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Abstract

We characterize a generalization of discounted logistic choice that incorporates a pa-

rameter to capture different views the agent might have about the costs and benefits of

larger choice sets. The discounted logit model used in the empirical literature is the special

case that displays a “preference for flexibility” in the sense that the agent always prefers

to add additional items to a menu. Other cases display varying levels of “choice aversion,”

where the agent prefers to remove items from a menu if their ex ante value is below a

threshold. We show that higher choice aversion, as measured by dislike of bigger menus,

also corresponds to an increased preference for putting off decisions as late as possible.
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1 Introduction

Observed individual choice is typically stochastic. Most of the theoretical literature on stochas-

tic choice has focused on static models. Structural econometric models of aggregate dynamic

decisions start by specifying a dynamic choice problem for each agent, where the agent is typ-

ically assumed to be dynamically sophisticated in the sense of correctly anticipating the way

the probability distributions over his future actions depend on his actions today (Rust, 1987).

This paper provides the first axiomatic characterization of stochastic choice in dynamic

settings, where choices made today can influence the possible choices available tomorrow, and

consumption may (but need not) occur in multiple periods. Our main goal is to better under-

stand the issues involved in modeling an agent who makes random choices not only over actions

with immediate consumption consequences but also over actions that can alter the choice sets

that will be available in the future, when the agent’s choice in each period is made taking her

future randomizations into account.

Data on dynamic choice lets us distinguish between models of random choice that coincide

in static settings, because these models have different implications for how the agent views

his future randomizations over menus, and thus induce different choices between menus. In

particular, standard models of dynamic random utility such as discounted logit generate a

positive option value for each item that is added to a menu because each added item provides

another chance for a good realization of the random shocks and has no downside. On the other

hand, models of limited attention, implementation errors, or costly decision making all suggest

that the agent may dislike adding at least some items. This leads us to propose a generalization

of discounted logit called Discounted Adjusted Logit (DAL), where the attractiveness of menus

is adjusted to reflect the agent’s “choice aversion” and reduce or eliminate the option value of

additional items.

To make this first step in characterizing dynamic stochastic choice we maintain the Indepen-

dence of Irrelevant Alternatives (IIA) assumption throughout the paper, so that static choice in

our model is logit, and can be represented by a random utility model where the payoff shocks

are i.i.d. with extreme value type-1 distributions, see e.g. Anderson, De Palma, and Thisse

(1992). Although this assumption is restrictive, we maintain it here. This lets us focus on the

new issues that arise when modeling stochastic choice in a dynamic setting, axiomatize the

widely used discounted logit model1, and propose and characterize the generalization to DAL.

Concretely, in DAL the agent values combinations of current outcome zt and continuation

1Miller, 1984; Rust, 1989; Hendel and Nevo, 2006; Kennan and Walker, 2011; Sweeting, 2011; Gowrisankaran
and Rysman, 2012; and surveys Eckstein and Wolpin, 1989; Rust, 1994; Aguirregabiria and Mira, 2010.
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menu At+1 as

Ut(zt, At+1) = v(zt) + δE
[

max
at+1∈At+1

Ut+1(at+1) + εat+1 − κ log |At+1|
]

(1)

and then chooses each at = (zt, At+1) from the menu At

Pt[at | At] = Prob

[
Ut(at) + εat ≥ max

bt∈At
Ut(bt) + εbt

]
, (2)

where εat has an extreme-value distribution.

Every DAL is equivalent to logit in static decisions or when δ = 0, regardless of the value

of κ. DAL with κ = 0 reduces to the usual form of discounted logit. The new parameter κ

measures the agent’s choice aversion, and is determined by the extent to which the agent wants

to add new items to the menu. When κ = 0, the agent is choice loving in the sense that the

agent always prefers to add additional items to a menu, as in the “preference for flexibility” of

Kreps (1979) and Dekel, Lipman, and Rustichini (2001).

Another special case of interest is κ = 1; here the agent wants to remove choices that are

worse than average, as might be the case if the agent were worried about choosing them by

accident or if the agent incurs “menu” or “consideration” costs that exactly offset the benefit

of another random draw.2

In addition to DAL, we present two alternative but equivalent representations. To motivate

the representations and explain their equivalence it is useful to recall that there are several

explanations in the literature for stochastic choice in static problems.

Random utility : Agents might maximize their expected utility given privately observed pay-

off shocks as in Thurstone (1927), Marschak (1959), McFadden (1973), and Harsanyi (1973a),

so that even choices that are typically unappealing could be optimal when the payoff shock is

large. Logit corresponds to payoff shocks that are i.i.d. with extreme value type-1 distributions;

this functional form is the starting point for the discounted logit model.

Inattention: Agents might randomize as the result of error or inattention under a cost of

attending to the decision. Here, paying no attention results in a uniform error distribution,

and the agent faces a cost of paying attention in order to increase the probability of the desired

outcome, as in van Damme (1991) and van Damme and Weibull (2002). Static logit corresponds

to the case where this cost function is the relative entropy of the choice distribution with respect

to the uniform distribution.

In our dynamic setting, the relative entropy cost function corresponds to κ = 1 in an

2When κ ∈ (0, 1) the agent wants prefers to include additional items provided they are not too much worse
than the current average, while when κ > 1 the agent only wants to add items that are sufficiently better.
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alternative representation we call Discounted Adjusted Entropy or DAE. In this case adding

an equally-good item to a singleton menu has no effect on the menu’s value, as the agent will

choose to randomize uniformly and thus incur no attention cost while receiving an equivalent

current outcome. As with DAL, all versions of DAE are equivalent to logit in static decisions,

but the value of κ matters once there are two or more periods. In particular, DAE with κ = 0,

where the cost function is the negative of the entropy of the choice probabilities, is equivalent

to discounted logit and so is choice loving; here the preference for larger choice sets arises from

the fact that larger choice sets have a higher maximum entropy.

Ambiguity aversion: Agents might be uncertain about the rewards to each choice, and

randomize in response to ambiguity-aversion. As shown by Fudenberg, Iijima, and Strzalecki

(2013) this can lead to the agent acting as if their goal was to maximize the sum of expected

utility and entropy (or some other convex function); thus this explanation for stochastic choice

and the explanation based on inattention motivate representations with identical functional

forms, including DAE as a the special case where IIA is satisfied.3

Weighting function: Finally, observed choices might be the result of psychophysical “weight-

ing functions,” as in Luce (1959), who characterized stochastic choice in static problems under

the additional assumptions of positivity (all actions have positive probability) and IIA. Under

these assumptions, the observed choice distribution can be generated by assigning weights W (a)

to each action a, and then picking an action with probability equal to its share of the total

weight; the term “psychophysical” reflects the idea that these weights correspond to the mental

stimuli generated by the feasible actions. This motivation for random choice corresponds to

our Discounted Adjusted Luce (DALu) representation.

As should be clear by now, this paper relates to several strands of the axiomatic decision

theory literature, to foundational literature in game theory, and to empirical work on dynamic

choice. We discuss these relationships in the concluding section, after we have developed our

representations and the associated axioms.

Of these axioms, the most significant are: IIA (so that static choice is logit); a separabil-

ity axiom that implies that preferences over future decision problems are independent of the

outcome in the current period, and vice versa; a recursivity axiom that links current choice of

menus for tomorrow to behavior when tomorrow arrives; and a replica invariance axiom that

says roughly that how the agent feels about duplicating every item in a menu does not depend

on the menu’s elements or size. We also characterize the special case of κ = 0 (which corre-

sponds to the usual discounted logit) with a more specific “aggregate recursivity” axiom, which

3Harsanyi (1973b) introduced the more general idea that choice probabilities correspond to maximizing the
sum of expected utility and a non-linear perturbation function. This functional form was recently used by Swait
and Marley (2013) to model stochastic choice as the result of balancing multiple goals.
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says that menu A is more likely to be selected now than some other menu B if elements of A

are more likely to be selected than elements of B when both are presented as an immediate

decision next period. In contrast, DAE with κ = 1 corresponds to “average recursivity,” where

menu A is preferred if its elements are chosen with higher average probability. As in the deter-

ministic case of Koopmans (1960), additional assumptions are needed to arrive at a stationary

discounted sum formulation.

In addition to its impact on preferences over menus at a given time, the choice-aversion

parameter κ also influences whether the agent wants to make decisions as soon as possible or to

postpone them: when κ = 0 the agent enjoys making decisions and so (because of discounting)

prefers to decide early, while when κ ≥ 1 the agent views decisions as costly and wishes to

postpone them. As we argue below, to the extent that people typically do prefer to postpone

decisions this can be viewed as an additional reason to generalize DAL to allow for positive

values of κ.

2 Dynamic Choice Problems

For any set S let K(S) be the collection of nonempty finite subsets of S, to be interpreted as the

collection of possible choice problems. For any set S let ∆(S) be the collection of probability

measures on S with finite support. Let ∆n := ∆({1, . . . , n}).
We assume that time is discrete, t = 0, 1, . . . , T with T finite. We assume throughout that

T > 0, that is, choices are observed in at least two time periods. Let Z be the set of all one-

period outcomes.4 In any period t, an individual choice problem is called a menu; we denote

period t menus by letters At, Bt, Ct, . . . and the space in which all menus live by Mt. The

elements of the menu are called actions and are denoted by at, bt, ct, . . .; the space in which all

actions live is denoted by At. We construct the set of dynamic choice problems recursively. Let

AT := Z and MT := K(AT ); in period T actions are synonymous with one-period outcomes

because in the terminal period there is no future, and period T menus are just collections of

one-period outcomes. Now we define the possible menus and actions in earlier time periods by

At := Z×Mt+1 andMt := K(At). Thus, an action at at time t is a pair (zt, At+1) of a current

outcome and a time-t + 1 menu, while a menu At at time t is a finite set of such actions. For

notational convenience, we set MT+1 = ∅ and use the convention that Z ×MT+1 = Z.

It is important that the actions today can restrict future opportunities without having any

impact on the current outcome; for example the agent might face the period T − 1 menu

{(z, AT ), (z, A′T )}. Moreover, the agent might face the choice at time T − 3 of whether to

4Our richness axiom will imply that Z is infinite, but we do not assume any structure on this set; possible
cases include: a subset of R (monetary payoffs), or Rn (consumption bundles or acts), and ∆(Rn) (lotteries).
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commit to her time-T outcome in period T − 2 or in period T − 1. As we will see, different

values of κ predict different choices here; this is one advantage of allowing a general finite

horizon as opposed to restricting the model to have only two time periods.

