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Abstract. Different discrete time triangular arrays representing a noisy sig-

nal of players’ activities can lead to the same limiting diffusion process yet
lead to different limit equilibria. Whether the limit equilibria are equilibria

of the limiting continuous time game depends on the limit properties of test

statistics for whether a player has deviated. We provide an estimate of the
tail probabilities along these arrays that allows us to determine the asymptotic

behavior of the best test and thus of the best equilibrium.

1. Introduction. It is frequently difficult to determine the set of equilibrium pay-
offs in discrete time repeated games with imperfect public monitoring when the
discount factor is bounded away from one. In the continuous time case Sannikov
[2007] (see [5]) and Sannikov and Skrzypacz [2007] (see [6]) have obtained striking
characterizations of the equilibrium set in continuous time games where the public
signals are modeled as a diffusion process, with the players’ actions altering the dif-
fusion’s drift but not its volatility. These continuous-time models are motivated as
modeling the limit of very high frequency interactions, which raises the question of
what sorts of high-frequency limits the models capture. This in turn depends on the
relationship between the signal processes in discrete and continuous time. Fuden-
berg and Levine [2009] (hereafter referred to as FL, see [3]) show by example that
the same limiting diffusion processes can arise as the limit of different discrete-time
structures that have very different limit equilibria.

In characterizing the cooperative equilibria of a repeated game it is necessary to
understand which punishment schemes are incentive compatible for players. This
can be thought of as testing for whether a deviation has occurred combined with
a punishment if the test is failed. Intuitively, as with the normal distribution, the
tails of a diffusion process permit a very accurate test for the difference in means
by using a cutoff for the signal, above which the test is considered to have failed.
However, since the worst possible punishment in a repeated game is bounded, what
matters is not just the accuracy of the test but whether defections can be detected
with sufficient probability. As we approach continuous time as the limit of shorter
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discrete intervals, the question becomes how rapidly the probability with which
defections can be detected decreases relative to the size of available punishment. If
the only way to create a sufficiently accurate test is to send the cutoffs very quickly
to infinity, then punishment will occur too rarely to provide sufficient incentives for
cooperation. In this case we can expect that there will only be static equilibria in
the limit. Consequently a key question is whether it is possible to design a test
that finds an appropriate balance between accuracy and frequency of punishment
as the period length shrinks. For concreteness we will illustrate this idea in a simple
principal-agent game instead of the repeated game studied in FL.

In many - if not most - cases of interest, the public signal is not literally contin-
uously distributed, but the diffusion process arises as the limit of the aggregate of
many small discrete events such as price changes. In this case we are interested not
in the normal distribution per se, but rather a distribution that approaches normal-
ity in the limit. It might be hoped that a version of the central limit theorem could
be used to examine the convergence properties of the test statistic. Unfortunately
as periods shrink the optimal cutoff increases in such a way that the probability
of detection decreases (the cutoff normalized by the standard deviation increases)
so the standard central limit theorem is not useful. Instead what is required is an
estimate of the tail probabilities, that is of the probabilities of very unlikely but
informative signals.1

The most closely related result in the literature is what Feller [1971] (see [1]) calls
a large deviations theorem, although that term is now used for other things. Fellers
result applies only to i.i.d. random variables, and not to triangular arrays; this note
provides the additional uniformity assumptions needed to adapt the Feller proof to
the case of triangular arrays and adapts the proof to show how these uniformity
assumptions are used. The result reported here can then be used to show that
the equilibria of discrete time games whose signals are binomial arrays do indeed
converge to the equilibria of the associated continuous time game, as it was in FLs
study of games with a long run player against a myopic opponent. In the next
section we sketch a simpler one-shot agency problem where the tail probability
estimates can be used in similar way.2

