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Abstract

We examine the long-run implication of two models of learning with recency bias: recursive
weights and limited memory. We show that both models generate similar beliefs, and that both have
a weighted universal consistency property. Using the limited memory model we are able to produce
learning procedures that are both weighted universally consistent and converge with probability
one to strict Nash equilibrium, the �rst example of which we are aware of learning procedures that
have this convergence property and also have desirable properties for the individual agents who use
them.
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1. Introduction

There is substantial evidence from both the laboratory and the �eld that people display �re-

cency bias,� meaning that they react more heavily to recent observations and experiences than

they do to older ones. 3The magnitude of recency bias varies with the setting and the form of

feedback; in particular, some forms of summary statistics can make this bias very small. Recency

has been incorporated into both belief-based and reinforcement-based models of learning, by adding

a parameter that controls the speed of informational discounting (see, for example, Cheung and

Friedman (1997), Sutton and Barto (1998), Camerer and Ho (1999), Benaim, Hofbauer and

Hopkins (2009)), or by supposing that individuals retain only a �nite sample in their memory

(Young (1993)).

Here we investigate models of learning with recency. We consider both informational discounting

and �nite memory models, and show that the beliefs in the two models are roughly the same if

the �nite memory is large enough. Moreover in this case of little recency, both models satisfy a

weighted universal consistency property of achieving about as much utility as would be possible

as if the �informationally discounted� sample path were known in advance. This is a variation
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on a widely used non-Bayesian criterion for the success of a learning process based on the notion

of worst-case performance. The weighted universal consistency property generalizes the notion of

universal or Hannan consistency discussed, for example, in Fudenberg and Levine (1995). This

requires that regardless of the sample path in the long run the player does as well as if he knew

the time average of the sample ahead of time. For procedures that keep track only of averages (or

weighted averages) this is a sensible criterion for �success.� We also show that there are universally

consistent �nite-memory learning procedures that converge with probability one to strict Nash

equilibrium. This is the �rst result of this type of which we are aware: earlier results such as

Foster and Young (2006) and Hart and Mas-Colell (2013) give convergence results, but do not

show that the procedures have universal consistency properties. These results complement those of

Benaim, Hofbauer and Hopkins (2009), who related the long-run behavior of stochastic �ctitious

play with very little informational discounting to the smooth best response dynamic that describes

the asymptotic behavior of smooth �ctitious play without recency.

2. The Model

We consider a one person decision problem. Each period t = 1, 2, . . .the player chooses an

action a from a �nite set of actions A, then observes an outcome y ∈ Y , a �nite set. The utility

from action a when the outcome is y is denoted by u(a, y). The space of probability distributions

over a (�nite) set S is denoted by ∆(S). Mixed actions are denoted by α ∈ ∆(A), and mixed

outcomes by γ ∈ ∆(Y ). We will write u(α, γ) for the expected utility to mixed actions and mixed

outcomes. A strategy for the player can depend only on the information available to him when he

moves, namely the past values of his own play and the outcome. A history of play for the player

is denoted by ht = (a1, y1, . . . , at, yt), with h0 the null history and the space of all histories of play

denoted by H. A (behavior) strategy for the player is a map σ : H → ∆(A), while an outcome

function is a map ρ : H → ∆(Y ). Each strategy-outcome function pair induces a stochastic process

over action/outcome pairs, where given the history ht−1 the conditional probability of at, yt, is

σ(ht−1)[at]ρ(ht−1)[yt]. In other words, the player and nature must base their play only on the

history of actions and outcomes. In some interpretations, the outcomes may be chosen by other

players rather than by nature.

3. Notions of Recency

3.1. Belief Based Strategies

AMarkov belief based strategy consists of a prior belief φ0 ∈ ∆(Y ), a Markov kernel P (φ|φt−1, yt)
that speci�es how beliefs are updated, and a map α(φt−1) from beliefs at time t − 1 to a mixed

action at time t. One such map is the best-response map;4 we will also consider various smooth

approximations to the best-response map. For the moment we focus on modeling the evolution of

4Although this is not single-valued, we can make an arbitrary choice in case of indi�erence.

