Completion of the Proof of Proposition 4 in "Interim Correlated Rationalizability," Theoretical Economics 2 (2007), 15–40.

Eddie Dekel Drew Fudenberg Stephen Morris
Northwestern University Harvard University Princeton University
and Tel Aviv University

Proposition 4 in "Interim Correlated Rationalizability" is correct as stated but the proof is incomplete. Here we provide a complete proof.¹

Proposition 4: $R_{\mathcal{F}}^{\mathcal{T}}$ equals $R^{\mathcal{T}}$.

Proof. It is sufficient to prove that R^T is a best-reply set. That nothing larger can be a best-reply set is immediate. For every $a_i \in R_i^T(t_i)$ we have that for every k there is a measurable $\sigma_{-i}^k: T_{-i} \times \Theta \to \Delta(A_{-i})$ s.t. (i) $\sigma_{-i}^k(t_{-i}, \theta) [a_{-i}] > 0 \Rightarrow a_j \in R_{k,t_j}^T(t_j)$ and (ii) $a_i \in \arg\max_{\theta \times A_{-i}} \sum_{T_{-i}} \int_{\theta} g_i(a_i', a_{-i}, \theta) \sigma_{-i}^k(t_{-i}, \theta) [a_{-i}] \pi(t_i) [(dt_{-i}, \theta)]$. We need to prove there exists $\sigma_{-i}: T_{-i} \times \Theta \to \Delta(A_{-i})$ s.t. (i') $\sigma_{-i}(t_{-i}, \theta) [a_{-i}] > 0 \Rightarrow a_j \in \cap_k R_{k,t_j}^T(t_j)$ and (ii) $a_i \in \arg\max_{\alpha_i'} \sum_{\theta \times A_{-i}} \int_{T_{-i}} g_i(a_i', a_{-i}, \theta) \sigma_{-i}(t_{-i}, \theta) [a_{-i}] \pi(t_i) [(dt_{-i}, \theta)]$.

The proof goes as follows. In step 1 we replace σ_{-i}^k by a $\hat{\sigma}_{-i}^k$ that takes only finitely many values, at most one for each $B_{-i} \subset A_{-i}$, and that continues to satisfy (i) and (ii). Then we take limits of $\hat{\sigma}_{-i}^k$ in a manner which will satisfy (i') and (ii).

Step 1. We mimic step IVb in the proof of Lemma 1. As in that step, for every $B_{-i} \subset A_{-i}$ let $\tau_{-i,k-1}^T(B_{-i}) = \{t_{-i} \in T_{-i} : B_{-i} = R_{-i,k-1}^T(t_{-i})\}$; as argued there $\tau_{-i}^T(B_{-i}) \subset T_{-i}$ is measurable. Construct $\hat{\sigma}_{-i}^k(t_{-i},\theta)[\cdot] \in \Delta(A_{-i})$ as follows. Map $\sigma_{-i}^k(t_{-i},\cdot)$ into $\hat{\sigma}_{-i}^k(t_{-i},\cdot)$ by taking all t_{-i} for whom B_{-i} is k-1 rationalizable, denoted $\tau_{-i,k-1}^T(B_{-i})$, taking the

¹We thank Saturo Takahsahi for pointing out to us that steps in the proof are missing, and Tzachi Gilboa for a helpful discussion.

conditional average of $\sigma_{-i}^k(t_{-i},\cdot)$ over those t_{-i} , and assigning that average conjecture to all t_{-i} who have that same k-1 rationalizable set, i.e., to $\tau_{-i,k-1}(B_{-i})$. Obviously these sets partition T_{-i} , so we can combine all those averages to get a strategy for all $t_{-i} \in T_{-i}$. (As before there is a slight issue for the case where the conditional isn't well defined because the conditioning event, $\tau_{-i,k-1}^T(B_{-i})$, has probability zero. In that case the strategy is really irrelevant, but as we require it to be measurable and to map into the k-1 rationalizable set, we add that restriction by having the strategy assign probability 1 to some k-1 rationalizable action for all $t_{-i} \in \tau_{-i,k-1}(B_{-i})$ whenever $\pi_i(t_i) \left[\tau_{-i,k-1}^T(B_{-i})\right] = 0$. To do this, for each B_{-i} fix some $\bar{a}_{-i}(B_{-i}) \in B_{-i}$.)