2. A motivating example. The information issues that arise in repeated game
setting arise in a simplified form even in a principal-agent problem, as we now show.
Suppose that there is a period of length τ . At the beginning of the period the agent
may choose not to be employed by the principal in which case he receives zero. If
he chooses employment he must decide between working (W ) and shirking (S). If
he works he is paid an amount Wτ proportional to the length of time he works. If
he shirks he gets a bonus of Gτ . At the end of the period, a principal observes a
noisy signal y of the agent’s lack of effort and if this signal exceeds a threshold y he
imposes a fixed penalty P . Notice that P is not proportional to the length of the
period; the idea is that the principal can impose a long-term punishment on the
agent if he feels the agent has shirked even for a short period of time. For example
if the principal can fire the agent, then we would expect that P = W/r, which is

1This issue is delicate because the likelihood ratio between two normal distributions with a

common variance and different mean becomes unbounded in the tail: this was originally exploited

by Mirlees [1974] (see [4]).
2Sadzik and Stachetti [2012] (see [7]) study the limit of discrete-time agency problems when

the discrete-time signals have a continuous density as opposed to being the sum of discrete random

variables. Their hidden action case corresponds to the example presented here.
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the amount that the agent would have earned from a lifetime of employment with
the principal.

The question we wish to address is for particular distributions of y whether it
is possible to set the threshold y so that the agent can be induced to work rather
than shirk. Notice that whether or not it is desirable to do this depends on payoffs
to the principal which we do not specify.

Let p represent the probability that the punishment is received if the agent works
and q the probability of punishment if the agent shirks. Then if it is to be optimal for
the agent to work rather than shirk then it should be that the incentive constraint

ρ(τ) ≡ q − p
τ
≥ G

P

holds. This is similar to (1) in FL (see [3]). If it is to be optimal to choose
employment then the participation constraint should be satisfied, that is

µ(τ) ≡ p

τ
≤ W

P
.

If in the limit as τ → 0 both of these are to hold for some values of G,P,W then
it must be that lim ρ(τ) > 0 and limµ(τ) <∞. This is analogous to Corollary 2 in
FL [2009] (see [3]).

We suppose that the signal y is generated by stochastic process S0 if the agent
works and process S1 if the agent shirks. This state of the appropriate process is
observed at the terminal time τ , and we shall be interested in the case where τ is
small. The simplest and quite standard way to do this is to assume that Sd are
diffusions with common volatility σ2 and drift d = 0, 1 respectively, so that the
signal is distributed as N(dτ, σ2τ).

Consider first the incentive constraint

ρ(τ) =
q − p
τ

=
Φ(y/σ

√
τ)− Φ((y − τ)/σ

√
τ)

τ
.

It is easy to ensure that ρ remains bounded away from 0 as τ → 0; for example when
the normalized cutoff z ≡ y/σ

√
τ is constant independent of τ , limτ→0 ρ(τ) = ∞.

However, with z fixed, p = Φ(z) is a fixed positive constant, so µ(τ) = p/τ → ∞
and in the limit the participation constraint would be violated. Hence, we must
allow z → ∞ as τ → 0 to have p/τ bounded above. Thus the question becomes
whether it is possible to keep p/τ bounded above at the same time allowing z to
grow sufficiently slowly that ρ(τ) remains bounded away from zero. The answer
depends on the behavior of the normal distribution Φ in the upper tail where z is
large, and using bounds for the normal distribution FL [2007] (see [2]) show that
in fact it is impossible to do so. Hence, the agent cannot be induced to work when
the time period is very short.

The problem with this analysis in an economic setting is that economic signals
are unlikely to exactly follow a diffusion process, and in many cases will not have
a continuous density when examined at a sufficiently fine scale. For example, the
observed signal might be aggregate sales, which is the sum of a number of discrete
random variables representing individual sales opportunities. As such we might
expect from the central limit theorem that to a good approximation it follows a
diffusion, and thus that the probabilities of correctly detecting a deviation and
of falsely suspecting one could both be computed using the normal distribution.
However, as we saw, in order to reach conclusions about incentives it is necessary to
know what the probability of the signal is for very unlikely values of the normalized
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cutoff z, and the central limit theorem does not help with this. Instead, to analyze
a sequence of games where the signals are a sum that is approaching a diffusion
limit, an extension of the central limit theorem to tail probabilities is needed.