2



beliefs. In doing so, it will be convenient to de�ne f(y|yt) to be equal to 1 if y = yt and 0 otherwise,

and fτ (y|ht) = f(y|yτ ), the indicator function for whether the period-τ outcome was equal to y.

3.2. Recursive Weighting

We are given a weight 0 < µ < 1 an initial condition φ0 and the deterministic kernel φ(y|ht) =

µft(y|ht) + (1− µ)φ(y|ht−1) where φ(y|h0) ≡ φ0(y). We now show how this Markov belief process

is equivalent to several others.

3.3. Weighted Sampling

We de�ne the weighted sample with respect to weight λ > 1 by giving the tth observation

weight λt ; this is equivalent to always weighting the most recent (time t) observation by 1 and

discounting observations at times t− τ by ω = 1/λ < 1.

To make this stationary and incorporate the e�ect of the prior, we use weights stretching back

to −∞. Speci�cally, we de�ne

φ(y|ht) =

∑t
τ=1 λ

τfτ (y|ht) +
∑0

τ=−∞ λ
τφ0(y)∑t

τ=−∞ λ
τ

=
ft(y|ht) +

∑t−1
τ=−∞ ω

t−τφ(y|ht−1)∑t
τ=−∞ ω

t−τ
.

In the latter form, it is clear that the relationship is recursive, and if we de�ne

µ =
λt∑t

τ=−∞ λ
τ

= 1− ω.

we can write this in the recursive weighted form at φ(y|ht) = µft(y|ht)+(1−µ)φ(y|ht−1). Note
that λ→∞ corresponds to the case µ→1 where only the most recent observation matters, while

Bayesian updating for a �xed unknown distribution of osbervations corresponds to a non-stationary

model in which λ = 1andµt → 0.

3.4. Base Rate Neglect

In the case where the agent believes that ρ is generated by iid sampling, let πt ∈ ∆(∆(Y )) be

beliefs over ∆(y). Benjamin, Bodoh-Creed and Rabin (2013) propose a model of base rate neglect

with the updating rule

πt(φ) =
φ(yt)[πt−1(φ)]ν´
φ(yt)[πt−1(φ)]νdφ

.

Notice that if ν = 1 this is ordinary Bayesian updating. If the prior is Dirichlet, the poste-

rior mean is simply the maximum of this function with respect to φ. For ν 6= 1 the posterior

mean is di�cult to compute, so we continue to measure central tendency by taking the maxi-

mum of the function, that is, the posterior mode rather than mean. To consider the maximum

of this function with respect to φ, we can ignore the denominator and maximize the logarithm

log φ(yt) + ν log[πt−1(φ)] =
∑t

τ=1 ν
t−τ log φ(yτ ) + νt log π0(φ). If we assume that the prior is such

that log π0(φ) =
∑0

τ=−∞ ν
−τ log φ(yτ ) for some weighted �ctitious prior sample yτ |0τ=−∞ then we
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may write the log-likelihood with prior as log φ(yt) + ν log[πt−1(φ)] =
∑t

τ=−∞ ν
t−τ log φ(yτ ) and

the maximum likelihood is simply given by the weighted sample averages

φ̂(y|ht) =

∑t
τ=−∞ ν

−τfτ (y|ht)∑t
τ=−∞ ν

−τ

so that if we take λ = ν−1 and de�ne φ0(y) = φ̂(y|h0)this is exactly the same point belief as

generated by recency generated by weighted sampling.

3.5. Limited Memory

So far we have supposed in e�ect that there is unlimited memory for past observations, or at

least that any value of φ can be recorded in the memory. We now instead suppose that the memory

has size M where M refers to the number of observations that can be stored5 Our goals are to

show that when M is large that the agent receives about the same utility as he would with in�nite

memory, and also to examine the stationary distribution of play when the data is generated iid.

Then a k, p,M procedure where 0 < p ≤ 1, 1 ≤ k ≤M proceeds as follows:

1. Choose randomly a subset of M of size k

2. Discard each observation in the subset independently and randomly with probability p

3. Replace all the discarded observations with the observation from the current period.

The simplest version of this procedure has k = 1, p = 1, that is, choose one observation at

random from memory and discard it. In this case when the signal y is i.i.d., the ergodic distribution

is multinomial.

