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Abstract

This paper studies the effect of randomness in per-period matching on the long-run outcome of non-equilibrium adaptive pro-
cesses. If there are many matchings between each strategy revision, the randomness due to matching will be small; our question
is when a very small noise due to matching has a negligible effect. We study two different senses of this idea, and provide suf-
ficient conditions for each. The less demanding sense corresponds to sending the matching noise to zero while holding fixed all
other aspects of the adaptive process. The second sense in which matching noise can be negligible is that it does not alter the limit
distribution obtained as the limit of the invariant distributions as an exogenous “mutation rate” goes to zero.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

This paper studies how the relative frequency of strategic interactions and strategy revision influences the long-run
outcome of non-equilibrium adaptive processes. Many analyses of these processes abstract away from any randomness
in the per-period matching process by assuming either that each agent plays each other agent exactly once in each
period, or that agents are independently matched an infinite number of times; in either case, the result is that each
agent faces the true distribution of opponents’ play. This is true for example of Kandori et al. (1993), Bergin and
Lipman (1996) and Binmore and Samuelson (1997). Neither of these motivations are compelling as stated; a more
plausible reason for ignoring the randomness due to the matching process is that the neglected noise is small and
thus has little effect. The first claim—that the randomness is small—will follow from the law of large numbers when
there are sufficiently many pairings between each strategy revision; our focus is thus on when the second claim then
follows, i.e. when a very small noise due to matching has a negligible effect.
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We study two different senses of this idea. The first, and less demanding sense corresponds to sending the matching
noise to zero while holding fixed all other aspects of the adaptive process. The second sense in which matching noise
can be negligible is that it does not alter the limit distribution obtained as the limit of the invariant distributions as an
exogenous “mutation rate” goes to zero. When applied to a model with mutations, the difference between these two
senses is in the order of limits: the first sense asks for continuity of e.g. the invariant distribution in the matching noise
holding the mutation rate fixed, whereas the second sense asks for continuity of the limit distribution in the matching
noise.

Theorem 1 provides a sufficient condition for the first form of continuity, which is roughly that the transition prob-
abilities of the no-noise adjustment process are continuous in the realized per-period payoffs. Under this condition, if
the no-noise process is irreducible, its invariant distribution is a continuous function of the noise at the zero matching-
noise limit, and for systems with absorbing states the absorption probabilities are continuous. Theorem 2 extends the
former conclusion to finite time horizons. To put Theorem 1 into perspective, recall that Robson and Vega-Redondo
(1996) show that the limit distribution in Kandori et al.’s (1993) adjustment model selects the Pareto-dominant equi-
librium in 2 × 2 coordination games if players are randomly paired and players observe and respond to the realized
distribution of payoffs (even if players are rematched any finite number m times before adjusting their strategies, so
that the noise due to matching is small). This contrasts with Kandori et al.’s (1993) finding that the risk-dominant
equilibrium is selected when players observe the true state so there is no matching noise at all. For generic payoff
matrices, the Robson and Vega-Redondo (1996) adjustment process satisfies the condition of Theorem 1, so the dif-
ference between their findings and those of Kandori et al. (1993) comes from taking the no-mutation limit before
taking the limit on the number of rounds.

This motivates our investigation of when the second sort of continuity is satisfied: When is the limit distribution
a continuous function of the matching noise? Theorem 3 gives a sufficient condition: In addition to the continuity
requirement of Theorem 1, it requires essentially that any transition probabilities that are approaching zero as the
mutation rate vanishes do so at similar rates when there is no matching noise or a small amount of matching noise.
This condition is not satisfied in Robson and Vega-Redondo (1996), but is satisfied in the frequency-dependent Moran
process studied by Fudenberg et al. (2006) and also by the frequency-dependent Wright–Fisher process studied by
Imhof and Nowak (2006). Theorem 4 provides a less restrictive sufficient condition, by noting that the conditions
on the asymptotics of the transition probabilities need only apply at a subset of the transitions. Theorem 5 derives
implications of the results for a class of “smooth imitation processes.”

Theorems 6 and 7 turn to the issue of how the frequency of interaction influences the basins of attraction, D(m)

and D∗, of the processes with m and infinitely many rounds of matching per period. We focus on the case where the
processes have the same recurrent classes for every m. Theorem 6 replaces the continuity condition of Theorems 1
and 2 with a mild form of monotonicity that is satisfied by Robson and Vega-Redondo (1996), and shows that D(m) =
D(1) ⊆ D∗. An example of Robson and Vega-Redondo shows that D(m) can be a proper subset of D∗; this helps
further explain the source of the discontinuity in the limit distribution at m = ∞. Theorem 7 reimposes the continuity
condition to get a sharper result on the relationship of D(m) and D∗.

2. The model

Suppose the evolution of a population is described by a homogeneous Markov chain {X(θ)
t : t = 0,1, . . .} with

finite state space S and transition probabilities p
(θ)
ij . The parameter θ is an element of some parameter set Θ with

accumulation point θ∗ /∈ Θ and relates to the number of rounds that an underlying game is played. We assume that R
(θ)
t

rounds are played in period t , where R
(θ)
0 ,R

(θ)
1 , . . . are i.i.d. finite random variables such that

lim
θ→θ∗ P

(
R

(θ)
t � M

)= 1 for all M < ∞, (1)

and for each t , R
(θ)
t and X

(θ)
t are independent.

Example 1. (a) Condition (1) is satisfied if the number of rounds per period is deterministic, R
(θ)
t ≡ m, and m = θ →

θ∗ = ∞, Θ = N.
(b) Suppose that in any given period, the game is not played at all with probability 1 − θ , and after each round that

has taken place there will be another round in the same period with probability θ , where θ ∈ Θ = (0,1). Then R
(θ)
t is
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geometrically distributed with parameter 1 − θ , that is, P(R
(θ)
t = r) = θr(1 − θ), r = 0,1,2, . . . , and condition (1) is

met when θ → θ∗ = 1.

For each period t , let Yt,r be a random finite-dimensional vector that describes the payoffs in round r , r = 1,2, . . . .
The distribution of Yt,r may depend on X

(θ)
t , but not on R

(θ)
t . Given X

(θ)
t , the vectors Yt,1, Yt,2, . . . are assumed to be

i.i.d. with finite expectation. (Note that the support of the Yt,r is not restricted to be finite, but it typically will be finite
if the game has only finitely many possible outcomes.) Their common conditional distribution is assumed to be the
same for all θ and t . Thus for every state i ∈ S there is an integrable random vector Zi such that

P
{
Yt,r ∈ A

∣∣X(θ)
t = i

}= P {Zi ∈ A} (2)

for all r, t and θ, and all Borel-measurable sets A.

Assume that for all i, j ∈ S , there is a function fij such that on the set {X(θ)
t = i} ∩ {R(θ)

t > 0},

P
{
X

(θ)
t+1 = j |R(θ)

t , Yt,1, Yt,2, . . .
}= fij

(
1

R
(θ)
t

R
(θ)
t∑

r=1

Yt,r

)
. (3)

Note that no assumption is made on the conditional probability on the set {R(θ)
t = 0}. Clearly, by (1), P(R

(θ)
t = 0) → 0

as θ → θ∗. Let {X∗
t : t = 0,1,2, . . .} be the Markov chain with transition probabilities

p∗
ij = P

{
X∗

t+1 = j
∣∣X∗

t = i
}= fij (EZi), i, j ∈ S.