To illustrate the usefulness of the tail probability bound, consider signals that
are generated as the sums of the binomial random variables Yj(∆) with outcomes

±σ∆
1
2 where the probability of the positive signal under action 0 is α0 ≡ ..5, and

the probability under action 1 is α1 = ..5 + .5∆
1
2 /σ. Then the expected values of

the two binomials are 0 and ∆, and their standard deviations are both equal to
σ. Define k = τ/∆ to be the number of intervals of length ∆ that occur during a
period of length τ , where we assume that τ is an integral multiple of ∆. We take
the signal to be the sum of these binomials during the period

y = Σkj=1Yj(∆).

Hence, y has variance σ2τ and mean either 0 or τ depending on whether the action
taken is work or shirk.

To apply the central limit theorem, we should assume that the number of obser-
vations per period k grows large even as τ → 0. The key issue is that for k large
while y is approximately normal it is not exactly normal, so the normal bounds used
in FL [2007] (see [2]) do not apply directly. Moreover, FL [2007] (see [2]) use bounds
in the upper tail of the normal, the convergence of which are not guaranteed by the
central limit theorem. Hence, we will need a version of the central limit theorem
that applies to the tail probabilities. This in turn requires that as the period length
τ → 0 the number of observations per period k grow sufficiently fast. In fact a
sufficient condition will be limτ→0 τ exp(k2/7)→∞.

The best theorem we know of is the large deviations result of Feller [1971, pp.
548-553] (see [1]), which gives conditions under which the c.d.f. of normalized sums
Fn satisfy

1− Fn(xn)

1− Φ(xn)
→ 1

as the cutoff xn →∞. Feller’s theorem is proven and applies only in the context of
the standard central limit theorem - that is, the sum of i.i.d random variables. In
our setting we are dealing with a triangular array, so we must extend Feller’s result
to that case. The main part of the paper proves the relevant theorem (the main
theorem), which gives four conditions that enable us to reach the same conclusion
for triangular arrays.

The first two conditions are technical conditions on the cumulant generating
function that are easily shown to be satisfied in the binomial case; see FL Lemma
A.2 ([3]). Thus it remains to verify the third and fourth conditions which require
that n−1/6xn → 0 and xn →∞.

In our case as we vary τ and k and implicitly ∆ we will generally wish to alter
the cutoff y and the normalized version z ≡ y/σ

√
τ . Suppose first that the cutoff

is asymptotically very large in the sense that lim infk→∞ zk−1/6 > 0. Then it is
shown in FL Lemma A.5 (see [3]) that the cutoff is sufficiently far out in the tail
that there is inadequate punishment: that is q/τ → 0 (and consequently since
q ≥ p also p/τ → 0). Hence, we may assume the third condition of the main
theorem. The fourth condition of the main theorem requires z → ∞; if not, then
the punishment probability does not go to zero, and as noted above this results in
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a trivial equilibrium. Hence, we may apply the main theorem and since

1− Fn(z)

1− Φ(z)
→ 1

the normal bounds used in FL [2007] (see [2]) can be applied to conclude that all
limit equilibria are trivial.

3. The setup. As indicated, we extend an argument concerning i.i.d. random
variables from Feller [1971, pp. 548-553] (see [1]) to the case of triangular arrays.
We adopt Feller’s notation to the maximum extent feasible. We suppose that we
are given for each n a sequence Zni i = 1, . . . , n of i.i.d. random variables with zero
mean, variance σ2

n and cumulative distribution function Fn. We define

zn = Σni=1Z
n
i .

This has distribution Fn∗, while the normalized sum zn/σn
√
n has distribution Fn.

Let Φ, φ respectively denote the c.d.f. and density of the standard normal distri-
bution. Recall that the cumulant generating function3 is defined as the logarithm
of the generating function

ψn(ζ) ≡ log

∫ +∞

−∞
eζxFn(dx).