The k, p procedure allows us to largely separate memory size M from λ, while allowing the

construction of procedures with arbitrary values of λ.

Except in our existing case where it is multinomial, the stationary distribution of this procedure

while not intrinsically complicated (as in the case with deterministic weighting) does not seem

especially easy to compute.

In the k, p procedure the probability an observation is thrown out of the sample is pk/M . The

corresponding value of λ should be M/pk.

4. Recursive Weighting versus Limited Memory

The recursive memory weighting model has a deterministic transition kernel and an in�nite

state space. The limited memory model has random transitions and a �nite state space. The

latter has some advantages in analyzing properties such as universal consistency. In the case

where ρ generates iid values of y the stationary distribution of the recursive weighting model can

be extremely complicated and need not have a density even when y is binary. The stationary

distribution of the limited memory model always exists and in some cases is quite simple: in the

5Note that this di�erent than the limited-history processes considered by Young (1993), where the memory always
contains the M most recent observations)
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case in which k = 1, p = 1 each observation is drawn from exactly the same distribution φ∗, so the

belief each period is simply a multinomial with M observations drawn from φ∗.6

We now want to relate the two models. Suppose that µ = pk/M , so that the expected weight

that the limited-memory model gives to the most recent observation is the same as in the recursive

model, and initialize the two systems so that the distribution of observations in the limited memory

is the same as the prior φ0 ∈ Ψk. Fix any sequence of observations yt and consider the deterministic

sequence φt from recursive weighting and consider the random process φ̃t from limited memory.

Then

Theorem 1. For any �xed µ ∈ (0, 1), as M → ∞ then E[|φ̃t − φt|] → 0 uniformly in t and the
sequence of observations (y1, y2, . . .).

Proof. Fix the sequence ft, de�ne

zt =
φ̃t − (1− µ)φ̃t−1

µ
− ft

and observe that φ̃t − φt =
∑t

τ=1 λ
tzt/Λt. Hence to prove the theorem it is su�cient to prove that

E[|zt|]→ 0.
Now let ` be the number of observations in updating to period t that are discarded and let

φ̃`t−1 be the frequencies in the remaining sample. Note that we can think of this as drawing M − `
observations from , φ̃t−1 without replacement, and we arbitrarily de�ne φ̃Mt−1 = φ̃t−1. Since µ < 1 it
is less than some µ < 1. Simple algebra shows that 7

E[|zt||φ̃t−1, `] ≤ 2

∣∣∣∣ `

µM
− 1

∣∣∣∣+
1− µ
µ

(
Pr(` > (µ/

√
µ)M) + max

`≤(µ/
√
µ)M

E
[∣∣∣φ̃t−1 − φ̃`t−1∣∣∣ ∣∣∣φ̃t−1, `])(4.1)

where the last line follows from the facts that both φ̃`t−1 ft ,and the di�erence between φ̃`t−1 ,and

φ̃t−1 are all between 0 and 1.
Next we observe that E|X| ≤ 2

√
E|X|2 hence it is enough to prove that each of the expectations

on the RHS of 4.1 has square deviation that goes to zero. Examining �rst E
∣∣∣ `
µM − 1

∣∣∣2 ,recall that
µ = pk/M and E` = pk, so we need only compute the variance of `

µM . The variance of ` is

p(1− p)k = µM(1− p) , so the variance of `
µM is

µM(1− p)
µ2M2

≤ 1

µM

.

Turning to the second term E

[∣∣∣φ̃t−1 − φ̃`t−1∣∣∣2 ∣∣∣φ̃t−1, `] observe that E[φ̃`t−1|φ̃t−1, `] = φ̃t−1 and

that the variance is bounded above by sampling with replacement, which is at worst 1/(M −
(µ/
√
µ)M) ≤ 1/(M(1−

√
µ)). Hence max`≤LE

[∣∣∣φ̃t−1 − φ̃`t−1∣∣∣ ∣∣∣φ̃t−1, `] ≤ 1/(M(1−
√
µ))→ 0.

6The same is true in the limited-history model of Young (1993), where the agent always forgets the oldest
observation in the memory. However, that model does not �t our framework as it requires the state to keep track of
the order in which the observations were acquired.