This is the Markov chain obtained by assuming that there are infinitely many rounds during each period.
Note that transition probabilities of the form (3) can also occur when matching is deterministic but choices of

agents are stochastic. For example, consider a two-player game with two pure strategies A and B and suppose a finite
population consists of n types of agents, where agents of type i play A with probability pi and B with probability
1 − pi . Suppose further that in every round, every individual plays exactly once against every other individual. Then
realized payoffs are stochastic and it is natural to assume transition probabilities of the form (3).

3. Invariant distributions and absorption probabilities

In this section we show that a continuity condition on the adjustment process implies that long-run and finite-
horizon outcomes are continuous as the number of rounds of random matching goes to infinity.

3.1. A theorem on long-run behavior

Theorem 1.

(a) If fij is continuous at EZi , then limθ→θ∗ p
(θ)
ij = p∗

ij .

(b) Suppose that limθ→θ∗ p
(θ)
ij = p∗

ij for all i, j ∈ S . If (p∗
ij ) has a unique invariant distribution v∗ and v(θ) is an

invariant distribution of (p
(θ)
ij ), then

lim
θ→θ∗ v(θ) = v∗.

(c) Suppose that limθ→θ∗ p
(θ)
ij = p∗

ij for all i, j ∈ S . Suppose that the chains {X(θ)
t }, θ ∈ Θ , and {X∗

t } have a common

set A of absorbing states and that the other states are transient states of {X∗
t }. For j ∈ A and i ∈ S \ A, let ρ

(θ)
ij

denote the probability that {X(θ)
t } gets absorbed at j if X

(θ)
0 = i, and let ρ∗

ij denote the corresponding absorption
probability for {X∗

t }. Then

lim
θ→θ∗ ρ

(θ)
ij = ρ∗

ij .
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Proof. (a) By (3), we have on {R(θ)
t > 0},

P
{
X

(θ)
t+1 = j

∣∣X(θ)
t

}= E
{
1{X(θ)

t+1=j}
∣∣X(θ)

t

}
= E

{
E
[
1{X(θ)

t+1=j}
∣∣X(θ)

t ,R
(θ)
t , Yt,1, Yt,2, . . .

]|X(θ)
t

}

= E

{
f

X
(θ)
t ,j

(
1

R
(θ)
t

R
(θ)
t∑

r=1

Yt,r

)∣∣∣∣X(θ)
t

}
.

Thus, in view of (2),

p
(θ)
ij := P

{
X

(θ)
t+1 = j

∣∣X(θ)
t = i

}

= P
(
R

(θ)
0 = 0

)
qij + P

(
R

(θ)
0 > 0

)
E

[
fij

(
1

R
(θ)
0

R
(θ)
0∑

r=1

Zi,r

)∣∣∣∣R(θ)
0 > 0

]
,

where qij = P {X(θ)
t+1 = j |X(θ)

t = i,R
(θ)
t = 0} and Zi,1,Zi,2, . . . are i.i.d. copies of Zi , which are also independent

of R
(θ)
0 . Hence

p
(θ)
ij = P

(
R

(θ)
0 = 0

)
qij +

∞∑
k=1

P
(
R

(θ)
0 = k

)
Efij

(
1

k

k∑
r=1

Zi,r

)
. (4)

Because the Zi,j are i.i.d. with finite mean, the strong law of large numbers implies that (Zi,1 + . . . + Zi,k)/k → EZi

almost surely (see e.g. Billingsley, 1995, p. 282). And since fij is continuous at EZi ,

lim
k→∞fij

(
1

k

k∑
r=1

Zi,r

)
= fij (EZi) = p∗

ij almost surely.

It follows by Lebesgue’s dominated convergence theorem that

lim
k→∞Efij

(
1

k

k∑
r=1

Zi,r

)
= p∗

ij . (5)

Thus, for every ε > 0, there exists Mε such that∣∣∣∣∣Efij

(
1

k

k∑
r=1

Zi,r

)
− p∗

ij

∣∣∣∣∣� ε for all k > Mε. (6)

Therefore,

∣∣p(θ)
ij − p∗

ij

∣∣� P
(
R

(θ)
0 = 0

)∣∣qij − p∗
ij

∣∣+ ∞∑
k=1

P
(
R

(θ)
0 = k

)∣∣∣∣∣Efij

(
1

k

k∑
r=1

Zi,r

)
− p∗

ij

∣∣∣∣∣
�

Mε∑
k=0

P
(
R

(θ)
0 = k

)+ ε

∞∑
k=Mε+1

P
(
R

(θ)
0 = k

)

� P
(
R

(θ)
0 � Mε

)+ ε.

The first inequality follows from (4) and the triangle inequality. For the second inequality we used (6) and that |qij −
p∗

ij | � 1 and |Efij ((1/k)
∑k

r=1 Zi,r )−p∗
ij | � 1. It now follows by assumption (1) and the fact that ε > 0 was arbitrary

that

lim
θ→θ∗ p

(θ)
ij = p∗

ij . (7)
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(b) Write Π(θ) = (p
(θ)
ij )i,j∈S and Π∗ = (p∗

ij )i,j∈S . If the invariant distributions v(θ) do not converge to v∗ as
θ → θ∗, then, because the probability simplex is compact, the sequence has an accumulation point w 	= v∗. Because
Π(θ) converges to Π∗ as θ → θ∗ and v(θ)Π(θ) = v(θ) for all θ , it follows that wΠ∗ = w, which would contradict the
assumption that v∗ is the unique invariant probability vector for Π∗.

(c) Fix a common absorbing state j . Since all non-absorbing states are transient states of {X∗
t }, it follows from (7)

that all non-absorbing states are also transient states of {X(θ)
t } when θ is close enough to θ∗ (that is, when θ is large

enough in the case where θ∗ = ∞). Therefore, the absorption probabilities are uniquely determined by

ρ
(θ)
ij = p

(θ)
ij +

∑
s∈T

p
(θ)
is ρ

(θ)
sj , ρ∗

ij = p∗
ij +

∑
s∈T

p∗
isρ

∗
sj , i ∈ T ,

where T = S \ A, see e.g. Karlin and Taylor (1975, p. 90). It now follows as in the proof of (b) that ρ
(θ)
ij → ρ∗

ij . �
Remark 1. (a) Theorem 1(a) continues to hold if one replaces the independence assumption on Yt,1, Yt,2, . . . by
the assumption that these vectors satisfy the weak law of large numbers. In this case, fij ((Zi,1 + . . . + Zi,k)/k) →
fij (EZi) in distribution and this implies (5).

(b) The perturbation bounds reviewed by Cho and Meyer (2001) show that the invariant distributions v(θ) converge
at least as quickly as the transition matrices Π(θ). These bounds also imply our result in Theorem 1(b), but the much
simpler self-contained argument in the present proof is sufficient for our purposes.

(c) We use Theorem 1 in one of the proofs of Theorem 5.

The continuity assumption of Theorem 1(a) is obviously satisfied when the fij are continuous everywhere. Even
when this is not the case, Theorem 1(a) can be used to obtain results for adjustment dynamics in generic games if
the fij are continuous except on lower-dimensional sets of observed payoffs, as is the case under any dynamics that
are “Darwinian” in the sense of Kandori et al. (1993).