Definition 1 (Dynamic stochastic choice rule). A dynamic stochastic choice rule is a

collection of mappings P = {Pt}Tt=0 such that Pt : Mt → ∆(At), with the property that for

any At ∈Mt the support of Pt(At) is a subset of At.
5

For any At ∈ Mt, Pt(At) is the probability distribution on actions that represents the

stochastic choice from At.
6 For notational convenience, we write Pt[Bt|At] to denote the proba-

bility that the chosen action will belong to the set Bt when the choice set is At. For (z, At+1) ∈
At we write Pt[(z, At+1)|At] instead of Pt[{(z, At+1)}|At]; note that Pt[Bt|At] =

∑
bt∈Bt Pt[bt|At].

Note that the time periods in our model are data that is observed by the analyst, as opposed

to the purely notional time periods in nested logit, which is an as-if representation of static

choice. As we will see, observing how the choice probabilities vary with the times that decisions

are made provides additional information about the agent’s preferences that is unavailable in

static models.

Our primitive is a dynamic stochastic choice rule P . However, it will be more convenient

to express some of our questions using the notion of the stochastic preference %t on At, which

is derived from Pt as follows.

Definition 2 (Stochastic preference). Action at is stochastically preferred to action bt at

time t, denoted at %t bt, if Pt [at|{at, bt}] ≥ Pt [bt|{at, bt}] . Given %t we define induced stochastic

preferences on Z and Mt+1 as follows: z is stochastically preferred to w at time t, denoted

z %t w, if (z, At+1) %t (w,At+1) for all At+1 ∈ Mt+1. Menu At+1 is stochastically preferred to

Bt+1 at time t, denoted At+1 %t Bt+1, if (z, At+1) %t (z, Bt+1) for all z ∈ Z.

Under our basic axioms (to be introduced later), these stochastic preference relations are

complete and transitive. All behavioral content expressed in terms of %t can be formulated in

terms of Pt at the cost of making some expressions more cumbersome.

5This is the stochastic version of the usual condition that the only elements that can be chosen are those
that belong to the menu.

6Note that this implicitly assumes that choice at time t from a given menu is independent of past history,
although that history can influence the set of options available. We believe that our approach could be extended
to allow for history dependence through a state variable, as is commonly allowed in empirical work (see, e.g.,
Aguirregabiria and Mira, 2010). However, because the complexities involved in axiomatically characterizing
state dependence seem orthogonal to the study of stochastic choice,we have not tried to develop this extension.
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3 Choice Rules and their Representations

We study three equivalent representations of a dynamic stochastic choice rule. Each of these

writes values as the sum of current payoff plus the discounted value of the expected continuation

payoff, where the continuation payoff assigned to each menu is adjusted to account for its size.

The most familiar-looking of the representations is Discounted Adjusted Logit, which gen-

eralizes the standard discounted logit representation used to model dynamic individual choice

in estimation problems.

Definition 3. A random variable ε has the extreme value distribution (with noise parameter 1),

denoted ε ∼ EV (1), if its cdf is F (ε) = exp(− exp(−ε− γ)) where γ is Euler’s constant.

Definition 4 (Discounted Adjusted Logit). P has a Discounted Adjusted Logit (DAL)

representation iff there exist a utility function v : Z → R, discount factor δ ∈ (0, 1), choice

aversion parameter κ ≥ 0, and value functions Ut : At → R recursively defined by UT (z) = v(z)

and

Ut(zt, At+1) = v(zt) + δE
[

max
at+1∈At+1

Ut+1(at+1) + εat+1 − κ log |At+1|
]

(3)

such that for all t = 0, . . . , T , all At, and all at ∈ At

Pt[at | At] = Prob

[
Ut(at) + εat ≥ max

bt∈At
Ut(bt) + εbt

]
, (4)

where εat ∼iid EV (1).7

In this representation, the ε terms correspond to payoff shocks that are observed by the

decision maker but not by the analyst, as in static random utility models.8 Note that these

payoff shocks apply to every action, just as they do under the “Assumption AS” or equation

(3.7) of Rust (1994). As an example, suppose that a consumer first decides what size tuna fish

can to buy and later decides how much to consume each day; then payoff shocks apply to each

possible purchasing decision in period t = 0 as well as to consumption in subsequent periods,

as in Hendel and Nevo (2006, p.1645).

We call this sort of payoff shocks “shocks to actions,” as opposed to the alternative model

where payoff shocks apply only to a set of “immediate outcomes.” Some aspects of this alterna-

tive approach have been studied in the decision theory literature, but a full characterization of

7Allowing for a more general noise parameter η is possible, but does not lead to a more general model, as
only v/η is identified.

8Note that the agent does not know the realizations of future payoff shocks, so he is on an equal footing with
the analyst when it comes to future. This simplifying assumption makes the model tractable, which is why it
is used in estimation.
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dynamic stochastic choice along these lines remains elusive.9 Additionally, the simplest version

of this alternative model, in which the agent knows all future shocks from the outset, predicts

purely deterministic choice in settings such as the purchasing decisions discussed above, which

seems implausible and is impractical for empirical work. The model could generate stochas-

tic decisions under the assumption that the agent gradually learns about future payoff shocks

over time, but this would make it difficult or impossible to obtain closed form solutions, and

so require computationally intensive numerical work. Thus we follow the empirical literature

here and restrict attention to “shocks to actions.” We explore one consequence of this modeling

assumption in Section 5.4.

In the case κ = 0, the representation reduces to discounted logit. (More precisely, it is

the simplest sort of discounted logit representation, as it does not include a state variable and

assumes stationarity; we make these simplifications to focus on the issues related to recursive

choice.) As we will show explicitly below, discounted logit is choice-loving in the sense of always

preferring larger menus. Intuitively, this comes from the fact that each new object added to

the menu provides another chance for a good realization of the random shock ε, as it does in

any random utility model unless the shocks to some of the objects are perfectly correlated.10

The case κ = 1 represents error-averse choice in the sense that the constant log |At+1| that

the agent prefers not to add a new item to a singleton menu if it is worse than the current item

(in the sense of being chosen less than half the time in the binary menu). More generally, the

parameter κ is responsible for how heavily big sets are penalized and corresponds to the choice

aversion ordering of agents introduced below. The role of κ and the special nature of κ = 1

are easier to see in the next two representations.

Definition 5. For any q ∈ ∆n, let Hn(q) := −
∑n

i=1 qi log(qi) be the entropy of q with the

convention that 0 log 0 = 0. Let Jnκ (q) = Hn(q)− κ log n be the adjusted entropy.

Since the entropy and adjusted entropy are invariant to permutations, we treat distributions

q ∈ ∆(A) as if they were elements of ∆|A| when they are arguments of the functions H and J .

Definition 6 (Discounted Adjusted Entropy). P has a Discounted Adjusted Entropy

(DAE) representation if and only if there exist a utility function v : Z → R, discount fac-

9Ahn and Sarver (2013) connect deterministic choice over menus in period 0 with random choice from menus
in period 1 but it is not clear how to extend this to allow for random choice in period 0. Dillenberger, Lleras,
Sadowski, and Takeoka (2013) and Lu (2013) make a similar connection in a model with an objective state
space, but likewise do not characterize random choice in period 0.

10The standard nested logit model applies to a static choice of an item and so cannot directly address
preferences over menus, but a similar issue arises there : If “purchase” is one nest and “not purchase” is another
then in the limit of a very large set of goods almost everyone must purchase. Ackerberg and Rysman (2005)
propose (but do not characterize) two alternative responses to this issue in a static model: either scale the
variance of the extreme-value shocks with the number of goods in the menu, or add a term to the utility
function that depends on various characteristics of the menu. This is similar in spirit to our choice-aversion
adjustment.
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tor δ ∈ (0, 1), choice aversion parameter κ, and value functions Ut : At → R recursively defined

by UT (z) = v(z) and

Ut(zt, At+1) = v(zt) + δ

 max
q∈∆(At+1)

∑
at+1∈At+1

q(at+1)Ut+1(at+1) + J |At+1|
κ (q)

 (5)

such that for all t = 0, . . . , T and At

Pt[· | At] = arg max
q∈∆(At)

∑
at∈At

q(at)Ut(at) + J |At+1|
κ (q). (6)

Note that the entropy of the uniform distribution over n objects is log(n), which increases

without bound in n. Hence a κ = 0 agent will prefer a menu of many roughly similar objects

to the singleton menu with just one of them. We elaborate on the consequences of this below.

When κ = 1, the adjusted entropy is −Rn(q), the negative of relative entropy of q with

respect to the uniform distribution. This function is maximized in the interior of the simplex,

so when κ = 1 stochastic choice can be interpreted as the result of costly attention: Choosing

a uniform distribution is costless, but departing from it in the direction of a more desirable

lottery is costly, with cost proportional to the relative entropy. Such an agent is error-averse,

and prefers removing the lowest-ranked item from a menu, but is indifferent about whether an

equally good item is added to a singleton menu. As the equivalent logit representation suggests,

though, the error-averse preferences are consistent with a combination of consideration costs

based on menu size and logit-type payoff shocks.

More generally, note that Jnκ (q) = (1 − κ)Hn(q) − κRn(q), where Rn(q) =
∑n

i=1 qi log qi
1/n

is the relative entropy of q with respect to the uniform distribution. That is, adjusted entropy

is a linear combination of entropy and relative entropy. Thus, adjusted entropy represents a

combination of two motivations for random choice: desire for randomization (represented by

the entropy term) and costly attention (represented by the negative relative entropy term).

The third representation is perhaps the easiest to use in applications, as it incorporates

the well-known “log-sum” representation of the logit value function. (see, e.g., Train, 2009,

Chapter 3, or Lemma 3 in the Appendix)

Definition 7 (Discounted Adjusted Luce). P has a Discounted Adjusted Luce (DALu) rep-

resentation if there exists a utility function v : Z → R, discount factor δ ∈ (0, 1), choice aversion

parameter κ ∈ R, and value functions Wt : At → R++ recursively defined by logWT (z) = v(z)

and

logWt(zt, At+1) = v(zt) + δ

log
( ∑
at+1∈At+1

Wt+1(at+1)
)
− κ log |At+1|


9



such that for all At and all at ∈ At

Pt[at | At] =
Wt(at)∑
bt∈AtWt(bt)

.

Here, as in the static Luce case, the ratio of the choice probabilities of two items is given by

the ratio of their weights; these weights now corresponds to a weighted sum of current payoff

and the sum of the weights of the continuation menus, with menu size penalized by κ.

The following proposition states the equivalence of the three representations.

Proposition 1. The following statements are equivalent:

1. P has a DAL representation with parameters (v, δ, κ) and value functions Ut.

2. P has a DAE representation with parameters (v, δ, κ) and value functions Ut.

3. P has a DALu representation with parameters (v, δ, κ) and value functions Wt = exp(Ut).

Moreover, if P has any of the above representations with parameters (v, δ, κ) and (v′, δ′, κ′),

then (v, δ, κ) = (v′ + β, δ′, κ′) for some constant β.

