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NOTES AND COMMENTS

REPEATED GAMES WHERE THE PAYOFFS AND MONITORING
STRUCTURE ARE UNKNOWN

BY DREW FUDENBERG AND YUICHI YAMAMOTO1

This paper studies repeated games with imperfect public monitoring where the play-
ers are uncertain both about the payoff functions and about the relationship between
the distribution of signals and the actions played. We introduce the concept of perfect
public ex post equilibrium (PPXE), and show that it can be characterized with an exten-
sion of the techniques used to study perfect public equilibria. We develop identifiability
conditions that are sufficient for a folk theorem; these conditions imply that there are
PPXE in which the payoffs are approximately the same as if the monitoring structure
and payoff functions were known. Finally, we define perfect type-contingently public ex
post equilibria (PTXE), which allows players to condition their actions on their initial
private information, and we provide its linear programming characterization.

KEYWORDS: Repeated game, public monitoring, incomplete information, perfect
public equilibrium, folk theorem, belief-free equilibrium, ex post equilibrium.

1. INTRODUCTION

THE ROLE OF REPEATED PLAY in facilitating cooperation is one of the main
themes of game theory. Past work has shown that reciprocation can lead to
more cooperative equilibrium outcomes even if there is imperfect public mon-
itoring, so that players do not directly observe their opponents’ actions, but
instead observe noisy public signals whose distribution depends on the ac-
tions played. This work has covered a range of applications, from oligopoly
pricing (e.g., Green and Porter (1984) and Athey and Bagwell (2001)) to re-
peated partnerships (Radner, Myerson, and Maskin (1986)) and relational
contracts (Levin (2003)). These applications are accompanied by a theoreti-
cal literature on the structure of the set of equilibrium payoffs and its charac-
terization as the discount factor approaches 1, most notably Abreu, Pearce,
and Stacchetti (1986, 1990 (hereafter APS)), Fudenberg and Levine (1994
(hereafter FL)), Fudenberg, Levine, and Maskin (1994 (hereafter FLM)), and
Fudenberg, Levine, and Takahashi (2007). All of these papers assume that
the players know the distribution of public signals as a function of the ac-
tions played. In some cases this assumption seems too strong: For example,
the players in a partnership may know that high effort makes good outcomes
more likely, but not know the exact probability of a bad outcome when all
agents work hard. This paper allows for such uncertainty, and also allows for
uncertainty about the underlying payoff functions.

1We thank Nageeb Ali, Susan Athey, Olivier Gossner, Michihiro Kandori, Larry Samuelson,
Bill Sandholm, Satoru Takahashi, Joel Watson, Thomas Wiseman, and three referees for insight-
ful comments, and NSF (Grant 0646816) for financial support.
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Specifically, we study repeated games in which the state of the world, chosen
by Nature at the beginning of the play, influences the distribution of public
signals and/or the payoff functions of the stage game. The effect of the state on
the payoff functions can be direct, and can also be an indirect consequence of
the effect of the state on the distribution of signals. For example, in a repeated
partnership, the players will tend to have higher expected payoffs at a given
action profile at states where high output is most likely, so even if the payoff to
high output is known, uncertainty about the probability of high output leads to
uncertainty about the expected payoffs of the stage game.

Because actions are imperfectly observed, the players’ posterior beliefs need
not coincide in later periods, even when they share a common prior on the dis-
tribution of states. This complicates the verification of whether a given strategy
profile is an equilibrium, and thus makes it difficult to provide a characteriza-
tion of the entire equilibrium set. Instead, we consider a subset of Nash equi-
libria, called perfect public ex post equilibria or PPXE. A strategy profile is a
PPXE if it is public, that is, it depends only on publicly available information,
and if its continuation strategy constitutes a Nash equilibrium given any state
and given any history. In a PPXE, a player’s best reply does not depend on her
belief, so that the equilibrium set has a recursive structure and the analysis is
greatly simplified.2 Moreover, like other forms of ex post equilibrium, PPXE
are robust to variations in priors beliefs: A PPXE for a given prior distribution
is a PPXE for an arbitrary prior.3

Before developing our general characterization of PPXE, we give a few ex-
amples. The first two examples consider special structures that make it easy to
give explicit constructions of PPXE. One important fact these examples illus-
trate is that even though players start out not knowing the state, conditioning
play on outcomes can indirectly allow the state to determine play and equilib-
rium payoffs. For example, if the outcome perfectly reveals the state, there can
be PPXE where player 1’s preferred perfect public equilibrium (PPE) is played
from period 2 on in state ω1 and player 2’s preferred PPE is played from pe-
riod 2 on in state ω2. The third and fourth examples are partnership games
where the uncertainty concerns the productivity of effort. Here the noncon-
structive characterization that we develop in the rest of the paper lets us show
that the folk theorem applies in Example 3 while payoffs can be bounded away
from efficiency in Example 4. In both of these examples, the distribution of
outcomes can reveal the state and the folk theorem would hold in each state if

2As a referee pointed out, the fact that PPXE is independent of beliefs about the state sim-
plifies the analysis even in the case where actions are observed so that players have common
beliefs.

3See Bergemann and Morris (2007) for a discussion of various definitions of ex post equilib-
rium. Miller (2009) analyzed a different sort of ex post equilibrium: he considered repeated games
of adverse selection, where players report their types each period, as in Section 8 of FLM, and
added the restriction that announcing truthfully should be optimal regardless of the announce-
ments of the other players.
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the state were known; the key is that in Example 4 the states are “entangled,”
while in Example 3 they are not.

To characterize the limit of the set of PPXE payoffs as the discount fac-
tor goes to 1, we extend the linear programming characterization of the limit
payoffs of PPE. That is, we show in Section 4 that the limit of the set of pay-
off vectors to PPXE as the discount factor goes to 1 is the intersection of the
“maximal half-spaces” in various directions, where each component λω

i of the
direction vector λ corresponds to the weight attached to player i’s payoff in
state ω. The main new feature is that in a PPXE, the equilibrium payoffs are
allowed to vary with the state and can do so even if the state does not influence
the expected payoffs to each action profile—for example, there can be PPXE
where player 1 does better in state ω1 and player 2 does better in state ω2.
Thus PPXE can involve a form of “utility transfer” across states. For this rea-
son, the maximal half-space in these “cross-state directions” can be the whole
space, while in FL the maximal half-space in each direction is bounded by the
feasible set.

In Section 5, we use this characterization to give sufficient conditions for
an “ex post” folk theorem: For any map from states to payoff vectors that are
feasible and individually rational in that state, there is a PPXE whose payoffs
in each state approximate the target map as the discount factor tends to 1. As
in FLM, this theorem uses individual and pairwise full-rank conditions, and
assumes that the set of feasible and individually rational payoffs satisfies a full-
dimension condition. In addition, the theorem adds the assumption that for
every pair (i�ω) and (j� ω̃) of individuals and states, there is a profile α that has
“statewise full rank,” which means roughly that the observed signals reveal the
state regardless of whether i or j (but not both!) unilaterally deviates from α.

As in FLM, a weaker, “static-threats,” version of the folk theorem holds un-
der milder informational conditions. Section 6 shows that pairwise full rank can
be replaced by the condition of “pairwise identifiability,” which can be satisfied
with a smaller number of signals, and that statewise full rank can be relaxed to
“statewise distinguishability.” Very roughly speaking, this condition says that
for every pair of players i, j and pair of states ω, ω̃, there is a strategy profile
whose signal distribution distinguishes between the two states regardless of the
deviations of player j, and such that continuation payoffs can give a large re-
ward to player i in state ω without increasing player i’s incentive to deviate and
without affecting player j’s payoff in state ω̃. We use this condition to explain
the difference between Example 3 and Example 4.

Finally, we explain how to extend our analysis to games where the players
have initial private information. In such games, the PPXE still satisfy all of the
incentive constraints and are still PPXE; they now correspond to pooling equi-
libria where all types of a given player use the same strategy. We then introduce
the concept of “perfect type-contingently public ex post equilibria” or PTXE;
this concept allows players to condition on their initial private information as
well as the subsequent public history. The set of PTXE has a recursive struc-
ture, and the set of limit payoffs can be characterized by an extension of the
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linear programming algorithm that allows the action profile used to generate
a given score to depend on the vector of types. However, despite the similar
formal structure, the set of limit payoffs can be very different than before, as
the players now have additional sources of information about the state. Thus
we postpone a detailed exploration of PTXE to Fudenberg and Yamamoto
(2010a), where we provide weaker sufficient conditions for a folk theorem and
then provide a detailed analysis of several special cases, including that of games
with a known monitoring structure.

While the study of uncertain monitoring structures is new, there is a sub-
stantial literature on repeated games with unknown payoff functions and per-
fectly observed actions, notably Forges (1984), Sorin (1984, 1985), Hart (1985),
Aumann and Maschler (1995), Cripps and Thomas (2003), Gossner and Vieille
(2003), Pȩski (2008), Wiseman (2005, 2008), Hörner and Lovo (2009), and
Hörner, Lovo, and Tomala (2010).4 Our work makes two extensions to this
literature—first to the case of unknown payoff functions and imperfectly ob-
served actions but a known monitoring technology, and from there to the
case where the monitoring structure is itself unknown. Our work is closest to
that of Hörner and Lovo (2009) and Hörner, Lovo, and Tomala (2010), as
PTXE reduces to the belief-free equilibria they considered when actions are
perfectly observed; we say more about these papers in Fudenberg and Ya-
mamoto (2010a). PPXE is also related to belief-free equilibria in repeated
games with private monitoring, as in Piccione (2002), Ely and Välimäki (2002),
Ely, Hörner, and Olszewski (2005), Yamamoto (2007), Kandori (2010), and
Yamamoto (2009).5 However, unlike the belief-free equilibria in those papers,
the ex post equilibria we consider do not require that players be indifferent,
and so it is not subject to the robustness critiques of Bhaskar, Mailath, and
Morris (2008); this is what motivates our choice of a different name for the
concept.

2. UNKNOWN SIGNAL STRUCTURE AND PERFECT PUBLIC EX POST EQUILIBRIA

2.1. Model

Let I = {1� � � � � I} represent the set of players. At the beginning of the game,
Nature chooses the state of the world ω from a finite set Ω = {ω1� � � � �ωO}.

4Gossner and Vieille (2003) and Wiseman (2005) studied symmetric-information settings. In
Aumann and Hart (1992), Aumann and Maschler (1995), Cripps and Thomas (2003), Pȩski
(2008), Hörner and Lovo (2009), Wiseman (2008), and Hörner, Lovo, and Tomala (2010), players
receive private signals about the payoff functions and so can have different beliefs. (In Wiseman
(2008), the players privately observe their own realized payoff each period; in the other papers
the players do not observe their own realized payoffs, and the private signals are the players’
initial information or “type.”)

5Belief-free equilibria and the use of indifference conditions have also been applied to re-
peated games with random matching (Deb (2009), Takahashi (2010)).
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Assume that players cannot observe the true state ω, and let μ ∈ Δ(Ω) denote
the players’ common prior over ω.6 For now we assume that the game begins
with symmetric information: Each player’s beliefs about ω correspond to the
prior. We relax this assumption in Section 7.