To see this, consider a symmetric 2-player game with pure strategies 1, . . . , n and payoff matrix A, and let Yt,r be a
vector giving the average realized payoff of each strategy in the r th matching. For any population state i, the expected
payoff EZ

(k)
i to strategy k can be expressed as akski , where ak is the kth row of A and ski ∈ R

n \ {0} is determined
by the distribution of the random matchings.1 If Dij is the set of points of discontinuity of fij and Dij has Lebesgue
measure 0, then the set of payoff matrices

Aij = {A ∈ R
n×n: [a1s1i , . . . , ansni]T ∈ Dij

}
has Lebesgue measure 0 as well. Thus for all A ∈ ∩i,j AC

ij , the assumption of Theorem 1(a) is satisfied. Thus, by
Theorem 1(a) and (b) we obtain the following result.

Corollary 1. Suppose the Zi are realized payoffs from random matchings in a symmetric two-player game and the fij

are continuous almost everywhere. Then, for generic payoff matrices, the invariant distributions v satisfy

lim
θ→θ∗ v(θ) = v∗, (8)

provided the invariant distribution is unique when there are infinitely many rounds in each period.

We show in Example 3 that (8) may fail for a three-dimensional set of 2 × 2 payoff matrices.

3.2. Illustrative examples

The following examples show that some form of continuity assumption is necessary for the conclusion that match-
ing noise becomes irrelevant in the limit of infinitely many observations. We begin with a simple but artificial example.

1 If strategy k does not occur in state i, Z
(k)
i

may be undefined. In this case, we set Z
(k)
i

= akski for some fixed ski 	= 0.
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Example 2. Suppose there are two actions 0 and 1, and in every round every player gets payoff
√

2 with probability
1/

√
2 and 0 with probability 1−1/

√
2, independent of his action and the state of the population. Suppose the dynamics

are that players switch from 0 to 1 if and only if they get a payoff of 1 and never switch from 1 to 0.
In the limit model with an infinite number of rounds of matching, all players play action 1 after the first period.

Hence, the unique invariant distribution, v∗ places probability one on all agents’ playing action 1. For any finite
number m of rounds, in contrast, there cannot be a switch because

√
2 is irrational. Hence, any distribution over the

two actions is an invariant distribution of (p
(m)
ij ).

Next, we present a more natural example: transition rules are discontinuous because agents adopt the strategy that
provided the highest payoff in previous period. Again, there is a discontinuity in long-run behavior.

Example 3. Consider a symmetric 2-player game with pure strategies 1, 2 and positive payoff matrix(
a b

c d

)
.

Assume that

2b = c + d, a + b > 2c. (9)

Consider a population of size 3 and suppose that in every period there are exactly m rounds. Let X
(m)
t denote the

number of agents using strategy 1 at time t . At each round, two individuals are drawn at random to play the game,
the remaining individual receives no payoff in that round. For every period t and round r , let Y

(i)
t,r denote the average

payoff to agents using strategy i. Set Y
(i)
t,r = 0 if strategy i is not present at time t . If X

(m)
t = 1, the probability that the

two agents that use strategy 2 are chosen is 1
3 , and the probability for a mixed pair is 2

3 . Hence

P
{
Y

(1)
t,r = 0, Y

(2)
t,r = d|X(m)

t = 1
}= 1

3
, P

{
Y

(1)
t,r = b,Y

(2)
t,r = c

2

∣∣∣X(m)
t = 1

}
= 2

3
. (10)

Similarly,

P
{
Y

(1)
t,r = a,Y

(2)
t,r = 0

∣∣X(m)
t = 2

}= 1

3
, P

{
Y

(1)
t,r = b

2
, Y

(2)
t,r = c

∣∣∣X(m)
t = 2

}
= 2

3
.

If after m rounds, the average payoff of agents using strategy 1 is larger than the average payoff of the other agents,
all agents switch to strategy 1. Otherwise, they all switch to strategy 2. (Agents do not switch if only one strategy is
currently present.) After this adjustment step, every agent changes (independently of the others) to the other strategy
with probability ε, 0 < ε < 1

2 . Thus for i, j = 0, . . . ,3,

fij (y
(1), y(2)) =

⎧⎪⎪⎨
⎪⎪⎩

(
3
j

)
(1 − ε)j ε3−j , if y(1) > y(2),(

3
j

)
εj (1 − ε)3−j , otherwise.

For any number of rounds m,

p
(m)
0j = p∗

0j =
(

3
j

)
εj (1 − ε)3−j , p

(m)
3j = p∗

3j =
(

3
j

)
(1 − ε)j ε3−j .

In view of (10), EZ1 = ( 2
3b, 1

3 (c + d)). By (9), the two components of EZ1 coincide, and so

p∗
1j = f1j (EZ1) =

(
3
j

)
εj (1 − ε)3−j .

Let (Z
(1)
11 ,Z

(2)
11 ), (Z

(1)
12 ,Z

(2)
12 ), . . . be i.i.d. copies of Z1. The random variables Z

(1)
1r − Z

(2)
1r , r = 1,2, . . . , have mean

zero and (since d > 0), positive and finite variance. Therefore, by the central limit theorem,
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P

{
Z

(1)
11 + · · · + Z

(1)
1m

m
>

Z
(2)
11 + · · · + Z

(2)
1m

m

}

= P

{
1√
m

m∑
r=1

(
Z

(1)
1r − Z

(2)
1r

)
> 0

}
→ 1

2

as m → ∞.2 It follows that

lim
m→∞p

(m)
1j =

(
3
j

)
1

2

[
(1 − ε)j ε3−j + εj (1 − ε)3−j

];
in particular, limm→∞ p

(m)
1j 	= p∗

1j .

By (9), EZ
(1)
2 = 1

3 (a + b) > 2
3c = EZ

(2)
2 , and it follows that

lim
m→∞p

(m)
2j = p∗

2j =
(

3
j

)
(1 − ε)j ε3−j .

It can now be verified that for fixed ε > 0, the invariant distribution v(m,ε) of {X(m)
t } does not converge to the invariant

distribution v(∞,ε) of {X∗
t }. In fact,

lim
m→∞v(m,ε) = [O(ε),O

(
ε2),O(ε),1 + O(ε)

]
and

v(∞,ε) =
[

1

2
+ O(ε),O(ε),O(ε),

1

2
+ O(ε)

]
.

Note that the difference between these two distributions does not vanish as ε → 0 :
lim
ε→0

lim
m→∞v(m,ε) = [0,0,0,1] 	= lim

ε→0
v(∞,ε) =

[
1

2
,0,0,

1

2

]
.

These limit results hold in particular for the following payoff matrices, which satisfy (9):(
3 4
2 6

)
,

(
5 4
2 6

)
,

(
7 4
2 6

)
,

(
1 4
2 6

)
,

(
5 2
3 1

)
.

In the first case, strategy 2 is risk- and Pareto-dominant, in the second case, strategy 1 is risk-dominant and strategy 2 is
Pareto-dominant, and in the third case, strategy 1 is risk- and Pareto-dominant. (Condition (9) cannot hold if strategy 1
is Pareto-dominant and strategy 2 is risk-dominant.) In the final two cases, one strategy is strictly dominant.

The following example illustrates the effect of smoothing the transition functions.

Example 4. Modify the model of the previous example so that agents switch to strategy 1 if the difference of the
average payoff of agents using strategy 1 and the average payoff of the other agents exceeds a random threshold.
Otherwise, all agents switch to strategy 2. Then mutations may occur as described above. Suppose the threshold
is normally distributed with expectation zero and variance σ 2 > 0. Denote the corresponding distribution function
by Fσ 2 . Then the function fij in (3) is given by the continuous function

f
(σ 2)
ij

(
y(1), y(2)

)= Fσ 2

(
y(1) − y(2)

)( 3
j

)
(1 − ε)j ε3−j

+ Fσ 2(y
(2) − y(1))

(
3
j

)
εj (1 − ε)3−j .