By the usual properties of the moment generating function, zn has cumulant gener-
ating function nψn(ζ). The derivatives of the cumulant generating function at zero
are the corresponding central moments: ψ′n(0) = EZni , ψ′′n(0) = var(Zni ) and so
forth. Our goal is to prove the following result:

Theorem 3.1. Main Theorem Suppose

1. For some s > 0 and all 0 ≤ ζ ≤ s there is a continuous function ψ2(ζ) > 0
and constant B > 0 such that

lim
n→∞

sup
0≤ζ≤s

| ψ′′n(ζ)− ψ2(ζ) |→ 0

and for all n

max

{
sup

0≤ζ≤s
| ψ′′′n (ζ) |, sup

0≤ζ≤s
| ψ′′′′n (ζ)ζ |, sup

0≤ζ≤s
| ψ′′′′′n (ζ)ζ2 |

}
< B

2. σn → σ, M3n ≡ E | Zni |3→M3 <∞
3. n−1/6xn → 0
4. xn →∞

Then

1− Fn(xn)

1− Φ(xn)
→ 1.

3Also called the bilateral Laplace transform.
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4. Basic facts. The following version of the central limit theorem is taken from
Feller.

Theorem 4.1. Berry-Esseen Theorem 4 For all x

| Fn(x)− Φ(x) |≤ 9E | Zni |3√
nσ3

n

.

We also use some basic results about the standard normal distribution.

Lemma 4.2. limx→∞
x−1φ(x)
1−Φ(x) = 1.

Proof. This follows from l’Hopital’s rule.

lim
x→∞

x−1φ(x)

1− Φ(x)
= lim
x→∞

−(1 + x−2)φ(x)

−φ(x)
= 1.

Lemma 4.3. If Assumptions 1 and 2 of the Main theorem hold then ψ2(0) = σ2.

Proof. Because it is the cumulant generating function for Zni , ψ′′n(0) = σ2
n. By

Assumption 2 σ2
n → σ2. By Assumption 1 if ζ → 0 then ψ′′n(ζ) → ψ2(0). But

by a diagonalization argument we can then choose ζ → 0 sufficiently fast that
ψ′′n(ζ)→ σ2.

5. The associated distribution. Feller’s proof replaces the normalized sum zn
and its cdf Fn∗ with a different random variable. This associated random variable
has probability measure given by the cdf

V n∗s (x) ≡
∫ x

−∞
e−nψn(s)esydFn∗(y),

where s is a positive constant. The next result shows that this function integrates
to 1 and so is indeed a cdf.

Lemma 5.1. ∫ ∞
−∞

e−nψn(s)esydFn∗(y)dy = 1.

Proof. ∫ ∞
−∞

e−nψn(s)esxdFn∗(x) = e−nψn(s)elog
∫∞
−∞ esxdFn∗(x)

and the result follows from the fact that zn has cumulant generating function nψn.

Notice that V n∗s has a thicker right tail than Fn∗. The idea is that by applying
the Berry-Esseen theorem to V n∗s , we can pull this back to the thinner tailed Fn∗

to get a bound that will apply even for large values of x. First we develop some
basic properties of V n∗s .

Lemma 5.2. V n∗s has mean nψ′n(s) and variance nψ′′n(s).

4Feller uses the constant 3 instead of 9; Wolfram gives 33/4 which is slightly smaller than 9.
The exact value of the constant is not important in what follows.



TAIL PROBABILITIES FOR TRIANGULAR ARRAYS 51

Proof. Follows by computing the cumulant generating function for V n∗s

ψV n∗
s

(ζ) = log

∫ ∞
−∞

eζxdV n∗s (x) = −nψn(s) + log

∫ ∞
−∞

e(s+ζ)xdFn∗(x)

= −nψn(s) + nψn(s+ ζ).

Lemma 5.3. V n∗s is the cumulative distribution function of the sum of n i.i.d.
random variables with distribution

Vns(x) ≡
∫ x

−∞
e−ψn(s)esydFn(y).