The proof is in the Appendix (as are the proofs of all of the other propositions). In outline,

the proof first notes that all three representations generate the same choice probabilities as logit

in the static case and thus are equivalent in final period, and then uses the equivalence of the

corresponding value functions for final-period menus to work backwards. The reason that αv is

not equivalent to v in DAL, as opposed to the usual affine uniqueness of expected utility, is that

we set the parameter of the extreme value distribution to 1, which fixes the multiplicative term

in the utility function; this parallels our specification of a unit coefficient for adjusted entropy

in DAE and of W = exp(1 · v) in DALu. Uniqueness of δ is as in the deterministic choice

literature, and uniqueness of κ follows from the period-t choices between singleton menus at

period t + 1 and arbitrary two-element menus. Motivated by this proposition, we refer to the

three representations collectively as discounted adjusted representations, or DARs.

Definition 8 (Discounted Adjusted Representation). P has a DAR if it has a DAL,

DAE, or a DALu representation.

4 Applications

4.1 Work or College?

To illustrate our setup, consider the following example of a high school student’s choice of

whether or not to go to college, which we adapt from Train (2009, Chapter 7). There are two

10



periods. In period 0 the student can either go to college, which leads to immediate outcome c,

or work, which leads to immediate outcome w. In addition to immediate outcomes, her choices

in period 0 have consequences for the sets of options available in period 1: If the student works

in period 0, she must work in job z in period 1 and if the student goes to college in period 0,

she will choose between two jobs x and y. Thus, the student faces the decision depicted in

Figure 1.

co
lle

ge

work

job x

job y

job z

  c

 w

x

y

z

Figure 1: Choosing whether to go to college

To represent this decision tree as one of our dynamic choice problems, let A1 = {x, y} and

B1 = {z} be the two possible continuation problems in period 1 (after choosing to go to college

or not). Then the time zero choice problem is A0 = {(c, A1), (w,B1)}. We write P0[(c, A1)|A0]

to denote the probability that the student chooses to go to college in period 0 and P1[x|A1]

to denote the probability that in period 1 (conditional on having gone to college) the student

chooses a job x.

Suppose that the v is the utility function of the agent, so that for example the utility of

outcome c is v(c). Under any of the DARs, the value of the continuation choice problem A1 is

log
(
ev(x) + ev(y)

)
−κ log 2 and the probability of choosing job x from A1 is ev(x)

ev(x)+ev(y)
. Using the

formula from DALu it is immediate that the probability that the student goes to college is

P0[(c, A1)|A0] =
exp

(
v(c) + δ log

(
ev(x) + ev(y)

)
− δκ log 2

)
exp

(
v(c) + δ log (ev(x) + ev(y))− δκ log 2

)
+ exp

(
v(w) + δv(z)

) .
An extreme case is when v(x) = v(y) = v(z) = v1 and v(c) = v(w) = v0. Then

P0[(c, A1)|A0] =
ev0+δ(v1+(1−κ) log 2)

ev0+δ(v1+(1−κ) log 2) + ev0+δv1
.
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Here the the log 2 term reflects the fact that going to college leads to two future options. When

κ < 1 the term has positive weight, corresponding to an agent who likes to have choices, perhaps

due to the perceived option value; when κ > 1 the log 2 term has negative weight, corresponding

to an agent who is choice-averse. When κ = 1 the log 2 term vanishes so the agent is indifferent

about adding an equally good choice to the menu.

4.2 Durable Goods

This stylized example shows how the model of individual demand for durable goods proposed

by Gowrisankaran and Rysman (2012) fits into our framework. In period t = 0 there are two

durable goods available: x and y; in period t = 1 there is only one durable good z available. In

this environment, the customer also cares about the price of each good, so in our setting the

outcomes available in each period are pairs (good, price), for example (x, px).
11

In period t = 0 the agent chooses between x and y. She will receive the flow of utility of that

choice in t = 0 as well as in t = 1, unless she decides to replace it with z. For example, purchasing

x at price px corresponds to the action a = ((x, px), A1): the agent receives x in period 0 and

pays the price px; in period 1 the agent has a choice from the menu A1 = {(x, 0), (z, pz)}: not

making any purchases and continuing to receive x, or making a new purchase z and paying the

price pz. Likewise, purchasing y at price py corresponds to the action b = ((y, py), B1), where

B1 = {(y, 0), (z, pz)}.

(x, p )

(y, p )

buy 
x

buy y

(x, 0)

(z, p )

stic
k with x

buy z

(y, 0)

(z, p )

stic
k with y

buy z

x

y

z

z

Figure 2: Durable goods purchasing decisions.

11Gowrisankaran and Rysman (2012) also allow for the possibility that the agent may not know the set of
goods available in future periods, nor their prices. With incomplete information their model is not formally a
special case of ours. We abstract from this and assume complete information on the part of the agent.
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Like us, Gowrisankaran and Rysman (2012) suppose that the individual is uncertain about

their own future choices and moreover that this uncertainty is symmetric between the agent

and the analyst. In addition they make the same functional form assumptions that we do:

They assume that in period 1 the utility of the outcome (x, 0) is v(x) + εx,1, the utility of (y, 0)

is v(y) + εy,1, and the utility of (z, r) is v(z)− r + εz,1, where εx,1, εy,1, εz,1 ∼iid EV (1).

Gowrisankaran and Rysman (2012) assume that preferences are discounted logit; in partic-

ular they assume that the taste shocks in period 0 and period 1 are independent and that the

period 1 shock is not revealed until the beginning of period 1. Thus their model corresponds

to DAR with κ = 0, so from the agent’s t = 0 perspective the value of menu A1 is

V (A1) = log
(
eu(x) + eu(z)−pz

)
.

Likewise,

V (B1) = log
(
eu(y) + eu(z)−pz

)
.

As a result the probability that the agent purchases x in period 0 is

eu(x)−px+δV (A1)

eu(x)−px+δV (A1) + eu(y)−py+δV (B1)
.

4.3 Magazine Subscriptions

Our framework can be also used to model choices that influence the future opportunities to

make decisions, such as choosing between liquid and illiquid assets, purchasing or renting a car,

or whether to get a cellphone with or without a contract. For example, suppose that an agent is

contemplating buying a magazine subscription; if the agent does not buy the subscription, she

will have to decide whether to purchase each issue separately. For simplicity, we abstract from

pricing (since subscriptions offer cost savings, this force would push the agent in the direction

of buying the subscription). We focus instead on another aspect of the problem: since every

issue differs, even if in expectation the magazine is worth buying, there may be weeks when

it’s not. Thus, not having a subscription offers an option value. On the other hand, the agent

may be choice averse and may prefer to make the decision once and for all, instead of having

to decide every week. As we will see, in our model the strength of this force is measured by the

parameter κ.

To illustrate this in a simple model, suppose that in period t = 0 the agent makes the

subscription decision and in periods t = 1, 2 she makes decisions about buying individual issues

should she choose not to subscribe. Let x denote ‘consuming’ the magazine and � denote not

consuming it. The agent faces the dynamic decision problem depicted in Figure 3.
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Figure 3: Subscription decision

Formally, buying a subscription corresponds to the action b0 = (�, {(x, {x})}), whereas not

buying the subscription corresponds to n0 = (�, {(x, {x, �}), (�, {x, �})}). Normalize v(x) = 0

and let v(�) = d < 0. Then the probability of skipping the purchase of an issue of the magazine

is the same in every period and equals

π := P1[(�, A)|{(�, A), (x,A)}] = P2[�|{�, x}] =
ed

1 + ed
,

which is increasing in d. With this parametrization, buying the subscription has value U0(b0) =

d, whereas not buying the subscription has value

U0(n0) = d+δ
(
log
(
ed+δ(log(1+e)−κ log 2) + eδ(log(1+e)−κ log 2)

)
− κ log 2

)
= d+(δ+δ2) log

(
1 + ed

2κ

)
.

Thus, the agent will buy the subscription with probability more than .5 iff her choice aversion

parameter κ is above the threshold

κ∗ =
log(1 + ed)

log 2
= − log (1− π)

log 2
;

Note that κ∗ is increasing in π, which can thus be seen as a measure of the option value

of not locking in to the subscription: the higher the probability of skipping the single issue

purchase, the stronger the choice aversion has to be to compensate for the forgone flexibility.

As we show in Section 5, it is true more generally that the parameter κ measures how the

agent trades off flexibility and decision costs. The ability to quantify this tradeoff may be
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helpful in applied work studying choices about subscriptions and other choices influencing the

future opportunities to make decisions, such as those mentioned in Section 4.

5 Comparative Statics

5.1 Choice Aversion

We now introduce a partial order that allows us to compare how agents feel about adding items

to a menu.

Definition 9 (Choice Aversion). Agent 2 is more choice averse than agent 1 if for all menus

At+1, Bt+1 with |At+1| ≤ |Bt+1|, At+1 %1
t Bt+1 implies that At+1 %2

t Bt+1 and At+1 �1
t Bt+1

implies that At+1 �2
t Bt+1.

Proposition 2. Consider any two DARs P with parameters (v, δ, κ), and P ∗ with parameters

(v, δ, κ∗). Then, P is more choice averse than P ∗ if κ ≥ κ∗. The converse is true under the

Richness axiom (Axiom 5) introduced in Section 6.

Intuitively, this is true because higher κ means that bigger sets are penalized more heavily.

The parameter κ also determines the conditions under which the agent wants to add an item

to a menu, that is, when At+1 ∪{bt+1} �t At+1: the higher the κ, the more “choosy” the agent.

Proposition 3. For any DAR with parameter κ and bt+1 /∈ At+1, we have At+1∪{bt+1} �t At+1

if and only if Pt+1[bt+1|At+1∪{bt+1}] > 1− |At+1|κ
(|At+1|+1)κ

. In particular if At+1 = {at+1}, the agent

strictly prefers {at+1,bt+1} to {at+1} iff Pt+1[bt+1|{at+1,bt+1}] > 2κ−1
2κ

.

Thus if κ = 0 the agent always wants to add new items. If κ = 1 the agent only wants

to add a new item if it is chosen with more than uniform probability, which fits with the

interpretation that stochastic choice arises from a cost of preventing errors. This provides an

easy way to distinguish κ = 0 from κ = 1 (assuming that the model is correct with one of

these two values): It is sufficient to observe the agent’s choice between the menu {at+1, a
′
t+1}

and the menu {at+1}, where Pt[at+1|{at+1, a
′
t+1}] = 0.5. Moreover, by observing the agent’s

choice probabilities between n pairs of menus, we can determine to which of n+ 1 subintervals

the agent’s value of κ belongs.12 The next proposition provides further information on the

implications of various values of κ by linking them to stochastic versions of axioms in the

literature on preferences over menus: Kreps (1979); Dekel, Lipman, and Rustichini (2001); Gul

and Pesendorfer (2001); Dekel, Lipman, and Rustichini (2009).