2 See Billingsley (1995, p. 357).
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Clearly, if y(1) 	= y(2), then f
(σ 2)
ij (y(1), y(2)) → fij (y

(1), y(2)) as σ 2 → 0. Again, for every fixed σ 2 > 0, p
(m)
0j = p∗

0j ,

p
(m)
3j = p∗

3j and p
(m)
2j → p∗

2j . But now,

p∗
1j = f

(σ 2)
1j (EZ1) =

(
3
j

)
1

2

[
(1 − ε)j ε3−j + εj (1 − ε)3−j

]
,

so that p
(m)
1j → p∗

1j . Thus, with smoothing, the invariant distribution of (p
(m)
ij ) converges to that of (p∗

ij ).

3.3. A theorem on finite-horizon behavior

Theorem 1 implies in the case of irreducibility that the long-run behavior of {X(θ)
t } is similar to that of {X∗

t },
provided θ is close enough to θ∗. To investigate the similarity for any finite time-horizon, suppose that {X(θ)

t } and {X∗
t }

have the same initial distribution q . Then the distribution of X
(θ)
t and X∗

t are given by p(θ)(t) := q(Π(θ))t and p∗(t) :=
q(Π∗)t , respectively. Thus under the continuity condition of Theorem 1, it follows from (7) that p(θ)(t) → p∗(t) for
every t . The following theorem shows that the convergence is uniform in t if {X∗

t } is irreducible and aperiodic.
For probability vectors p = (pi)i∈S , q = (qi)i∈S let ‖p − q‖ = 1

2

∑
i∈S |pi − qi | be their variation distance.

Theorem 2. Suppose that {X∗
t } is irreducible and aperiodic and that for every i, j ∈ S , fij is continuous at EZi .

Then, for every common initial distribution for the chains {X(θ)
t } and {X∗

t },
lim

θ→θ∗ sup
t=0,1,2,...

‖p(θ)(t) − p∗(t)‖ = 0.

Proof. It follows from (7) that there is a neighborhood U0 of θ∗ such that {X(θ)
t } is also irreducible and aperiodic for

all θ ∈ U0 ∩ Θ . Let ε > 0. By Theorem 1(a) and (b), there exists a neighborhood U1 of θ∗ with U1 ⊂ U0 such that∥∥v(θ) − v∗∥∥<
ε

2
for all θ ∈ U1 ∩ Θ. (11)

Moreover, there exist constants β(θ),β∗ < 1 such that for t = 0,1,2, . . . ,∥∥p(θ)(t) − v(θ)
∥∥� 2

[
β(θ)

]t
, θ ∈ U0 ∩ Θ,

∥∥p∗(t) − v∗∥∥� 2(β∗)t , (12)

and β(θ) → β∗, see e.g. Iosifescu (1980, p. 126). Consequently, there exists T < ∞ and another neighborhood U2
of θ∗ with U2 ⊂ U1 such that for all θ ∈ U2 ∩ Θ and all t > T ,

‖p(θ)(t) − p∗(t)‖ � ‖p(θ)(t) − v(θ)‖ + ‖v(θ) − v∗‖ + ‖v∗ − p∗(t)‖ < ε.

The first inequality follows from the triangle inequality, the second one from (11) and the fact that by (12),
‖p(θ)(t) − v(θ)‖ < ε

4 and ‖v∗ − p∗(t)‖ < ε
4 for t large enough. To complete the proof note that by (7) there is a

neighborhood U3 of θ∗ such that if θ ∈ U3 ∩ Θ , ‖p(θ)(t) − p∗(t)‖ < ε for t = 0, . . . , T . Altogether, we have shown
that supt=0,1,2,... ‖p(θ)(t) − p∗(t)‖ � ε for all θ ∈ U2 ∩ U3 ∩ Θ . �
Remark 2. Note that in Example 3, {X∗

t } is irreducible and aperiodic, but p
(m)
1j 	→ p∗

1j , and so p(m)(1) will not

approach p∗(1) if the common initial distribution is given by P(X
(m)
0 = 1) = P(X∗

0 = 1) = 1.

4. Limit distributions

In this section we consider evolutionary processes with mutations where the updating depends on the outcomes of
a repeated game as in Section 2. The mutations ensure that the processes have unique invariant distributions. In such
models it is standard to describe long-run behavior with infrequent mutations by characterizing the limit distribution
obtained as the limit of the invariant distribution as the mutation rate goes to zero.

In these models analysts typically think that both mutation probabilities and matching noise are very small; which
we can idealize by sending them both to zero. The paper of Robson and Vega-Redondo (1996), combined with our
results, shows that the order of limits can matter. Robson and Vega-Redondo analyze a model in which players are
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repeatedly randomly matched to play a symmetric 2 × 2 coordination game in which strategy A is Pareto optimal and
strategy B is risk-dominant. They consider an emulation-learning rule with ε mutations: in each period there are m

rounds of random matching and each player adopts the strategy that achieved the highest payoff with independent
probability 1 − ε.

With m = ∞ the Robson and Vega-Redondo (1996) model coincides with the Kandori et al. (1993) model, and
hence the “long-run equilibrium” (the limit as ε → 0 of v(∗,ε)) places probability one on all players playing the risk-
dominant equilibrium. For any finite m, in contrast, Robson and Vega-Redondo show that the long-run equilibrium
places probability one on the Pareto optimal equilibrium.

The transition rule in the Robson and Vega-Redondo model need not satisfy our continuity condition, but it does
satisfy it for generic payoff functions.3 Hence, Theorem 1 implies that for any fixed mutation rate ε we have v(m,ε) →
v(∗,ε), i.e. long-run behavior when m is sufficiently large (with “sufficient” depending on ε) is similar to long-run
behavior with m infinite. This shows that the difference between the long-run equilibrium of the Kandori et al. (1993)
model and the long-run equilibrium of the Robson and Vega-Redondo (1996) model is not due to a discontinuity
at m = ∞ as in Example 1. Instead, it is due to a difference in the order of limits, as Robson and Vega-Redondo
say: limm→∞ limε→0 v(m,ε) 	= limε→0 limm→∞ v(m,ε). Which order of limits is more relevant will depend on the
magnitudes of ε and m. Intuitively, the difference between the Robson and Vega-Redondo model and the Kandori
et al. model is that in the Robson and Vega-Redondo model a transition from one equilibrium to the other can be
facilitated by an unrepresentative draw of the random matching. The probability of such draws goes to zero as m gets
large, so the unrepresentative matching draws is the main source of transitions when ε is small compared to 1/m.

Remark 3. Theorem 20 of Vega-Redondo (1996, p. 140) asserts that for a Kandori et al. (1993)-style dynamic with m

rounds of matching in a 2 × 2 coordination game, where one equilibrium is risk dominant and the other is Pareto-
dominant, limε→0 limm→∞ v(m,ε) is concentrated on the risk-dominant equilibrium for all population sizes N greater
than some N̄ . The theorem does not impose a continuity condition; the suggested proof assumes that for any fixed
population size, limm→∞ v(m,ε) = v(∞,ε), and thus that limε→0 limm→∞ v(m,ε) = limε→0 v(∞,ε), which does not
follow from the assumptions of the theorem. However, Corollary 1 shows that the suggested proof is in fact correct
for generic payoff matrices. Moreover, we conjecture that the theorem is true as stated, because of its hypothesis of a
“sufficiently large” population.