Each period, players move simultaneously, with player i ∈ I choosing an ac-
tion ai from a finite set Ai. Given an action profile a = (ai)i∈I ∈ A ≡ ×i∈IAi,
players observe a public signal y from a finite set Y according to the probabil-
ity function πω(a) ∈ Δ(Y); we call the function πω the monitoring technology.
Player i’s realized payoff is uω

i (ai� y), so that her expected payoff conditional
on ω ∈ Ω and on a ∈ A is gω

i (a) = ∑
y∈Y π

ω
y (a)u

ω
i (ai� y); gω(a) denotes the

vector of expected payoffs associated with action profile a.
In the infinitely repeated game, players have a common discount factor

δ ∈ (0�1). Let (aτ
i � y

τ) be the realized pure action and observed signal in pe-
riod τ, and denote player i’s private history at the end of period t ≥ 1 by
ht
i = (aτ

i � y
τ)tτ=1.7 Let h0

i = ∅ and for each t ≥ 1, let Ht
i be the set of all ht

i .
Likewise, a public history up to period t ≥ 1 is denoted by ht = (yτ)tτ=1, and
Ht denotes the set of all ht . A strategy for player i is defined to be a map-
ping si :

⋃∞
t=0 H

t
i → Δ(Ai). Let Si be the set of all strategies for player i and let

S = ×i∈ISi. Note that the case of a known public monitoring structure corre-
sponds to a single possible state, Ω= {ω}.

We define the set of feasible payoffs in a given state ω to be

V (ω)≡ co{gω(a)|a ∈ A} = {gω(η)|η ∈ Δ(A)}�
where Δ(A) is the set of all probability distributions over A: As in the standard
case of a game with a known monitoring structure, the feasible set is both the
set of feasible average discounted payoffs in the infinite-horizon game when
players are sufficiently patient and the set of expected payoffs of the stage
game that can be obtained when players use a public randomizing device to
implement distribution η over the action profiles.

Next we define the set of feasible payoffs of the overall game to be

V ≡ ×
ω∈Ω

V (ω)�

so that a point v ∈ V = (vω1� � � � � vωO)= ((v
ω1
1 � � � � � v

ω1
I )� � � � � (v

ωO
1 � � � � � v

ωO
I )).

6Because our arguments deal only with ex post incentives, they extend to games without a
common prior. However, as Dekel, Fudenberg, and Levine (2004) argued, the combination of
equilibrium analysis and a noncommon prior is hard to justify.

7As written, this formulation assumes that players do not observe their realized payoffs
uω
i (ai� y), unless the realized payoff does not depend on ω. Since we restrict attention to ex

post equilibria, where players’ beliefs about the state do not matter, we do not need to im-
pose this restriction, with the exception of Lemma 9, where the restriction is explicitly stated.
If players observe the realized payoff, then player i’s private history after period t also includes
(uω

i (a
τ
i � y

τ))tτ=1.
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Note that a given v ∈ V may be generated using different action distribu-
tions η(ω) in each state ω. If players observe ω at the start of the game and
are very patient, then any payoff in V can be obtained by a state-contingent
strategy of the infinitely repeated game. Looking ahead, there will be equilib-
ria that approximate payoffs in V if the state is identified by the signals, so that
players learn it over time. Note also that even if players have access to a public
randomizing device, the set of feasible payoffs of the stage game is the smaller
set

V C = {gω(η)|η ∈ Δ(A)}ω∈Ω�

because play in the stage game must be a constant independent of ω.

2.2. Perfect Public ex post Equilibria

This paper studies a special class of Nash equilibria called perfect public ex
post equilibria (PPXE); this is an extension of the concept of perfect public
equilibrium that was introduced by FLM. Given a public strategy profile s ∈ S
and a public history ht ∈ Ht , let s|ht denote its continuation strategy profile
after ht .

DEFINITION 1: A strategy si ∈ Si is public if it depends only on public infor-
mation, that is, for all t ≥ 1, ht

i = (aτ
i � y

τ)tτ=1 ∈ Ht
i , and h̃t

i = (ãτ
i � ỹ

τ)tτ=1 ∈ Ht
i

satisfying yτ = ỹτ for all τ ≤ t, si(ht
i) = si(h̃

t
i). A strategy profile s ∈ S is public

if si is public for all i ∈ I.

DEFINITION 2: A strategy profile s ∈ S is a perfect public ex post equilibrium
if for every ω ∈ Ω, the profile is a perfect public equilibrium of the game with
known monitoring structure πω.8

Given a discount factor δ ∈ (0�1), let E(δ) denote the set of PPXE payoffs,
that is, E(δ) is the set of all vectors v = (vωi )(i�ω)∈I×Ω ∈ RI×|Ω| such that there is
a PPXE s ∈ S satisfying

(1 − δ)Eω�s

[∑
t=1

δt−1gω
i (a

t)

]
= vωi

for all i ∈ I and ω ∈ Ω, where Eω�s[·] is the expectation with respect to the
probability measure on histories induced by the strategy profile s at state ω.

8That is, s is a public strategy, and for every ω ∈ Ω and any public history ht ∈ Ht� the con-
tinuation strategy profile s|ht is a Nash equilibrium of the “continuation game” corresponding to
{ht�ω}. In this continuation game, players know that the state is ω, and because all opponents
are using public strategies, each player can compute the expected payoff to any of their strategies
(public or private) even though {ht�ω} is not the root of a proper subgame.
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Note that v ∈ E(δ) specifies the equilibrium payoff for all players and for all
possible states. Note also that the set of PPXE can be empty, in contrast to the
case of perfect public equilibria of games with a known state.9 However, the
conditions of our ex post folk theorem imply that PPXE exist for sufficiently
large discount factors.

Because PPXE is an ex post equilibrium concept, each player’s payoff
in each state must be at least the minmax value in that state. Let vωi =
minα−i

maxai g
ω
i (ai�α−i) be the minmax payoff for player i in state ω, and let

V ∗(ω) = {vω ∈ V (ω)|vωi ≥ vωi } be the set of feasible and individually rational
payoffs at state ω. Let

V ∗ ≡ ×
ω∈Ω

V ∗(ω)= {v ∈ V |∀i ∈ I�∀ω ∈ Ω�vωi ≥ vωi }

be the subset of the feasible payoff state where each player receives at least her
minmax payoff in each state; this is the set of feasible and individually rational
payoffs of the overall game. Since each player’s payoff in each state must be
at least the minmax value of that state, E(δ) ⊆ V ∗. Our folk theorem assumes
that V ∗ has nonempty interior (as a subset of RI×|Ω|); this in turn will be the
case if V ∗(ω) has nonempty interior (as a subset of RI) for each ω.

By definition, any continuation strategy of a PPXE is also a PPXE. Thus
any PPXE specifies PPXE continuation play after each signal y , where the
continuation payoffs w(y)= (wω

i (y))(i�ω)∈I×Ω corresponding to this signal spec-
ify payoffs for every player and every state. We will write πω(α) · wω

i for∑
y π

ω
y (α)w

ω
i (y), which is player i’s expected continuation payoff at state ω

under action profile α. This recursive structure of the equilibrium payoff set
motivates the following definition.

For δ ∈ (0�1) and W ⊆ RI×|Ω|, a pair (α�v) ∈ (×i∈IΔ(Ai)) × RI×|Ω| of an
action profile and a payoff vector is ex post enforceable with respect to δ and W
if there is a function w = (wω)ω∈Ω :Y →W such that

vωi = (1 − δ)gω
i (α)+ δπω(α) ·wω

i

for all i ∈ I and ω ∈Ω, and

vωi ≥ (1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) ·wω

i

for all i ∈ I, ω ∈ Ω, and ai ∈ Ai.
For each δ ∈ (0�1), W ⊆ RI×|Ω|, and α ∈ ×i∈IΔ(Ai), let B(δ�W �α) denote

the set of all payoff vectors v ∈ RI×|Ω| such that (α�v) is ex post enforceable
with respect to δ and W . Let B(δ�W ) be a union of B(δ�W �α) over all α ∈×i∈IΔ(Ai).

9With a known state, repeated play of a static Nash equilibrium is a perfect public equilibrium
of the repeated game. Similarly, repeated play of a static ex post equilibrium is a PPXE, but static
ex post equilibria need not exist.
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To prove our main results, we will use the fact that various useful properties
of PPE extend to PPXE.

DEFINITION 3: A subset W of RI×|Ω| is ex post self-generating with respect to δ
if W ⊆ B(δ�W ).

THEOREM 1: If a subset W of RI×|Ω| is bounded and ex post self-generating
with respect to δ, then W ⊆ E(δ).

For the proof see the Supplemental Material (Fudenberg and Yamamoto
(2010b)). The proof is very similar to APS. The key is that when W is ex post
self-generating, the continuation payoffs w(y) used to enforce v ∈ W ⊂ RI×|Ω|

have the property that for each y ∈ Y , the vector w(y) ∈ RI×|Ω| can in turn
be ex post generated using a single next-period action α (independent of ω)
so that the strategy profile constructed by “unpacking” the ex post generation
conditions does not directly depend on ω.

DEFINITION 4: A subset W of RI×|Ω| is locally ex post generating if for each
v ∈ W , there exist δv ∈ (0�1) and an open neighborhood Uv of v such that
W ∩Uv ⊆ B(δv�W ).

THEOREM 2: If a subset W of RI×|Ω| is compact, convex, and locally ex post
generating, then there is δ ∈ (0�1) such that W ⊆ E(δ) for all δ ∈ (δ�1).

See the Supplemental Material for the proof, which is a straightforward gen-
eralization of FLM.

3. EXAMPLES

Before proceeding with the general analysis, we present several examples to
illustrate properties of PPXE. The first two examples make special assump-
tions that permit the explicit construction of PPXE strategies. The third and
fourth examples are variants of a repeated partnership game. Here we use our
nonconstructive techniques to show that whether incentive problems lead to
inefficiency depends on certain details of the information structure.

EXAMPLE 1: There are two players, I = {1�2}, and two possible states, Ω =
{ω1�ω2}. In every stage game, player 1 chooses an action from A1 = {U�D},
while player 2 chooses an action from A2 = {L�R}. Their expected payoffs
gω
i (a) are

L R

U 2�2 0, 1
D 0�0 1, 1

L R

U 1�1 0, 0
D 1�0 2, 2
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Here, the left table shows expected payoffs for state ω1 and the right table
shows payoffs for state ω2. Note that the feasible payoff set at state ω is full
dimensional for each ω, and so is the feasible payoff set V of the entire game.
Suppose that the set of possible public signals is Y = A × Ω, and that the
monitoring technology is such that πω

y (a) = ε > 0 for y �= (a�ω) and πω
y (a) =

1 − 7ε for y = (a�ω).
Note that (U�L) is a static Nash equilibrium for each state. Hence, playing

(U�L) in every period is a PPXE, yielding the payoff vector ((2�2)� (1�1)).
Likewise, playing (D�R) in every period is a PPXE, yielding the payoff vec-
tor ((1�1)� (2�2)). “Always (U�L)” Pareto-dominates “always (D�R)” for
state ω1, but is dominated for state ω2. Note that these equilibrium payoff
vectors are in V C , the set of feasible payoff vectors with a constant (state-
independent) probability distribution over actions. Let Y(ω1) be the set {y =
(a�ω) ∈ Y |ω = ω1} and let Y(ω2) be the set {y = (a�ω) ∈ Y |ω = ω2}. Con-
sider the following strategy profile:

• In period one, play (U�L).
• If y ∈ Y(ω1) occurs in period one, play (U�L) afterward.
• If y ∈ Y(ω2) occurs in period one, play (D�R) afterward.
After every one-period public history h1 ∈ H1, the continuation strategy pro-

file is a PPXE. Also, given any state ω ∈ Ω, nobody wants to deviate in period
one, since (U�L) is a static Nash equilibrium and players cannot affect the dis-
tribution of the continuation play. Therefore, this strategy profile is a PPXE;
its payoff vector converges to v∗ = ((2−4ε�2−4ε)� (2−4ε�2−4ε)) as δ→ 1.
Observe that v∗ /∈ V C if ε ∈ (0� 1

8). In particular, this equilibrium approximates
the efficient payoff vector ((2�2)� (2�2)) as the noise parameter ε goes to zero.

