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Abstract: 

 

 This paper proposes and analyzes a model of stochastic evolution in finite 
populations.   The expected motion in our model resembles the standard replicator 
dynamic when the population is large, but is qualitatively different when the population 
size is small, due to  the difference between maximizing payoff and maximizing relative 
payoff.  Moreover, even in large populations the asymptotic behavior of our system 
differs  from that of the best-response and replicator dynamics due to its stochastic 
component. 
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1. Introduction 
 

This paper proposes and analyzes a model of stochastic evolution in finite 

populations.   Our model is a generalization of the Moran process of evolutionary biology  

(Moran [1962],   Ewens [2004]) to frequency-dependent fitness.  In this process, one 

individual per period “dies” and is replaced by a newcomer. The newcomer’s strategy is a 

random variable whose distribution is given by an “updating function” that depends only 

on the current state, that is, the numbers of agents using each choice.   

The updating function we study has two parts, the “base rate” updating rule and a 

lower-frequency probability of “mutation.”  In the base-rate or “unperturbed”  process, 

each agent has a number of  “offspring” that is equal to its payoff in the game, and the 

new agent is chosen at random from the pool of all the offspring. 1  This process  can also 

be interpreted as a model of imitation:   Each period, one randomly chosen individual re-

evaluates its choice, with the probability of choosing a given strategy equal to the total 

payoff of players using that strategy divided by the total payoff in the population, so that 

the choice depends on both the payoff of each strategy and on the strategy’s popularity.2   

In the spirit of the literature on large deviations, we relate the long-run behavior 

of the process with mutations to that of the simpler  process where mutations are absent.  

In this unperturbed process, every monomorphic configuration is a steady state. The 

mutations lead to a fluctuation between these configurations; our analysis determines the 

limit of this distribution as the frequency of mutation goes to 0.    

Most of this paper analyzes the case of symmetric 2x2 games.  The analysis 

differs from past applications of large deviations theory to such games because the limit 

distribution is not a point mass.  Instead, the relative probabilities of the various states 

depend on the transition probabilities of the base-rate process.  After obtaining the 

                                                 
1 In the classic Moran process, the fitness of each strategy is independent of the state of the population. In 
the evolutionary interpretation of the model, the assumption of an exogenous finite population size can be 
viewed as an approximation to a model where environmental forces keep the population from becoming 
infinite. 
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formula for the limit distribution in terms of the parameters of the payoff matrix, we then 

classify games according to which strategy is favored. In some cases one strategy is 

favored for any population size, and the probability assigned to the favored strategy 

converges to 1 as N → ∞ . In other cases, the favored strategy depends on the population 

size.  This is true in particular for the case where B is the dominant strategy, but  the 

payoff of playing A  against B  exceeds the payoff of playing B  against A. Here  there is a 

“spite” effect when the population is sufficiently small: Even though strategy A  is 

dominated, it can be long-run outcome of the evolutionary process,  since for example 

strategy A  has higher payoff than strategy B  when each strategy is played by exactly one 

agent. However, as the population grows, the difference between absolute and relative 

performance vanishes, and the evolutionary process selects the dominant strategy B. 

The selected equilibrium can also depend on population size in some games with 

two pure-strategy equilibria. Moreover, in such games the risk-dominant equilibrium 

need not be selected, even in the limit of large populations., in contrast to the work of  

Kandori, Mailath, and Rob [1993] (KMR) and Young [1993] on 2x2 games.  This is 

because those papers analyze deterministic no-mutation processes, so that the equilibrium 

selected is determined by comparison of the “radii” (Ellison [2000]) of the absorbing 

states, while  we analyze a stochastic no-mutation process, where a single mutation can 

lead to a transition from one absorbing state of the no-mutation process to the other. 

Thus, the equilibrium that is selected depends on the “expected speed of the flow” at 

every point in the state space, and two coordination games with the same mixed-strategy 

equilibrium (and hence the same basins for the best-response and replicator dynamic3) 

can have systematically different speeds at other states.4  However, the risk-dominant 

equilibrium is selected when payoffs from the game have only a weak effect on the 

overall fitness of the strategy. 

                                                                                                                                                 
2 Giving weight to popularity as well as current payoffs is a rule of thumb that allows current choices to in 
effect depend on past states of the system. Ellison and Fudenberg [1993, 1995] show that such rules can be 
socially beneficial. 
3 By “replicator dynamic ” here we mean the  standard version with linear fitness functions, which is due  
to Taylor and  Jonker [1978]; see Fudenberg and Levine [1998],  and Hofbauer and Sigmund [1998], 
[2003] for surveys of related results 
4  See  Fudenberg and Harris [1992] for a discussion of  why one should expect stochastic stability to 
depend on the “speed of the flow” as well as on the expected direction of motion.  
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To understand the behavior of our model for large N,  it is helpful to note that its 

mean field (that is, expected motion) converges to that of the standard replicator dynamic 

as  the population becomes infinite.5 Thus, the results of Benaim and Weibull [2003a,b] 

show that for large N the state of the process will, with high probability, remain close to 

the path of the deterministic replicator dynamic for some large time T.6   However, just as 

in that paper, even for large N the asymptotics of the stochastic system depend on the 

details of the stochastic structure, and can differ from those of the deterministic replicator 

dynamic.   Moreover, our finding that the risk-dominant equilibrium need not be selected  

shows that the asymptotic behavior of our system can differ from that of the stochastic 

replicator dynamic studied by Fudenberg and Harris (FH) [1992].  FH assumed that the 

payoffs to each strategy profile were subject to a random aggregate shock that was 

modeled as a diffusion, and derived a diffusion process for the population shares using 

each strategy; this process converges to the risk-dominant equilibrium as the variance of 

the aggregate shock goes to 0.   In this context, it is interesting to note that our process 

does pick out the risk-dominant equilibrium in the case of weak selection; this is the  case 

where the asymptotics of our system can be approximated by a diffusion.  