4.1. Continuity theorems

In this subsection we prove a general theorem showing that limit distributions will be continuous as θ → θ∗ if the
transition probabilities p

θ,ε
ij are continuous and in addition any transition probabilities that are approaching zero as

ε → 0 in the θ∗ model do so at similar rates when θ is close to θ∗. One application of this result is that the limit
distributions of imitation processes like that of Robson and Vega-Redondo (1996) will be continuous as the number
of rounds of play goes to infinity if players react smoothly to payoff differences.

Theorem 3. Consider a family of Markov transition matrices (p
θ,ε
jk ) on a common state space S . For each θ ∈

Θ ∪ {θ∗}, suppose that (p
θ,ε
jk ) is irreducible with invariant distribution v(θ,ε) when ε > 0. Suppose that the limit

distribution of the θ∗-process, λθ∗ ≡ limε→0 v(θ∗,ε) is well-defined. Suppose also that the transition probabilities
satisfy

lim
θ→θ∗ lim

ε→0

p
θ,ε
jk

p
θ∗,ε
jk

= 1 (13)

for all j, k ∈ S , where all 0/0 fractions are taken to be equal to 1. Then, for θ sufficiently close to θ∗ the limit
distributions λθ = limε→0 v(θ,ε) are also well-defined and satisfy

lim
θ→θ∗ λθ = λθ∗

.

3 We only require continuity when payoffs are equal to their expectation under an infinite number of matchings. Generically, a player will not be
indifferent when facing a mixed strategy of the form Ak/N + B(N − k)/N .
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In particular, we have

lim
θ→θ∗ lim

ε→0
v(θ,ε) = lim

ε→0
lim

θ→θ∗ v(θ,ε).

Proof. It is a standard result in this literature (e.g. Freidlin and Wentzell, 1984) that the invariant distribution v(θ,ε)

satisfies

v
(θ,ε)
i =

∑
z∈Zi

(
∏

(j,k)∈z p
θ,ε
j,k )∑

z∈Z(
∏

(j,k)∈z p
θ,ε
j,k )

,

where Zi is the set of all i-trees on S and Z is the union of the Zs over all s ∈ S . (An i-tree is a set of ordered pairs
of states describing a directed graph in which there is a unique directed edge out of every element other than i and in
which there is a path from every state other than i to i.) Hence,

v
(θ,ε)
i

v
(θ∗,ε)
i

=
∑

z∈Zi
(
∏

(j,k)∈z p
θ,ε
j,k )∑

z∈Zi
(
∏

(j,k)∈z p
θ∗,ε
j,k )

·
∑

z∈Z(
∏

(j,k)∈z p
θ∗,ε
j,k )∑

z∈Z(
∏

(j,k)∈z p
θ,ε
j,k )

.

Each of the fractions on the right side of the above expression is of the form
∑

y∈Y ay/
∑

y∈Y by . Such a ratio is
bounded below by miny∈Y ay/by and above by maxy∈Y ay/by . Every i-tree on S contains |S| − 1 directed edges.

Hence, the first of the two fractions is bounded below by (minj,k∈S p
θ,ε
jk /p

θ∗,ε
jk )|S|−1 and bounded above by the same

expression with max in place of min. The second fraction has similar bounds. Our assumption on the convergence of
the transition probabilities thereby implies that limθ→θ∗ limε→0 v

(θ,ε)
i /v

(θ∗,ε)
i = 1. This gives λθ

i → λθ∗
i as θ → θ∗ for

all i. The final conclusion of the theorem about the order of limits follows from Theorem 1(b): The hypothesis about
the limit of the ratios implies that the transition probabilities are continuous as θ → θ∗. Hence Theorem 1(b) implies
v(θ∗,ε) = limθ→θ∗ v(θ,ε), so that λθ∗ = limε→0 v(θ∗,ε) = limε→0 limθ→θ∗ v(θ,ε). �
Remark 4. The Robson and Vega-Redondo (1996) model does not satisfy the assumption of Theorem 3. Consider
the state i where two of the agents play the action of the Pareto-optimal equilibrium, while N − 2 of them play the
other action, where N � 4. When m = ∞, a transition to state j where all agents play the Pareto-optimal action
has probability εN . For finite m, p

m,ε
ij = g(m)(1 − ε)N + (1 − g(m))εN , where g(m) is the probability that the

random matching is such that the Pareto-optimal action has the higher realized payoff. g(m) converges to zero as
m → ∞, so the p

m,ε
ij is continuous in the m → ∞ limit. The ratio of the two transition probabilities, however, is

p
m,ε
ij /p

∞,ε
ij = 1 − g(m) + g(m)(1 − ε)N/εN . This diverges as ε → 0 for every value of m, so the hypothesis of

Theorem 3 is not satisfied.

In models of evolution with mutations, some transitions are typically assumed to be much less likely than others
when ε is small, e.g. a transition requiring two simultaneous mutations may have probability ε2, whereas a transition
requiring a single mutation has probability ε. Young (1993) and others have noted that the calculation of the limit
distribution can be simplified by ignoring some relatively unlikely transitions and focusing on what are known as
“minimum cost trees.” Theorem 3 can similarly be strengthened by noting that the condition on the ratios of the
transition probabilities need only hold for a subset of the transitions.

We will say that an i-tree zi is negligible (for small ε) if∏
(j,k)∈zi

p
(θ,ε)
jk

maxz∈Zi
(
∏

(j,k)∈z p
θ,ε
jk )

→ 0 as ε → 0

for all θ ∈ Θ ∪ {θ∗}.

Theorem 4. For every θ ∈ Θ ∪{θ∗} and ε > 0 let (p
θ,ε
jk )j,k∈S be irreducible with invariant distribution v(θ,ε). Suppose

that limθ→θ∗ p
θ,ε
jk = p

θ∗,ε
jk for all ε > 0 and j, k ∈ S and that λθ∗ = limε→0 v(θ∗,ε) exists. Let

I = {i ∈ S: lim
ε→0

v
(θ,ε)
i = 0 for all θ ∈ Θ ∪ {θ∗}}.
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Suppose that if i ∈ S \ I and z is a nonnegligible i-tree, then condition (13) is satisfied for all (j, k) ∈ z. Then the
conclusions of Theorem 3 hold.

Proof. The argument for this extension is straightforward. It suffices to show that λθ
i → λθ∗

i for i ∈ S \ I . In the proof
of Theorem 3 we noted that

v
(θ,ε)
i

v
(θ∗,ε)
i

=
∑

z∈Zi
(
∏

(j,k)∈z p
θ,ε
j,k )∑

z∈Zi
(
∏

(j,k)∈z p
θ∗,ε
j,k )

·
∑

z∈Z(
∏

(j,k)∈z p
θ∗,ε
j,k )∑

z∈Z(
∏

(j,k)∈z p
θ,ε
j,k )

.

Let Wi denote the set of nonnegligible i-trees and let W = ∪i∈S\IWi . Then for all θ ∈ Θ ∪ {θ∗},∑
z∈Wi

(
∏

(j,k)∈z p
θ,ε
j,k )∑

z∈Zi
(
∏

(j,k)∈z p
θ,ε
j,k )

→ 1,

∑
z∈W(

∏
(j,k)∈z p

θ,ε
j,k )∑

z∈Z(
∏

(j,k)∈z p
θ,ε
j,k )

→ 1 as ε → 0.