7The details of this computation can be found in the Web Appendix.
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5. Approximate Universal Consistency of Slightly Weighted Sampling

We continue to let φt denote the beliefs of the weighted sampling scheme, and let γt denote the

weighted beliefs through and including observations at time t excluding the prior .

Fix a scale parameter U > 0.

For any probability distribution γ suppose for some 0 < ζ ≤ 1 we de�ne v(α, γ) = u(α, γ)+ζν(α)

where ν maps the interior of the simplex to the reals, is bounded by U , smooth, strictly di�erentiably

concave and satis�es the boundary condition that at γ approaches the boundary of the simplex

the norm of the derivative becomes in�nite. The function v(α̂(γ), γ) is Lipschitz (Fudenberg and

Levine (1999)) and from the implicit function theorem the Lipschitz constant has the form BU/ζ

where B depends only on ν. This perturbation of the utility function serves to induce mixing,

and allows the approximation of the best response function by the smoothed best response α̂(γ) =

arg maxα v(α, γ). Suppose suppose the agent at each date sets α(ht) = α̂(φt).

Let ut =
∑t

τ=1 λ
τu(α(hτ ), fτ ) be the total weighted expected utility received through period t

where ft is the distribution that places weight one on yt and let U(γ) = maxα u(α, γ) , Λt =
∑t

τ=1 λ
τ

Past work (Fudenberg and Levine (1995) ) has shown that when λ = 1 (no recency at all), the

rule α(ht) = α̂(φt) is ε−universally consistent, meaning that regardless of the probability law of

the yt, lim suptU (φt)− ut/t≤ ε where ε > 0 can be made arbitrarily small by taking the weight ζ

on the non-linear term ν to be small.

To extend this to allow for recency (that is λ > 1) de�ne ct = ΛtU(φt) − ut, c0 = 0, where φt

now varies with λ We will show that when ζand µ are small enough, lim supt→∞ ct/Λt ≤ ε for all

utility functions that satisfy the payo� bound U , and we will conclude that the learning procedure

is ε-universally consistent with respect to U .

To see why this terminology makes sense, note that in the case λ = 1 this is the approximate

universal consistency condition described above, as ct/Λt reduces to U(φt) − ut/t, The condition

λ > 1 is stronger than λ = 1 in that it places more weight on the next (unknown) observation than

on past observations. Hence, conceptually the bigger is λ the stronger is the notion of universal

consistency.

Theorem 2. For any ν there exists a constant B > 0 such that for all utility functions |u(a, y)| ≤ U
the recursive memory model with parameters µ, ζ satis�es ct/Λt ≤ 7U |1/(µΛt) + ζ +Bµ/ζ|.

The proof, which adapts the method used in Fudenberg and Levine (1999) in the case λ = 1

can be found in the Web Appendix.

6. Convergence to Strict Nash Equilibrium

We study simultaneous move games with observable actions w(a1, a2, . . . , an) . Say that a pure

action pro�le is a δ-strict Nash equilibrium if each player loses at least δ from deviating to any pure

action. Then we can show

Theorem 3. For any ε, ψ, U there exist recursive-memory learning procedures that are ε-universally
consistent with respect to the payo� bound U for each player such that if |w| ≤ U and the game
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w has a ψU -strict Nash equilibrium then with probability one the learning procedures converge to
some strict Nash equilibrium.

Proof. Set ε1 = ε/4 and ε2 = ε/(4U) (and also smaller than 1/2). De�ne yi = a−i. For each player
choose a νi such that u(ai, γi) ≥ u(ãi, γi) implies α̂i(γi)[ai] ≥ α̂i(γi)[ãi] (for example the entropy
function]. Next choose ζ su�ciently small that two properties hold. First, 7Uζ ≤ ε1. Second, note
that as ζ → 0 then α̂ approaches the best response, so in particular the probability of a strict best
response goes to 1. Hence we can also choose ζ small enough that if ai is any ψU -strict best response
then α̂i(γi)[ai] ≥ 1− ε2. Then choose µ such that 7UBµ/ζ ≤ ε1. This is 2ε1 universally consistent
by Theorem 2. By Theorem 1 we can choose M i large enough that UE[|φ̃it−φit|] ≤ ε1, and suppose
that ki = M i, that is, we potentially discard all observations. Then the procedure replacing φit
with φ̃it is 3ε1 universally consistent, since the payo�s remain within that distance. Now de�ne a
procedure αi(hit) such that if all the observations in the memory are identical and α̂i(γi)[ai] ≥ 1−ε2
then αi(γi)[ai] = 1 (we call this the �stuck� state), otherwise, αi(γi)[ai] = α̂i(γi)[ai]. This procedure
is no worse than 3ε1 + Uε2 = ε universally consistent.