Proof. This follows from the basic properties of the exponential function: multi-
plying a density by an exponential of the integrand commutes with the taking of
convolutions.5

6. Sketch of the proof. We want to give a sufficient condition for∣∣∣∣1− Fn(xn)

1− Φ(xn)
− 1

∣∣∣∣→ 0 as xn →∞.

The idea is to introduce an intermediate quantity An and give a sufficient condition
that ∣∣∣∣1− Fn(xn)

An
− 1

∣∣∣∣→ 0

and ∣∣∣∣ An
1− Φ(xn)

− 1

∣∣∣∣→ 0,

the two together then giving the desired result. The first step will follow by applying
the Berry-Esseen theorem (theorem 4.1) to the thick tailed V n∗. The second step
shows that when we thicken the tail by multiplying by a carefully chosen exponential
we do not shift V n∗s too much to the right. To carry out this second step we need
the key condition n−1/6xn → 0.

7. Proof of the main theorem.

7.1. First step. Invert the relationship dV n∗s (x) = e−nψn(s)esxdFn∗(x) to find
dFn∗(x) = enψn(s)e−sxdV n∗s (x), and in particular

1− Fn(xn) = 1− Fn∗(xnσn
√
n) = enψn(s)

∫ ∞
xnσn

√
n

e−sydV n∗s (y).

5Note the basic one-tailed nature of the argument: we can thicken the tail while preserving
convolutions only if we multiply by an exponential. While this thickens one tail, it also thins the

other tail.
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7.2. Second step. Choose sn to depend on n (and thus indirectly on σn, xn) so
that xnσn

√
n = nψ′n(sn), or equivalently

ψ′n(sn) = xnσn/
√
n.

Since limn→∞ sup0≤ζ≤s | ψ′′n(ζ) − ψ2(ζ) |= 0, ψ2(ζ) > 0, for all ζ ∈ [0, s], σn → σ

and xn/
√
n→ 0 a solution in [0, s] exists for large enough n.

Lemma 7.1. If Assumptions 1, 2, and 2 of the Main theorem (section 3.1) hold

then sn → 0, ns3
n → 0, ψ′′n(sn)→ ψ2(0) = σ2 and sn

√
nψ′′n(sn)→∞.

Proof. Because ψ′n(0) = EZni = 0, and ψ′n(sn) = xnσn/
√
n, by the mean value theo-

rem we may write ψ′′n(ζn)sn = xnσn/
√
n, where ζn ∈ [0, s]. Then since xn/

√
n→ 0,

so does

sn =
xnσn

ψ′′n(ζn)
√
n
.

Hence, ψ′′n(sn)→ ψ2(0) by limn→∞ sup0≤ζ≤s | ψ′′n(ζ)− ψ2(ζ) |→ 0.
Now write

ns3
n =

(
n−1/6xnσn
ψ′′n(ζ)

)3

,

giving ns3
n → 0. Finally

sn
√
nψ′′n(sn) = xnσn

√
ψ′′n(sn)

ψ′′n(ζ)
→∞.

7.3. Third step. Define the quantity An by replacing V n∗sn in the expression from
step 1

enψn(sn)

∫ ∞
xnσn

√
n

e−snydV n∗sn (y)

by a normal with mean nψ′n(sn) and variance nψ′′n(sn)

An = enψn(sn)

∫ ∞
xnσn

√
n

e−sny
1√

2π
√
nψ′′n(sn)

e−(1/2)(y−nψ′n(sn))2/nψ′′n(sn)dy.

We rewrite An in a more convenient form. Use the substitution

y = nψ′n(sn) + t
√
nψ′′n(sn)

and the fact that the lower limit of integration xnσn
√
n = nψ′n(sn) to find

An = en[ψn(sn)−ψ′n(sn)sn] 1√
2π

∫ ∞
0

e−tsn
√
nψ′′n(sn)−(1/2)t2dt.