It now follows that for i ∈ S \ I ,

lim
θ→θ∗ lim

ε→0

v
(θ,ε)
i

v
(θ∗,ε)
i

= lim
θ→θ∗ lim

ε→0

∑
z∈Wi

(
∏

(j,k)∈z p
θ,ε
j,k )∑

z∈Wi
(
∏

(j,k)∈z p
θ∗,ε
j,k )

·
∑

z∈W(
∏

(j,k)∈z p
θ∗,ε
j,k )∑

z∈W(
∏

(j,k)∈z p
θ,ε
j,k )

= 1.

Thus, as limε→0 v
(θ∗,ε)
i = λθ∗

i , λθ
i = limε→0 v

(θ,ε)
i exists for θ sufficiently close to θ∗, and limθ→θ∗ λθ

i = λθ∗
i . �

4.2. Smooth imitation processes

We now discuss a class of smoothed imitation processes as an illustration of when the order of limits does not
matter. Consider a population of size N and a game with pure strategies 1, . . . ,K . Let S = {(x1, . . . , xK): xi ∈
{0, . . . ,N}, x1 + . . .+xK = N}, where xi is the number of agents that use strategy i. Assume that for each fixed ε � 0,
the family ({X(θ,ε)

t : θ ∈ Θ}) satisfies the assumptions of Section 2 with certain functions f
(ε)
ij and that {X(θ∗,ε)

t } is the
corresponding Markov chain for infinitely many rounds. Here ε corresponds to the mutation rate, as specified below,
and {X(θ,0)

t } and {X(θ∗,0)
t } are the no-mutation processes.

Following Fudenberg and Imhof (2006), we say that the no-mutation process is an imitation process if (a) p
θ,0
jk = 0

whenever there exists a strategy i that is present in state k but not in state j and (b) every state where two or more
actions are played is transient. These conditions mean that absent strategies will never be (re-)introduced without
mutations and that, starting from any initial state, the process will be absorbed in a state where all agents use the same
strategy.

Mutations are typically introduced into processes like these to capture the idea that extinct strategies can arise via
mutations. For i = 1, . . . ,K , let si denote the homogeneous state in which every agent plays i, and for i, j = 1, . . . ,K

with i 	= j , let si/j denote the state in which every agent plays i except for one, who plays j . We will say that {X(θ,ε)
t }

is a standard mutation extension of {X(θ,0)
t } if the transition probabilities are continuous in ε and for s 	= si we have

lim
ε→0

1

ε
P
{
X

(θ,ε)
t+1 = s

∣∣X(θ,ε)
t = si

}=
{

μ
(θ)
ij > 0 for s = si/j , j 	= i,

0 otherwise.

This condition implies that the probability that a single mutant invades a homogeneous population is exactly of order ε,

and that the probability that two or more mutants invade at the same time is o(ε). Fudenberg and Imhof (2006) show
that for small ε > 0, the standard mutation extension of an imitation process spends most of the time at the states
s1, . . . , sK ; moreover, transitions between these states occur mainly along the edges of the state space, where only two
pure strategies are present.

Let ρ
(θ)
ij be the probability that {X(θ,0)

t } will be absorbed in sj when X
(θ,0)
0 = si/j . Define a K × K matrix Λ(θ) =

(Λ
(θ)
ij ) by

Λ
(θ)
ij = μ

(θ)
ij ρ

(θ)
ij

/
M, j 	= i, Λ

(θ)
ii = 1 −

∑
j 	=i

μ
(θ)
ij ρ

(θ)
ij

/
M,
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where M is some constant chosen sufficiently large so that all of the diagonal elements are strictly positive. This
matrix can be regarded as the transition matrix of a Markov chain with states s1, . . . , sK , where the probability of a
transition from si to sj 	= si is given by the probability that a mutant using j invades a population in state si and the
probability that this mutant will take over the population in the absence of further mutations. We assume that Λ(θ) is
irreducible.4 Intuitively, this condition is met if there are enough edges along which transitions between homogeneous
states may occur to ensure the all states of the reduced process on {s1, . . . , sK } are recurrent. This is the case if,
under the no-mutation process, at every state in S \ {s1, . . . , sK }, every existing strategy has a positive chance of
increasing its share, as for example under the aspiration-and-imitation process of Binmore and Samuelson (1997) and
the frequency-dependent Moran process considered in Fudenberg et al. (2006). For these processes, Λ(θ) is a strictly
positive stochastic matrix. The Λ(θ) matrix is not irreducible for the Robson and Vega-Redondo process, because
players are assumed to emulate the more successful strategy with probability one, and the strategy that is used by only
one player will have a lower payoff regardless of the realization of the random matching. Although, in general, it may
be difficult to compute the absorptions probabilities ρ

(θ)
ij , to check irreducibility of Λ(θ) it is enough to know for all

pairs i 	= j whether ρ
(θ)
ij is positive.

We now show that limit distributions are continuous as the number of rounds of matching increases in such
smoothed imitation processes.

Theorem 5. Suppose that for every θ ∈ Θ ∪ {θ∗} the no-mutation process {X(θ,0)
t } is an imitation process and that

{X(θ,ε)
t } is a standard mutation extension of {X(θ,0)

t }. Suppose that for all ε > 0 and every θ ∈ Θ ∪ {θ∗}, {X(θ,ε)
t }

is irreducible; denote the unique invariant distribution by v(θ,ε). Suppose also that Λ(θ) is irreducible for every
θ ∈ Θ ∪{θ∗}. Finally, suppose that for i 	= j , μ(θ)

ij → μ
(θ∗)
ij as θ → θ∗ and that all the functions f

(ε)
ij (z) are continuous

in z. Then the limit distributions

λθ = lim
ε→0

v(θ,ε), θ ∈ Θ, λθ∗ = lim
ε→0

v(θ∗,ε)

exist and limθ→θ∗ λθ = λθ∗
, i.e. limθ→θ∗ limε→0 v(θ,ε) = limε→0 limθ→θ∗ v(θ,ε).

Proofs. We give two different short proofs, one drawing on Theorem 1 and the Fudenberg and Imhof (2006) result on
imitation processes, the other based on Theorem 1(a) and the least-cost-trees analysis of Theorems 3 and 4.

First proof: The assumptions of Theorem 1 of Fudenberg and Imhof (2006) are satisfied, so it follows that for each θ

the limit distribution exists, and that the limit distributions are all concentrated on the homogeneous states s1, . . . , sK.

Moreover, the probabilities the limit distribution assigns to the homogeneous states are given by η
(θ)
1 , . . . , η

(θ)
K , where

η(θ) is the unique invariant distribution of Λ(θ). From Theorem 1 (a) and (c), Λ(θ) → Λ(θ∗) as θ → θ∗, and it follows
by Theorem 1(b) that η(θ) → η(θ∗).