In addition to our classification of the limit distribution in all 2x2 games, we 

analyze the limit distribution in 3x3 coordination games with large populations. For 

generic payoffs the limit distribution converges to a point mass as the population goes to 

infinity, but even when a ½ -dominant equilibrium exists it need not be selected, for 

much the same reason that the risk-dominant equilibrium need not be selected in 2x2 

games. 

The possibility of a “spite effect” in finite populations was pointed out by 

Hamilton [1970], and led   Schaffer [1989] to propose an alternative definition of 

evolutionary stability for finite populations. Rhode and Stegeman [1994] analyze the 

effect of spite in the “Darwinian” model of KMR, which supposes that the unperturbed 

dynamic is deterministic; they show that even allowing for spite the risk-dominant 

equilibrium is selected in large populations.  Our process yields a different conclusion.   

                                                 
5 Note that in small populations the mean field in our model can be very different from that of the replicator 
due to the difference between maximizing absolute and relative performance. 
6 One can instead obtain a diffusion approximation if the payoffs in each interaction are scaled with the 
population size in the appropriate way, see e.g. Binmore et al [1995].  
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Fogel et al [1998]and Ficci et al [2000]  report some simulations of the 

“frequency-dependent roulette wheel” selection dynamic, which is equivalent to the 

generalized Moran process we analyze.7  This paper, and its companion Taylor et al 

[2004], present analytic results for the case of fixed finite populations.  Taylor et al look 

at the process without mutations, and compare the probability that the state  where a 

single agent plays A  (with the others playing B)  is absorbed at the state  “all A”to the 

corresponding fixation probability in the neutral case where A gives the same payoff as B 

at each state. 8 This paper differs in its assumption of recurrent mutations, and also in the 

nature of its conclusion: We provide a simple sufficient condition on the payoff matrix 

for the limit distribution to assign probability greater than ½ to all agents playing A, and 

for it to assign probability 1 to this state when the population is large.   

2. The Model 
 

To begin, and in most of the paper, we consider a population of N agents playing 

a 2x2 symmetric game. This game has payoff matrix    

, ,
,

, ,

A B

a a b cA
c b d dB

��
��

� �

 

where a, b, c, and d  are all strictly positive.  The state of  the system, denoted s,  is the  

number of individuals using strategy A .  Agents are matched with each opponent from 

the population, but the importance of each interaction is inversely proportional to the 

number of  interactions, so that when there are s  agents playing A, the fitness of 

individuals using strategy A is given by
( 1) ( )

1s

a s b N s
f

N
− + −=

−
 and the fitness of 

                                                 
7 Fogel et al emphasize that the finite population results can be very different than the predictions of the 
replicator equation, while Ficci et al argue that the two models make fairly similar predictions in the hawk-
dove game. 
8  This neutral selection probability is ��� . Nowak et al [2004] apply these results on the no-mutation 
process to the comparison of the strategies “Always Cooperate” and “Tit for Tat” in the finitely repeated 
prisoner’s dilemma. 
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individuals using strategy B is given by
( 1)

1s

cs d N s
g

N
+ − −=

−
.9 Note that at a fixed state 

the two types of agent face a slightly different distribution of opponents’ play. This fact is 

what underlies the difference between maximizing relative payoff and maximizing 

absolute payoff. 

The distribution of strategies in the population evolves as follows.  Each period, 

each agent “reproduces” at a rate proportional to its fitness, so that the number of A-

offspring is ssf  and the number of B-offspring is ( ) sN s g− . One offspring is chosen at 

random10 to enter the population, so that the probability of adding an A offspring is 

( )
s

s s

sf
sf N s g+ −

.  However, there is a probability ABµ  that an A-offspring is a “mutant” 

that plays B instead of A, and a probability BA ABkµ µ=  that a B-offspring plays A  instead 

of B. Finally, after reproduction, one randomly chosen agent is removed from the 

population, so that the aggregate population size is constant; each old agent has 

probability 1/N of being removed.  As we remarked earlier, this process can be viewed as 

a model of imitation, as opposed to evolution: Each period one agent at random is 

selected to update, and the choice of a new strategy is influenced both by the prevailing 

payoffs and the prevailing popularity of the choices. 11 Note also that this is a “birth-

death” process: the states are integers, and in each period the state can move by at most 

one step. 12 

To define the process formally, let ,s rP  denote the probability of a transition from state s  

to state r.    Then  

, 0s rP =  if 1s r− > ,  0,1 0,01BAP Pµ= = − , , 1 ,1N N AB N NP Pµ− = = − ,  

                                                 
9 Robson and Vega-Redondo [1996]  analyze a model where agents are randomly paired, and evolution is 
governed by the realized average payoffs of the strategies, which depend on the outcome of the matching 
process.  In their model, the limit as the number of rounds goes to infinity of  the limit distributions  (i.e. of 
the limit of the ergodic distributions as the mutation rate vanishes) can be different that the limit 
distribution with an infinite number of rounds, but as we explain later that is not the case here. 
10 That is,  each offspring has equal  probability, namely  ( ) 1( )s ssf N s g −+ − .  
11 Giving weight to popularity as well as current payoffs is a rule of thumb that allows current choices to in 
effect depend on past states of the system. Ellison and Fudenberg [1993, 1995] show that such rules can be 
socially beneficial when there are stochastic shocks to the payoff functions. 
12 Kirman [1993] looks at a birth-death model of imitation  that is not explicitly  linked to game payoffs, 
and characterizes the limit of the ergodic distribution when the mutation rate goes to 0 at rate 1/N.   
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and for s = 1 to N-1 we have  

, 1

(1 ) ( )
( )

s AB s BA
s s

s s

sf N s g N s
P

sf N s g N
µ µ

+
− + − −=

+ −
,   

, 1

( ) (1 )
( )

s AB s BA
s s

s s

sf N s g s
P

sf N s g N
µ µ

−
+ − −=

+ −
,  and  

, , 1 , 11s s s s s sP P P+ −= − − . 