The idea of this construction is that continuation play depends on what play-
ers have learned about the state. When players observe y ∈ Y(ω1) and learn
that ω1 is more likely, they choose “always (U�L),” which yields an efficient
payoff (2�2) in state ω1, but gives an inefficient outcome (1�1) in ω2. Likewise,
when players observe y ∈ Y(ω2) and learn that ω2 is more likely, they choose
“always (D�R)” to achieve an efficient payoff (2�2) in state ω2 but an ineffi-
cient payoff in ω1. In this sense, PPXE allows “utility transfers” across states.

Example 1 is misleadingly simple, because there is an ex post equilibrium of
the static game, and for this reason there is a PPXE for all discount factors.
It is also very easy to construct equilibria that approximate efficient payoffs in
this example: Simply specify that (U�L) is played for T periods and then either
(U�L) or (D�R) is played forever afterward, depending on which state is more
likely. In the next example there is no static ex post equilibrium, and hence no
PPXE for a range of small discount factors.

EXAMPLE 2: Now we consider the game where players can learn the true
state from observed signals. Suppose that there are two players and two states,
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so that I = {1�2} and Ω = {ω1�ω2}. The payoffs for state ω1 are shown in the
left panel and those for state ω2 in the right:

L R

U 1�1 −1, 2
D 2�−1 0, 0

L R

U 0�0 2, −1
D −1�2 1, 1

Note that the stage game is prisoner’s dilemma for each state, but the roles of
actions are reversed; specifically, (U�L) is efficient for state ω1, while (D�R)
is efficient for state ω2.

Assume that the set of possible public signals is Y = A × Ω, and that the
monitoring technology is perfect: πω

y (a) = 1 if y = (a�ω) and πω
y (a) = 0 oth-

erwise. As we will see, this example satisfies all of the full-rank conditions of
our general ex post folk theorem, so in particular a PPXE exists, but our proof
of the general folk theorem is not constructive.

Because this example has perfect monitoring, it is easy to give an explicit
construction of a PPXE whose payoffs converge to the efficient frontier in
each state. The basic idea is to wait one period, learn the state, and play a
subgame-perfect equilibrium for the corresponding known-state game. How-
ever, the strategies used in the construction need to be a bit more complicated,
as the recursive nature of PPXE requires that the strategies specify incentive
compatible play following every sequence of signals, including those that have
probability 0 unless “Nature deviates.”

Consider a strategy with the following four phases:
• Phase “Regular ω1.” Players play (U�L), which gives the efficient payoffs

for state ω1. If y = ((U�L)�ω1), stay. If y = ((D�L)�ω1), y = ((U�R)�ω1), or
y = ((D�R)�ω1), go to “Punish ω1.” If y = ((U�L)�ω2), go to “Regular ω2”;
otherwise, go to “Punish ω2.”

• Phase “Punish ω1.” Players play (D�R), which gives the minimax payoffs
for state ω1. If y = ((D�R)�ω2), go to “Regular ω2.” If y = ((U�R)�ω2), y =
((D�L)�ω2), or y = ((U�L)�ω2), go to “Punish ω2”; otherwise, stay.

• Phase “Regular ω2.” Players play (D�R), which gives the efficient payoffs
for state ω2. If y = ((D�R)�ω2), stay. If y = ((U�R)�ω2), y = ((D�L)�ω2), or
y = ((U�L)�ω2), then go to “Punish ω2.” If y = ((D�R)�ω1), go to “Regular
ω1”; otherwise, go to “Punish ω1.”

• Phase “Punish ω2.” Players play (U�L), which gives the minimax payoffs
for state ω2. If y = ((U�L)�ω1), go to “Regular ω1.” If y = ((D�L)�ω1), y =
((U�R)�ω1), or y = ((D�R)�ω1), go to “Punish ω1”; otherwise, stay.

It is straightforward to check that this strategy profile with initial phase “Reg-
ular ω1” is a PTXE and approximates ((2�2)� (2�2)).

Claim 7 in the Appendix shows how to extend the idea of this construction to
any case where actions and states are perfectly observed, and uses it to prove a
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folk theorem for this observation structure.
The next two examples are partnership games with two actions {Ci�Di} per

player, corresponding to high and low effort on the group project. There are
three possible outcomes H, M , and L, two states, and stage game payoffs that
make Di a dominant strategy in each state. The probability distribution gener-
ated by (D1�D2) is known and so independent of the state; what is unknown is
the productivity of high effort. Moreover, the monitoring structure (or produc-
tion function) in these games is additive: the change in probabilities induced
by player i’s changing from Ci to Di is the same regardless of the action of the
other player.

EXAMPLE 3: In this example the uncertainty is symmetric in the state: In
state ω1, if player 1 chooses C1 instead of D1, then the probabilities of H and M
increase by pH and pM , while player 2’s choice of C2 increases the probabilities
by qH and qM ; in state ω2, the roles are reversed. The realized payoff functions
are independent of ω and are given by

ui(Ci� y)= ri(y)− ei and ui(Di� y)= ri(y)

for each i ∈ I, ω ∈ Ω, and y ∈ Y . We assume that for each i ∈ I,

ri(H) > ri(M) > ri(L)�

ei > pH(ri(H)− ri(L))+pM(ri(M)− ri(L))�

ei > qH(ri(H)− ri(L))+ qM(ri(M)− ri(L))�

Here the left-hand side of the second inequality is the cost of player 1’s choice
of C1 for state ω1 (or the cost of player 2’s choice of C2 for state ω2), and
the right-hand side is an increase in player 1’s benefit from the project when
he chooses C1 instead of D1 for state ω1 (or an increase in player 2’s benefit
when he chooses C2 for state ω2). Since the left-hand side is greater than the
right-hand side, we conclude that D1 strictly dominates C1 for state ω1 and
that D2 strictly dominates C2 for state ω2. Likewise, the third inequality asserts
that D1 strictly dominates C1 for state ω2 and that D2 strictly dominates C2 for
state ω1. Thus, Di strictly dominates Ci for each state. Moreover, we assume
that for each i ∈ I,

ei < pH(r1(H)+ r2(H)− r1(L)− r2(L))

+pM(r1(M)+ r2(M)− r1(L)− r2(L))

and

ei < qH(r1(H)+ r2(H)− r1(L)− r2(L))

+ qM(r1(M)+ r2(M)− r1(L)− r2(L))�
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so that choosing Ci instead of Di always increases the total surplus. Summing
up, the payoff matrix of the stage game corresponds to a prisoner’s dilemma
for each sate; hence, V ∗ has a nonempty interior and (D1�D2) is a static ex post
equilibrium.

EXAMPLE 4: In this example, the state only influences the productivity of
player 2’s effort: If player 1 chooses C1 instead of D1, then the probabilities
of H and M increase by pH and pM , independently of the state. In contrast, if
player 2 chooses C2 instead of D2, then the probabilities of H and M increase
by qH and qM in state ω1, but they increase only by βqH and βqM in state ω2,
where 0 <β< 1.

As in Example 3, the payoffs have the form

ui(Ci� y)= ri(y)− ei and ui(Di� y)= ri(y)

for each i ∈ I and y ∈ Y . We once again impose restrictions on the realized
payoffs so that the stage-game payoffs in each state correspond to a prisoner’s
dilemma: Di is a dominant strategy, so (D1�D2) is a static ex post equilibrium,
(C1�C2) is efficient, and V ∗ has a nonempty interior.10

In both of these examples, the conditions of FLM’s Theorem 6.1 apply in
each state considered in isolation, so if the state were known, the folk theorem
would apply. Moreover, in each example there are action profiles that reveal
the state, in the sense that the outcome distribution at that profile is different
at state ω1 than at state ω2. However, our ex post-threats folk theorem applies
only to Example 3, while in Example 4 the folk theorem fails and, moreover,
PPXE payoffs can be bounded away from efficiency.

As we will show, the key difference is that in Example 4, the two states
are “entangled” in the sense that for any α1, the distribution πω2(α1�C2) is
a convex combination of πω1(α1�C2) and πω2(α1�D2)� while this is not the
case in Example 3 provided that α1 assigns positive probability to D1. Hence
in Example 4, lowering the expected value of the continuation payoffs under
πω2(α1�D2) (which can be necessary to provide incentives) also lowers the con-
tinuation payoffs under πω2(α1�C2), and this bounds the set of PPXE payoffs
away from the efficient frontier.

10The conditions on the payoffs are somewhat different here due to the difference in
the monitoring structure. Now we assume ri(H) > ri(M) > ri(L); e1 > pH(r1(H) − r1(L)) +
pM(r1(M) − r1(L)); e2 > qH(r2(H) − r2(L)) + qM(r2(M) − r2(L)); e1 < pH(r1(H) + r2(H) −
r1(L) − r2(L)) + pM(r1(M) + r2(M) − r1(L) − r2(L)); and e2 < βqH(r1(H) + r2(H) − r1(L) −
r2(L))+βqM(r1(M)+ r2(M)− r1(L)− r2(L)).
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4. CHARACTERIZING E(δ)

4.1. Using Linear Programming to Bound E(δ)

In this subsection, we provide a bound on the set of PPXE payoffs that holds
for any discount factor; the next subsection shows that this bound is tight as the
discount factor converges to 1.

Consider the following linear programming problem. Let α ∈ ×i∈IΔ(Ai),
λ ∈ RI×|Ω|, and δ ∈ (0�1). Then

k∗(α�λ�δ)(LP Average)

= max
v∈RI×|Ω|

w : Y→RI×|Ω|

λ · v subject to

(i) vωi = (1 − δ)gω
i (α)+ δπω(α) ·wω

i

for all i ∈ I and ω ∈ Ω,

(ii) vωi ≥ (1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) ·wω

i

for all i ∈I�ω ∈ Ω, and ai ∈Ai,

(iii) λ · v ≥ λ ·w(y) for all y ∈ Y .

If there is no (v�w) satisfying the constraints, let k∗(α�λ�δ) = −∞. If for
every K > 0 there is (v�w) satisfying all the constraints and λ · v > K, then
let k∗(α�λ�δ)= ∞.

Here condition (i) is the “adding-up” condition, condition (ii) is ex post in-
centive compatibility, and condition (iii) requires that the continuation payoffs
lie in the half-space corresponding to direction vector λ and payoff vector v.
Note that when λω

i �= 0 and λω̃
j �= 0 for some ω �= ω̃, condition (iii) allows “util-

ity transfer” across states. This utility transfer is the most significant way that
LP Average differs from the linear program in FL, so we will discuss it in more
detail below.

As we show in Lemma 1(a), the value k∗(α�λ�δ) is independent of δ, so we
denote it by k∗(α�λ). Now let

k∗(λ)= sup
α

k(α�λ)

be the highest score that can be approximated in direction λ by any choice of α.
For each λ ∈ RI×|Ω| \ {0} and k ∈ R, let H(λ�k) = {v ∈ RI×|Ω||λ · v ≤ k}. For

k= ∞ or λ = 0, let H(λ�k)= RI×|Ω|. For k= −∞ and λ �= 0, let H(λ�k) = ∅.
Then, let

H∗(λ)= H(λ�k∗(λ))
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be the maximal half-space in direction λ and set

Q =
⋂

λ∈RI×|Ω|
H∗(λ)�

LEMMA 1:
(a) k∗(α�λ�δ) is independent of δ.
(b) If (λω

i )i∈I �= 0 for some ω and (λω̃
i )i∈I = 0 for all ω̃ �= ω, then k∗(λ) ≤

supα λ · g(α).
(c) If λω

i < 0 for some (i�ω) and λω̃
j = 0 for all (j� ω̃) �= (i�ω), then k∗(λ) ≤

λω
i v

ω
i .

