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to tissues$
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H I G H L I G H T S

! We describe the transport of water through plant cells as a poroelastic medium.
! We show that an approximate theory with the form of the heat equation has an error less than 12%.
! Local chemical equilibrium between protoplasts, cell walls, and adjacent air spaces is sufficient for modeling as a composite.
! Aquaporin mediated cell-to-cell flow dominates isothermal water transport.
! Importance of internal vapor transport for transpiration depends on the temperature gradient.
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a b s t r a c t

In leaf tissues, water may move through the symplast or apoplast as a liquid, or through the airspace as
vapor, but the dominant path remains in dispute. This is due, in part, to a lack of models that describe
these three pathways in terms of experimental variables. We show that, in plant water relations theory,
the use of a hydraulic capacity in a manner analogous to a thermal capacity, though it ignores mechanical
interactions between cells, is consistent with a special case of the more general continuum mechanical
theory of linear poroelasticity. The resulting heat equation form affords a great deal of analytical
simplicity at a minimal cost: we estimate an expected error of less than 12%, compared to the full set of
equations governing linear poroelastic behavior. We next consider the case for local equilibrium between
protoplasts, their cell walls, and adjacent air spaces during isothermal hydration transients to determine
how accurately simple volume averaging of material properties (a ‘composite’ model) describes the
hydraulic properties of leaf tissue. Based on typical hydraulic parameters for individual cells, we find that
a composite description for tissues composed of thin walled cells with air spaces of similar size to the
cells, as in photosynthetic tissues, is a reasonable preliminary assumption. We also expect isothermal
transport in such cells to be dominated by the aquaporin-mediated cell-to-cell path. In the non-
isothermal case, information on the magnitude of the thermal gradients is required to assess the
dominant phase of water transport, liquid or vapor.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

As stomata open to allow an influx of CO2, the resulting efflux
of water vapor must be balanced by the movement of water
molecules through the leaf. As a result, apparent leaf hydraulic
efficiency (an observed flux divided by an observed water poten-
tial difference, a nominal ’conductance’) with which leaves trans-
port water correlates with maximum stomatal conductances over

a wide range of plants (Boyce et al., 2009; Brodribb et al., 2007).
Nevertheless, we lack a clear understanding of the physical bases
for the observed differences between leaves in the hydraulic efficiency
with which water is delivered to the stomata. Uncertainties about
whether the flow path outside the xylem is predominantly apoplastic
or symplastic, as well as the relative importance of liquid versus vapor
transport within the leaf interior, continue to cloud the question of
what determines the maximum transpiration rate observed for a
given leaf.

Each of the three different pathways have been presumed by
different authors to dominate water transport inwell hydrated leaves:
the aquaporin mediated cross-membrane flow path (Cochard et al.,
2007; Scoffoni et al., 2008), the apoplastic flow path (Brodribb et al.,
2007, 2010), and the diffusive path of vapor through the air space
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(Pieruschka et al., 2010; Mott and Peak, 2011). The lack of
consensus regarding the path of transpiration once outside the
xylem derives from the inability of current experimental techni-
ques to resolve the individual transport properties of the cell walls,
protoplasts, and air spaces within a leaf, or even to measure the
actual water potential gradients driving the flux.

One strategy that addresses the latter limitation is to charac-
terize the hydraulic properties of the tissue under non-transpiring
conditions, and then, given the known material properties of air,
model the competition between liquid and vapor transport within
the leaf in satisfying a known transpirational flux. Isothermal
transient hydration experiments, which measure the hydration
time required for a leaf to transition between two water contents
associated with two equilibrium potential states (Brodribb and
Holbrook, 2003; Boyer, 1968), can provide the required estimates
of leaf tissue hydraulic properties, albeit averaged over the whole
leaf. A model of leaf tissue as a composite of protoplasts, cell walls,
and air spaces is then needed to parse the tissue hydraulic
conductivity into the constitutive hydraulic conductivities of each
of these domains. Here we attempt to provide such a model. The
related task of incorporating a representation of the xylem net-
work to arrive at a mathematical model of the whole leaf as a
tissue irrigated by vasculature is addressed in a separate analysis
(Rockwell et al., in submission).