 

Because of the presence of mutations, this process is ergodic, with a unique 

invariant distribution that we denote ( , , )AB BAx Nµ µ . 

 Let P̂  be the version of the process where the mutation rates are identically zero.   

Thus, under P̂  the transition probabilities are  

0,0
ˆ 1P =    

, 1
ˆ

( )
s

s s
s s

sf N s
P

sf N s g N+
−=

+ −
,  , 1

( )ˆ
( )

s
s s

s s

N s g s
P

sf N s g N−
−=

+ −
, and  

, , 1 , 1
ˆ ˆ ˆ1s s s s s sP P P+ −= − −   for s = 1 to N-1,  

and ,
ˆ 1N NP = .  

 

Note that , 1

, 1

ˆ ( ) ( )
ˆ ( ) ( )
s s ss s

s s s s ss s

P gN s g s sf N s
sf N s g N sf N s g N fP

−

+

� �� �− −= =� �� �+ − + −� �� �
: the ratio of the 

transition probabilities equals the ratio of the fitness levels. 13 

In this process, states 0 and N  are absorbing, and the others are transient. Thus, 

from the work of Freidlin and Wentzell [1984], we expect that the invariant distribution 

for small µ  will be concentrated on these two endpoints.  Intuitively, after each 

                                                 
13 Here is another model that gives rise to the same long-run outcome: Each period, a single agent at 
random is chosen from the population, and matched (without replacement) with a single second agent.  The 
first agent  “reproduces” with probability equal to its realized payoff divided by a scale factor z that is 
larger than ����� � � �� ��� . If the agent reproduces, it replaces a randomly chosen member of the entire 
population. Thus for example the probability of  an increase in the number of  A  players is the probability 
an A  is chosen times the expected payoff of an A  times the probability a B  is replaced times z,  so that 

( )[ ]( ), 1' / ( 1) ( ) ( ) / /s sP s N s a N s b N s N z+ = − + − − , and 
'
, 1 , 1
'
, 1 , 1

ˆ

ˆ
s s s ss

s s s s s

P Pf
P g P

+ +

− −

= = , so the new process differs from 

the original one only in its speed. 
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mutation, the process will reach an absorbing state of the no-mutation process and remain 

there for a long time before the next mutation occurs. We will verify this intuition, and 

refine it by computing the relative probabilities of states 0 and N. 

We now want to hold fixed N and /BA ABk µ µ= ,  where we assume that 

	 �� �� , and vary the scale of the mutations. Let *
0( , ) lim ( , , )

AB AB ABx k N x k kµ µ µ→≡ .    

We call *( , )x k N  the “limit distribution;” it describes the long-run distribution of 

strategies when mutations are extremely rare. 

The literature on large deviations shows that the limit distribution is concentrated 

on the attractors of the limit process, which in our case are the states N (all A) and 0 (all 

B)   14  Henceforward, to simplify notation we will regard ( )* * *( , ) ( , ), ( , )A Bx k N x k N x k N=  

as a probability vector on these two states, instead of on the entire state space. The 

literature also suggests that the transition probabilities in the  mutationless  process P̂  

play a key role in determining the limit distribution.  In our case, the relevant 

probabilities are those for transitions from state 1 (where almost everyone plays B) to 

state N (where everyone plays A), which we denote ���  and the probability of absorption 

at 0, starting at N-1, denoted by ���� . 

 

Lemma 1:  The weights   ( )* *( , ), ( , )A Bx k N x k N that the limit distribution  assigns to states 

“all A”  and  “all B”  are  ��

�� ��

�

�

�

� ��
 and ��

�� ���

�

� ��
  respectively. 

 

Proof:  This follows from the theorem of Fudenberg and Imhof [2004]. 15 For a 

heuristic derivation, consider the embedded Markov chain on the two states 0 and N, 

where the transition out of each state occurs with a single mutation. That is, we ignore all 

periods where the state has value other than 0 or N, and set the probability of  a transition 

from state 0 to state N to BA BAµ ρ , and the probability of a transition out of state N to 

AB ABµ ρ .   The key assumption is that this embedded chain has a unique invariant 

                                                 
14 See for example Kifer [1990] Theorem 3.1. 
15 See the earlier version of this paper (Fudenberg et al 2004) for a direct proof. 
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distribution, which it will if both these terms are positive; the displayed formula is simply 

the invariant distribution of this chain. 16 

This formula  shows that the long-run distribution is a continuous function of the 

absorption probabilities of the no-mutation process so long as these probabilities are 

bounded away from 0.  

 

Lemma 2:  
�

� �

�

�
�� 	�




	 




�

�

� �

� �

�
�� �

,  and 

 

�

�

�

� �
�

�








�� 	�



	 




�

�
�

�

�

�

�

�

� �

�
�

�

� �
.  

Proof:  This is an easy consequence of a result  given in Karlin and Taylor, p. 113, 

exercise 4.    The general formula depends on the ratios of the one-step transition 

probabilities; the simple functional form in the lemma  is due to the fact that , 1

, 1

ˆ

ˆ
s s s

ss s

P g
fP

−

+

= . 