(d) Consequently, Q ⊆ V ∗.

PROOF: As in past work, part (a) follows from the fact that the constraint
set in (iii) is a half-space: If (v�w) satisfies constraints (i)–(iii) in LP Average
for (α�λ�δ), then (v� w̃) satisfies the constraints for (α�λ� δ̃), where w̃(y) =
δ̃−δ

δ̃(1−δ)
v + δ(1−δ̃)

δ̃(1−δ)
w(y). Let Λ∗ be the set of λ ∈ RI×|Ω| such that (λω

i )i∈I �= 0 for
some ω ∈ Ω and (λω̃

i )i∈I = 0 for all ω̃ �= ω. Since parts (b) and (c) consider a
single state ω, they follow from FL Lemma 3.1. Thus

⋂
λ∈Λ∗ H∗(λ) ⊆ V ∗ and

part (d) follows from Q ⊆ ⋂
λ∈Λ∗ H∗(λ). Q.E.D.

Since we already know that E(δ) ⊆ V ∗, part (d) of Lemma 1 shows that Q
is “not too big”: it does not contain any payoff vector we can rule out on a
priori grounds. The next lemma shows that Q is “big enough” to contain all the
payoffs of PPXE.

LEMMA 2: For every δ ∈ (0�1), E(δ) ⊆ E∗(δ) ⊆ Q, where E∗(δ) is the convex
hull of E(δ).

The proof is the same as in Fudenberg, Levine, and Takahashi (2007); we
restate it in the Supplemental Material to make it easy to see that the proof
applies to the present setting.

To help explain the role of cross-state utility transfers, we will show that
the conclusion of Lemma 2 does not hold if constraint (iii) is replaced by the
uniform-over-states version

(iii′)
∑
i∈I

λω
i v

ω
i ≥

∑
i∈I

λω
i w

ω
i (y) for all ω ∈ Ω and y ∈ Y�

The resulting “uniform” LP problem corresponds to a form of ex post enforce-
ability on half-spaces. This condition is too restrictive to capture all of the pay-
offs of PPXE, as shown by the combination of the following claim.
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CLAIM 1: In the LP Uniform problem formed by replacing (iii) in LP Aver-
age with (iii′), the solution kU(α�λ�δ) satisfies kU(α�λ�δ) ≤ λ · g(α) for each
α and λ. Therefore, kU(λ�δ) ≡ supα k

U(α�λ�δ) ≤ supα λ · g(α) and the corre-
sponding set of payoffs QU is a subset of the payoffs V C that can be attained with
actions that are independent of the state.

PROOF: Inspection of the constraints in the LP Uniform problem shows that
it is equivalent to solving a separate LP problem for each state ω ∈ Ω in isola-
tion. As FL showed, a solution to the LP problem for given (α�ω) cannot ex-
ceed

∑
i∈I λ

ω
i g

ω
i (α). Therefore, kU(α�λ�δ), the maximal score in LP Uniform

for a given α, is at most
∑

ω∈Ω
∑

i∈I λ
ω
i g

ω
i (α) = λ · g(α), so supα k

U(α�λ�δ) ≤
supα λ · g(α). Q.E.D.

In both Examples 1 and 2, we constructed PPXE with payoffs outside of V U .

4.2. Computing the Limit of E(δ) as Players Become Patient

Now we show that the set E(δ) of PPXE payoffs expands to equal all of Q
as the players become sufficiently patient, provided that a full-dimensionality
condition is satisfied. For each set B, let intB denote the interior of B and let
bdB denote the boundary of B.

DEFINITION 5: A subset W of RI×|Ω| is smooth if it is closed and convex, it
has a nonempty interior, and there is a unique unit normal for each point on
bdW .11

LEMMA 3: For any smooth set W in the interior of Q, there is δ ∈ (0�1) such
that W ⊆ E(δ) for δ ∈ (δ�1).

From Lemma 1(d), Q is bounded, and hence W is also bounded. With this
fact in hand, the rest of the proof is standard; we include it in the Supplemental
Material for completeness.

Because any full-dimensional convex subset of RI×|Ω| can be approximated
arbitrarily closely by a smooth subset,12 this lemma together with Lemma 2
proves the following theorem.

THEOREM 3: If dimQ = I × |Ω|, then limδ→1 E(δ) =Q.

11A sufficient condition for each point on bdW to have a unique unit normal is that bdW is a
C2-submanifold of RI×|Ω|.

12This is a standard result; see, for example, Fudenberg, Levine, and Takahashi (2007,
Lemma A.1) for a proof.
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It is possible that dimQ< I × |Ω|, so that this theorem does not apply, but
that limδ→1 E(δ) �= ∅. A trivial example of this occurs when the state ω has
no effect on either the monitoring structure or the payoffs, so that it cannot
possibly be observed, but is simply a nuisance parameter. In this case, E(δ) is
a subset of the space V U of payoff that can be generated with actions that are
independent of the state, so Q ⊆ E(δ) has dimension at most I. The solution
is obviously to ignore the state and characterize the perfect public equilibria
of the game where (any) ω is known; these equilibria correspond to the full
set of PPXE of the game with the noise parameter added. More generally, the
full-dimension conditions could fail due to the imperfect observability of ω
or because the feasible payoff set itself does not have full dimension. In this
case, one might be able to characterize limδ→1 E(δ) using an extension of the
iterative algorithm in Fudenberg, Levine, and Takahashi (2007).

5. A PERFECT EX POST FOLK THEOREM

In this section we give simple and easy-to-verify sufficient conditions for a
folk theorem to hold in PPXE. This theorem shows that any map from states
of the world to feasible and individually rational payoffs in that state can be
approximated by equilibrium payoffs as the discount factor goes to 1, and in
particular by payoffs of a PPXE. More formally, our folk theorem gives condi-
tions under which limδ→1 E(δ) = V ∗.13 When this is true, so that efficient pay-
offs can be approximated by PPXE, the payoffs do not provide much incentive
for players to play other sorts of equilibria or to try to change the monitor-
ing structure. On the other hand, when the set of PPXE is empty or when all
PPXE are far from efficient but there are efficient sequential equilibria, the
payoffs do provide an incentive for change and the PPXE restriction might be
less compelling.

Since we have already shown that Q ⊆ V ∗ and that limδ→1 E(δ) = Q under
the full-dimension condition, it remains to show that V ∗ ⊆ Q, which is equiva-
lent to showing that k∗(λ) ≥ maxv∈V ∗ λ · v for each direction λ. Our sufficient
conditions are actually stronger than that: they will imply that k∗(λ) = ∞ for
directions λ with nonzero components in two or more states. Conversely, the
folk theorem fails if there is a λ such that k∗(λ) < maxv∈V ∗ λ · v; we use this fact
in Example 4 below.

For each i ∈ I, α ∈×i∈IΔ(Ai), and ω ∈Ω, let Π(i�ω)(α) be a matrix with rows
(πω

y (ai�α−i))y∈Y for all ai ∈Ai.

DEFINITION 6: Profile α has individual full rank for (i�ω) if Π(i�ω)(α) has
rank equal to |Ai|. Profile α has individual full rank if it has individual full rank
for all players and all states.

13Recall that V ∗ ≡ {v ∈ V |∀i ∈ I�∀ω ∈ Ω�vωi ≥ vωi }.
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Individual full rank implies that at each state, every possible deviation of
any one player leads to a statistically different distribution on outcomes; under
this condition there are continuation payoffs that make every player indifferent
between all actions. However, as we discuss in Section 6, many of our results
hold under weaker but harder-to-verify conditions.

Let Π(i�ω)(j�ω̃)(α) be a matrix constructed by stacking matrices Π(i�ω)(α) and
Π(j�ω̃)(α).

DEFINITION 7: For each (i�ω) and (j�ω) satisfying i �= j, profile α has
pairwise full rank for (i�ω) and (j�ω) if Π(i�ω)(j�ω)(α) has rank equal to
|Ai| + |Aj| − 1.

Pairwise full rank implies that deviations by player i can be distinguished
from deviations by j. It is satisfied for generic distributions on outcomes pro-
vided that the number of outcomes is at least |Ai| + |Aj| − 1. In the partner-
ship games of Examples 3 and 4, each player has two actions and there are
three possible outcomes. This is why the folk theorem can apply there when
the state is known With only two signals, as in Radner, Myerson, and Maskin
(1986), equilibrium payoffs are bounded away from efficiency uniformly in the
discount factor.

DEFINITION 8: For each (i�ω) and (j� ω̃) satisfying ω �= ω̃, profile α has
statewise full rank for (i�ω) and (j� ω̃) if Π(i�ω)(j�ω̃)(α) has rank equal to |Ai| +
|Aj|.

Note that both pairwise full rank and statewise full rank imply individual
full rank. Note also that the pairwise full-rank conditions require as many out-
comes as required by pairwise full rank in FLM, and the statewise full-rank
conditions require at most twice as many outcomes.14 Once again, these con-
ditions are satisfied by generic distributions on outcomes provided that the
number of outcomes is as large as the number of rows that need to be linearly
independent.

The statewise full-rank condition guarantees that the observed signals will
reveal the state, regardless of the play of player i in state ω and the play of
player j (possibly equal to i) in state ω̃, assuming that everyone else plays ac-
cording to α. This condition is more restrictive than necessary for the existence
of a strategy that allows the players to learn the state: For that it would suffice
that there be a single profile α where the distributions on signals are all dis-
tinct, which requires only two signals.15 On the other hand, the condition is

14If all players have the same number D of actions, statewise full rank requires 2D signals,
which is one more than in FLM; if one player has more than D> 2 actions and all other players
have two actions, statewise full rank requires 2D actions as opposed to D+ 2 − 1 =D+ 1�

15Note that players only need to distinguish between a finite set of signal distributions, and not
between all possible convex combinations of them.
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less restrictive than the requirement that the state is revealed to an outside
observer even if a pair of players deviates. For example, statewise full-rank is
consistent with a signal structure where a joint deviation by players 1 and 2
could conceal the state from the outside observer, as in a two-player game
with A1 = A2 = {L�R} and πω

y (L�R) = πω̃
y (R�L). Intuitively, since equilib-

rium conditions only test for unilateral deviations, the statewise full-rank con-
dition is sufficient for the existence of an equilibrium where the players even-
tually learn the state. In Section 6, we introduce the more complicated but
substantially weaker condition of statewise distinguishability, and show that it
is sufficient for a static-threat version of the folk theorem.

The following is an ex post folk theorem. Note that the set of assumptions of
this theorem is generically satisfied if |Y | ≥ 2|Ai| for all i ∈ I.

CONDITION IFR: Every pure action profile has individual full rank.

CONDITION PFR: For each (i�ω) and (j�ω) satisfying i �= j, there is an ac-
tion profile α that has pairwise full rank for (i�ω) and (j�ω).

CONDITION SFR: For each (i�ω) and (j� ω̃) satisfying ω �= ω̃, there is an
action profile α that has statewise full rank.

THEOREM 4: Suppose that IFR, PFR, and SFR hold. Then, for any smooth set
W in the interior of V ∗, there is δ ∈ (0�1) such that W ⊆E(δ) for all δ ∈ (δ�1). So
if V ∗ has nonempty interior, for each v ∈ V ∗ there is δ ∈ (0�1) such that v ∈E(δ)
for all δ ∈ (δ�1).