Second proof: As noted above, the limit distribution of the θ∗ process is concentrated on the pure states si . The
assumption that Λ(θ) is irreducible implies that for any θ (including θ∗), there is an si -tree with probability that is
O(εK−1).5 The nonnegligible trees consist of transitions from each si to some si/j together with transitions that have
positive probability in the no-mutation process. Part (a) of Theorem 1 implies that the transition probabilities are
continuous as θ → θ∗, which implies that ratios of transition probabilities of the latter type converge to one (because
the denominator is bounded away from 0). Our definition of a standard mutation extension ensures that the former also
have ratios that converge in the ε → 0 limit to constants that approach one as θ → θ∗, so we can apply the argument
of Theorem 4. �

4 Together with our assumption that Λ
(θ)
ii

> 0 for all i, this also ensures that Λ(θ) is aperiodic.
5 Such a tree can be explicitly constructed as follows. Pick some pure state sj 	= si . Choose a path from sj to si that is not self-intersecting and

that has positive probability in Λ(θ) . Add edges to the tree corresponding to the transitions in this path. If this path does not include all pure states,
pick another pure state and a path from this state to si , and add edges to the tree corresponding to the transitions on this path until si or another
state for which a transition has already been defined is reached. Once transitions out of all pure states have been defined, pick transitions that lead
from each transitory state to a pure state, and add these to the tree as needed.
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Under the assumptions of Theorem 5, λ
(θ)
si > 0 for all homogeneous states si and λ

(θ)
s = 0 for all other states s. In

this case one may be interested in how the weight given to each homogeneous state depends on the payoff matrix, and
on the limiting behavior as the population size or some other parameter changes. Fudenberg and Imhof (2008) study
the asymptotic behavior of the limit distribution in large populations for a class of imitation processes and provide
conditions under which a given strategy is selected in the sense that as the population grows to infinity, the limit
distribution converges to a point mass on the state where only this strategy is used.

5. Basins of attraction

A common approach to determining the limit distribution for an evolutionary process with small mutation rates is
to determine the basins of attraction of the corresponding no-mutation process and then calculate the limit distribution
by a mutation counting argument. For this reason it may be interesting to know the relationship between the basins of
attraction and the frequency of interaction, as in the next result, which will let us show that the difference between the
limit distributions in the models of Kandori et al. (1993) and Robson and Vega-Redondo (1996) is a consequence of
the different sizes of the respective basins.

We now assume that there are always exactly m rounds in each period.
If Ω ⊂ S is the union of one or more recurrent (i.e. closed and irreducible) classes of {X(m)

t }, the basin of attraction
of Ω for {X(m)

t } is (see Ellison, 2000)

D(m)(Ω) = {s ∈ S
∣∣P {∃t0 s.t. X

(m)
t ∈ Ω∀t � t0

∣∣X(m)
0 = s

}= 1
}
.

Let D∗(Ω) denote the basin of attraction of Ω for {X∗
t }.

Theorem 6. Suppose that the chains {X(m)
t }, m = 1,2, . . ., and {X∗

t } have the same recurrent classes, and that for
every i ∈ S , the support of the distribution of Zi is finite.

Let Ω ⊂ S be the union of one or more of the recurrent classes.

(a) For every m ∈ N,

D(m)(Ω) ⊆ D(1)(Ω).

(b) If for every i, j ∈ S , the set {x: fi,j (x) = 0} is convex, then for every m ∈ N,

D(m)(Ω) = D(1)(Ω) ⊆ D∗(Ω).

Proof. Let Ω ′ denote the set of all recurrent states in S \ Ω . If Ω ′ = ∅, then D(m)(Ω) = D∗(Ω) = S for all m.
Assume now that Ω ′ 	= ∅.

(a) We show that S \ D(1)(Ω) ⊆ S \ D(m)(Ω). Let s ∈ S \ D(1)(Ω). Then there is a path (i1, i2, . . . , ik) such that
i1 = s, ik ∈ Ω ′, and

p
(1)
ij ,ij+1

= Efij ,ij+1(Zij ) > 0 for j = 1, . . . , k − 1.

Thus for every j = 1, . . . , k − 1, there exists zij such that P {Zij = zij } > 0 and fij ,ij+1(zij ) > 0. Let Zij ,1, . . . ,Zij ,m

be i.i.d. copies of Zij . Then

P {Zij ,1 = Zij ,2 = . . . = Zij ,m = zij } = [P {Zij = zij }
]m

> 0,

and it follows that

p
(m)
ij ,ij+1

= Efij ,ij+1

(
Zij ,1 + . . . + Zij ,m

m

)
�
[
P {Zij = zij }

]m
fij ,ij+1(zij ) > 0,

where we used that fij ,ij+1 is nonnegative. Hence P {X(m)
k−1 ∈ Ω ′|X(m)

0 = s} �
∏k−1

j=1 p
(m)
ij ,ij+1

> 0, which shows that

s /∈ D(m)(Ω).
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(b) Let Ni,j := {x: fi,j (x) = 0} be convex for all i, j ∈ S . We show that S \ D(m)(Ω) ⊆ S \ D(1)(Ω). Let s ∈
S \ D(m)(Ω). Then there is a path (i1, i2, . . . , ik) such that i1 = s, ik ∈ Ω ′, and

p
(m)
ij ,ij+1

= Efij ,ij+1

(
Zij ,1 + . . . + Zij ,m

m

)
> 0 for j = 1, . . . , k − 1.

This implies that

P

{
Zij ,1 + . . . + Zij ,m

m
∈ Nij ,ij+1

}
< 1. (14)

Since Nij ,ij+1 is convex, it follows that P {Zij ∈ Nij ,ij+1} < 1. Indeed, otherwise Zij ,1, . . . ,Zij ,m ∈ Nij ,ij+1 almost

surely, so that also the convex combination 1
m

(Zij ,1 + . . .+Zij ,m) lies in Nij ,ij+1 almost surely, which contradicts (14).

Therefore, p
(1)
ij ,ij+1

= Efij ,ij+1(Zij ) > 0 for j = 1, . . . , k − 1. Hence s /∈ D(1)(Ω). In view of part (a), it follows that

D(m)(Ω) = D(1)(Ω).
We next show that S \ D∗(Ω) ⊆ S \ D(1)(Ω). Let s ∈ S \ D∗(Ω). Then there is a path (i1, i2, . . . , ik) such that

i1 = s, ik ∈ Ω ′, and

p∗
ij ,ij+1

= fij ,ij+1(EZij ) > 0 for j = 1, . . . , k − 1.

That is, EZij /∈ Nij ,ij+1 , and so, as Nij ,ij+1 is convex, P {Zij ∈ Nij ,ij+1} < 1. Therefore, p
(1)
ij ,ij+1

= Efij ,ij+1(Zij ) > 0

for j = 1, . . . , k − 1. Hence s /∈ D(1)(Ω). �
Remark 5. The convexity assumption in part (b) of Theorem 6 is satisfied in models derived from two-action games if
fij is of the form fij (x1, x2) > 0 for x1 > x2 and fij (x1, x2) = 0 otherwise. It would also be satisfied under any process
that was such that either fij (x) = 0 for all x or fij (x) > 0 for all x. The condition is, however, more demanding in
models involving games with more than two actions. For example, it would not be satisfied for the best-response
dynamic in a 3 × 3 game if strategy A was the best response to A, strategy B was the best response to B , but C was
the best response to a mixture of A and B .

The next example shows that the conclusion of Theorem 6(b) is false if the convexity assumption is dropped:

Example 5. Suppose that the common state space of the chains {X(m)
t }, m = 1,2, . . . , {X∗

t } is S = {1,2,3}, and

that the states 1 and 3 are absorbing states of all of these chains. If X
(m)
0 [resp. X∗

0] is in state 2, the transition
depends on the realization of m (resp. infinitely many) flips of a fair coin with possible values 0 and 1: When the
average of these realizations is z, the chain switches to state 1 with probability f21(z) and to state 3 otherwise, where
f21(x) = 1 − 2|x − 1

2 |. Here N21 = {x: f21(x) = 0} = {0,1} is not convex, and if m > 1, then

P

{
Z21 + . . . + Z2m

m
∈ N21

}
< 1,

but this does not imply that P {Z21 ∈ N21} < 1. We have

D(1)
({3})= {2,3}, D(m)

({3})= {3} for all m � 2 and D∗({3})= {3}.
Thus the inclusion in Theorem 6(a) is strict for m � 2, but neither the claimed equality nor the claimed inclusion in
Theorem 6(b) holds.