 

Remark on Random Matching:  If players are randomly matched �   times  instead of 

playing each other agent exactly once, the number of A and B offspring will be a 

stochastic function of the state, and the transition and absorption probabilities will not 

have exactly the form of lemma 2.  However, the law of large numbers shows that the 

probabilities will converge to the same limit,  so the limit distribution with payoffs 

exactly equal to their expected values (which corresponds to � � � ) is equal to the limit 

of the ergodic distributions 
�� � � � � �  as � �� .17  The work of  Boylan [1992] 

suggests that a similar argument holds in the limit � �� : That is, if agents are 

randomly paired to play the game, and each agent only plays once before the population 

is updated, the limit distribution should close to that of our model when N  is large. 

                                                 
16  For the embedded chain to have a unique invariant distribution, the no-mutation process can have at 
most one absorbing state whose radius (in the sense of Ellison [2000]) exceeds 1.  Noldeke and Samuelson 
[1993] consider a process on extensive form games  where many absorbing states have radius 1.   
17  In Robson and Vega-Redondo [1996], the basin of the Pareto-efficient equilibrium has radius 2 (in the 
sense of Ellison [2000]) when �  is finite, but basin proportional to population size when �  is infinite, so 
the selected equilibrium depends on the order of limits. 
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However, since changing N  changes the state space of the stochastic process, the 

argument is more complicated, and we have not verified that it holds.  

Lemmas 1 and 2  yield the following corollary, which provides the basis for our 

main conclusions. Let 
�

�


�








�

�
�

�

�
��  

Lemma 3:    i)  
1

* 1
1 1

1 1

( , )
1

N

ss
A N N

s ss s

k f k
x k N

kk f g

γ
γ

−

=
− −

= =

== =
++

∏
∏ ∏

. 

ii)  * ( , ) 1/ 2Ax k N >   exactly when �� �� 	   

iii)   * ( , )Ax k N  converges to 1  or 0  as γ  converges to ∞  or 0 

respectively. 

 

In previous work on limit distributions in 2x2 games, such as Kandori, Mailath, 

and Rob [1993], Young [1993] ,and Robson and Vega-Redondo [1996],  the ratio of the 

mutation probabilities (here, the parameter k) has no effect on the limit distribution so 

long as it is bounded away from 0 and infinity.18 This dependence on the ratio of the two 

sorts of mutations  is a consequence of the fact that for fixed N  the limit distribution 

assigns positive probability to more than one point,  which in turn is related to the fact 

that both attractors have radius 1. 

3. Implications for Games 
 We now use Lemma 3 to study how the limit distribution depends on the size of 

the population and on the  parameters of the payoff matrix.   To this end, we substitute 

the values of the fitness functions at each state into the equation for γ : 

 

 


 � 
 �
 �

 � 
 �
 �

�� ����� �� �� � ���

� � ����� � ����� �� ��� ���

� ��  � �� � ��
 ���

� ��  � �� � ��

� � � � � � � �

� � � � � � � � � � �

� � � � � � � �

� � � � � � � �

�
� � � � �

�
� � � � � � �

� � � � �
�

� � � � �

 

                                                 
18 Bergin and Lipman [1996] study what can happen in the Kandori et al model when k  is state-dependent 
and tends to 0 at some states as the overall mutation probability goes to 0. 
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As a preliminary step, note that when  2N = , /b cγ = , so that strategy A  is favored 

when b c>  and 1k = . Intuitively, every time there is a mutation, the system moves to the 

state 1s =  with one A  and one  B,  and at this state, the relative fitness of the two 

strategies is determined by their payoffs when playing each other. Our results will follow 

from a more detailed analysis of the ratio in (1).  Note also that multiplying all of the 

payoffs  by a constant has no effect on γ , and so has no effect on the limit of the ergodic 

distributions.  However, γ  may change when a constant is added to all of the fitness 

functions.  This observation is related to our results in the next section on weak selection.   

To cut down on cases, we assume now that � �	 . This can be done by re-labeling 

except for the knife-edge case where � �� . The next theorem further specializes to the 

case where �� � , so that both sorts of mutations are equally likely; we return to the case 

of general k  when considering the large population limit in theorem 2. 

 

Theorem 1:  

(a) If ,b c a d> > , then * (1, ) 1/ 2Ax N >  for all N. 

(b) If ,b c a d> < , then whether * (1, ) 1/ 2Ax N >  depends on  the population 

size. A sufficient condition for * (1, ) 1/ 2Ax N >  is  ( 2)( )b c N d a− > − − .      

 

Proof:  In case  (a) , the first term in the product in the numerator of the final ratio 

in (1) exceeds the corresponding term in the denominator, as does the second, etc, so that 

1γ > , and lemma 3 implies that * (1, ) 1/ 2Nx N > .    

In case (b), if ( 2) ( 2)b N a c N d+ − > + − ,  the pairwise comparison of terms 

again shows that 1γ > , and ( 2) ( 2)b N a c N d+ − > + −  is equivalent to 

( 2)( )b c N d a− > − − .           � 

 

Theorem 1 gives results for any N,  but here both strategies have positive weights, 

and  the ratio of the weights depends on the ratio of the mutation probabilities.  However, 

the effects of the payoff matrix overwhelm the effect of the ratio of the mutation 
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probabilities when the population is sufficiently large, which is one reason for interest in 

the case of population sizes tending to infinity. A second reason for studying this case is 

to see how well it is captured by the replicator dynamic, which corresponds to the 

behavior of the system in a continuum population. (That is, the replicator is the mean 

field of this system.) 

 

Theorem 2:    For any k: 

a)  If ,b c a d> > , then,   *lim ( , ) 1N Ax k N→∞ = . 