12We can also prove the following result: suppose that Pt+1[at+1|{at+1, ht+1}] = ε = Pt+1[lt+1|{at+1, lt+1}].
Then for any ε there exists κ∗ such that {at+1} �t {ht+1, lt+1} for κ > κ∗ and {at+1} ≺t {ht+1, lt+1} for κ < κ∗.
Moreover, for any κ there exists ε∗ such that {at+1} �t {ht+1, lt+1} for ε > ε∗ and {at+1} ≺t {ht+1, lt+1} for
ε < ε∗.
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Proposition 4. Suppose that P is a DAR. Then

1. κ ≥ 1 iff for all t and disjoint At+1, Bt+1, At+1 %t Bt+1 implies At+1 %t At+1 ∪Bt+1

2. κ ≤ 1 iff for all t and disjoint At+1, Bt+1, At+1 %t Bt+1 implies At+1 ∪Bt+1 %t Bt+1

3. κ = 1 iff for all t and disjoint At+1, Bt+1, At+1 %t Bt+1 implies At+1 %t At+1∪Bt+1%t Bt+1

4. κ ≤ 0 iff for all t, At+1 %t Bt+1 whenever At+1 ⊇ Bt+1

5. κ > 0 iff for all t and for any At+1 there exists bt+1 /∈ At+1 such that At+1 �t At+1∪{bt+1}

Of course, data on a finite set of menus could never prove that the representation also fit

choices from menus that have not been observed. For this reason, our representation theorem

in Section 6 places restrictions on choice from every menu; the theorem tells us just what

conditions these choices must satisfy to be consistent with the representation.

5.2 Immediate vs. Delayed Consequences

Dynamic choice problems also let us study how choices depend on whether their consequences

are immediate or delayed. For example, suppose that the decision maker chooses x with prob-

ability .51 from the menu {x, y}, as in Figure 4. What will the decision maker do if asked to

make the choice between x and y one period before they can be consumed, i.e., what is the

probability of choosing the action a = (z, {x}) over b = (z, {y})? As noted above, DAL assigns

shocks to all actions, even those without any immediate payoff consequences. At the time of

the decision the agent does not know the particular shocks that apply to x and y tomorrow.

However, even though the menu {x} is in expectation strictly better than {y}, the agent’s

choice between a and b is stochastic, as both actions receive independent payoff shocks today.

One obvious alternative model would be one where shocks are only to consumption. With

the usual i.i.d. shocks assumption, that model predicts deterministic choice regardless of the real

time that elapses between the choice and its consumption consequence in the next period. This

stark conclusion strikes us as a significant drawback. The intermediate case where information

about consumption shocks is gradually revealed over time would yield less stark predictions,

but it seems too complicated to work with except in extremely simple problems.

5.3 Horizon Effects

A related phenomenon is the relationship between the length of the delay and choice. How do

the choice probabilities change when the consequences recede into the future? Are choices over

later rewards more random than choices over sooner rewards? What happens in the limit?

16



z
x

y
z

?

?

Figure 4: Stochastic choice with delayed consumption

Let A be a subset of Z. Suppose the agent will receive a fixed sequence z̄ = (z0, z1, ..., zT−1)

in periods 0 through T−1, and that the only non-trivial decision (non-singleton choice problem)

that the agent faces is to decide in time 0 which z̃T to receive at time T . Thus, the agent’s

time-0 decision problem is to choose between |A| different continuation problems, one for each

element of A. Let A0 := {(z0, z1, ..., zT−1, z̃T ) : z̃T ∈ A} be the choice set at time 0. The object

of interest is P0[(z0, z1, ..., zT−1, z̃T )|A0], the choice probability of a given element z̃T .

Discounting implies that the agent becomes less concerned about a choice as its consequences

recede into the future, and so under DAR in the limit choice over distant rewards is close to

the uniform distribution. To see that, note that if the agent picks z̃T , his period-T utility is

v(z̃T ), and his value in period 0 is U0(z0, z1, . . . , zT−1, z̃T ) =
∑T−1

t=0 δ
tv(zt) + δTv(z̃T ). Thus, the

agent’s choice at time 0 is

P0[(z0, z1, ..., zT−1, z̃T )|A0] =
exp

(∑T−1
t=0 δ

tv(zt) + δTv(z̃T )
)

∑
z′∈A0

exp
(∑T−1

t=0 δ
tv(zt) + δTv(z′)

) =
exp

(
δTv(z̃T )

)∑
z′∈A0

exp (δTv(z′))
.

Note that even though the initial differences between the utilities of items of A may be large,

discounting makes them closer to each other, which leads to more uniform choice probabilities.

In the limit, as T →∞ we have P0[(z0, z1, ..., zT−1, z̃T )|A0]→ 1
|A| .

5.4 Choosing When to Choose

A concomitant question about timing is when the agent would like to make a choice from a

given menu, with the outcome to be received at some later time.

Let A be a subset of Z with a generic element z̃T . Suppose that the agent must choose

between a0 = (z0, A1) and b0 = (z0, B1) at time 0. Under either decision problem, he will receive
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the same sequence (z1, . . . , zT−1) in periods 0 through T − 1. Under A1, he will face a choice in

period 1 of which element z̃T to receive at time T , while under B1 he selects his time-T outcome

z̃T ∈ A in period T . Figure 5 shows a simple problem of this kind; we are interested whether

a0 �0 b0 or vice versa.

Figure 5: Choosing when to choose with A = {z, w}

The following result shows that the timing decisions of the agent depend on his choice

aversion parameter κ: agents who are more choice loving have a stronger preference for making

earlier decisions; agents who are more choice averse have a stronger preference for making later

decisions.

Proposition 5. 1. Fix any two DAR choice rules (v, δ, κ) and (v, δ, κ∗). If a0 %0 b0 and

κ > κ∗, then a0 %∗0 b0. If b0 %0 a0 and κ∗ > κ, then b0 %∗0 a0.

2. If κ ≤ 0, then a0 �0 b0 for any menu A. If κ ≥ 1, then b0 %0 a0 for any menu (with

indifference if and only if κ = 1 and all the elements of the set A are chosen with equal

probabilities).

An agent with κ = 0 always likes to make an early choice. Under DAE she derives a benefit

(measured by the entropy function) from the simple act of choice, and impatience implies she

would like to receive this benefit as early as possible. Under DAL the reason the agent prefers

early resolution when κ = 0 is that the payoff shocks εt apply to pairs (zt, At+1) of current

action and continuation plan, and since the expected value of the shock of the chosen action is

positive, the agent again prefers early choice. This perhaps unintuitive result is a consequence

of two key assumptions: first, that there are utility shocks to actions as opposed to shocks

to consumption utility (as is needed to generate stochastic choice over any act that involves

delayed consumption, such as purchasing cans of tuna fish) and second, that the desirability of
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future menus includes all of the “option value” that the utility shocks suggest. The adjustment

embodied in the parameter κ lets the model keep the analytic simplicity of aid shocks to

actions while reducing or eliminating this option value. For example, when κ ≥ 1 the menu-size

adjustment is so large that the agent perceives the act of choice as a “bad.” Then, because the

agent is impatient and so prefers to postpone losses, a κ ≥ 1 agent has a preference for later

choice. This provides a way to identify κ without using menus of different sizes (again on the

assumption that the representation applies).13

Some additional intuition for the link between κ and preference over the timing of choice can

be obtained by noticing that the value function in DALu expresses the value today as a nonlinear

function of the choice probabilities tomorrow. This function resembles the formulation of Kreps

and Porteus (1978) and especially the functional form of Epstein and Zin (1989), with the

difference that in those models the randomization is exogenous, while here the randomization

is a consequence of the actions of the agent herself. When κ = 1, our agent has preferences

toward late resolution of uncertainty because the nonlinear transformation of the probabilities

is concave; here the adjusted log-sum formula can be interpreted as a certainty equivalent.

6 Axiomatization

We present the axioms in three subsections. The axioms in the first subsection simply ensure

that preferences reduce to the logit case in a static problem and that preferences are independent

of any fixed continuation problem, which also implies that preferences over today’s outcomes

with a fixed continuation problem reduce to logit. The second subsection develops axioms that

relate choices at times t and t+1, and pin down how the agent feels about replicating the objects

in each menu. These axioms are sufficient to obtain recursive versions of DAR, in which choice

at time t depends on the utility of time-t outcomes and a continuation value. However, just as in

deterministic dynamic choice (Koopmans, 1960), additive, stationary, impatient representations

require additional assumptions that we develop in the third subsection.

6.1 Logit-esque Axioms

Axiom 1 (Positivity). For any t, At ∈Mt and at ∈ At we have Pt[at | At] > 0.

As argued by McFadden (1973), a zero probability is empirically indistinguishable from a

positive but small probability, and since keeping all probabilities positive facilitates estimation,

the positivity axiom is usually assumed in econometric analysis of both static and dynamic

13Of course adopting κ > 0 means rejecting the strong form of preference for flexibility in which larger menus
are always preferred. We feel that such preference is as counterintuitive as a preference for always deciding
early, as we would prefer a menu with one great choice to a menu with the great choice and several awful ones.
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discrete choice. In settings where the stochastic term arises from random utility, positivity

corresponds to the assumption that the utility shocks have sufficiently large support that even

a typically unattractive option is occasionally preferred. Positivity is implied by the perturbed

objective function representation for stochastic choice when the gradient of the perturbation

becomes infinite on the boundary of the probability simplex; it has been motivated there by

the fact that no deterministic rule can be Hannan (or “universally”) consistent.

Axiom 2 (Stage IIA). For any t ≤ T , at, bt ∈ At, and At, Bt ∈Mt such that at, bt ∈ At ∩Bt

Pt[at | At]
Pt[bt | At]

=
Pt[at | Bt]

Pt[bt | Bt]
,

whenever the probabilities in the denominators are both positive.

Stage IIA says that the ratio of choice probabilities between two actions, does not depend on

other actions in the menu; it reduces to the standard IIA axiom in period T by our assumption

that choices do not depend on past history. Notice that positivity and IIA imply that the

stochastic preference %t is transitive (see, e.g., Luce, 1959). As is well known, this axiom is

very restrictive. As we noted in the Introduction, it and the closely related logistic choice rule

are widely used in empirical work for reasons of tractability. Assuming IIA lets us focus on

other aspects of stochastic dynamic choice; we discuss some of the issues related to relaxing

this assumption in Section 7.