Suppose that αi, α−i is ψU strict. and that γi contains only these observations for i = 1, 2, . . . , n.
Then we see from construction that such a state is absorbing.

Next suppose that all players are in the stuck state. Observe that all must play a strict best
response, since the probability of a non-strict best response is less than 1/2 and so less than ε2 in
the original procedure. If the best responses are identical to the samples, we are are absorbed in a
strict equilibrium. If not then the sample must change for all but one player, and in particular the
next period at least one player is not in the stuck state.

Now suppose that at least one player is not in the �stuck� state. Then that player plays an
action di�erent than his last period action with a positive probability bounded below with a bound
that depends only on ζ, ν both of which are �xed, and with positive probability remains unstuck.
Hence the next period there is a positive probability that all players are unstuck. When all players
are unstuck there is a positive probability that all play the ψU strict equilibrium action, and there
is a positive probability that all observations in all their samples are replaced with this action,
resulting in the absorbing state.

Notice that we do not assert that all weighted universally consistent learning procedures have

a convergence property. This is unlikely to be the case, since ? study smooth �ctitious play

with exponentially decreasing weights and show that the limit of the ergodic distribution as decay

vanishes is contained in a Birkhof center of the �ow of the corresponding mean �eld. They use this

to determine that in some games the process converges to (close to an) equilibrium while in others

it cycles.

What about mixed equilibria, or since mixed equilibrium will be di�cult to hit with a �nite

number of states, mixed approximate equilibrium? Hart and Mas-Colell (2013) gives uncoupled

learning algorithms that converge with probability one to a mixed equilibrium. However Hart

and Mas-Colell (2013)'s learning procedures cannot be universally consistent because once in

equilibrium play never changes regardless of the data.. By contrast Foster and Young (2006)'s

procedure continues learning and does not converge with probability one to a Nash equilibrium,

but the set of Nash equilibria does have probability near one in the ergodic distribution. We do not

know if their procedure is universally consistent. At this point the issue of what sorts of extensions

of Theorem 3 apply to games with only mixed equilibria remains open; we hope to explore it in
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future work.

7. Conclusion

We examine two models of learning with recency, recursive weights and limited memory. These

are similar in the sense that have the same mean beliefs, and with high probability beliefs that

are very close. We show that recursive weights with suitably smoothed best responses is weighted

universally consistent, and argue that this is a sensible criterion. It follows that limited memory has

the same property provided the grid is �ne enough. This is useful because it can produce limited

memory algorithms that are weighted universally consistent and also converge with probability one

to strict Nash equilibrium. This is the �rst example of which we are aware of a learning processes

that has global convergence to Nash equilibrium and is also shown to satisfy any sort of criteria of

adequate responsiveness to individual incentives.
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Web Appendix

Theorem. [Theorem 1 in text] For any �xed µ ∈ (0, 1), as M →∞ then E[|φ̃t−φt|]→ 0 uniformly
in t and the sequence of observations (y1, y2, . . .).

Proof. Fix the sequence ft, de�ne

zt =
φ̃t − (1− µ)φ̃t−1

µ
− ft

and observe that φ̃t − φt =
∑t

τ=1 λ
tzt/Λt. Hence to prove the theorem it is su�cient to prove that

E[|zt|]→ 0.
Now let ` be the number of observations in updating to period t that are discarded and let

φ̃`t−1 be the frequencies in the remaining sample. Note that we can think of this as drawing M − `
observations from , φ̃t−1 without replacement, and we arbitrarily de�ne φ̃Mt−1 = φ̃t−1. Since µ < 1 it
is less than some µ < 1. By de�nition

