞg � u�Þu0ðẑpÞ ¼ u0ð0Þ:
Writing that out in terms of p1,p3 we get
h0 ð1� p1 � p3Þminf0; uðẑpÞ � z2g þ p3 minf0;uðẑpÞ � u3g
� �

u0ðẑpÞ ¼ u0ð0Þ: ð��Þ
First we examine the dependence of ẑp on p3. Differentiating the left hand side of (��) with respect to p3 we find
h00ðð1� p1 � p3Þminf0;uðẑpÞ � z2g þ p3 minf0;uðẑpÞ � u3gÞ � ðminf0;uðẑpÞ � u3g �minf0;uðẑpÞ � z2gÞu0ðẑpÞP 0:
The inequality follows from the fact that u3 > z2 = u2 and is strict since ẑp < z3. Since the derivative of (��) is negative with
respect to ẑp (by Lemma 2) we can apply the implicit function theorem to conclude that @ẑp

@p3
> 0:

Finally, we consider the derivative with respect to p1. We shall show that this differs depending on whether or not ẑ lies
above or below z2. To do this, we first solve for the curve where ẑ ¼ z2. There is always a solution to
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h0ðE minfuðZÞ;uðẑÞg � u�Þu0ðẑÞ ¼ u0ð0Þ, (i.e. ẑ is interior and the relevant first-order condition holds with equality); thus if
ẑ ¼ z2 then
17 Not
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h0ðp3ðz2 � u3ÞÞu0ðz2Þ ¼ u0ð0Þ: ð� � �Þ
When (���) holds it implicitly defines a unique value of p̂3, with ẑ > z2 for p3 > p̂3 and ẑ < z2 for p3 6 p̂3 . If there is no
solution to (���) then either ẑ > z2 for all p3, and we set p̂3 ¼ 0, or ẑ < z2 for all p3, and we set p̂3 ¼ 1. Consider the case
p3 > p̂3; here since u(z2) = z2 (��) becomes h0ðp3ðuðẑÞ � u3ÞÞu0ðẑÞ ¼ u0ð0Þ:

This is indeed independent of p1. Hence, in this region it holds that @ẑp=@p1 ¼ 0 as asserted. When p3 < p̂3 we differentiate
(��) with respect to p1 to find
�h00ðð1� p1 � p3Þminf0;uðẑÞ � z2g þ p3 minf0; uðẑÞ � u3gÞu0ðẑÞ �minf0;uðẑÞ � z2g
This expression is negative for z2 > ẑ, hence ẑ is decreasing in p1 in this case. h

Now we discuss how these results imply that the approximate dual-self model can explain behavior such as the Allais
paradox, using Fig. 4 to illustrate the ideas. Scenario I in Allais-paradox experiments juxtaposes a lottery s with certain gain
z2 (located at the origin) with a risky lottery r that has a positive return, so it lies above the risk neutral indifference curve
(the thick line crossing s). The data indicate that r tends to get rejected as too risky, so it has to lie below the actual indif-
ference curve – the dashed line crossing s. In the figure the alternative Lottery r lies to the upper right in between the two
indifference curves; so indeed, Lottery s will be preferred.

Scenario II entails reducing the probability, for both lotteries, of the middle outcome z2 and adding this probability to out-
come z1 = 0. This holds fixed the probability of z3, so in the diagram it simply shifts both s and r the same distance to the right,
resulting in the new lotteries s0 and r0. If the probability of z3 in Lottery s is less than p̂3, shifting Lottery s to the right (to
become s0) causes the actual indifference curve to get flatter. Depending on the exact magnitude of the change, it could shift
preference, so that s0 is now below r0 rather than above r0. Hence an Allais reversal can occur, with s being chosen in Scenario I
and the riskier alternative r0 being chosen in Scenario II. This case is the one illustrated in the figure. Note that this reversal
would not be possible if the indifference lines were parallel as in the standard model.

Our results show that if the probability of z3 was larger than p̂3 this reversal could not occur (but remember that for the
Allais paradox the probability of z3 is in fact zero). This is illustrated in Fig. 5, where the lotteries in the initial scenario have
probability of the best outcome that exceeds p̂3. In this case, a mere shift of the lottery to the right leads to a new lottery s0,
whose indifference curve does not have a different slope than I(s), hence no reversal occurs.

This shows the importance of the fact that in the Allais experiments there is a great difference in the short-run expected
payoffs across the two scenarios. It is the convexity in the self-control function that leads to reversals when the difference in
these expected payoffs is sufficiently high. Now consider the common ratio paradox as depicted in Fig. 3. In Scenario I the
agent has a choice between a Lottery s with a high probability s2 of winning outcome z2 (or else yields zero) and a more risky
Lottery r, which has a certain chance r3 < s2 of winning z3 (or else zero). Again, the choice of s, which is observed in the data,
corresponds to the case where lottery r lies between the risk-neutral indifference curve and the actual (steeper) indifference
curve crossing s. In Scenario II, r shifts down and to the right, while s shifts to the right (notice that the vector from s to r gets
shorter but continues to point in the same direction). If the indifference curve gets flatter there can again be a reversal.