The following example of Robson and Vega-Redondo (1996, Section 2) shows that D(m)(Ω) can be a proper subset
of D∗(Ω), that is D(m)(Ω) ⊂ D∗(Ω) and D(m)(Ω) 	= D∗(Ω). The convexity assumption in Theorem 6(b) is satisfied
in the example.

Example 6. Consider a population of size N , where N is even and N � 4. In each round, all N individuals are paired
at random to play a symmetric 2 × 2 game with payoff matrix(

a11 a12
a21 a22

)
=
(√

3 0
1 1

)
.
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Let X
(m)
t denote the number of individuals using strategy 1. The payoff vector in period t , round r is given by

Yt,r =
[

Y
(1)
t,r

Y
(2)
t,r

]
,

where Y
(i)
t,r is the (sub-population) average payoff of all players that use strategy i, where Y

(i)
t,r = 0 if strategy i is not

used. To calculate the distribution of Yt,r suppose X
(m)
t = x and 0 < x < N . Clearly,

Y
(2)
t,r = 1.

Let Ct,r denote the random number of cross-pairings. The distribution of Ct,r depends only on x. There are

X
(m)
t − Ct,r

2
(1,1)-pairs,

Ct,r mixed pairs,

N − X
(m)
t − Ct,r

2
(2,2)-pairs.

Thus

Y
(1)
t,r = 1

X
(m)
t

[
a11
(
X

(m)
t − Ct,r

)+ a12Ct,r

]=
√

3

X
(m)
t

[
X

(m)
t − Ct,r

]
.

The (no-mutation) process is defined as follows: if

Y
(1)
t,1 + · · · + Y

(1)
t,m

m
>

Y
(2)
t,1 + · · · + Y

(2)
t,m

m
,

then X
(m)
t+1 = N , otherwise X

(m)
t+1 = 0. Thus, for i = 0, . . . ,N , fi,j (y

(1), y(2)) ≡ 0 for 1 � j � N − 1, and

fi,0
(
y(1), y(2)

)= {1, y(1) < y(2),

0, y(1) > y(2),
fi,N

(
y(1), y(2)

)= {0, y(1) < y(2),

1, y(1) > y(2).

For every m < ∞,

D(m)({0}) = {0,1}, D∗({0}) ⊇ {0,1,2}. (15)

To see this note that if only one agent plays 1, he is always in a mixed pair and receives payoff 0, while all 2-players
receive payoff 1. Thus 1 ∈ D(m)({0}) and 1 ∈ D∗({0}). If two agents play 1, the probability that they are matched in all
the m rounds is 1/(N −1)m > 0. If this happens, they receive

√
3, which is more than 1, the payoff to strategy 2. Thus

2 /∈ D(m)({0}). However, if two agents play 1 and there are infinitely many rounds, their payoff is
√

3/(N − 1) < 1,
and it follows that 2 ∈ D∗({0}).

Example 7. Note that when mutations are added (as in Robson and Vega-Redondo (1996)) the example satisfies the
continuity assumption of Theorems 1 and 2: The behavior rule is only discontinuous when the realized payoffs to the
two actions are equal, which is impossible because the payoff to 2 is irrational.

Theorem 7. Suppose that the chains {X(m)
t }, m = 1,2, . . . , and {X∗

t } have the same recurrent classes. Let Ω ⊂ S be
the union of one or more of the recurrent classes. Suppose that for all i, j ∈ S , fij is continuous at EZi . Then there
exists m0 such that for every number of rounds m � m0,

D(m)(Ω) ⊆ D∗(Ω) (16)

and the inclusion is strict if and only if there exists i ∈ D∗(Ω) and j ∈ S \ D(m)(Ω) with p
(m)
ij > 0.

Proof. By Theorem 1(a), the present continuity assumption on fij implies that for all i, j , p
(m)
ij → p∗

ij as m → ∞. It
follows that there is m0 such that

p∗
ij > 0 �⇒ p

(m)
ij > 0 for all m � m0. (17)
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Now if i /∈ D∗(Ω), then there must exist some recurrent class Ω ′ with Ω ∩ Ω ′ = ∅ such that Ω ′ can be reached by
{X∗

t } starting from i. It therefore follows from (17), that for m � m0, Ω ′ can also be reached by {X(m)
t } starting from i.

Hence i /∈ D(m)(Ω). This proves inclusion (16).
Finally, if (16) holds, then this inclusion is strict if and only if there exists some state i ∈ D∗(Ω) with i /∈ D(m)(Ω).

The proof is completed by observing that i ∈ D(m)(Ω) if and only if p
(m)
ij = 0 for all j ∈ S \ D(m)(Ω). �

Note that Example 5 also shows that the inclusion stated in Theorem 7 need not hold for every m, but only for
m � m0; in the example m0 = 2.

Example 8. In the setting of Example 6, (15) continues to hold for every m, if fij (y
(1), y(2)) ≡ 0 for 1 � j � N − 1,

and with some small δ > 0,

fi,0
(
y(1), y(2)

)= {1, y(1) < y(2) − δ,

0, y(1) > y(2) + δ,
fi,N

(
y(1), y(2)

)= {0, y(1) < y(2) − δ,

1, y(1) > y(2) + δ,

and all fij arbitrarily smooth. This shows that despite smoothness of the functions fij there need not be equality
in (16) even if m is large.

The next example shows that the inclusion (16) need not hold even when m is large if we merely assume that Ω is
a recurrent class of {X(m)

t } for all m = 1,2, . . . and of {X∗
t } and that the fij are continuous.

Example 9. Consider a symmetric 2-player game with pure strategies 1, 2, 3 and payoff matrix⎛
⎝ 1 1

2
1
2

1
2 2 2
1
2 0 0

⎞
⎠ .

The population consists of N agents, which may be of type A or B . Type A agents play strategy 1. Type B agents
play strategy 2 or 3, each with probability 1

2 . Every time a type B agents plays, he makes a new randomized decision

independent of everything else. Let X
(m)
t and X∗

t denote the number of type A agents in period t . If the average
payoff p of an agent is at least 1, he keeps his type, otherwise he changes to the opposite type with probability 1 − p.
That is, the probability of keeping the type is given by the continuous function min{1,p}.

If X
(m)
t = N or X∗

t = N , there will be only pairs of type A agents. Thus everyone receives every time payoff 1, so

that no-one will change his type. Hence N is an absorbing state of {X(m)
t } for every m and of {X∗

t }. If 1 � X
(m)
t �

N − 1, then in every round there is a positive probability that a mixed pair is formed, so that both agents receive
payoff 1

2 . Using this fact, one can show that p
(m)
i,i+1 > 0 and p

(m)
i,i−1 > 0 for all m. Similarly, if 1 � X∗

t � N − 1, then

the average payoff of every agent is less than 1, and it follows that p∗
i,i+1 > 0 and p∗

i,i−1 > 0. If X
(m)
t = 0, there will

be only B pairs and there is a positive probability that every agent plays strategy 2 in each of the m rounds. In this
case, all average payoffs are 0 and every agent switches his type. Hence p

(m)
0N > 0 for all m. However, if there are

infinitely many rounds and X∗
t = 0, the average payoff to every agent is 1, so that no-one switches. That is, p∗

00 = 1.
Consequently,

D(m)
({N})= {0, . . . ,N}, D∗({N}) = {N}.
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