E[|zt||φ̃t−1, `] = E

[∣∣∣∣∣ φ̃t − (1− µ)φ̃t−1
µ

− ft

∣∣∣∣∣ ∣∣∣φ̃t−1, `
]

= E

[∣∣∣∣∣ `M ft + M−`
M φ̃`t−1 − (1− µ)φ̃t−1

µ
− ft

∣∣∣∣∣ ∣∣∣φ̃t−1, `
]

= E

[∣∣∣∣∣M−`M − (1− µ)

µ
φ̃`t−1 −

(1− µ)[φ̃t−1 − φ̃`t−1]
µ

+

(
`
M

µ
− 1

)
ft

∣∣∣∣∣ ∣∣∣φ̃t−1, `
]

≤ E

[∣∣∣∣∣M−`M − (1− µ)

µ
φ̃`t−1

∣∣∣∣∣+

∣∣∣∣∣(1− µ)[φ̃t−1 − φ̃`t−1]
µ

∣∣∣∣∣+

∣∣∣∣∣
(

`
M

µ
− 1

)
ft

∣∣∣∣∣ ∣∣∣φ̃t−1, `
]

≤ 2

∣∣∣∣ `

µM
− 1

∣∣∣∣+
1− µ
µ

(
Pr(` > (µ/

√
µ)M) + max

`≤(µ/
√
µ)M

E
[∣∣∣φ̃t−1 − φ̃`t−1∣∣∣ ∣∣∣φ̃t−1, `]) .

where the last line follows from the facts that both φ̃`t−1 ft ,and the di�erence between φ̃`t−1 ,and

φ̃t−1 are all between 0 and 1.
Next we observe that

E|X| ≤ 2
√
E|X|2

hence it is enough to prove that each of the expectations on the RHS has square deviation that

goes to zero. Examining �rst E
∣∣∣ `
µM − 1

∣∣∣2recall that µ = pk/M and E` = pk, hence we need only

compute the variance of `
µM . The variance of ` is p(1− p)k = µM(1− p) , so the variance of `

µM is

µM(1− p)
µ2M2

≤ 1

µM

.

Turning to the second term E

[∣∣∣φ̃t−1 − φ̃`t−1∣∣∣2 ∣∣∣φ̃t−1, `] observe that E[φ̃`t−1|φ̃t−1, `] = φ̃t−1 and

that the variance is bounded above by sampling with replacement, which is at worst 1/(M −
(µ/
√
µ)M) ≤ 1/(M(1−

√
µ)). Hence max`≤LE

[∣∣∣φ̃t−1 − φ̃`t−1∣∣∣ ∣∣∣φ̃t−1, `] ≤ 1/(M(1−
√
µ))→ 0.
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Theorem. [Theorem 2 in text] For any ν there exists a constant B > 0 such that for all util-
ity functions |u(a, y)| ≤ U the recursive memory model with parameters µ, ζ satis�es ct/Λt ≤
7U |1/(µΛt) + ζ +Bµ/ζ|.

Proof. De�ne: Ṽ (γ) = maxα v(α, γ), ṽt =
∑t

τ=1 λ
τv(α(ht), ft)+

∑0
τ=−∞ λ

τ Ṽ (φ0), Λ̃t =
∑t

τ=−∞ λ
τ ,c̃t =

Λ̃tV (φt)− ṽt, c̃0 = 0. Note that Λ̃t = λt/(1− λ−1) = λt/µ and that

|ṽt − ut|/Λt = |
t∑

τ=1

λτ [v(α(ht), ft)− u(α(ht), ft)] +
0∑

τ=−∞
λτ Ṽ (φ0)|/Λt ≤ ζU + (Λ̃0/Λt)U.