This time the reversal occurs whether or not p3 is smaller than p̂3, because not only does p1 get larger, but also p3 gets
smaller and that always flattens the indifference curve. Note the implication here: this theory predicts that common ratio
paradoxes hold for a wider variety of parameter values than common consequence, since the latter only occur below p̂3.
The reason that the common ratio always generates reversals in the approximate dual self model is that the short-run pay-
offs in the second scenario are always a fixed fraction of the payoffs in the initial scenario (assuming u(0) = 0), regardless of
the position of the initial-scenario lotteries in the triangle.

Finally we consider the issue of whether preferences are transitive. Transitivity holds if and only if for every choice of
lotteries p, q such that q 2 I(p) we have I(p) = I(q). We now show that this need not be true. So, fix a lottery p and a lottery
q0 2 I(p) and recall that when z2 > ẑq the slope of I(p) at the point q = p is given by
z2 � ẑq þ uðẑqÞ=u0ðẑqÞ
z3 � z2

jq¼p ¼
z2 � ẑp þ uðẑpÞ=u0ðẑpÞ

z3 � z2
:

We would like to show that when h is not linear the slope of I(q0) at p is different from this.17 Recall that
Uðu�; Zq; ẑqÞ ¼ hðð1� q1ÞuðẑqÞ � u�Þ þ u0ð0Þ½ð1� q1 � q3Þz2 þ q3z3 � ð1� q1Þẑq�:
Notice that the FOC for a maximum with respect to ẑq is h0ðð1� q1ÞuðẑqÞ � u�Þu0ðẑqÞ ¼ u0ð0Þ:
Let u(p0) denote the short-run expected utility from a generic lottery p0. We may then rewrite the previous slope as
z2 � ẑp þ h0ðð1� p1ÞuðẑpÞ � uðpÞÞuðẑpÞ=u0ð0Þ
z3 � z2

:

ice that if p does not belong to I(q0) there is nothing to prove.
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  Scenario I concerns the choice between s and r. 
Scenario II concerns the choice between s` and r`.  

Fig. 4. The Allais paradox reversal in the approximate model.
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Fig. 5. The high expected payoff case with no reversal.
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Without loss of generality, consider the case where u(q0) > u(p). We are then interested in what I(q0) looks like for lotteries
r near p, so we may assume u(q0) > u(r); the indifference curve we are interested in is defined locally by the following
relation:
Please
nomic
G � hðð1� q1ÞuðẑqÞ � u�Þ þ u0ð0Þ½ð1� q1 � q3Þz2 þ q3z3 � ð1� q1Þẑq� � hðð1� r1ÞuðẑrÞ � u�Þ þ u0ð0Þ½ð1� r1 � r3Þz2

þ r3z3 � ð1� r1Þẑr � ¼ 0:
We want to find dr3/dr1 at r = p. Note that u⁄ = u(q0) is constant, and that we may ignore the dependence of ẑr on r by the
envelope theorem as described above. Taking the derivatives of G with respect to r1, r3 we have that:
dG=dr1 ¼ �h0 ð1� r1ÞuðẑpÞ � u�
� �

uðẑrÞ þ u0ð0Þ½ẑr � z2�
dG=dr3 ¼ u0ð0Þ½z3 � z2�
Accordingly, the slope of the indifference curve I(q0) at r = p is equal to:
z2 � ẑp þ h0ðð1� p1ÞuðẑpÞ � uðq0ÞÞuðẑpÞ=u0ð0Þ
z3 � z2

:

Remember that the slope of I(p) at r = p was equal to:
z2 � ẑp þ h0ðð1� p1ÞuðẑpÞ � uðpÞÞuðẑpÞ=u0ð0Þ
z3 � z2

:
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These are the same if and only if
18 For
– relati
tended

19 Not
tends to

Please
nomic
h0ðð1� p1ÞuðẑpÞ � uðq0ÞÞ ¼ h0ðð1� p1ÞuðẑpÞ � uðpÞÞ:
But since u(q0) > u(p) by assumption, this equation requires that h0 be locally constant.
The ‘‘expected regret’’ models of Loomes and Sugden (1982) and Fishburn (1982) also generate intransitive preferences.

Like the dual-self model, the key characteristic of these models is the dependence of preferences on the choice menu. Like
our model, these models generate ‘‘indifference curves’’ that cross under certain assumptions; they can also explain the com-
mon ratio and common consequence effects.