   (b.1)   If   b d a c> > > ,  *lim ( , ) 1N Ax k N→∞ = . 

(b.2) If   d b c a> > > , *lim ( , ) 0N Ax k N→∞ = . 

(b.3) If  d b a c> > >  or  d a b c> > > , there are two pure-

strategy Nash equilibria, and *lim ( , )N Ax k N→∞  is either 1 or 0  

as  
1

0
ln( ( ) )b a b x dx+ −�  is greater or less than 

1

0
ln( ( ) )d c d x dx+ −� .   

The risk-dominant equilibrium need not be selected. 

 

Proof:  In case a), the ratio of each pair of terms in γ  is bounded away from 1, so 

γ → ∞ as N → ∞ . Thus lemma 3 implies that *lim ( , ) 1N Nx k N→∞ = . In subcases (b.1)   

and (b.2), we examine the expression in the first line of (1): in subcase (b.1), every  term 

in the numerator exceeds the corresponding term in the denominator, and in (b.2) the 

reverse is true provided that  2 ( ) /( )N b c d b− > − −  and 2 ( ) /( )N b c c a− > − − . The 

argument for large N in subcase (b.3) involves approximating γ  by the ratio of two 

integrals, using 
�

	
�� �

� �

�





 

� �
� �

�

�

� 
� �� �� �� �� �

� ( )1

0
exp ln( ( ) ) (1)N a b a x dx O= + − +� ; the 

details are in the appendix.       � 

 

We will say that a strategy is “favored”  by the evolutionary process if its 

probability under the limit distribution is greater than ½  when 1k = ; we will say that the 
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strategy is  “selected” if its probability under the limit distribution goes to 1 as N  goes to 

infinity.  This language will make it easier to discuss the conclusions of the theorems. 

The class of games in case (a) is composed of games where A  is strictly dominant 

( a b c d> > >  a b d c> > > , b a d c> > > , and b a c d> > > ), coordination games  

where A,A  is both  Pareto-dominant equilibrium and risk-dominant 19 ( a d b c> > > ), 

and “hawk-dove” games with two asymmetric equilibrium and a  equilibrium in mixed 

strategies ( b c a d> > > ).   When A is strictly dominant, it is selected by the deterministic 

replicator dynamic from any initial position, and it is not surprising that the same thing 

happens here as N goes to infinity.  It is similarly unsurprising that A  is selected when it 

is both risk and Pareto-dominant: Although both of the Nash equilibria are asymptotically 

stable in the deterministic replicator dynamic, past work on stochastic evolutionary 

models has always selected  any strategy that is both risk and Pareto dominant.   

In case (b), b c> , so  we expect that A  will be favored for small N.   In subcase 

(b.1), A  is the dominant strategy, so this tendency is reinforced for large N.  In subcase 

(b.2), B is dominant,  and is selected for large N,  but A  is favored for small N,  as in 

example 1 below; this is the “spite” effect that we mention in the abstract.  

Subcase (b.3), where ( , )A A  and ( , )B B  are both pure-strategy equilibria,  is more 

complex.   Past work has concluded that the long-run distribution is concentrated on the 

risk-dominant equilibrium.20  However, that need not be the case here. This is easiest to 

see by considering a game where  d b a c> > > , and a b c d+ = +  so that neither strategy 

is risk dominant.     Then the two integrals are the expectations of the logarithm of two 

random variables with the same mean. Because the log is a concave function,  the 

expected value of the log is reduced by a mean-preserving spread, and so ( , )A A  is 

selected because b a d c− < − .  Intuitively, the condition a b c d+ = +  implies that the 

two strategies are equally fit at the point / 2s N= , but the support of the  long-run 

distribution depends on the transition probabilities at every state, and these are not 

determined by the value of the fitness functions at the midpoint. 

                                                 
19 In a 2x2 game, a strategy is risk dominant if it is the unique best response to the distribution (.5 ,.5 )A B . 
In Kandori et al [1993] and Young [1993] , the risk dominant equilibrium is selected as the mutation rate 
goes to 0. That is, the limit of the ergodic distributions as the mutation rate goes to 0 is a point mass on the 
risk-dominant equilibrium. 
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Both case (a) and case (b) include subcases that correspond to “hawk-dove 

games,” that is symmetric games with two asymmetric pure-strategy equilibria. Since we 

are working in a one-population model, the  asymmetric equilibria in the hawk-dove case 

cannot arise, but the conclusion that the process spends almost all of its time in 

homomorphous states may seem odd.  This conclusion is a consequence of our focus on 

the limits of the ergodic distribution for the case of vanishingly small mutation rates; 

when the population size is large compared to �  the distribution is concentrated near the 

mixed equilibrium.21   

We summarize the above discussion of our results for large populations by 

regrouping cases according to more traditional game-theoretic criteria. 

 Corollary:  If the game has a strictly dominant strategy, the probability assigned 

this strategy by the limit distribution converges to 1 as N  goes to infinity.  If the game 

has two strict Nash equilibria, then except for knife-edge cases there is an equilibrium to 

which the limit distribution assigns probability converging to 1 as N  goes to infinity, but 

the risk-dominant equilibrium need not be selected. 

 

4. 3x3 Coordination Games 
 

Now consider a 3x3 symmetric game with pure strategies 1,2,3, and strictly 

positive payoff matrix �
� �� ��� � �� � , where ���  is the payoff for strategy i playing strategy j. 