Axiom 3 (Ordinal Time Separability). For all t < T , x, y ∈ Z, and At+1, Bt+1 ∈Mt+1

1. (x,At+1) %t (x,Bt+1) iff (y, At+1) %t (y,Bt+1)

2. (x,At+1) %t (y, At+1) iff (x,Bt+1) %t (y,Bt+1)

This axiom says that preferences over future decision problems are independent of the

outcome in the current period, and conversely that preferences over current outcomes do not

depend on the choice problem to be confronted tomorrow.14 It is thus a stochastic version of

Postulate 3 of Koopmans (1960), and corresponds to what Fishburn (1970, Chapter 4) calls

independence. Axiom 3 together with the recursivity axiom of Section 6.2 is sufficient for a

history-independent recursive representation of the agent’s preferences (see Lemma 5 in the

Appendix.)

14Since at least one reader asked us whether Axioms 1 and 2 imply Axiom 3, we point out that
Axiom 3 fails if preference has logistic choice with the following specification: P [(z,At+1)|At] =
Ut(z,At+1)/

∑
(x,Bt+1)∈At

Ut(x,Bt+1) and Ut(z,At+1) = v(zt) + δ
∑

(zt+1,At+2)∈At+1
2 · 1{zt+1=zt}u(zt+1, At+2)

for some functions u and v.
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6.2 Tying Choices in Different Time Periods

Now we introduce axioms that relate choices in period t to choices and menus in the consecutive

time period. The next axiom requires that future choice problem A is more likely to be selected

now than some other B if elements of A are more likely to be selected than elements of B

when both are presented as an immediate decision next period. Note well that this axiom only

applies when A and B have the same size—for this reason it does not constrain how the agent

feels about adding items to a menu.

Axiom 4 (Recursivity). For all t and menus At+1, Bt+1 ∈Mt+1 with |At+1| = |Bt+1|

At+1 %t Bt+1 iff Pt+1 [At+1 | At+1 ∪Bt+1] ≥ Pt+1 [Bt+1 | At+1 ∪Bt+1] .

We need additional axioms to pin down choices across menus of different sizes. Before stating

these axioms, we present some others that help shed light on the role of κ in the representations.

The next axiom simply drops the qualifier |At+1| = |Bt+1| from recursivity:

Axiom (Aggregate Recursivity). For all t and menus At+1, Bt+1 ∈Mt+1

At+1 %t Bt+1 iff Pt+1 [At+1 | At+1 ∪Bt+1] ≥ Pt+1 [Bt+1 | At+1 ∪Bt+1] .

This axiom is satisfied by DAR with κ = 0. At first sight it might seem to require no more

than that the agent is sophisticated, as it is a stochastic version of the temporal consistency

axiom of Kreps and Porteus (1978), which requires that a future choice problem A is selected

now over some other B if there exists an element of A which is selected over any element of B

when both are presented as an immediate decision next period.15

Another noteworthy case is κ = 1, which corresponds to the discounted relative entropy

model. This is captured by “average recursivity,” which says that choice problem A is more

likely to be selected now then some other B if the average of the choice probabilities of elements

of A is higher than that of B when the choice set tomorrow is the union of A and B.

Axiom (Average Recursivity). For all t and menus At+1, Bt+1 ∈Mt+1

At+1 %t Bt+1 iff
1

|At+1|
Pt+1 [At+1 | At+1 ∪Bt+1] ≥ 1

|Bt+1|
Pt+1 [Bt+1 | At+1 ∪Bt+1] .

We will now state an axiom that leads to a representation with an arbitrary value of κ. To

do so, we need a technical condition to ensure that the domain of preference is suitably large.

15The axiom is also similar to Koopmans’ Postulate 4, which combines the requirement of stationarity with
dynamic consistency.
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Axiom 5 (Richness). For any t ≤ T , action (z, At+1) ∈ Z ×Mt+1, finite set of outcomes

Z ′ ⊆ Z, and λ ∈ (0,∞) there exists an outcome zλ ∈ Z \ Z ′, such that

Pt[(z
λ, At+1)|{(z, At+1), (zλ, At+1)}] = λPt[(z, At+1)|{(z, At+1), (zλ, At+1)}].

In the case λ = 1 we say that z and z1 are “equivalents.” By Richness, there are arbitrarily

many equivalents of each outcome. An equivalent of an action (z, At+1) is any action of the

form (z1, At+1) where z1 is an equivalent of z. Let At+1 ∈ Mt+1 and n be an integer. We say

that a menu A′t+1 is an n-replica of At+1 whenever for each a ∈ At+1 the menu A′t+1 contains n

equivalents of a and |A′t+1| = n|At+1|. We denote by n ∗ At+1 any n-replica of At+1; each such

replica is treated equivalently by the agent.

Axiom 6 (Replica Invariance). For any t ≤ T , outcomes x, y ∈ Z, continuation menus

At+1, Bt+1, and integer n

Pt[(x,At+1)|Ct]
Pt[(x,Bt+1)|Ct]

=
Pt[(y, n ∗ At+1)|Ct]
Pt[(y, n ∗Bt+1)|Ct]

,

where Ct = {(x,At+1), (x,Bt+1), (y, n ∗ At+1), (y, n ∗Bt+1)}.

To understand this axiom, suppose that At+1 = {a} and Bt+1 = {b, c}. Then the agent is

sure to end up with an equivalent of a when choosing from n ∗ At+1, and as a consequence of

Stage IIA the probability of a choosing an equivalent of b when choosing from n ∗ Bt+1 is the

same as the probability of choosing b from Bt+1, so that the probability ratio of the two is the

same in both cases. Thus the one reason that the two ratios might be different is because of the

effect of menu size per se: For example if the agent likes menus of size 1 much more than those

of any other size, it might be that Pt[(x,At+1)|Ct]
Pt[(x,Bt+1)|Ct] >

Pt[(y,n∗At+1)|Ct]
Pt[(y,n∗Bt+1)|Ct] . The axiom rules this out, and

requires instead that the menu-size effect depends multiplicatively on the number of replicas.

6.3 Stationarity and Impatience

To obtain a more specific and more tractable representation we first impose an axiom that

ensures that the effect of moving a decision from period t + 1 to period t depends only on the

period t+ 1 probabilities, and not the identities of the actions.

Axiom 7 (Probability Equivalence). For any t < T, at+1, bt+1, ct+1, dt+1 ∈ At+1and x, y ∈ Z

Pt+1[at+1|{at+1, bt+1}] = Pt+1[ct+1|{ct+1, dt+1}]

iff

Pt[(x, {at+1})|{(x, {at+1}), (x, {bt+1})}] = Pt[(y, {ct+1})|{(y, {ct+1}), (y, {dt+1})}].
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The axioms we have developed so far are sufficient to characterize a version of DAR where

the value is a discounted sum but where various terms such as the discount factor or utility

functions can vary over time. To obtain a stationary discounted model, we also need an axiom

to ensure that the discount factor and utility functions are time invariant. The original form

of stationarity introduced by Koopmans (1960) relies on an infinite horizon; we use a similar

axiom of Fishburn (1970, Chapter 7). The axiom is imposed on the period zero preference

over consumption streams (z0, z1, . . . , zT ) that is induced from %0 by appropriately defining

AT := {zT}, and recursively At−1 = {(zt−1, At)} for t = T − 1, . . . , 0.

Axiom 8 (Stream Stationarity). For any z, z1, . . . , zT , z
′
1, . . . , z

′
T ∈ Z

(z, z1, . . . , zT ) %0 (z, z′1, . . . , z
′
T ) iff (z1, . . . , zT , z) %0 (z′1, . . . , z

′
T , z).

In conjunction with the previous axioms, the next axiom ensures that the way the agent

chooses between menus of different cardinality does not depend on the time period.

Axiom 9 (Stationary Choice Aversion). For any t < T , outcome z ∈ Z and continuation

menus A1 ∈M1 and At+1 ∈Mt+1

P0[(z, A1)|{(z, A1), (z, 2 ∗ A1)}] = Pt[(z, At+1)|{(z, At+1), (z, 2 ∗ At+1)}]

Finally, Impatience says that the agent prefers receiving better outcomes earlier on and so

ensures that the discount factor is less than one.

Axiom 10 (Impatience). For any z, z′, z0, . . . , zT ∈ Z if (z, . . . , z) �0 (z′, . . . , z′), then

(z0, . . . , zt−1, z, z
′, zt+2, . . . , zT ) %0 (z0, . . . , zt−1, z

′, z, zt+2, . . . , zT ).

6.4 Representation Theorem

Theorem 1. Suppose that P satisfies Richness. Then P satisfies Positivity, Stage IIA, Ordinal

Time Separability, Recursivity, Replica Invariance, Probability Equivalence, Stream Stationar-

ity, Stationary Choice Aversion, and Impatience if and only if it has a DAR.

As the following corollary shows, by strengthening Recursivity to Aggregate Recursivity (and

dropping Stationary Choice Aversion and Replica Invariance) we obtain an axiomatization of

the standard Discounted Logit functional form.

Corollary 1. Suppose that P satisfies Richness. Then P satisfies Positivity, Stage IIA, Ordi-

nal Time Separability, Aggregate Recursivity, Probability Equivalence, Stream Stationarity, and

Impatience if and only if it has a Discounted Logit representation.
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Corollary 2. Suppose that P satisfies Richness. Then P satisfies Positivity, Stage IIA, Ordi-

nal Time Separability, Average Recursivity, Probability Equivalence, Stream Stationarity, and

Impatience if and only if it has a Discounted Entropy representation with κ = 1.

The proof of Theorem 1 follows three main steps.

Step 1: Lemma 4 shows that Axioms 1–3 are equivalent to a “sequential Luce representation:”

there are weights Wt for actions at such that

Pt[at | At] =
Wt(at)∑
bt∈AtWt(bt)

.

Here our maintained assumption that Pt is history independent and Axioms 1 and 2 let us

use Luce’s original argument to conclude there are weights that describe period-t choice,

and Axiom 3 then lets us mimic the proof of Koopmans’ Proposition 3 and conclude that

Wt(zt, At+1) = Gt(vt(z), ht(At+1)), where Gt is a strictly increasing function of the utility vt(zt)

and “anticipated utility” ht(At+1).

Step 2: Lemma 5 shows that adding Recursivity implies that the function ht is of the form

ht(At+1) = f
|At+1|
t

 ∑
at+1∈At+1

Wt+1(at+1)


where fnt is a family of increasing functions that depend on the cardinality n of the menu.

Step 3: The final step is to show that Richness, Replica Invariance, and Probability Equiv-

alence imply that P has a DAR with time-dependent parameters (vt, δt, κt). Finally, Stream

Stationarity, Stationary Choice Aversion, and Impatience imply that the parameters are time-

invariant.

7 Discussion

7.1 Relation to the Literature

The paper is related to quite a large number of others, as it draws on and extends the lit-

erature on static stochastic choice pioneered by Luce (1959), Marschak (1959), and Harsanyi

(1973a), the literature on discounting representations of deterministic dynamic choice (notably

Koopmans, 1960), and the literature on choices over menus pioneered by Kreps (1979).