6. Discussion and conclusion

We have examined how the assumption of a linear long-run value function can lead to a more tractable model than the
model of Fudenberg and Levine (2011), and we showed how this simplified model is useful in explaining choice among lot-
teries. The model respects stochastic dominance, and for lotteries with very low and very high possible prizes, lottery choice
corresponds to the maximization of short-run expected utility and expected value, respectively. Restricting attention to the
case of two lotteries with three outcomes, we show how the model can generate indifference curves that ‘‘fan out’’ and thus
can explain the well-known Allais and common ratio paradoxes.

As we have pointed out, models such as ‘‘expected regret’’ can capture the static risk-based anomalies that we have dis-
cussed here, and in addition generate the classic preference reversal phenomenon and other paradoxes. However, the gen-
eral dual-self model has a wider scope, in the sense that it is consistent with a large number of facts, across different
domains. In particular, the model has predictions about time-related phenomena (such as preference reversals for delayed
rewards), risk-related phenomena (such as the ones described here), contextual psychological phenomena (such as the effect
of cognitive load), etc. At the same time, the model is consistent with modern macroeconomic theory and evidence. In addi-
tion, the derivation of risk preference and reversals from an underlying model of self-control has implications about corre-
lations between an individual’s choices between lotteries and her choices in other domains that are not present in alternative
theories such as prospect theory. It also makes predictions that the same individual may make different choices between
lotteries depending on other decision problems that have recently been faced. In effect the h function is determined by past
behavior and personal characteristics.

Psychological evidence indicates that self-control depends on a resource that resembles ‘‘strength’’ or a ‘‘muscle’’ (Bau-
meister, Bratslavsky, Muraven, & Tice, 1998; Muraven & Baumeister, 2000). In particular, repeated use of self-control within
short time intervals depletes the ‘‘stock of willpower’’, and rest is needed in order to for this stock to recover. Further, like a
muscle, the ability to exercise self-control can be enlarged by repeatedly exercising it. This time dimension in self-control is
analyzed in Fudenberg and Levine (2012). In particular an individual who has recently faced difficult self-control problems –
and so depleted her stock of self-control – will exhibit a higher cost of self-control as measured by h.

Second, different individuals have different degrees of past exercise of self-control, and therefore different capacities of
using it. There is some evidence that the ability to exercise self-control is heterogeneous and correlated with such positive
outcomes as scholarly achievement, interpersonal skills, and less alcohol abuse (Tagney, Baumeister, & Boone, 2004). So for
example we may expect individuals who have a history of addiction and alcohol abuse to have a higher cost of self-control as
measured by h. Finally, as shown in O’ Donoghue and Rabin (1999) self-control costs implies an individual exhibits present
bias. Hence we may expect individuals who exhibit greater present bias to have a higher cost of self-control as measured by
h.

Evidence indicates that higher cognitive load, by reducing the psychological resources available for self-control, leads to
higher self-control costs.18 Like other things such as recent difficult self-control problems, an individual with a higher cognitive
load will exhibit a higher h. Cognitive load can be easily controlled in the laboratory, typically by selectively assigning memory
tasks to different treatment groups. This means that the theory implies that reversals like those of common ratio and common
consequence can be induced by increasing cognitive load.19

Appendix A

Lemma 3. Uðq1; q3Þ ¼ Uðu�; Zp; ẑpÞ � Uðu�; Zq; ẑqÞ is differentiable with respect to q in an open neighborhood of q = p and at all
points where Eu(Zp) – Eu(Zq).
example, Shiv and Fedorikhin (1999) find that subjects who are under heavy cognitive load, having to remember a seven-digit number, tend to choose a
vely unhealthy – chocolate cake dessert rather than a more healthy fruit salad. On the contrary, subjects who had to memorize a two-digit number
to opt for the fruit salad more often. This indicates that higher cognitive load might have impaired subjects’ ability to exercise self-control.
e that there is some initial evidence of this, such as the results from the experiment of Benjamin, Brown, and Shapiro (2006) who find that cognitive load

exacerbate small stakes risk aversion and – to a lesser degree – short run impatience.
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Proof. We shall show that the indirect effects of a marginal change of q through its effect on u⁄ and ẑp; ẑq can be ignored (in a
neighborhood of q = p). First, the derivative of U with respect to u⁄ is zero at q = p, since
dUðu�; Zp; ẑpÞ=du� � dUðu�; Zq; ẑqÞ=du�jq¼p ¼ 0. Second, the derivative with respect to ẑk is zero by Lemma 2.20 Note that ẑk is
implicitly determined by the relation F(Zk,zk) = u0(0) from Lemma 2. The function F is differentiable in zk, (we use k = p,q), by
inspection, and is strictly decreasing with left and right derivatives in zk bounded away from zero by Lemma 2. Thus, the implicit
function theorem applies to ẑk as a function of q, hence since ẑk is determined optimally, the envelope theorem implies that we
need consider only the derivative with respect to Zq. This dependence is differentiable by inspection. h
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