Complete the square in the numerator to get

An = en[ψn(sn)−ψ′n(sn)sn+(1/2)ψ′′n(sn)s2n]
(

1− Φ(sn
√
nψ′′n(sn))

)
.
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7.4. Fourth step. Use Lemmas 5.2 and 5.3 to apply the Berry-Esseen theorem
(theorem 4.1) to V n∗sn and find for all y∣∣∣∣∣V n∗sn (y)− Φ

(
y − nψ′n(sn)√

nψ′′n(sn)

)∣∣∣∣∣ < 9Mn3√
n[ψ′′n(sn)]3/2

,

where Mn3 is the third absolute central moment of Vnsn .6

7.5. Fifth step. How close is An to our target 1− Fn(xn)?

| 1− Fn(xn)−An |

=

∣∣∣∣∣enψn(sn)

∫ ∞
xnσn

√
n

e−snydV n∗sn (y)

− enψn(sn)

∫ ∞
xnσn

√
n

e−sny
1√

2π
√
nψ′′n(sn)

e−(1/2)(y−nψ′n(sn))2/nψ′′n(sn)dy

∣∣∣∣∣
=

∣∣∣∣enψn(sn)

∫ ∞
xnσn

√
n

e−sny[
dV n∗sn (y)− 1√

2π
√
nψ′′n(sn)

e−(1/2)(y−nψ′n(sn))2/nψ′′n(sn)dy

]∣∣∣∣∣
=

∣∣∣∣∣enψn(sn)

∫ ∞
xnσn

√
n

e−sny

[
dV n∗sn (y)− 1√

nψ′′n(sn)
φ

(
y − nψ′n(sn)√

nψ′′n(sn)

)
dy

]∣∣∣∣∣ .
Integrate by parts to find

| 1− Fn(xn)−An |

≤ enψn(sn)e−snxnσn
√
n

∣∣∣∣∣Φ
(
xnσn

√
n− nψ′n(sn)√
nψ′′n(sn)

)
− V n∗s (xnσn

√
n)

∣∣∣∣∣
+ enψn(sn)

∫ ∞
xnσn

√
n

sne
−sny

∣∣∣∣∣V n∗sn (y)− Φ

(
y − nψ′n(sn)√

nψ′′n(sn)

)∣∣∣∣∣ dy.
Now plug the bound from Step 3.

| 1− Fn(xn)−An |

≤ enψn(sn) 9Mn3√
n[ψ′′n(sn)]3/2

[
e−snxnσn

√
n +

∫ ∞
xnσn

√
n

sne
−snydy

]
=

18Mn3√
n[ψ′′n(sn)]3/2

enψn(sn)−snxnσn
√
n

=
18Mn3√

n[ψ′′n(sn)]3/2
enψn(sn)−nψ′n(sn)sn ,

where the last step follows from xnσn
√
n = nψ′n(sn). We can rewrite this as∣∣∣∣1− Fn(xn)

An
− 1

∣∣∣∣ ≤ 18Mn3

An
√
n[ψ′′n(sn)]3/2

enψn(sn)−nψ′n(sn)sn

6The parallel claim in Feller’s proof is the related but different inequality∣∣∣∣V n∗(y)− Φ

(
y−nψ′n(s)√
nψ′′n(s)

)∣∣∣∣ < 9Mn3√
nσ3

n
. This claim seems to be an incorrect application of

the Berry-Esseen theorem (theorem 4.1) which requires the variance of V n∗ rather than σ2
n in the

denominator.
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Now from Step 2

An = en[ψn(sn)−ψ′n(sn)sn+(1/2)ψ′′n(sn)s2n]
(

1− Φ(sn
√
nψ′′n(sn))

)
.

Plugging in on the right and rearranging terms yields∣∣∣∣1− Fn(xn)

An
− 1

∣∣∣∣ ≤ 18Mn3

en[(1/2)ψ′′n(sn)s2n]
(

1− Φ(sn
√
nψ′′n(sn))

)√
n[ψ′′n(sn)]3/2

.