Our �rst step is to show that |ct/Λt − c̃t/Λ̃t| is small, so that we can focus on bounding c̃t/Λ̃t.

|ct/Λt − c̃t/Λ̃t| = |(ct − c̃t)/Λt + c̃t(Λ̃t − Λt)/(ΛtΛ̃t)|

= |
(

ΛtU(γt)− ut − [Λ̃tV (φt)− ṽt]
)
/Λt + c̃t(Λ̃t − Λt)/(ΛtΛ̃t)|

≤ |ṽt − ut|/Λt + |
(

ΛtU(γt)− Λ̃tV (φt)
)
/Λt + c̃t(Λ̃t − Λt)/(ΛtΛ̃t)|

≤ Uζ + (Λ̃0/Λt)U + |U(γt)− (Λ̃t/Λt)V (φt) + c̃tΛ̃0/(ΛtΛ̃t)|
= Uζ + (Λ̃0/Λt)U + |U(γt)− U(φt) + U(φt)− V (φt) + (Λt − Λ̃t)V (φt)/Λt + c̃tΛ̃0/(ΛtΛ̃t)|
≤ Uζ + (Λ̃0/Λt)U + |U(γt)− U(φt)|+ |U(φt)− V (φt)|+ | − Λ̃0V (φt)/Λt + c̃tΛ̃0/(ΛtΛ̃t)|
≤ Uζ + (Λ̃0/Λt)U + U |γt − φt|+ Uζ + | − Λ̃0V (φt)/Λt|+ |c̃tΛ̃0/(ΛtΛ̃t)|

= 2Uζ + (Λ̃0/Λt)U + U |γt −
Λtγt

Λ̃t
+

Λ̃0φ0

Λ̃t
|+ | − Λ̃0V (φt)/Λt|+ |c̃tΛ̃0/(ΛtΛ̃t)|

= 2Uζ + (Λ̃0/Λt)U + U | Λ̃t − Λt

Λ̃t
γt +

Λ̃0φ0

Λ̃t
|+ | − Λ̃0V (φt)/Λt|+ |c̃tΛ̃0/(ΛtΛ̃t)|

= 2Uζ + (Λ̃0/Λt)U + U | Λ̃t − Λt

Λ̃t
γt +

Λ̃0φ0

Λ̃t
|+ | − Λ̃0V (φt)/Λt|+ |c̃tΛ̃0/(ΛtΛ̃t)|

≤ 2Uζ + (Λ̃0/Λt)U + 2U
Λ̃0

Λ̃t
+

Λ̃0

Λt
|maxV (γ)|+ |c̃t

Λ̃t

|Λ̃0

Λt

≤ 2Uζ + 3U
1

µΛt
+

1

µΛt
2U + 2U

1

µΛt
≤ 7U(ζ + 1/(µΛt))

Hence the result holds if we can bound c̃t/Λ̃t by BUµ for some B that depends only on ν. To
do this, we de�ne the incremental cost g̃t = c̃t− c̃t−1, so that c̃t =

∑t
τ=1 g̃t. Observe that if suppose

that g̃t/λ
t ≤ ε, then c̃t/Λ̃t ≤

∑t
τ=−∞ λ

tε/Λ̃t = ε so we only need a bound on g̃t/λ
t. We compute

g̃t = c̃t − c̃t−1 = Λ̃tV (φt)− ṽt − Λ̃t−1V (φt−1) + ṽt−1

= Λ̃tV (φt)− Λ̃t−1V (φt−1)− λtv(α̂(φt−1), ft)

= Λ̃tV (µft + (1− µ)φt−1)− Λ̃t−1V (φt−1)− λtv(α̂(φt−1), ft)

≤ Λ̃tµv(α̂(φt), ft) + Λ̃t(1− µ)v(α̂(φt), φt−1)− Λ̃t−1V (φt−1)− λtv(α̂(φt−1), ft)

≤ λt[v(α̂(φt), ft)− v(α̂(φt−1), ft)]− λtv(α̂(φt), φt−1) + (Λ̃t−1 + λt)v(α̂(φt), φt−1)− Λ̃t−1V (φt−1)

≤ λt[v(α̂(φt), ft)− v(α̂(φt−1), ft)]− λtv(α̂(φt), φt−1) + λtv(α̂(φt), φt−1)

= λt[v(α̂(φt), ft)− v(α̂(φt−1), ft)]

10



Examining the �nal term, observe that α̂(γ) and v(α, γ) are Lipschitz continuous and that the
Lipschitz constant has the form BU where B depends only on ν, hence

g̃t ≤ λt[v(α̂(φt), ft)− v(α̂(φt−1), ft)]

≤ λt(BU/ζ) ‖φt − φt−1‖
≤ λtBUµ/ζ

which now gives the desired overall bound.
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