Our goal, as with any porous media approximation, is to find a
representation of transport that incorporates the component
material properties and their respective volume fractions, but
allows us to neglect the details of their geometry within the
composite material. To this end, we define a tissue as a composite
media, comprising both a liquid phase of living cells and a vapor
phase in the intercellular air space. Within the cellular liquid

phase, we consider the contribution to hydraulic conductivity and
capacity of the apoplast (cell wall space) and symplast (protoplast
space) separately. We then use a mixture of mathematical analysis
and numerical simulation to find the range of component para-
meters over which the simple idea of volume averaged material
properties provides a description of the bulk behavior equal to that
obtained by accounting for transport in each domain separately.

2. Plant tissues as poroelastic media

As far as we are aware, Philip (1958b) was the first to analyze
flow through a file of plant cells, in a model later extended by
Molz and Ikenberry (1974) to make explicit the contribution from
flow in the wall space. As these derivations were somewhat
ad hoc, the limitations of the theory were not obvious, although
Philip did provide some guidance discussed further below. To
better understand the limits of this theory, we begin by reconsi-
dering the transport of an incompressible solvent such as water
through a porous and elastic medium, such as an aggregate of
plant cells, from the perspective of continuum mechanics. Such a
theory was derived by Biot (1941), and is well-described in full by
Yoon et al. (2010) and Doi (2009); here we recapitulate some steps
to illuminate the limits of Philip's theory in particular, and the
physical assumptions latent in the extension of plant cell water
relations theory to plant tissues (Table 1).

Given that the physical dimensions of a water absorbing
medium change as it swells, as measured in standard laboratory
coordinates, it is convenient to adopt a material coordinate system
(Gandar, 1983). We label particles x¼ ðx1; x2; x3Þ according to their
position in a reference configuration, and study a material volume

Table 1
Symbol definitions.

Quantity Value (25 1C) Units

Area A – m2

Volume V – m3

Shear modulus G – Pa
Volumetric modulus K – Pa
Bulk modulus, cell ε – Pa
Water content C – mol m&3

Molecular flux J – mol m&2 s&1

Water potential ψ – Pa
Chemical potential μ – J mol&1

Darcy permeability p – m2

Poroelastic diffusivity κ – m2 s&1

Cell permeability Lp – m Pa&1 s&1

Membrane permeability Pos – m s&1

Hydraulic capacity c – mol m&3 Pa&1

Hydraulic conductivity k – mol m&1 Pa&1 s&1

Thermal conductivity kT – J m&1 K&1 s&1

Kelvin temperature θ – K
Density of water ρw 9.97'102 kg m&3

Molar volume of water v 1.807'10&5 m3 mol&1

Diffusivity, water in air Dv 2.5'10&5 m2 s&1

Viscosity of water η 8.9'10&4 kg m&1 s&1

Formula weight of water fw 1.8015'10&2 kg mol&1

Heat of vaporization λ 44'103 J mol&1

Gas constant R 8.3145 m3 Pa mol&1 K&1

Dimensionless variables Subscripts

Potential Ψ Apoplast a
Time T Symplast s
Poisson's ratio ν Cell c
Transverse strain ζ Water, liquid l
Area fraction A Water vapor v
Volume fraction V Initial state o
Mole fraction χ Final state f
Tortuosity ξ Equilibrium eq
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element ðdV ¼ dx1dx2dx3Þ that tracks a constant amount of dry
matter, even as the volume itself shrinks or swells with changing
water content. In this conception, an individual plant cell, taken as
approximately cubic, becomes an individual volume element.
Conservation of molecules requires that the change in the con-
centration of water molecules C in a material volume be equal to
the net flux of water into the volume, or

∂Cðx; tÞ
∂t

¼ &∇ ( Jðx; tÞ: ð1Þ

The Darcy flux of water molecules in response to a gradient in
chemical potential, assuming homogenous and isotropic material
properties, is given by,