Then using the definition of φ we have∣∣∣∣1− Fn(xn)

An
− 1

∣∣∣∣ ≤ 18Mn3

√
2πsn

ψ′′n(sn)

(sn
√
nψ′′n(sn))−1φ(sn

√
nψ′′n(sn))

(1− Φ(sn
√
nψ′′n(sn)))

.

From proof of lemma 7.1 sn → 0 so the first factor converges to 0. From Lemma 7.1
sn
√
nψ′′n(sn)→∞ so use Lemma 4.2 to conclude that the second factor converges

to 1 and so the entire right-hand side converges to 0.
Note that for this result we do not need n−1/6xn → 0, n−1/2xn → 0 would be

sufficient.

7.6. Sixth and final step. We must now show

An
1− Φ(xn)

= en[ψn(sn)−ψ′n(sn)sn+(1/2)ψ′′n(sn)s2n]

(
1− Φ(sn

√
nψ′′n(sn))

)
1− Φ(xn)

→ 1 .

We will do this by showing that both

en[ψn(sn)−ψ′n(sn)sn+(1/2)ψ′′n(sn)s2n] → 1

and (
1− Φ(sn

√
nψ′′n(sn))

)
1− Φ(xn)

→ 1 .

7.6.1. Final step: First half.

en[ψn(sn)−ψ′n(sn)sn+(1/2)ψ′′n(sn)s2n] → 1

or equivalently

gn(sn) = n[ψn(sn)− ψ′n(sn)sn + (1/2)ψ′′n(sn)s2
n]→ 0.

Observe that gn(0) = 0, g′n(0) = 0, g′′n(0) = 0. Hence, by the mean value theorem

gn(sn) = (1/6)g′′′n (ζ)s3
n.

By the uniform boundedness assumptions on the third through fifth derivatives
of ψn, g′′′n (ζ)/n is uniformly bounded, so by Lemma 7.1 gn(sn) → 0 provided
n−1/6xn → 0.
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7.6.2. Final step: Last half.(
1− Φ(sn

√
nψ′′n(sn))

)
1− Φ(xn)

→ 1 .

From Lemma 7.1 sn
√
nψ′′n(sn)→∞ and since xn →∞, Lemma 4.2 implies that

lim
n→∞

(
1− Φ(sn

√
nψ′′n(sn))

)
1− Φ(xn)

= lim
n→∞

(
sn
√
nψ′′n(sn)

)−1
φ
(
sn
√
nψ′′n(sn)

)
1−Φ

(
sn
√
nψ′′n(sn)

) (
1− Φ

(
sn
√
nψ′′n(sn)

))
x−1
n φ(xn)

1−Φ(xn) (1− Φ(xn))

= lim
n→∞

xnφ
(
sn
√
nψ′′n(sn)

)
sn
√
nψ′′n(sn)φ(xn)

= e−(1/2)[s2nnψ
′′
n(sn)−x2

n] xn

sn
√
nψ′′n(sn)

= e−(1/2)[s2nnψ
′′
n(sn)−n[ψ′n(sn)]2/σ2

n] ψ′n(sn)

σnsn
√
ψ′′n(sn)

.

Consider first by the mean value theorem for some 0 ≤ ζn ≤ sn
ψ′n(sn)

σnsn
√
ψ′′n(sn)

=
ψ′′n(ζn)sn

σnsn
√
ψ′′n(sn)

→ ψ2(0)

σ
√
ψ2(0)

= 1 ,

where we apply Lemma 7.1 to find the limit. So we are left with showing

hn(sn) = n
[
s2
nψ
′′
n(sn)− [ψ′n(sn)]2/σ2

n

]
→ 0.

Here hn(0) = 0, h′n(0) = 0, h′′n(0) = 0 so for some 0 ≤ ζn ≤ sn
hn(sn) = (1/6)h′′′n (ζn)s3

n.

Again by the uniform boundedness assumptions on the third through fifth deriva-
tives of ψn, h′′′n (ζ)/n is uniformly bounded, so by Lemma 7.1 this is true provided
n−1/6xn → 0.
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