We now formalize this verbal description.

$$\hat{\sigma}_{-i}^{k}\left(t_{-i},\theta\right)\left[a_{-i}\right] = \begin{cases} \frac{\int_{\tau_{-i,k-1}^{T}(B_{-i})} \sigma_{-i}^{k}(t_{-i},\theta)\left[a_{-i}\right]\pi\left(t_{i}\right)\left[\left(\mathrm{d}t_{-i},\theta\right)\right]}{\pi\left(t_{i}\right)\left[\tau_{-i,k}^{T}(B_{-i})\right]} & \text{if } t_{-i} \in \tau_{-i,k-1}\left(B_{-i}\right) \text{ and } \pi\left(t_{i}\right)\left[\tau_{-i,k-1}^{T}\left(B_{-i}\right)\right] > 0\\ 1 & \text{if } t_{-i} \in \tau_{-i,k-1}\left(B_{-i}\right), \, \pi\left(t_{i}\right)\left[\tau_{-i,k-1}^{T}\left(B_{-i}\right)\right] = 0 \text{ and } a_{-i} = \bar{a}_{-i}\left(B_{-i}\right)\\ 0 & \text{if } t_{-i} \in \tau_{-i,k-1}\left(B_{-i}\right), \, \pi\left(t_{i}\right)\left[\tau_{-i}^{T}\left(B_{-i,k-1}\right)\right] = 0 \text{ and } a_{-i} \neq \bar{a}_{-i}\left(B_{-i}\right) \end{cases}$$

This is measurable because it is constant on each of the finitely many measurable cells of $\{\tau_{-i,k-1}(B_{-i})\}_{B_{-i}\subset A_{-i}}$. Moreover, $\hat{\sigma}_{-i}^{k}(t_{-i},\theta)[a_{-i}]>0 \Rightarrow a_{-i}\in R_{-i,k-1}^{\mathcal{T}}(t_{-i})$. This $\hat{\sigma}_{-i}^{k}$ can be used to define $\hat{\psi}_{i}\in\hat{\Psi}_{i}\left(t_{i}^{*},R_{-i,k}^{\mathcal{T}}\right)$ by $\hat{\psi}_{i}[\theta,a_{-i}]=\int_{T_{-i}}\hat{\sigma}_{-i}\left(t_{-i},\theta\right)[a_{-i}]\pi_{i}\left(t_{i}\right)[(\mathrm{d}t_{-i},\theta)],$ where we are just averaging out σ_{-i}^{k} , so as in the proof of part IVb of Lemma 1 $\hat{\psi}_{i}[\theta,a_{-i}]=\psi_{i}[\theta,a_{-i}]$. So, for each k we have $\hat{\sigma}_{-i}^{k}$ that takes finitely many values, at most one for each $B_{-i}\subset A_{-i}$, that satisfies (i) and (ii).

Step 2. Now take a subsequence of $\hat{\sigma}_{-i}^k$ such that along the subsequence $\hat{\sigma}_{-i}^k \to \sigma_{-i}$ and, for each B_{-i} , $\pi(t_i) \left[\tau_{-i,k-1}^T(B_{-i})\right]$ converge. Since the sequence determines only finitely many values such a convergent subsequence can be found.

That (i') is satisfied is now immediate. That σ_{-i} is measurable follows because $\{t_i : \sigma_{-i}(t_{-i}, \theta) = a_{-i}\} = \bigcup_{K=1}^{\infty} \bigcap_{k \geq K} \{t_i : \sigma_{-i}^k(t_{-i}, \theta) = a_{-i}\}$, and since the latter is measurable so is the former. So (ii) is well defined, and convergence of the integral follows from standard results (the bounded convergence theorem).