As before, there is a fixed population   of N agents; the state s of the system is the number 

of agents using each strategy. We denote the fitness of strategies 1, 2, and 3 by 
� , 
� , and 


�  respectively, where for example � �� � �� � ��� ��

�




 � 
 � 
 �
�

�

� � �
�

�
. The no-mutation 

process is again constructed by assuming that each agent playing strategy i  has a number 

                                                                                                                                                 
20 Strategy A  is risk dominant if a b c d+ > + , and B  is risk dominant if the reverse inequality holds.  
When A is risk-dominant, it is the best response to the mixed strategy ( ½  A, ½ B).    
21  The work of Benaim and Weibull [2003a,b] suggests that the limit as � ��  for a fixed mutation rate 
should be one of the attractors of the mean field of the process.  In the case of coordination games, these 
attractors  are the pure-strategy equilibria, which are also the support of the limit distribution. Moreover, we 
conjecture that  in coordination games,  the equilibrium selected by first sending the mutation rate to 0 and 
then sending the population size to infinity, as in Theorem 2, is the same as the one selected with the other 
order of limits. This conjecture is explored in a more general setting in work in progress by Fudenberg and 
Hojman [2004].  
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of offspring equal to its payoff, with  one offspring chosen at random to replace a random 

member of the current population, so that e.g. the probability that a 1-user replaces a 2-

user is 1 2

1 2 3

s

s s s

s f s
s f s g s h N+ +

, and the ratio of this probability to that of a move in the other 

direction is 





�

�
, just as it was in the two-strategy case. Let ���� ��  be the probability that 

under the no-mutation process is absorbed at the homogeneous state where all agents play 

i,  starting from the state where only one agent plays i and all the rest play j.  Since the 

no-mutation process never introduces an extinct strategy, ���� �� is the same as if the 

game only had these two strategies. 

We add mutations to the system by supposing that  there is common probability 

�  that the offspring of an i-strategist is a j- strategist. We let 
���  denote the limit of 

the ergodic distributions as 	�� . As before we represent this as a probability 

distribution over the homogeneous states instead of as a distribution over the entire state 

space, so that 
����  is the probability that the limit distribution gives to the state “all i.”.   

Lemma 4: The limit distribution as �  goes to 0 is 


 
 
 

� � ��� ���� ��� ����  � �  �� , where 


 �



�

�

�� �� �� �� �� ��
��

�� �� �� �� �� ��

�� �� �� �� �� �� � � �

�

�	 �	 �	 �� �	 �� 	 � �	

� � � � � �
 �

� � � � � �

� � � � � �

� � � � � �

� �

� ��

� �
�

� ��
. 

 

 Proof: This is example 2 of  Fudenberg and Imhof [2004]. Note that the 

formula given is that for the invariant distribution of a Markov chain on the three states i, 

j, k, whose off-diagonal transition probabilities are  given by the � ’s.   � 

 

We now specialize to the coordination-game case, where each of the pure 

strategies corresponds to a symmetric Nash equilibrium, so  that �� ��� �	  for all i and 

� �� .  From the 2x2 case, know that the ���  will all be positive, so  lemma 4 implies that 

the limit distribution will give positive probability to each strategy in a population of 

fixed size.  Our goal is to determine the behavior of the limit distribution  as the 
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population size N goes to infinity.  To do so, we   will characterize the limit on N  of the 

���� ��  in terms of integrals of logarithms of the relative fitness of strategies i  and j, 

using an argument that is similar in spirit but more complex than that in the proof of  

Theorem 2, case b.3.  To this end let 
 
��� ��

�� ��

�� �� �� ��

� �
� �

� � � �

�
� � �

� � �
; this is the weight 

given to strategy i  in the mixed equilibrium in the 2x2 subgame corresponding to 

strategies i  and j, and is strictly between 0 and 1  because we have specialized to 

coordination games. Define 
�� �

�� ��
�� �

�� ��

��

�� ��

� � � �
�

� � � �
�

� �� � �� ��� �� ��� � �� �
; this is the logarithm of the 

ratio of the expected payoffs of   j and i in an infinite population where fraction z  plays i  

and all the rest play j.  Finally define 



	
��

���

�� �� � ��� �� � ; note that this is strictly positive.    

 

Lemma 5:   There are constants 	 � �� � ��  such that for all �� � , and all 

pairs of distinct strategies i,j, ������� � ���� ��� � � � �� �� � . 

 

The proof of this is in the appendix. Here is a sketch: We first argue that  �� ���� ��  is 

bounded above and below by terms  proportional to 
 �
�

	
���� � ���� � � ����� , where 

	

�� ��
�

� ���� �� � .  We then use the “Laplace method” (de Bruijn 1958])  to approximate 


 �
�

	
���� � ���� � ����� . In essence, this method is to first  approximate 


 �
�

	
���� � ���� � �����  by 
 �






���� � ���

�

�
� � ��

	

	
�

�

�
�� , where 
 ����������� ��� , and 

the approximate 
 �





���� � ���

�

�
� � ��

	

	
�

�

�
��  by 
 �






���� � ���

�

�
� � ��

	

	
�

�

�
�� � , where ��  is 

the second-order Taylor approximation to � . 

 



 17 

Theorem 3:   Let ���� ����� ��� �� �� � �� �� � � �� � � � � � �� � � , and let 
 ���� �� �� . 

Then for every j  with 

�� �	 , 
��� �� 	� ���� � . In particular, if ������ � � �� � ��  

then 
��� �� �� ���� � . 

 

Proof:   From lemma 4, 






�� �� �� �� �� ����

�� �� �� �� �� �� ��

�� �� �� �� �� ���

� �� �� �� �� �� ��

� � � � � � �

 � � � � � � �

� � � � � �

� � � � � �

� �
�

� �
.  