The following lemmas are useful in this proof.

LEMMA 4: Suppose that PFR holds. Then there is an open and dense set of
profiles each of which has pairwise full rank for all (i�ω) and (j�ω) satisfying
i �= j.

The proof is analogous to that of Lemma 6.2 of FLM.

LEMMA 5: Suppose that IFR holds. Then for any i ∈ I, ω ∈Ω, and ε > 0, there
is a profile αω such that αω

i ∈ arg maxαi g
ω
i (αi�α

ω
−i), |gω

i (α
ω) − vωi | < ε, and αω

has individual full rank for all (j� ω̃) �= (i�ω).

The proof is analogous to that of Lemma 6.3 of FLM.

LEMMA 6: Suppose that a profile α has statewise full rank for (i�ω) and (j� ω̃)
satisfying ω �= ω̃, and that α has individual full rank for all players and states.
Then k∗(α�λ) = ∞ for direction λ such that λω

i �= 0 and λω̃
j �= 0.
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REMARK 1: Because k∗(α�λ) ≤ λ · g(α) in the known-monitoring-structure
case of FL, this lemma shows a key difference between that setting and the
uncertain monitoring-structure case we consider here. The idea is that un-
der statewise full rank, the continuation payoffs in such half-spaces can give
player i a very large payoff in state ω by giving player j a very low payoff in
that state, while reversing this transfer in state ω̃.

The Supplemental Material contains a direct proof of Lemma 6 that some
readers have found opaque; the proof we present below is less concise but
more revealing.

PROOF OF LEMMA 6: Assume to begin with that each player has only two
actions, Ai = {a′

i� a
′′
i } and Aj = {a′

j� a
′′
j }, and consider the special case of a di-

rection λ such that λω
i = λω̃

j = 1 and all other components of λ are zero. Con-
straints (i) and (ii) for (l�ω) ∈ I × Ω \ {(i�ω)� (j� ω̃)} can be satisfied by some
choice of (wω

l (y))y∈Y because of individual full rank, and constraint (iii) is vac-
uous for these coordinates. So the LP problem reduces to finding (wω

i (y))y∈Y
and (wω̃

j (y))y∈Y to solve

k∗(α�λ�δ)= max
v�w

vωi + vω̃j subject to

vωi = (1 − δ)gω
i (α)+ δπω(α) ·wω

i �

vω̃j = (1 − δ)gω̃
j (α)+ δπω̃(α) ·wω̃

j �

vωi ≥ (1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) ·wω

i ∀ai ∈ Ai�

vω̃j ≥ (1 − δ)gω̃
j (aj�α−j)+ δπω̃(aj�α−j) ·wω̃

j ∀aj ∈ Aj�

vωi + vω̃j ≥wω
i (y)+wω̃

j (y) ∀y ∈ Y�

We claim that k∗(α�λ�δ)= ∞ if α has statewise full rank. It suffices to show
that for any sufficiently large vωi and vω̃j , there exist (wω

i (y)�w
ω̃
j (y))y∈Y that

satisfy the first four constraints with equalities and

wω
i (y)+wω̃

j (y)= 0 ∀y ∈ Y�

Eliminate this last equation by solving for wω̃
j (y). Then the coefficient matrix

for the set of the remaining four equations is
⎛
⎜⎜⎜⎝

(πω
y (a

′
i� α−i))y∈Y

(πω
y (a

′′
i � α−i))y∈Y

(πω̃
y (a

′
j� α−j))y∈Y

(πω̃
y (a

′′
j � α−j))y∈Y

⎞
⎟⎟⎟⎠ �

The statewise full-rank condition guarantees that this matrix has rank 4, so the
system has a solution for any (vωi � v

ω̃
j ), and thus k∗(α�λ) = ∞. Intuitively, this
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construction makes wω
i (y) large for signals y that are more likely in state ω

than in state ω̃ and makes wω
i (y) negative for signals that are more likely un-

der ω̃, while keeping player i indifferent between all actions in state ω, and
player j indifferent in state ω̃. This would not be possible if the signal distrib-
ution were the same at the two states or, more generally, if the above matrix
were singular.

This example only explains why the k∗ can be made arbitrarily large when
exactly two components of λ are nonzero, but we can use this construction to
obtain arbitrarily high scores in any direction λ that gives nonzero weight to
two or more states. For example, suppose that λω

i = λω̃
j = λω

l = 1 and other
components are zero. First, choose (vωi � v

ω̃
j �w

ω
i �w

ω̃
j ) as in the above example,

so that constraints (i) and (ii) for (i�ω) and (j� ω̃) are satisfied, vωi and vω̃j are
large, and wω

i (y) + wω̃
j (y) = 0 for all y ∈ Y . What remains is to find wω

l that
satisfy constraints (i) and (ii) for (l�ω) and the feasibility constraint

vωi + vω̃j + vωl ≥wω
i (y)+wω̃

j (y)+wω
l (y) ∀y ∈ Y�

The individual full-rank condition implies there is wω
l (y) that satisfies con-

straints (i) and (ii), and since wω
i (y)+wω̃

j (y)= 0 and vωi + vω̃j can be arbitrarily
large, the feasibility constraint can be satisfied for any value of wω

l (y).
Finally, although the argument above assumes each player has two actions,

it can easily be extended: In general, after eliminating wω̃
j (y), there will be

|Ai| + |Aj| equations to be satisfied and the statewise full-rank condition as-
sures that the coefficient matrix of the system of these equations has full rank.
Therefore, the system has a solution for any (vωi � v

ω̃
j ) and hence k∗(α�λ) = ∞

as before. Q.E.D.

LEMMA 7: Suppose that profile α has pairwise full rank for all (i�ω) and (j�ω)
satisfying i �= j. Fix a direction λ such that for some ω, λω

i is nonzero for at least
two i, and λω̃

i = 0 for all i ∈ I and ω̃ �=ω. Then k∗(α�λ) = λ · g(α).

PROOF: It follows from Lemma 1(b) that k∗(λ�α) ≤ λ · g(α). Thus, in what
follows, we establish that k∗(λ�α) ≥ λ · g(α). To do so, we need to show that
there exist continuation payoffs in H(λ�λ · g(α)) that enforce (α�g(α)).

As in the proof of Lemma 6, for each i ∈ I and ω̃ �=ω, there exist (wω̃
i (y))y∈Y

such that

vω̃i = (1 − δ)gω̃
i (ai�α−i)+ δπω̃(ai�α−i) ·wω̃

i

for all ai ∈Ai. Moreover, it follows from Lemmas 4.3, 5.3, and 5.4 of FLM that
there exist (wω

i (y))(i�y) such that

vωi = (1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) ·wω

i
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for all i ∈ I and ai ∈Ai, and

λ ·w(y)=
∑
i∈I

λω
i w

ω
i (y) =

∑
i∈I

λω
i v

ω
i = λ · v�

Obviously, the specified continuation payoffs are in H(λ�λ ·g(α)) and enforce
(α�g(α)), as desired. Q.E.D.

LEMMA 8: Suppose that α has individual full rank for all (j� ω̃) �= (i�ω) and
has the best-response property for player i and for state ω. Then k∗(α�λ) = λ ·g(α)
for direction λ such that λω

i �= 0 and λω̃
j = 0 for all (j� ω̃) �= (i�ω).

The proof is a straightforward generalization of Lemmas 5.1 and 5.2 of FLM.

PROOF OF THEOREM 4: From Lemma 3, it suffices to show that Q = V ∗. To
do so, we will compute the maximum score k∗(λ) for each direction λ.

Case 1. Consider λ such that λω
i �= 0 and λω̃

j �= 0 for some ω̃ �=ω and i possi-
bly equal to j. In this case, players can transfer utilities across different states ω
and ω̃ while maintaining the feasibility constraint and this construction allows
k∗(α�λ�δ) > λ · g(α), as Example 1 shows. In particular, from Condition SFR
and Lemma 6 we obtain k∗(λ)= ∞ for this direction λ.

Case 2. Consider λ such that (λω
i )i∈I has at least two nonzero components for

some ω while λω̃
i = 0 for all i ∈ I and ω̃ �= ω. Lemma 4 shows that every pro-

file α can be approximated arbitrarily closely by a profile that has pairwise full
rank for all players, and it follows from Lemma 7 that k∗(λ) = supα k

∗(λ�α) =
maxv∈V λ · v.

Case 3. Consider λ such that λω
i �= 0 for some (i�ω) and λω̃

j = 0 for all
(j� ω̃) �= (i�ω). Suppose first that λω

i > 0. Since every pure action profile has
individual full rank, a∗ ∈ arg maxa∈A gω

i (a) also has individual full rank. There-
fore, from Lemma 8,

k∗(λ)≥ k∗(a∗�λ)= λω
i g

ω
i (a

∗)= max
v∈V

λ · v�

On the other hand, from Lemma 1(b), k∗(λ) ≤ maxv∈V λ · v. Hence, we have
k∗(λ) = maxv∈V λ · v.

Next, suppose that λω
i < 0. It follows from Lemmas 5 and 8 that for every

ε > 0, there is a profile αω such that |k∗(αω�λ)− λω
i v

ω
i | < ε. Lemma 3.2 of FL

shows that k∗(λ) ≤ λω
i v

ω
i , so k∗(λ)= λω

i v
ω
i .

Combining these cases, we obtain Q = V ∗. Q.E.D.

6. A STATIC-THREATS FOLK THEOREM

In this section we present an alternative theorem that uses weaker infor-
mational conditions to prove a “static-threats” folk theorem, meaning that the
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theorem only ensures the attainability of payoffs that Pareto-dominate the pay-
offs of a static ex post equilibrium. Consequently, this theorem assumes that a
static ex post equilibrium exists. This is always true when the state only matters
for the monitoring structure but has no impact on the expected payoffs (that is
gω(a) = g(a)), and it is also satisfied for generic payoff functions g when the
state has a sufficiently small impact on the payoff function. Several of our other
assumptions in this section seem more likely to be satisfied if the uncertainty is
“small,” though that is not necessary, as shown by Example 3.

DEFINITION 9: For each (i�ω) and (j�ω) satisfying i �= j, profile α is pair-
wise identifiable for (i�ω) and (j�ω) if rankΠ(i�ω)(j�ω)(α) = rankΠ(i�ω)(α) +
rankΠ(j�ω)(α)− 1.

This is the same as the FLM definition of pairwise identifiability. Note that
it does not require individual full rank, so that a given player may have several
actions that generate the same signal distributions, and not all actions need be
enforceable.

We say that α is ex post enforceable if it is ex post enforceable with respect
to RI×|Ω| and δ for some δ ∈ (0�1). This is equivalent to α being enforceable
with respect to RI and δ for each information structure πω in isolation.

CONDITION X-EFF: If pure action profile a gives a Pareto-efficient payoff
vector for some ω ∈ Ω, it is ex post enforceable.

FLM show that any Pareto-efficient action profile is enforceable. Condi-
tion X-Eff extends this to ex post enforceability, so it is automatically satisfied
when there is a single state.

CONDITION U-EFF: If pure action profile a gives a Pareto-efficient pay-
off vector for some ω̃ ∈ Ω, then it gives a Pareto-efficient payoff vector for
every ω�

Condition U-Eff says roughly that efficient actions are uniformly efficient.
It is typically satisfied if the stage-game payoffs gω

i (a) are not too sensitive to
the state, which in turn will be the case if the realized payoffs uω

i (y�ai) are
insensitive to ω and the various distributions πω are sufficiently similar. (It can
also be satisfied when the distributions πω differ substantially, depending on
the details of the functions uω

i .) The condition is satisfied in the partnership
games in Examples 3 and 4, where (C�C) is the efficient profile in both states.