We have maintained the widely used but widely criticized IIA assumption. While empirical

analyses of dynamic choice continue to use IIA, empirical work on static choice uses alterna-

tives such as nested logit and BLP (Berry, Levinsohn, and Pakes, 1995) that avoid some of
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IIA’s starkest implications. Similarly, the theoretical work of Falmagne (1978), Barberá and

Pattanaik (1986), Gul and Pesendorfer (2006) and Gul, Natenzon, and Pesendorfer (2012) pro-

vides axiomatic characterizations of static random utility models without the IIA assumption.

Gul, Natenzon, and Pesendorfer (2012) is of particular note here, as they characterize an analog

of nested logit that allows for items to be perfect, as opposed to almost-perfect, substitutes,

which eliminates any “option value” that arises from adding exact substitutes to a menu. More-

over, in a recent addition to their paper, they extend their characterization to dynamic choice

problems in which consumption occurs in a single time period and the agent is completely pa-

tient and so insensitive to the timing of payoffs and decisions. Fudenberg, Iijima, and Strzalecki

(2013) provide axiomatic characterizations of stochastic choice by an ambiguity-averse agent

as a form of non-linear perturbed utility without assuming IIA, thus generalizing the entropy

functional form to other perturbations; they also provide a characterization of nested logit.

This work suggests that our dynamic representations could also be generalized beyond IIA,

though obtaining a model of recursive choice problems that is both general and tractable seems

challenging.

In recent years there have been several generalizations of Koopmans (1960)’s characteriza-

tion to forms of “behavioral” dynamic choice, as in Jackson and Yariv (2010) and Montiel Olea

and Strzalecki (2014); introducing stochastic choice into those setups could be a useful tool for

analyzing experimental results.

The most active related literature is that on choice between menus. Some of these papers

develop representations motivated by “consideration costs” or “costs of thinking;” to the extent

that this cost is increasing in the menu size it is related to our representations. Ergin and Sarver

(2010), following Ergin (2003), develop a representation with a double maximization, in which

“costly contemplation” corresponds to buying a signal about the second-period attractiveness of

the various options. Though their primitives do not include lotteries over menus, they motivate

their work with the idea that the agent prefers that such lotteries are resolved before she chooses

an alternative so that she can avoid formulating a complete contingent plan. This motivation

seems related to our comparative statics (Proposition 5) about choice aversion and preference

for late decisions. Ortoleva (2011) explicitly considers lotteries and develops a model of “cost

of thinking” where the agent ranks lotteries over menus as if she expected to choose the best

option from each of them.

Other recent papers on choice from menus are of interest here primarily for how they impose

recursivity or dynamic consistency. Ahn and Sarver (2013) is perhaps closest, as like this paper

it treats both initial choice of a menu and subsequent choice from it as observable. They use

recursivity axioms to pin down a unique state space and probabilities in the two-stage menu

choice model; their Axiom 1 is similar in spirit to our Aggregate Recursivity condition, but as
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stated it is vacuously satisfied given our positivity assumption.16 Krishna and Sadowski (2014)

provide two representations for a decision maker who is uncertain about his future utility in an

infinite-horizon decision problem. Their stationarity axiom corresponds to our Axioms 3 and

8, but Recursivity is inconsistent with the indifference required by their “continuation strategic

rationality” axiom though they do assume the agent prefers larger menus.

The paper is also related to the use of non-linear perturbed utility in the theory of non-

equilibrium learning in static games, as in Fudenberg and Levine (1995), Hart and Mas-Colell

(2001), Hofbauer and Hopkins (2005), Hofbauer and Sandholm (2002), and Fudenberg and

Takahashi (2011). Fudenberg and Levine (1995) show that this generates a choice rule that

is Hannan consistent, meaning that the decision maker gets at least the payoff that would be

obtained from maximizing against the long-run average of play by Nature and any other players

(Hannan, 1957). One motivation for this paper is to extend that work to allow for dynamic

considerations, such as would arise in learning to play an extensive-form game.

7.2 Conclusion

This paper provides an axiomatic characterization of three equivalent generalizations of dis-

counted logit, namely discounted adjusted logit, discounted adjusted entropy, and discounted

adjusted Luce. These representations include a choice-aversion parameter that captures the link

between choices in different periods by adjusting the implied “option value” of larger menus.

We point out that discounted logit is the special case of κ = 0, where the agent always prefers

adding any item to any menu. In this case the agent also has a preference for early decision,

which highlights the fact that a preference for larger menus can arise for many reasons, of

which Kreps (1979)’s preference for flexibility as usually understood is only one; this indicates

the benefit of considering a richer decision domain than that in Kreps (1979). The more gen-

eral discounted adjusted logit penalizes larger menus and so reduces the value of making early

decisions: As κ increases, the agent is less attracted to larger menus and more inclined to delay

decisions, and when κ ≥ 1 the agent always prefers to put decisions off.

The axiomatic characterization of our model provides a foundation for the inclusion of a

choice-aversion parameter in empirical work. This representation is just as tractable as the

usual discounted logit and may better describe behavior in at least some choice problems where

the menu size varies.

16Ahn and Sarver assume a preference for larger choice sets and so rule out temptation. Dekel and Lipman
(2012) impose consistency between the first period choice of a menu and second period choice from a menu at
the level of the representation, and use choices in the two periods to distinguish between “random GP” and
“random Strotz” representations in cases where temptation is present. They also show that the random Strotz
model can accommodate the non-linear cost of self control introduced by Fudenberg and Levine (2006) and
further analyzed by Fudenberg and Levine (2011, 2012) and Noor and Takeoka (2010a,b).
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Appendix

A.1 Proof of Proposition 1

To prove the proposition we use the well-known following lemmas. The first lemma can be

found in Anderson, De Palma, and Thisse (1992, Section 3.6).

Lemma 1. For any vector (x1, . . . , xn) ∈ Rn

max
p∈∆n

n∑
i=1

pixi +H(p) = log
( n∑
i=1

exp(xi)
)

and the solution is pi =
exp(xi)∑n
j=1 exp(xj)

The following lemma is an easy conclusion from Lemma 1

Lemma 2. For any vector (x1, . . . , xn) ∈ Rn

max
p∈∆n

∑n

i=1
pixi + Jnκ (p) = log

( n∑
i=1

exp(xi)
)
− κ log n and the solution is pi =

exp(xi)∑n
j=1 exp(xj)

.

The next lemma can be found in Train (2009, Chapter 3).

Lemma 3. Suppose that ε1, . . . , εn are i.i.d. random variables with the extreme value distribu-

tion with noise level parameter 1. For any vector (x1, . . . , xn) ∈ Rn

E
[

max
i=1,...,n

xi + εi

]
= log

( n∑
i=1

exp(xi)
)

and Prob
[
xi + εi ≥ max

j=1,...,n
xj + εj

]
=

exp(xi)∑n
j=1 exp(xj)

.

DAL equivalent to DALu

By Lemma 3, it follows that {Pt} has a DAL representation iff

Ut(zt, At+1) = v(zt) + δ log

( ∑
at+1∈At+1

exp(Ut+1(at+1))

)
− δκ log |At+1|

and

Pt[at | At] =
exp(Ut(at))∑
bt∈At exp(Ut(bt))

.

By letting Wt = exp(Ut), this is equivalent to a DALu representation.
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DAE equivalent to DALu

By Lemma 2, it follows that {Pt} has a DAE representation iff

Ut(zt, At+1) = v(zt) + δ log

( ∑
at+1∈At+1

exp(Ut+1(at+1))

)
− δκ log |At+1|

and

Pt[at | At] =
exp(Ut(at))∑
bt∈At exp(Ut(bt))

.

By letting Wt = exp(Ut), this is equivalent to a DALu representation.

Uniqueness

Suppose that (v, δ, κ) and (v′, δ′, κ′) are both DALu representations of {Pt}. The induced period

zero choice between consumption streams z̃ = (z0, . . . zT ) (for the definition of consumption

streams, see axiom Stationarity over Streams) has static Luce representations (Luce, 1959) z̃ 7→
exp

(∑T
t=0 δ

tv(zt)
)

and by z̃ 7→ exp
(∑T

t=0 δ
′tv′(zt)

)
. By uniqueness of Luce representations,

there exists α > 0 such that exp
(∑T

t=0 δ
tv(zt)

)
= α exp

(∑T
t=0 δ

′tv′(zt)
)

for all (z0, . . . , zT ) ∈
ZT+1. By fixing (z̄1, . . . , z̄T ) ∈ ZT this implies that there exists a constant β such that v(z0) =

v′(z0) + β for all z0 ∈ Z. By fixing (z̄0, z̄2, . . . , z̄T ) ∈ ZT this implies that δ′ = δ.

Finally, consider AT−1 = {(z, {x}), (z, {y1, y2})} for some arbitrary x, y1, y2, z ∈ Z. We have

PT−1[(z, {x})|AT−1]

PT−1[(z, {y1, y2})|AT−1]
=

exp(δv(x))

exp(δ log(ev(y1) + ev(y2))− δκ log 2)

=
exp(δv(x) + δβ)

exp(δ log(ev(y1)+β + ev(y2)+β)− δκ′ log 2)

=
exp(δv(x) + δβ)

exp(δ log(ev(y1) + ev(y2)) + δβ − δκ′ log 2)

=
exp(δv(x))

exp(δ log(ev(y1) + ev(y2))− δκ′ log 2)

so κ′ = κ.

A.2 Recursive Representations

In this section we study recursive representations a la Koopmans (1960) and Kreps and Porteus

(1978). The representations we present here have fewer time-separability properties than a

discounted sum and do not insist on stationarity, and therefore correspond to a shorter list of

axioms. We use these representations as intermediate steps towards the main theorem.
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Definition 10 (Sequential Luce). {Pt} has a Sequential Luce Representation if there exists

functions vt : Z → R, ht : Mt+1 → R with ranges Rvt and Rht respectively, and Gt :

Rvt × Rht → R++, strictly increasing in both variables, and value functions Wt : At → R++

recursively defined by

Wt(zt, At+1) = Gt (vt(zt), ht(At+1)) , (7)

such that for all At and all at ∈ At

Pt[at | At] =
Wt(at)∑
bt∈AtWt(bt)

. (8)

Definition 11 (Recursive Adjusted Luce). {Pt} has a Recursive Adjusted Luce represen-

tation if it has a sequential Luce representation with

ht(At+1) = f
|At+1|
t

 ∑
at+1∈At+1

Wt+1(at+1)


for some family of increasing functions fnt .

Lemma 4. P satisfies Positivity, Stage IIA, and Ordinal Time Separability iff it has a sequential

Luce representation. If in addition it satisfies Richness, then {Wt(zt, At+1) | zt ∈ Z} = (0,∞)

for any At+1 ∈Mt+1.