From lemma 5, ������� � ���� ��� � � � �� �� � , so we can bound each of the six terms 

in this ratio, for example 


 � 
 �� �� ������ �� �� �� ����� ���� �� �� �� �� ��� � � � � � � �� � � � � �
� �

� � � � .  Since all six  

terms are  positive,  if � �� �	 , 
��� �� 	� ���� � .    � 

 

As in the 2x2 case, a ½-dominant equilibrium need not be selected. The easiest 

examples are where  strategy 3 risk-dominates both strategy 1 and strategy 2 in pairwise 

comparisons (so it is “pairwise risk dominant”) but where strategy 1 or 2 is selected over 

strategy 3 as � ��  in the 2x2 games. This is the case in the following payoff matrix 

where strategy 1 is selected, i.e. 

���� �� �� ��� � : 

   

�� � �

� �� �

� � ��

. 

 

5 Weak Selection 
 

So far we have supposed that the payoff or fitness of an agent is entirely 

determined by  the fitness functions.  We now return to the case of 2x2 games and that 

earlier notation to investigate what happens if the fitness is the sum of a “game payoff” 

and a “baseline fitness,” and moreover selection is weak in the sense that the game makes 

a small contribution to total payoff.  

In the application of evolutionary dynamics to biology, it is  natural to consider 

the case of weak selection, as most genetic mutations lead to very small changes in the 
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phenotype or behavior of animals and consequently have only a very small effect on the 

fitness. Indeed the overwhelming majority of molecular mutations do not change  fitness 

at all and are called ‘neutral’ mutations, and many results in population genetics are 

derived for the limit of weak selection or even neutrality.  

It is also of interest to study weak selection in a social context. We are engaged in 

many different simultaneous games, and the outcome in any one of them might only have 

a small contribution to our overall success. Thus, it is very natural to assume that players 

have a baseline payoff and the particular game that is being considered provides only an 

incremental contribution to the total payoff.  At the same time, it may be difficult for 

players to disentangle the factors that lead to the success of another agent, so that 

decisions about whose strategy to imitate in a given game might be based on overall 

fitness instead of on performance in the game at hand. 

To study weak selection, we replace the assumption that  

( ) ( )( 1) ( ) / 1sf a s b N s N= − + − −  and ( ) ( )( 1) / 1sg cs d N s N= + − − −  with 

( )1 ( 1) ( ) /( 1)sf w w a s b N s N= − + − + − −  and ( )1 ( 1) /( 1)sg w w cs d N s N= − + + − − − , 

so that [0,1]w∈  measures the contribution of the game to overall fitness; 1w =  is our 

previous case, while 0w =  is the case of neutral selection. 

The argument of lemma 3 still holds, and the nature of the long-run distribution is 

again determined by whether  
�

�
�

�



�� �� 




�

�
� � �

�

�
� ��  is greater or less than ��� . 

However, the form of the fitness functions has changed. Standard game-theoretic solution 

concepts such as best response and Nash equilibrium are unaffected by any affine, 

positively-sloped,   transformation of the payoff functions,  and this is also true for long-

run predictions of the replicator dynamic, inspection of the formula for γ  shows that it 

changes when payoffs are shifted by an  additive constant.   In particular, we can sharpen 

the conclusions of the last section for cases where w  is sufficiently small, so that all of 

the payoffs are close to 1.  
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Lemma 6:    For fixed N,  
�

�
� � � ��

�

�








� �
� � � � � � � ��

�
�

�

�

� ���� � � � � � � � ��� ��� �� . 

 
 

Proof:   Using the approximation 1/(1 ) 1 ( )x x o x+ = − + , we write 

1 ( 1) ( 1)
1/ 1 ( )

( 1) 11 1
1

s

cs d N s N
g w o w

cs d N s Nw
N

+ − − − −= ≈ − +
+ − − � −�+ −� �−� �

 

So  

( )

( )

( )

( 1) ( ) ( 1) ( 1) ( 1)
1 1 ( )

1 1

( 1) ( ) ( ( 1))
1 ( )

1

( 1)( ) ( )
1 ( ).

1

s

s

a s b N s Nf cs d N s N
w w o w

g N N

a s b N s cs d N s
w o w

N

a c d b s N b d b a
w o w

N

�− + − − −� + − − − − �� ��= + − +�� � ���− −� �� �� �

�− + − − + − −�
= + +�� −� �

�− + − + − − + −�
= + +�� −� �

    

Let a c d bα = − + − , and let ( 1)( )N b d b aβ = − − + − . 

 

Then 1 ( )
1

s

s

f s
w o w

g N
α β+= + +

−
, so  

 
�

�

� ��
� � ��� ��

� �

�








� � � �
� ��

� �
� 
 �

�

�

�
� � � �
 � �

��  

 

=� � � � ��� � ��
�

�
� � � � � � � � � � ��
� ���� � � � � � � � � ��� ��� �

 

=� � � ��
�

�
� � � � � � � ��
� ���� � � � � � ��� ��� �

.                                                     � 

 

Corollary 2:   In  a game where (A, A)  and (B,B) are both Nash equilibria, the risk-

dominant equilibrium is selected in the double limit *
0lim lim ( , )N w x k N→∞ → . 
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6. Conclusion 
  

Our analysis shows that the behavior of “replicator-like” systems in finite 

populations can be different than that of the standard replicator dynamic. The differences 

are most striking in the case of small populations, where the expected motion differs from 

that of the replicator, but even in large populations the asymptotic predictions of the two 

models can differ. 