CONDITION PID: For each (i�ω) and (j�ω), every pure action profile is
pairwise identifiable for (i�ω) and (j�ω).

Condition PID is stronger than needed; it is sufficient that it applies to the
pure action profiles that yield Pareto-efficient payoffs.
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LEMMA 9: If uω
i (y�ai) is independent of ω and U-Eff holds, then Condi-

tion X-Eff holds.

PROOF: Because each player’s payoff depends only on his or her own action
and the realized signal, Lemma 6.1 of FLM applied to each state ω in isolation
implies that profile a is enforceable for each ω. Q.E.D.

As argued, statewise full rank can require that there be twice as many signals
as required by the FLM folk theorem. The following, more complex, condition
can be satisfied with far fewer signals. In part, this condition is related to the
fact that linear independence of the outcome distributions is not needed for an
action profile to be enforceable, as linear independence tests all linear combi-
nations of the distributions, while it is sufficient to rule out convex combina-
tions.16

DEFINITION 10: Profile α statewise distinguishes (i�ω) from (j� ω̃) if there is
a vector ξ = (ξ(y))y∈Y ∈ R|Y | such that

(i) πω(α) · ξ > πω̃(α) · ξ,
(ii) πω(α) · ξ = πω(ai�α−i) · ξ ≥ πω(ãi�α−i) · ξ for all ai ∈ suppαi and ãi ∈

Ai,
(iii) πω̃(α) · ξ = πω̃(aj�α−j) · ξ for all aj ∈Aj .

We illustrate these conditions in Figure 1. Clause (i) implies that the sig-
nals generated by α statistically distinguish ω from ω̃. Clearly, there must
be some such profile for there to be equilibria where the play varies with
the state. Clause (ii) says that changing player i’s continuation payoff func-
tion in state ω from wω

i (y) to wω
i (y) + ξ(y) preserves incentive compatibil-

ity for player i. Clause (iii) says that the change in player i’s continuation
payoff (of �wω

i (y) ≡ ξ(y)) can be offset to preserve the feasibility constraint
(λω

i �w
ω
i (y) + λω̃

j �w
ω̃
j (y) = 0) without changing player j’s expected continua-

tion payoff to any action. Note that this transfer scheme increases player i’s
expected continuation payoff by E[�wω

i |α] ≡ πω(α) · ξ, so the maximal score
for λ with λω

i > 0 can be made infinitely large by utility transfer between
states ω from ω̃.17

16See Kandori and Matsushima (1998). In the study of mechanism design with transferable
utility, Kosenok and Severinov (2008) and Rahman and Obara (2010) gave a weaker sufficient
condition for budget-balanced implementation; the balanced-budget constraint roughly corre-
sponds to directions λ, where every component is strictly positive.

17If λω
i < 0, then player i’s continuation payoff must be decreased to achieve a high score. This

requires a different sort of transfer and in turn requires a different condition on the information
structure, but this condition is not needed for a static-threats folk theorem.
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FIGURE 1.—Statewise distinguishability.

CONDITION SD: For each (i�ω) and (j� ω̃) satisfying ω �= ω̃, there is an ex
post enforceable action profile α that statewise distinguishes (i�ω) from (j� ω̃).

Condition SD is sufficient for the static-threat folk theorem, as it implies
that profile α can generate an infinite score in all of the required “cross-state”
directions.

THEOREM 5: Suppose that PFR holds or Conditions X-Eff and PID hold.
Suppose also that Condition SD holds. Assume that there is a static ex post equi-
librium α0 and let V 0 ≡ {v ∈ V |∀i ∈ I ∀ω ∈ Ω vωi ≥ gω

i (α
0)}. Then, for any smooth

set W in the interior of V 0, there is δ ∈ (0�1) such that W ⊆E(δ) for all δ ∈ (δ�1).
So if V 0 has nonempty interior, for each v ∈ V 0 there is δ ∈ (0�1) such that
v ∈ E(δ) for all δ ∈ (δ�1).

This theorem is established by the following lemmas that determine the max-
imal score k∗ in various directions. The next lemma says that the score of a
static ex post equilibrium can be enforced in any direction; this score will be
used to generate the score in directions that minimize a player’s payoff.

LEMMA 10: Suppose that there is a static ex post equilibrium α0. Then
k∗(α0�λ)≥ λ · g(α0) for any direction λ.

PROOF: Let vωi = wω
i (y) = gω

i (α
0) for all i ∈ I, ω ∈ Ω, and y ∈ Y . Then this

(v�w) satisfies constraints (i)–(iii) in LP Average and λ · v = λ · g(α0). Hence,
k∗(α0�λ)≥ λ · g(α0). Q.E.D.
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The next lemma determines the maximal score for direction λ that considers
a single state ω and has a positive component or at least two nonzero compo-
nents, when Condition X-Eff holds.

LEMMA 11:
(a) Suppose that Conditions PFR or X-Eff and PID hold, and that profile a

gives Pareto-efficient payoffs for some ω ∈ Ω. Then k∗(a�λ) = λ · g(a) for direc-
tion λ such that (λω

i )i∈I has at least two nonzero components while λω̃
j = 0 for all

j ∈ I and ω̃ �= ω.
(b) Suppose that Conditions PFR or X-Eff and PID hold. Then k∗(λ) =

maxv∈V λ · v for direction λ such that λω
i > 0 and λω̃

j = 0 for all (j� ω̃) �= (i�ω).

PROOF: (a) Lemma 1(b) shows that the maximum score in direction λ is at
most λ · g(a). Because a is a pure action profile, and it is enforceable for all ω
and pairwise identifiable from Conditions X-Eff and PID, it is enforceable on
hyperplanes corresponding to λ from Theorem 5.1 of FLM, so the score λ ·
g(a) can be attained. If Condition PFR holds, this follows from Lemmas 4
and 7.

(b) Let a be a Pareto-efficient profile that maximizes player i’s payoff
in state ω. If Condition X-Eff holds, a is ex post enforceable, and since
the profile has the best-response property in state ω, Lemma 5.2 of FLM
implies it is enforceable on λ. If Condition PFR holds, this follows from
Lemma 8. Q.E.D.

The following lemma shows that Condition SD is sufficient for the maximal
score to be infinite in every cross-state direction λ that has at least one positive
component. See the Appendix for the proof.

LEMMA 12: Suppose that α is ex post enforceable and statewise distinguishes
(i�ω) from (j� ω̃). Then k∗(α�λ) = ∞ for direction λ such that λω

i > 0 and
λω̃
j �= 0.

We now apply these concepts to demonstrate the differences between the
two partnership games that we introduced in Section 3.

EXAMPLE 3—Continued: Recall Example 3 from Section 3, where the effect
of the uncertainty is symmetric across states and players: In state ω1, if player 1
chooses C1 instead of D1 then the probabilities of H and M increase by pH

and pM , while player 2’s choice of C2 increases the probabilities by qH and qM ;
in state ω2, the roles are reversed. Note that individual full rank is satisfied, and
that pairwise full rank is satisfied at every profile and every state if the matrix

(
pH pM

qH qM

)
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has full rank. For example, the matrix Π(1�ω1)(2�ω1)(D1�C2) is represented by
⎛
⎜⎜⎜⎝

oH + qH oM + qM 1 − (oH + qH + oM + qM)

oH +pH + qH oM +pM + qM 1 − (oH +pH + qH + oM +pM + qM)

oH + qH oM + qM 1 − (oH + qH + oM + qM)

oH oM 1 − (oH + oM)

⎞
⎟⎟⎟⎠

and this matrix has rank 3 if the above two-by-two matrix has full rank. There-
fore, the profile (D1�C2) has pairwise full rank for (1�ω1) and (2�ω1). On the
other hand, statewise full rank is not satisfied at any profile, as there are only
three signals, while four signals would be needed to satisfy this stronger con-
dition. Nevertheless, we will show that the static-threat folk theorem holds in
this example, because statewise distinguishability is satisfied.

CLAIM 2: In Example 3, (D1�C2) statewise distinguishes (i�ω) from (j� ω̃)
satisfying ω �= ω̃.

PROOF: First, consider ((i�ω)� (j� ω̃)) = ((1�ω1)� (2�ω2)). In this case, let
ξ = (ξ(y))y∈Y be a solution to the system

pHξ(H)+pMξ(M)+ (1 −pH −pM)ξ(L) = 0�

qHξ(H)+ qMξ(M)+ (1 − qH − qM)ξ(L) = K

for some K > 0. This system has a solution, since the matrix(
pH pM

qH qM

)

has full rank, and the solution satisfies

πω1(C1�C2) · ξ = πω1(D1�C2) · ξ = πω2(D1�C2) · ξ +K

= πω2(D1�D2) · ξ +K

so statewise distinguishability holds.
For ((i�ω)� (j� ω̃)) = ((2�ω1)� (2�ω2)), we can use the same ξ. For ((i�ω)�

(j� ω̃)) = ((1�ω2)� (1�ω1)) or ((i�ω)� (j� ω̃)) = ((2�ω2)� (1�ω1)), use ξ that
solves

pHξ(H)+pMξ(M)+ (1 −pH −pM)ξ(L) = 0�

qHξ(H)+ qMξ(M)+ (1 − qH − qM)ξ(L) = −K

for some K > 0. For ((i�ω)� (j� ω̃)) = ((1�ω1)� (1�ω2)) or ((i�ω)� (j� ω̃)) =
((2�ω1)� (1�ω2)), use ξ that solves

pHξ(H)+pMξ(M)+ (1 −pH −pM)ξ(L) = −K�

qHξ(H)+ qMξ(M)+ (1 − qH − qM)ξ(L) = 0



REPEATED GAMES 1699

for some K > 0. Finally, for ((i�ω)� (j� ω̃)) = ((1�ω2)� (2�ω1)) or ((i�ω)�
(j� ω̃)) = ((2�ω2)� (2�ω1)), use ξ that solves

pHξ(H)+pMξ(M)+ (1 −pH −pM)ξ(L) =K�

qHξ(H)+ qMξ(M)+ (1 − qH − qM)ξ(L) = 0

for some K > 0. Q.E.D.

This claim shows that Condition SD holds in Example 3, so that the static-
threat folk theorem applies to Example 3. In contrast, payoffs are bounded
away from efficiency in Example 4, which is a related partnership game. This
is because the states in Example 4 are “entangled” in the following sense:

DEFINITION 11: Profile α entangles states ω and ω̃ for player j if there is
π ∈ co{πω̃(aj�α−j)|aj ∈ Aj} such that πω̃(α) = κπω(α) + (1 − κ)π for some
κ ∈ (0�1].

LEMMA 13: If profile α statewise distinguishes (i�ω) from (j� ω̃), then α does
not entangle ω and ω̃ for player j.

PROOF: If α entangles states ω and ω̃ for player j, then for any ξ such that
πω̃(α) · ξ = πω̃(aj�α−j) · ξ for all aj ∈ Aj , we have πω̃(α) · ξ = π · ξ for all
π ∈ co{πω̃(aj�α−j)|aj ∈ Aj}, so that πω̃(α) · ξ = πω(α) · ξ. Thus α does not
statewise distinguish (i�ω) from (j� ω̃). Q.E.D.