Lemma 5. P satisfies Positivity, Stage IIA, Ordinal Time Separability, and Recursivity iff it

has a recursive adjusted Luce representation.

A.3 Proof of Lemma 4

A.3.1 Sufficiency

Step 1: Fix z̄ ∈ Z and define WT (z̄) := 1. For any other z ∈ Z define

WT (z) :=
PT [z | {z, z̄}]
PT [z̄ | {z, z̄}]

For any AT = {z1, . . . , zn} ∈ MT , Positivity and Stage IIA imply that for all i, j = 1 . . . , n

PT [zi | AT ]

PT [zj | AT ]
=
PT [zi | {zi, zj, z̄}]
PT [zj | {zi, zj, z̄}]

=
WT (zi)

WT (zj)
, (9)

so equation (8) holds. For t ≤ T we proceed analogously to define Wt(z, At+1) that satisfies

equation (8).
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Step 2: Part (1) of Ordinal Time Separability and Step 1 imply that for all z, z′ ∈ Z and

At+1, A
′
t+1 ∈Mt+1

Wt(z, At+1) ≥ Wt(z, A
′
t+1)⇐⇒ Wt(z

′, At+1) ≥ Wt(z
′, A′t+1). (10)

Fix z̄ ∈ Z and define ht(At+1) := Wt(z̄, At+1) for all At+1 ∈ Mt+1. Property (10) implies that

for any z ∈ Z there is a strictly increasing function f zt : Rht → R such that Wt(z, At+1) =

f zt (ht(At+1)) for all At+1 ∈Mt+1. Define a real valued function Ft : Z×Rht → R by Ft(z, h) =

f zt (h) for any z ∈ Z and h ∈ Rht. Note that the function Ft is strictly increasing in the second

variable. With this notation we have Wt(z, At+1) = Ft(z, ht(At+1)).

Step 3: Part (2) of Ordinal Time Separability and Steps 1–2 imply that for all z, z′ ∈ Z and

At+1, A
′
t+1 ∈Mt+1

Ft(z, ht(At+1)) ≥ Ft(z
′, ht(At+1))⇐⇒ Ft(z, ht(A

′
t+1)) ≥ Ft(z

′, ht(A
′
t+1)). (11)

Fix h̄ ∈ Rht and define vt(z) := Ft(z, h̄). Property (11) implies that for any h ∈ Rht there

exists a strictly increasing function mh
t : Rvt → R such that Ft(z, h) = mh

t (vt(z)). Define a real

valued function Gt : Rvt × Rht → R by Gt(v, h) = mh
t (v) for any v ∈ Rvt and h ∈ Rht. Note

that the function Gt is strictly increasing in both variables. This implies equation (7).17

A.3.2 Necessity

Positivity is immediate since the function W takes strictly positive values, and Stage IIA follows

immediately from formula (8). To prove that the first part of Ordinal Time Separability holds

we need to show that

Pt
[
(z, At+1) | {(z, At+1), (z, A′t+1)}

]
≥ Pt

[
(z, A′t+1) | {(z, At+1), (z, A′t+1)}

]
iff

Pt
[
(z′, At+1) | {(z′, At+1), (z′, A′t+1)}

]
≥ Pt

[
(z′, A′t+1) | {(z′, At+1), (z′, A′t+1)}

]
.

By formula (8) this is equivalent to Wt(z, At+1) ≥ Wt(z, A
′
t+1) iff Wt(z

′, At+1) ≥ Wt(z
′, A′t+1).

Since by formula (7) Wt(zt, At+1) = Gt(vt(zt), ht(At+1)), where Gt is increasing in its second

argument, we know that Wt(z, At+1) ≥ Wt(z, A
′
t+1) iff ht(At+1) ≥ ht(A

′
t+1) iff Wt(z

′, At+1) ≥
Wt(z

′, A′t+1). To prove that the second part of Ordinal Time Separability holds we need to show

17Note that our Steps 2 and 3 essentially mimic Koopmans (1960) proof, which leads him to formula (7).
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that

Pt [(z, At+1) | {(z, At+1), (z′, At+1)}] ≥ Pt [(z′, At+1) | {(z, At+1), (z′, At+1)}]

iff

Pt
[
(z, A′t+1) | {(z, A′t+1), (z′, A′t+1)}

]
≥ Pt

[
(z′, A′t+1) | {(z, A′t+1), (z′, A′t+1)}

]
.

By formula (8) this is equivalent to Wt(z, At+1) ≥ Wt(z
′, At+1) iff Wt(z, A

′
t+1) ≥ Wt(z

′, A′t+1).

Since by formula (7) Wt(zt, At+1) = Gt(vt(zt), ht(At+1)), where Gt is increasing in its first argu-

ment, we know that Wt(z, At+1) ≥ Wt(z
′, At+1) iff vt(z) ≥ vt(z

′) iff Wt(z, A
′
t+1) ≥ Wt(z

′, A′t+1).

A.3.3 Surjectivity

Fix an arbitrary element (zt, At+1) ∈ At and let r := Wt(zt, At+1). For any r̂ ∈ (0,∞) let

λ := r̂
r
. Richness implies that there exists (ẑt, At+1) ∈ At such that

Pt[(ẑt, At+1) | {(zt, At+1), (ẑt, At+1)}]
Pt[(zt, At+1) | {(zt, At+1), (ẑt, At+1)}]

= λ.

By Lemma 4,
r̂

r
=
Wt(ẑt, At+1)

Wt(zt, At+1)
=
Wt(ẑt, At+1)

r

so Wt(ẑt, At+1) = r̂. Since r̂ was chosen arbitrarily, the conclusion follows.

A.4 Proof of Lemma 5

The necessity of Recursivity is immediate. For sufficiency, note that by Lemma 4, {Pt} has a

sequential Luce representation. Fix a period t and an integer n. Let Mn
t+1 be the subset of all

menus fromMt+1 with cardinality n. Recursivity together with the sequential Luce representa-

tion imply that %t restricted toMn
t+1 is represented by At+1 7→

∑
at+1∈At+1

Wt+1(at+1). From the

definitions of %t and the sequential Luce representation, it follows that %t restricted toMn
t+1 is

also represented by the function ht restricted to Mn
t+1. Thus, there exists a strictly increasing

function fnt such that for all At+1 ∈ Mn
t+1 we have ht(At+1) = fnt

(∑
at+1∈At+1

Wt+1(at+1)
)

.

Thus, for all At+1 ∈Mt+1

ht(At+1) = f
|At+1|
t

 ∑
at+1∈At+1

Wt+1(at+1)

 .
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A.5 Proof of Theorem 1

The necessity of the axioms is straightforward. To prove sufficiency, we will use following

lemma. The solution to this functional equation is a classic result on R+, but we only have it

defined on N, so we give the proof.

Lemma 6. A monotone function f : N → R satisfies f(ln)
f(lm)

= f(n)
f(m)

for all l,m, n ∈ N if and

only if there exist β > 0 and γ ∈ R such that f(n) = βnγ.

Proof of Lemma 6: Assume w.l.o.g. that f is increasing. Set m = 1 to get f(ln) =

f(l)f(n)/f(1). Define g(t) = f(t)/f(1) for all t ∈ N. Then g(ln) = f(ln)/f(1) = f(l)f(n)/(f(1))2 =

g(l)g(n), and g(nk) = (g(n))k for all n, k ∈ N. Fix n ∈ N; for all rational r = m
k
< logn

log 2
, we have

(g(2))m < (g(n))k, so g(n) > (g(2))r. Take the supremum of such r to obtain g(n) ≥ (g(2))
logn
log 2 .

Likewise, considering r larger than logn
log 2

and taking infimum we obtain g(n) = (g(2))
logn
log 2 = nγ

for some γ ∈ R. By setting β := f(1) we get the desired conclusion.

Step 1: Let At+1, Bt+1 ∈Mt+1, x, y ∈ Z, and n be an integer. Let r :=
∑

at+1∈At+1
Wt+1(at+1)

and r′ :=
∑

bt+1∈Bt+1
Wt+1(bt+1). Let k := |At+1| and l := |Bt+1|. Let v := vt(x) and v′ := vt(y).

Lemma 5 and replica invariance imply that P has a recursive adjusted Luce representation

where the functions {Gt} and fnt satisfy

Gt

(
v, fk(r)

)
Gt (v, f l(r′))

=
Gt

(
v′, fnk(nr)

)
Gt (v′, fnl(nr′))

.

Define gnt (v, r) := Gt(v, f
n(nr)). The equation above implies

gkt (v, r)

glt(v, r
′)

=
gnkt (v′, r)

gnlt (v′, r′)
. (12)

Equation (12) holds for all integers n, k, l, all v, v′ ∈ Rvt (where Rvt is the range of the function

vt) and all r, r′ ∈ (0,∞) (as Lemma 4 shows, Richness implies that the range of Wt+1 is (0,∞)).

Step 2: Fix v = v′ and r′ = r, and define ḡt(n) := gnt (v, r). Equation (12) implies that

ḡt(nk)

ḡt(nl)
=
ḡt(k)

ḡt(l)
.

By Lemma 6, there exist βt > 0 and γt ∈ R such that ḡt(n) = βtn
γt . Thus, there exist functions

βt : Rvt × (0,∞)→ (0,∞) and γt : Rvt × (0,∞)→ R such that

gnt (v, r) = βt(v, r)n
γt(v,r). (13)
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Step 3: Fix v = v′. Equations (12) and (13) imply that for all r, r′ ∈ (0,∞)

βt(v, r)k
γt(v,r)

βt(v, r′)lγt(v,r
′)

=
βt(v, r)(nk)γt(v,r)

βt(v, r′)(nl)γt(v,r
′)
,

which implies that γt(v, r) = γt(v, r
′) for all r, r′. Let γt(v) denote this common value. Thus,

gnt (v, r) = βt(v, r)n
γt(v) (14)

Step 4: Fix r, r′, λ ∈ (0,∞) and let at+1, bt+1, ct+1, dt+1 ∈ Mt+1 be such that Wt+1(at+1) = r,

Wt+1(bt+1) = λr, Wt+1(ct+1) = r′, and Wt+1(dt+1) = λr′, so that Pt+1[at+1|{at+1, bt+1}] =

Pt+1[ct+1|{ct+1, dt+1}]. Probability Equivalence implies that for any x, y ∈ Z,

Pt[(x, {at+1})|{(x, {at+1}), (x, {bt+1})}] = Pt[(y, {ct+1})|{(y, {ct+1}), (y, {dt+1})}].

Thus, for all v, v′ ∈ Rvt and all r, r′, λ ∈ (0,∞) we have

g1
t (v, λr)

g1
t (v, r)

=
g1
t (v
′, λr′)

g1
t (v
′, r′)

.