 21 

 

 

Appendix 

 

Proof of  Theorem 2 , case b.3 

 

Our goal is to characterize the behavior of γ  as N → ∞ , where  
 


 � 
 �
 �

 � 
 �
 �

�

	

�� ����� �� �� � ���

� � ����� � ����� �� ��� ���

� ��  � �� � ��� ��

� �� � ��  � �� � ��

� � �

� � �

�




� � � � � � � �

� � � � � � � � � � �

� � � � � � � ��� �

� � �� � � � � � � �

� �� �� 


� �� �� 


�

�

�

� � � � �
�

� � � � � � �

� � � � ��
�

� � � � � �

� �� � � �� �� � �� �� � � �� �
�

 

 
 
We will approach this by comparing the numerator of the expression to  the denominator.   
 
We rewrite the numerator as   

� �

		

�
�� � ��� �� �� �

� � � �

� �






 
 
 

� � � � � � �

� � � � �

� �

��

� ��  � �� �� �� � � � �� � � �� � �� � �� �� �� � � �� �
�� , and 

the denominator as 
�

	
�� �

� �

�





 

� � �

� �

�

�

� 
� �� �� �� �� �

� . We then approximate the 

numerator by ( )1

0
exp ln( ( ) ) (1)d N a b a x dx O+ − +� , and the denominator by 

( )1

0
exp ln( ( ) ) (1)a N c d c x dx O+ − +� .  For large N,  this comparison is determined by the 

comparison of  the integrals, and γ  converges to either 0 or infinity. 
 
Since  

 
1

0

ln( ( ) ) ln( ( ) ) ln( ( ) ),

ln( ( ) ) ln ln 1.

a
a b a x dx x a b a x x a b a x

b a
b a

a b a x dx b a
b a b a

+ − = + − − + + −
−

+ − = − −
− −

�

�
 

 
So the question becomes whether  
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ln ln ln lnb b a a d d c c
b a d c

− −� �� �>� � � �− −� �� � .     � 

 
 

Claim : There are cases with a b c d+ < +  but 
ln ln ln lnb b a a d d c c

b a d c
− −� �� �>� � � �− −� �� �

. 

Take c=1, 8, 16, 24b a d= = = . Then the LHS= 5ln 2 3.465≈ ; the RHS= 

24ln 24
3.307

23
≈ . 

 
Proof of lemma 5:  Fix a pair of distinct strategies i and j. From lemma 2, 
 

     

�

� �

�

� �

�

� �

� � ��
�

�� � �� � �

� � � � � �
�

� �� � � �

� � �
� ���  ���

� �� �

�
�� ��

�� �� ��

�
�� �� �� ��

�� �� ��

�
�� ��

��

��

� � �

� � � �

� � � � � �

� � � � �

� � �

� � �

�

� �

�

� �

�

� �

� �

� � �

� � � �

� �

� � �
�

�

� �

�

� �

�

� �

� � �
� �

� � �

� � � � � �
� �

� � � �

� �� � � � �� �� ���� �  !�� �� �� �� �� �" #

��

� �

� �

 

  
 

Set
	

�� ���� � ��
�

� � �� �  and $ %�
� ��� ���	 ���� � ��� � � .  Since all payoffs are 

positive, K1 < ∞ . Thus by the mean value theorem,  

       
�� ��

�

� ���� ��
� �� ��

� �

�

�� ��
�

�
� � ��

� �

�

�

�
� �

�

� �

� ��� � � ��� �� �� ��  for �� � ��� � ��  

 
and so, for 

��

ν =1,�,N −1, 
 

       
 �$ %�
�

��� ��� � 
� �

�� � �
� �

�

�

� �
� �

�

� �� �� � � �� �� �� �� � � !� �� �� �� � � �� �� �� �" #
�  

 
 
The positivity of the payoffs also implies that ψ  is Lipschitz continuous with 

Lipschitz constant  $ %� ��� ���	 � ��� � ��� � �   Thus 
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$ % $ %

 �$ %�

�� ��

� ���� ��

�� ��

� ���� ��

���� �� � �� ���� ��
� �

� �� ���� ��

�

�

�
�

�

� � � �
� �

� � � �

�

�

�

�

� �
� � �

� � �

�

� �

�

� �

� � � �� �� �� � � �� �� �� �� � � �� �

� � �

�

�  

for  
��

ν =1,�,N −1.   
 

Note also that 
� � �

���� � ���
� ��

�� ��

�� ��

��

� � �
� �

� �

� �� � �
�

�
 for all ���� ��� � � . 

 
Substituting into (*), it follows that 
 

        $ % � �

�

	

�
� ��� � �� � �� ����� ���� 

��
� �

�� ��

��

� � � � � �
�

� � �
�

�� � � ��  

 
A similar argument shows that  
 

        $ % � �

�

	

�
� ��� � �� � �� ����� ���� 

��
� �

�� ��

��

� � � � � �
�

� � �
�

� �� � � ��  

 
To determine the asymptotic behavior of the integral note that  φij(z) > 0 for 0 ≤ z < zij

*  

and φij(z) < 0 for zij
* < z ≤ 1. Thus ψ(ξ) < ψ(zij

* ) = βij  for all ξ ≠ zij
* . Moreover, 

′ ′ ψ (zij
* ) = ′ φ ij (zij

* ) < 0.  Thus the Laplace method for approximating integrals of the form 

���� ����� ��  as � �� (see e.g. De Bruijn [1958], chapter 4) yields that 

 

       
& '

�

	
���

��� �� �
��� 

���� � ���
�� �� ��

� �

� � �

� � � 

� �� (��
� �

)
�

 

 

It follows that there exist constants 0 < mij < M ij < ∞  such that 

mij ≤ N1/2 exp(Nβij )ρij (N ) ≤ M ij  for all N ≥ 2. The assertion is obtained by considering 

all pairs of distinct strategies and taking m = mini≠ j mij  and M = maxi≠ j M ij .    � 
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