EXAMPLE 4—Continued: Recall Example 4, where the state only influences
the productivity of player 2’s effort: If player 1 chooses C1 instead of D1, then
the probabilities of H and M increase by pH and pM , independent of the state.
In contrast, if player 2 chooses C2 instead of D2, then the probabilities of H
and M increase by qH and qM in state ω1, and by βqH and βqM in state ω2.
Individual full rank and pairwise full rank are satisfied at every profile and
every state if the matrix

(
pH pM

qH qM

)

has full rank. However, every profile entangles ω2 and ω1 for player 2, essen-
tially because player 2 working with probability x in state ω2 generates the
same signal distribution as player 2 working with probability βx in state ω1,
so the sufficient conditions for the static-threats folk theorem are not satisfied.
Moreover, we will show that the folk theorem fails in this example and, more
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specifically, that the maximal score k∗(λ) in direction λ′ = ((1�0)� (0�1)) is
strictly less than λ′ · g(C1�C2), which in turn is less than maxv∈V ∗ λ′ · v.

To show that the folk theorem fails, we use the fact that the monitoring tech-
nology has an additive form, so that it suffices to consider only the pure action
profiles, as in Lemma 4.1 of FL.18

CLAIM 3: For α= (C1�C2),

k∗(α�λ′) ≤ λ′ · g(C1�C2)− 1 −β

β
(g

ω2
2 (C1�D2)− g

ω2
2 (C1�C2))�

PROOF: See the Appendix. The inefficiency here comes from the fact that
the two states are entangled for player 2 and hence the profile (C1�C2) does
not statewise distinguish (1�ω1) from (2�ω2). Q.E.D.

CLAIM 4: For α = (D1�C2), k∗(α�λ′) ≤ λ′ · g(D1�C2) − 1−β

β
(g

ω2
2 (D1�D2) −

g
ω2
2 (D1�C2)).

The proof is the same as in the previous claim.

CLAIM 5: For α= (C1�D2), k∗(α�λ′)≤ λ′ · g(C1�D2).

PROOF: Since πω1(C1�D2) = πω2(C1�D2) and πω1(D1�D2) = πω2(D1�D2),
the set of the constraints in the LP Average problem for λ′ is isomorphic with
that for λ′′ = ((0�0)� (1�1)). Then the maximal score for λ′ equals that for λ′′

and the statement follows from Lemma 1(b). Q.E.D.

CLAIM 6: For α= (D1�D2), k∗(α�λ′)≤ λ′ · g(D1�D2).

The proof is the same as in Claim 5.
Now we combine these claims to show that k∗(λ′) < λ′ · g(C1�C2). Since

g
ω1
1 (C1�D2)= g

ω2
1 (C1�D2), we have

λ′ · g(C1�D2)

= g
ω1
1 (C1�D2)+ g

ω2
2 (C1�D2)= g

ω2
1 (C1�D2)+ g

ω2
2 (C1�D2)

< g
ω2
1 (C1�C2)+ g

ω2
2 (C1�C2) ≤ g

ω1
1 (C1�C2)+ g

ω2
2 (C1�C2)

= λ′ · g(C1�C2)�

18FL used a more restrictive definition of “additive monitoring structure,” but the proof of
their Lemma 4.1 applies to any case where the effect of one player’s action on the distribution of
signals is independent of the action of the other player.
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Also,

λ′ · g(D1�C2)

= g
ω1
1 (D1�C2)+ g

ω2
2 (D1�C2)

= g
ω1
1 (C1�C2)+ g

ω2
2 (C1�C2)

+ (g
ω1
1 (D1�C2)+ g

ω1
2 (D1�C2)− g

ω1
1 (C1�C2)− g

ω1
2 (C1�C2))

< g
ω1
1 (C1�C2)+ g

ω2
2 (C1�C2)

= λ′ · g(C1�C2)�

Here, the second equality comes from the state independence of player
1’s marginal contribution, which implies that g

ω1
2 (D1�C2) − g

ω1
2 (C1�C2) =

g
ω2
2 (D1�C2) − g

ω2
2 (C1�C2). Combined with the previous claims, it follows that

k∗(λ′) < λ′ · g(C1�C2)� so that the folk theorem fails. Moreover, because the
player’s equilibrium payoffs cannot be below their minmax level in any state,
this bound implies that for some parameter values, player 2’s PPXE payoff in
state ω2 is strictly less than g

ω2
2 (C1�C2).19

7. INCOMPLETE INFORMATION AND PTXE

So far we have assumed that the players have symmetric information about
the state at the beginning of the game. Now suppose that each player i observes
a private signal θi ∈ Θi at the beginning of the game, where Θi is a partition
of Ω. Let θi(ω) � ω be the partition element that i observes when the state
is ω, which we will call player i’s type, and let θ(ω) = (θi(ω))i∈I . Any public
strategy si of the game where player i has the trivial partition Θi = {Ω} induces
a public strategy for any nontrivial partition Θi: player i simply ignores his
type and sets s′

i(h�θi) = si(h) for all h and all θi. Since, by definition, play
in a PPXE is optimal regardless of the state, any PPXE for the symmetric-
information game (where all players have the trivial partition) induces a PPXE
for any incomplete-information game (any partitions Θi) with the same payoff
functions and prior. Thus the PPXEs of the incomplete-information games are
isomorphic to the PPXEs of the associated symmetric-information game, so
the limit PPXE payoffs can be computed using LP Average and, in particular,
our sufficient conditions for the folk theorem are still sufficient.

However, we expect there to be other equilibria where different types of a
given player use different strategies. To analyze these equilibria, we extend the
notion of PPXE to perfect type-contingently public ex post equilibria (PTXE).

19For example, suppose that pH = 0�5, pM = 0, qH = 0, qM = 0�5, β = 0�8, ri(H) = 100,
ri(M) = 99, ri(L) = 0, e1 = 99, and e2 = 79. Then the minmax payoffs are 0 for all players and
all states, gω1

1 (C1�C2) = 0�5, gω2
2 (C1�C2) = 10�6, and g

ω2
2 (C1�D2) = 50. Using Claim 3, we have

v1
1 + v2

2 < 1�25 and since v1
1 ≥ 0, v2

2 < 1�25, it cannot achieve payoff gω2
2 (C1�C2)= 10�6.
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In what follows, let ht
i denote player i’s private history from period one to

period t, that is, ht
i = (aτ

i � y
τ)tτ=1. Let Ht

i denote the set of all ht
i . Likewise,

let ht = (yτ)tτ=1 be a public history from period one to period t and let Ht be
the set of all ht . Player i’s overall strategy is a map si :Θi × ⋃∞

t=0 H
t
i → Δ(Ai).

Player i’s strategy si ∈ Si is type-contingently public if it depends only on θi ∈ Θi

and ht ∈ Ht , that is, if si(θi�h
t
i) = si(θi� h̃

t
i) whenever ht

i and h̃t
i correspond

to the same public history. A strategy profile s ∈ S is type-contingently public
if si is type-contingently public for each i ∈ I. Given a type-contingently public
strategy profile s ∈ S, let si|(θi�ht ) denote player i’s continuation strategy when
his type is θi and the past public history is ht , and s|(θ�ht ) = (si|(θi�ht ))i∈I.20

DEFINITION 12: A strategy profile s ∈ S is a perfect type-contingently public
ex post equilibrium if it is type-contingently public and if s|(θ(ω)�ht ) is a Nash
equilibrium for any ω ∈ Ω and ht ∈ Ht .

Note that PTXE coincides with PPXE if there is no asymmetric information,
that is, Θi = {Ω} for all i ∈ I. In addition, it corresponds to the belief-free equi-
librium of Hörner and Lovo (2009) and Hörner, Lovo, and Tomala (2010) in
games with observed actions and incomplete information: These papers define
a belief-free equilibrium to be a strategy profile s such that for each state ω,
profile s is a subgame-perfect equilibrium of the game where all players know
the state is ω.

By definition, any continuation strategy s|ht = (s|θ(ω)�ht )ω∈Ω of a PTXE is also
a PTXE. Thus any PTXE specifies PTXE continuation play after each signal y ,
where the continuation payoffs w(y) = (wω

i (y))(i�ω)∈I×Ω corresponding to this
signal specify the payoffs for every player and every state. This recursive struc-
ture allows us to extend our linear programming characterization to PTXE.

First we need to define some notation. We will write πω(α) · wω
i for the

expected continuation payoff at state ω under action profile α, where wω
i is

the vector (wω
i (y))y∈Y . Let �αi = (α

θi
i )θi∈Θi

, where α
θi
i ∈ Δ(Ai) for each θi ∈ Θi,

and let �α = (�αi)i∈I. In words, �α is a type-contingent action profile; it speci-
fies a mixed action for each private signal θi of each player i. For example, if
the true state is ω, then players have type profile θ(ω), so that �α says to play
αθ(ω) = (α

θi(ω)
i )i∈I.

The definitions of ex post enforceability extends to PTXE in the obvious
way:

DEFINITION 13: For δ ∈ (0�1) and W ⊆ RI×|Ω|, a pair (�α�v) ∈
(×i∈I×θi∈Θi

Δ(Ai)) × RI×|Ω| is ex post contingently enforceable with respect to
δ and W if there is a function w :Y →W such that

vωi = (1 − δ)gω
i

(
αθ(ω)

) + δπω
(
αθ(ω)

) ·wω
i

20Here, the word “continuation strategy” is an abuse of language, because si|(θi�ht ) is not a
strategy for the entire game; it specifies a play for a given type θi , but not for θ̃i �= θi .
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for all i ∈ I and ω ∈Ω, and

vωi ≥ (1 − δ)gω
i

(
ai�α

θ−i(ω)

−i

) + δπω
(
ai�α

θ−i(ω)

−i

) ·wω
i

for all i ∈ I, ω ∈ Ω, and ai ∈ Ai.

Note that this definition takes into account the possibility that the action
profile α varies with θ. Note also that the second condition is imposed at every
state ω, so it does not depend on player i’s type θi.

Using the idea of type-contingent enforcement, we can extend the definition
of ex post self-generation and local ex post generation to PTXE, and it is easy
to verify that Theorems 1 and 2 hold as stated with this extension when E(δ) is
interpreted as the payoffs of PTXE.

In a similar way, we can extend the linear programming characterization of
the limit equilibrium payoffs. The key difference is that the players’ actions can
now depend on their type, so the action profiles used to generate the maximal
scores are allowed to depend on the type profile. Thus the linear programs we
consider are

k∗(�α�λ�δ)
= max

v∈RI×|Ω|
w : Y→RI×|Ω|

λ · v subject to

(i) vωi = (1 − δ)gω
i

(
αθ(ω)

) + δπω
(
αθ(ω)

) ·wω
i

for all i� ω,

(ii) vωi ≥ (1 − δ)gω
i

(
ai�α

θ−i(ω)

−i

) + δπω
(
ai�α

θ−i(ω)

−i

) ·wω
i

for all i, ω, and ai ∈Ai,

(iii) λ · v ≥ λ ·w(y) for all y ∈ Y .

If there is no (v�w) satisfying the constraints, let k∗(�α�λ�δ) = −∞. If for
every K > 0 there is (v�w) satisfying all the constraints and λ · v > K, then
let k∗(�α�λ�δ) = ∞.

If we use this program to define the set Q, then Theorem 3 holds as before:

THEOREM 6: If dimQ = I × |Ω|, then limδ→1 E(δ) =Q.