This and equation (14) imply that

βt(v, λr)

βt(v, r)
=
βt(v

′, λr′)

βt(v′, r′)
. (15)

Let v = v′ and r′ = 1, and define bt,v(r) := βt(v, r)/βt(v, 1). The equation above implies the

Cauchy functional equation bt,v(λr) = bt,v(λ)bt,v(r). Since the function g1
t (v, ·) is increasing,

the function βt(v, ·) is increasing, so the function bt,v(·) is increasing and hence continuous at

some point. By Theorem 3, Section 2.1 of Aczél (1966), the only nonzero solutions of this

equation are of the form bt,v(r) = rδt(v) for some δt(v) > 0. Thus, equation (15) implies that

λδt(v) = λδt(v
′) and since λ is arbitrary, we have δt(v) = δt(v

′) for all v, v′ ∈ (0,∞). Let δt > 0

denote their common value. Thus, bt,v(r) = rδt ; this implies that βt(v, r) = βt(v, 1)rδt . Define

B(v) := βt(v, 1). We have proven that

gnt (v, r) = Bt(v)rδtnγt(v). (16)

Step 5: Equations (12) and (16) with k = 2, l = 1 imply that 2γt(v) = 2γt(v
′), which implies

that γt(v) = γt(v
′) for all v, v′ ∈ (0,∞). Let γt denote the common value. We have proven that

gnt (v, r) = Bt(v)rδtnγt . (17)
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Step 6: By definition in Step 1, equation (17) implies that Gt(v, f
n(r)) = gnt (v, r/n) =

Bt(v)rδtnγt−1. Define v̂t(z) := logBt(vt(z)) and κt := −(γt − 1)/δt. We have

logWt(zt, At+1) = v̂t(zt) + δt log
( ∑
at+1∈At+1

Wt+1(at+1)
)
− δtκt log |At+1| (18)

Step 7: We claim next that the functions v̂t are surjective. To see this, fix At+1 ∈Mt+1 and let

d := δt
∑

at+1∈At+1
Wt+1(at+1)− δtκt log |At+1|. Lemma 4 and (18) imply that for any r ∈ (0,∞)

there exists z ∈ Z such that r = Wt(z, At+1) = exp (v̂t(zt) + d). Thus, for any r′ ∈ R there

exists z ∈ Z such that v̂t(z) = r′ by letting r = exp(r′ + d).

Step 8: Given (18), the preference over consumption streams is represented by

z̃ 7→
T∑
t=0

( t−1∏
s=0

δs

)
v̂t(zt).

Let v := v̂0 and δ := δ0. From the proof of Theorem 7.5 of Fishburn (1970)18 it follows that if

Stream Stationarity is satisfied, then v̂t ≡ v for all t and δt = δ for all t.

Step 9: Given (18), and the stationarity of v and δ, the induced preference on consumption

streams is represented by z̃ 7→
∑T

t=0 δ
tv(zt), with (z, . . . , z) �0 (z′, . . . , z′) if and only if v(z) >

v(z′) and (z0, . . . , zt−1, z, z
′, zt+2, . . . , zT ) %0 (z0, . . . , zt−1, z

′, z, zt+2, . . . , zT ) if and only if v(z) +

δv(z′) > v(z′)+δv(z). Thus, by Impatience, (v(z)−v(z′))(1−δ) > 0, which implies that δ < 1.

Step 10: Let A1 ∈M1 and At+1 ∈Mt+1 for some t < T . Let d1 :=
∑

a1∈A1
W1(a1), n1 := |A1|,

dt+1 :=
∑

at+1∈At+1
Wt+1(at+1), and nt+1 := |At+1|. Stationary Choice Aversion implies that

dδ1n
−δκ0
1

dδ1n
−δκ0
1 + (2d1)δ(2n1)−δκ0

=
dδt+1n

−δκt
t+1

dδt+1n
−δκt
t+1 + (2dt+1)δ(2nt+1)−δκt

,

which implies that κ0 = κt.

18Our induced preference on consumption streams may not satisfy the continuity property that Fishburn
requires. However, the cardinal uniqueness of additive representations invoked in his proof holds due to the
surjectivity of the v̂t functions.
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A.6 Proofs of Other Results

A.6.1 Proof of Proposition 2

To see why this is true, suppose thatAt+1 %∗t (�∗t )Bt+1. LetmA := maxq∈∆(A)

∑
q(at+1)Ut+1(at+1)+

H |A|(q) and mB = maxq∈∆(B)

∑
q(at+1)Ut+1(at+1) +H

|B|
κ∗ (q). Then

mA − κ∗ log |A| ≥ (>)mB − κ∗ log |B|

iff

κ∗(log |B| − log |A|) ≥ (>)mB −mA.

The above inequality holds if we replace κ∗ with κ as long as κ ≥ κ∗.

To prove the converse, suppose that κ < κ∗. By Richness, there exist At+1 = {at+1} and

Bt+1 = {bt+1, b
′
t+1} such that mA = mB − κ∗ log 2, so that At+1 %∗ Bt+1. If P were more

choice averse than P ∗ we would have At+1 % Bt+1. But mA < mB − κ log 2, so At+1 ≺ Bt+1, a

contradiction.

A.6.2 Proof of Proposition 3

Let n = |At+1| and note that At+1 ∪ {bt+1} �t At+1 whenever

log

(
eU(bt+1) +

∑
at+1∈At+1

eU(at+1)

)
− κ log(n+ 1) > log

( ∑
at+1∈At+1

eU(at+1)

)
− κ log n

iff
1

(n+ 1)κ

[
eU(bt+1) +

∑
at+1∈At+1

eU(at+1)

]
>

1

nκ

∑
at+1∈At+1

eU(at+1)

iff ∑
at+1∈At+1

eU(at+1)

eU(bt+1) +
∑

at+1∈At+1
eU(at+1)

<
nκ

(n+ 1)κ

iff

Pt+1[bt+1|At+1 ∪ {bt+1}] > 1− nκ

(n+ 1)κ

A.6.3 Proof of Proposition 4

For the proof we will use the DALu representation, noting that At+1 %t Bt+1 iff

|Bt+1|κ
∑

at+1∈At+1

Wt+1(at+1) ≥ |At+1|κ
∑

bt+1∈Bt+1

Wt+1(bt+1) (*)
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and that all of the weights Wt+1 are positive.

part 1: Suppose that κ ≥ 1 and At+1 and Bt+1 are disjoint. Then |At+1 ∪ Bt+1|κ ≥ |At+1|κ +

|Bt+1|κ since the function x 7→ xκ is superadditive (see proof of Proposition 5). Suppose that

At+1 %t Bt+1 and add |At+1|κ
∑

at+1∈At+1
Wt+1(at+1) to each side of (*) to obtain (|At+1|κ +

|Bt+1|κ)
∑

at+1∈At+1
Wt+1(at+1) ≥ |At+1|κ

∑
at+1∈At+1∪Bt+1

Wt+1(at+1). Thus At+1 %t Bt+1 im-

plies At+1 %t At+1 ∪ Bt+1. Conversely, suppose κ < 1. By Richness there is a pair of actions

at+1, bt+1 with 2κ−1
2κ

< Pt+1[bt+1|{at+1, bt+1}] < 1
2
, so that {at+1} %t {bt+1}. Then by Proposition

3 {at+1, bt+1} �t {at+1}, which contradicts positive set betweenness.

part 2: Suppose that κ ≤ 1 and At+1 and Bt+1 are disjoint. We have |At+1∪Bt+1|κ ≤ |At+1|κ+

|Bt+1|κ since the function x 7→ xκ is subadditive (see proof of Proposition 5). At+1 %t Bt+1 and

add |Bt+1|κ
∑

bt+1∈Bt+1
Wt+1(bt+1) to each side of (*) to obtain |Bt+1|κ

∑
at+1∈At+1∪Bt+1

Wt+1(at+1) ≥
(|At+1|κ+|Bt+1|κ)

∑
bt+1∈Bt+1

Wt+1(bt+1). Thus, At+1 %t Bt+1 implies At+1∪Bt+1 %t Bt+1. Con-

versely, suppose κ > 1. By Richness there exist actions at+1, bt+1 with 1
2
< Pt+1[at+1|{at+1, bt+1}] <

2κ−1
2κ

so that {at+1} %t {bt+1} and by Proposition 3 {bt+1} �t {at+1,bt+1}, which contradicts

negative set betweenness.

part 3: Follows from parts 1 and 2.

parts 4 and 5: Suppose that κ ≤ 0. If At+1 ⊇ Bt+1, then |At+1|−κ ≥ |Bt+1|−κ; therefore,

|At+1|−κ
∑

at+1∈At+1
Wt+1(at+1) ≥ |Bt+1|−κ

∑
at+1∈Bt+1

Wt+1(at+1), so At+1 %t Bt+1. Conversely,

suppose that κ > 0 and fix an arbitrary At+1. Since Richness implies that the range of the

function Wt+1 is (0,+∞), it follows that there exits bt+1 with Pt+1[bt+1|At+1 ∪ {bt+1}] < 2κ−1
2κ

,

and from Proposition 3 it follows that At+1 �t At+1 ∪ {bt+1}.

A.6.4 Proof of Proposition 5

To see this formally, let F (T ) :=
∑T−1

t=1 δ
t−1v(zt) be the value of intermediate consumption

and note that the value of choosing early is v(z0) + δ log
(∑

z̃T∈A exp
(
F (T ) + δT−1v(z̃T )

))
−

κ log |A| whereas the value of choosing late is v(z0) + δ
(
F (T ) + δT−1 log

(∑
z̃T∈A exp v(z̃T )

)
−

δT−1κ log |A|
)
. Thus,

r =
P0[a0|{a0, b0}]
P0[b0|{a0, b0}]

=
exp

(
v(z0) + δ log

(∑
z̃T∈A exp

(
F (T ) + δT−1v(z̃T )

))
− δκ log |A|

)
exp

(
v(z0) + δ

(
F (T ) + δT−1 log

(∑
z̃T∈A exp v(z̃T )

)
− δT−1κ log |A|

))
=

[∑
z̃T∈A exp (v(z̃T ))δ

T−1(∑
z̃T∈A exp v(z̃T )

)δT−1 e
(δT−1−1)κ log |A|

]δ
.

To show part (1), note that e(δT−1−1) log |A| < 1. Thus, a decrease in κ increases r.

To show part (2), note that when κ = 0 , r > 1 follows from the facts that |A| ≥ 2, that
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with δ < 1 the function z 7→ zδ
T−1

is strictly concave, and that strictly concave functions that

pass through zero are strictly subadditive.19 The result for κ < 0 follows from part (1). When

κ = 1, r ≤ 1 by Jensen’s inequality since δ < 1 and the function z 7→ zδ
T−1

is strictly concave.

The equality holds if and only if all the elements of A are equivalents. For κ > 1, r < 1 by

part (1).
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