However, the nature of this set Q can be very different than before, as the
players now have three possible sources of information about the state: (i) in-
ference based on the public signals at state-independent action profile, as in the
bulk of this paper; (ii) the information contained in their own types; and (iii)
inferences based on the correlation between the opponents’ actions and the
opponents’ types. In the companion to this paper (Fudenberg and Yamamoto
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(2010a)), we provide weaker sufficient conditions for a folk theorem that takes
advantage of all three of these information channels. We then focus on cases
with additional structure that simplifies the characterization of limit payoffs,
such as games with a product structure, where there is a separate and inde-
pendent signal associated with each player’s action and each player knows the
effect of his action on the signal distribution while the others do not. We also
examine games with a known monitoring structure, where we show that the set
of limit equilibrium payoffs with imperfectly observed actions is the same as
in the observed-action case studied by Hörner and Lovo (2009) and Hörner,
Lovo, and Tomala (2010) provided that the monitoring structure satisfies a
full-rank condition. In addition, our techniques provide a simpler sufficient
condition for the existence of belief-free equilibrium.21

8. CONCLUDING REMARKS

This paper has shown that the sets of PPXE and PTXE payoffs have a re-
cursive structure and that their limit payoffs can be analyzed with extensions of
the techniques used to analyze PPE in games where the monitoring structure
is known. When the statewise full-rank conditions hold, along with the stan-
dard individual and pairwise full-rank conditions, the set of PPXE satisfies an
ex post folk theorem, even if the set of static ex post equilibria is empty. When
a static ex post equilibrium does exist, there is an ex post PPXE folk theorem
under even milder informational conditions.

Of course for a given discount factor, the full set of sequential equilibria of
these games is larger than the set of ex post equilibria and can permit a larger
set of payoffs. In particular, because the game has finitely many actions and sig-
nals per period and is continuous at infinity, sequential equilibria exist for any
discount factor, even if the set of PPXE or PTXE is empty. This follows from
the facts that sequential equilibria exist in the finite-horizon truncations (Kreps
and Wilson (1982)) and that the set of equilibrium strategies is compact in the
product topology (Fudenberg and Levine (1983)). So neither concept is well
adapted to the study of games with uncertain monitoring structures and very
impatient players. Conversely, when players are patient and mostly concerned
with their long-run payoff, our informational conditions imply that there are
PPXE where players eventually learn what the state is and obtain the same
payoffs as if the state was publicly observed.22 Moreover, if players have initial

21Hörner, Lovo, and Tomala (2010) gave tight conditions that ensure that the set Q is non-
empty; this set equals the set of limit payoffs of PTXE when it has a nonempty interior.

22When the ex post folk theorem holds and a feasible payoff vector v is not a limit payoff
of PPXE, then for some player/state pair the payoff vωi is not ex post individually rational, so
the payoff vector v cannot pointwise dominate any point v′ ∈ V ∗. However, as Olivier Gossner
pointed out, there may be priors such that the expected payoffs to a sequential (but not ex post)
equilibrium Pareto-dominates all of the ex post equilibrium payoffs, essentially because revealing
information destroys opportunities for insurance, as in Hirshleiffer (1971).
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private information, there can be folk theorems in the set of PTXE even when
the set of PPXE is small or empty; Fudenberg and Yamamoto (2010a) devel-
ops the relevant information conditions and studies the set of PTXE payoffs in
some cases of interest.

APPENDIX

A.1. An ex post Folk Theorem With Perfect Monitoring

CLAIM 7: Suppose that monitoring is perfect, that is, Y =A×Ω and πω
y (a)=

1 if y = (a�ω). Fix a payoff vector v ∈ intV ∗. Then there is δ such that for all
δ ∈ (δ�1), there is a PPXE where players play a pure action profile α in period one
and then along the equilibrium path play sω(δ) from period two, where sω(δ) is a
subgame-perfect equilibrium for state ω and discount factor δ with payoff vω.

PROOF: Let v = (vω)ω∈Ω ∈ intV ∗ and let ε > 0 be such that for each ω, any
payoff vector within ε of vω is in the set V ∗(ω). Then let δ ∈ (0�1) be such
that (i) ε > 1−δ

δ

∑
i∈I(maxa∈A gi(a) − mina∈A gi(a)), (ii) for each ω, there is a

subgame-perfect equilibrium sω�vω for state ω and discount factor δ with pay-
off vω, and (iii) for each ω ∈ Ω and for any payoff vector ṽω within ε of vω,
there is a subgame-perfect equilibrium sω�ṽω for state ω and discount factor δ.
Note that these three conditions hold if δ is close to 1; the last condition (iii)
comes from Theorem 6.2 of FLM.

Consider the following strategy profile:
Phase 1. Play a pure action profile a in period one. If there is no uni-

lateral deviator from a and ω is observed, then go to Phase (ω�vω). If
player i unilaterally deviates from a and ω is observed, then go to Phase
(ω� (vi − 1−δ

δ
(maxã∈A gi(ã)− minã∈A gi(ã))� (v

ω
j )j �=i)).

Phase (ω� ṽω). (Here, ω ∈ Ω and ṽω is within ε of vω.) Play a subgame-
perfect equilibrium sω�ṽω in the remaining periods, as long as ω is observed
in every period of this phase. (Recall that sω�ṽω is a subgame-perfect equilib-
rium for state ω with payoffs ṽω.) If in any period t, ωt �=ωt−1, then go to phase
(ωt�wωt

(at)) in the next period, where wωt
(at)= (wωt

i (at))i∈I is chosen so that

wωt

i (at)= vω
t

i + 1 − δ

δ

(
vω

t

i − gωt

i (at)
)

for all i ∈ I.
This strategy profile is well defined, as wωt

(at) is within ε of vω by construc-
tion, and it is easy to see that this strategy profile is a PPXE. Q.E.D.

A.2. Proof of Lemma 12

LEMMA 12—Restatement: Suppose that α is ex post enforceable and statewise
distinguishes (i�ω) from (j� ω̃). Then k∗(α�λ) = ∞ for direction λ such that
λω
i > 0 and λω̃

j �= 0.
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PROOF: Let ξ = (ξ(y))y∈Y be as in the definition of statewise distinguisha-
bility. Without loss of generality, assume πω̃(α) · ξ = 0. Let zω

i = (zω
i (y))y∈Y

and zω̃
j = (zω̃

j (y))y∈Y be such that

zω
i (y)= K

δλω
i π

ω(α) · ξξ(y)

and

zω̃
j (y)= − K

δλω̃
j π

ω(α) · ξξ(y)

for all y ∈ Y . Since πω(α) · ξ = πω(ai�α−i) · ξ > 0 for ai ∈ suppαi, we have

πω(ai�α−i) · zω
i = K

δλω
i π

ω(α) · ξπ
ω(ai�α−i) · ξ = K

δλω
i

(1)

for all ai ∈ suppαi. Also, since πω(α) · ξ > 0 and πω(α) · ξ ≥ πω(ai�α−i) · ξ for
ai /∈ suppαi, we have

πω(ai�α−i) · zω
i = K

δλω
i π

ω(α) · ξπ
ω(ai�α−i) · ξ ≤ K

δλω
i

(2)

for all ai /∈ suppαi. Moreover, since πω(α) · ξ > 0 and πω̃(aj�α−j) · ξ = 0 for
all aj ∈ Aj ,

πω̃(aj�α−j) · zω̃
j = − K

δλω̃
j π

ω(α) · ξπ
ω̃(aj�α−j) · ξ = 0(3)

for all aj ∈ Aj . Finally, it is obvious that

λω
i z

ω
i (y)+ λω̃

j z
ω̃
j (y)= 0(4)

for all y ∈ Y .
Let (ṽ� w̃) be a pair of a payoff vector and a function such that w̃ enforces

(ṽ�α). Let K > maxy∈Y λ · w̃(y)− λ · ṽ. Then let

wω
l (y)=

⎧⎨
⎩
w̃ω

i (y)+ zω
i (y)� if (l�ω)= (i�ω),

w̃ω̃
j (y)+ zω̃

j (y)� if (l�ω)= (j� ω̃)�

w̃ω
l (y)� otherwise,

for each y ∈ Y . Also, let

vωl =
⎧⎨
⎩
ṽωi + K

λω
i

� if (l�ω)= (i�ω)�

ṽωl � otherwise.
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We claim that this (v�w) satisfies all the constraints in LP Average.
Obviously, constraints (i) and (ii) are satisfied for all (l�ω) ∈ (I × Ω) \
{(i�ω)� (j� ω̃)}, as vωl = ṽωi and wω̄

l (y) = w̃ω
l (y). Also, since (1) and (2) hold

and w̃ enforces (α� ṽ), we obtain

(1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) ·wω

i

= (1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) · (w̃ω

i + zω
i )

= ṽωi + K

λω
i

= vωi

for all ai ∈ suppαi and

(1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) ·wω

i

= (1 − δ)gω
i (ai�α−i)+ δπω(ai�α−i) · (w̃ω

i + zω
i )

≤ ṽωi + K

λω
i

= vωi

for all ai /∈ suppαi. Hence, (v�w) satisfies constraints (i) and (ii) for (i�ω).
Likewise, it follows from (3) that (v�w) satisfies constraints (i) and (ii) for
(j� ω̃). Furthermore, using (4) and K > maxy∈Y λ · w̃(y)− λ · ṽ,

λ ·w(y) = λ · w̃(y)+ λω
i z

ω
i (y)+ λω̃

j z
ω̃
j (y)

= λ · w̃(y)

< λ · ṽ +K = λ · v
for all y ∈ Y , and hence constraint (iii) holds.

Therefore, k∗(α�λ) ≥ λ · v = λ · ṽ + K. Since K can be arbitrarily large, we
conclude k∗(α�λ) = ∞. Q.E.D.

A.3. Proof of Claim 3

CLAIM 3—Restatement: For α= (C1�C2),

k∗(α�λ′)≤ λ′ · g(C1�C2)− 1 −β

β
(g

ω2
2 (C1�D2)− g

ω2
2 (C1�C2))�

PROOF: Consider the associated LP Average problem and choose (v�w) to
satisfy constraints (i)–(iii) of this problem. From player 2’s incentive compati-
bility (IC) constraint for state ω2, we have

β
(
qH(w

ω2
2 (H)−w

ω2
2 (L))+ qM(w

ω2
2 (M)−w

ω2
2 (L))

)

≥ 1 − δ

δ
(g

ω2
2 (C1�D2)− g

ω2
2 (C1�C2))�
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Then

v
ω1
1 + v

ω2
2

= (1 − δ)(g
ω1
1 (C1�C2)+ g

ω2
2 (C1�C2))

+ δ(πω1(C1�C2) ·wω1
1 +πω2(C1�C2) ·wω2

2 )

= (1 − δ)(g
ω1
1 (C1�C2)+ g

ω2
2 (C1�C2))+ δπω1(C1�C2) · (wω1

1 +w
ω2
2 )

− δ(1 −β)
(
qH(w

ω2
2 (H)−w

ω2
2 (L))+ qM(w

ω2
2 (M)−w

ω2
2 (L))

)
≤ (1 − δ)(g

ω1
1 (C1�C2)+ g

ω2
2 (C1�C2))+ δ(v

ω1
1 + v

ω2
2 )

− (1 − δ)(1 −β)

β
(g

ω2
2 (C1�D2)− g

ω2
2 (C1�C2))�

Arranging yields

v
ω1
1 + v

ω2
2 ≤ g

ω1
1 (C1�C2)+ g

ω2
2 (C1�C2)

− 1 −β

β
(g

ω2
2 (C1�D2)− g

ω2
2 (C1�C2))�

So we have

λ · v ≤ λ · g(C1�C2)− 1 −β

β
(g

ω2
2 (C1�D2)− g

ω2
2 (C1�C2))�

This proves the desired result. Q.E.D.
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