J ¼ &
p

v2η
∇μðx; tÞ; ð2Þ

where p is the Darcy permeability with units of m2, and in the
context of plant cells, the flux is in relation to the cellular
membranes and walls that are themselves stationary in the
material coordinate frame. Eqs. (1) and (2) may be combined,

∂Cðx; tÞ
∂t

¼
p

v2η
∇2μðx; tÞ: ð3Þ

We can get (3) into a form more familiar to plant physiologists by
defining a hydraulic conductivity k, and recalling the definition of
water potential ψ, to arrive at,

∂Cðx; tÞ
∂t

¼ k∇2ψ ðx; tÞ; k)
p
vη

; ψ )
μ
v
: ð4Þ

The steps to this point have been consistent with theory of
poroelasticity, as derived from the perspective of thermodynamics
and continuum mechanics (Biot, 1941; Yoon et al., 2010). In
addition, for small changes in volume, as typically occur in
rehydration experiments in tissues above the turgor loss point,
we may neglect the difference between material and laboratory
coordinates (Hong et al., 2008a). However, we have not specified
the relationship between C and ψ, and (4) is still a three dimen-
sional equation, relating a volume change to flow over surfaces
normal to x, y, z. The next step in deriving the equations governing
poroelasticity would be to consider the balance of mechanical
forces in the tissue and the deformation of the ‘dry fraction’
scaffold, which leads to a set of relations between applied forces,
water content, the chemical potential of the permeating water,
and the field of stress in the tissue (Doi, 2009).

Alternatively, turning to Philip (1958b) for the simpler per-
spective based on cell water relations, we could find the relation
between water potential and water content for a ‘big cell’ model of
a tissue as,

∂C
∂ψ

¼
1

vðεþπÞ
) c; ð5Þ

where ε is the bulk or volumetric modulus of a representative cell,
and π is the osmotic potential in the reference state. We can assign
this expression the symbol c, and give it a name, the hydraulic
capacity of the cells. The form then adopted by Philip (1958b) for
the propagation of turgor in a file of plant cells, in response to a
change in source water potential on the boundary normal to x is,

∂Cðx; tÞ
∂t

¼ k
∂2ψ ðx; tÞ

∂x2
; k)

Lplc
2v

: ð6Þ

Comparison with (3) shows that (6) appears to be a one-
dimensional version of the poroelastic equation, with k now
defined in terms of the cell length lc and cell permeability Lp for
the case of cell-to-cell flow considered by Philip. Here k arises from
‘smearing’ the permeability of two membrane and wall sections
(Lp/2) over the length measured from the center of one cell to the

next (lc) to define a continuum conductivity; dividing by the molar
volume simply converts the flux from a volumetric to a molecular
basis. The one dimensional form follows from the idea that as long
as the principal flux is in x, there is no between-cell flow in y, z,
though the cells swell in three dimensions. With these ideas,
(6) and (5) can then be combined to find a single equation
governing ψ,

∂C
∂t

¼
∂C
∂ψ

∂ψ
∂t

¼ k
∂2ψ
∂x2

; ð7Þ

∂ψ
∂t

¼ κ
∂2ψ
∂x2

; κ )
k
c
: ð8Þ

This definition of c has lead us to an equation, (8), which has the
form of the heat equation, with the poroelastic diffusivity κ
analogous to a thermal diffusivity in that it arises from the ratio of
a conductivity to a local storage capacity. To avoid confusion with
molecular diffusion, we will refer to the transport of water
molecules in a poroelastic body due to potential gradients as
permeation (Hong et al., 2008b). The great advantage of the heat
equation form is that given appropriate boundary conditions and
initial conditions the solutions are well known (Carslaw and
Jaeger, 1959).

However, it should be noted that Philip's definition of c, (5),
defines the relationship between potential and water content in
terms of equilibrium swelling measurements, and yet we are
asking this relationship to hold during transitions between equili-
brium states. Philip (1958b) was aware of the problem, noting that
his use of an equilibrium relationship between water content and
potential neglected mechanical (elastic) interactions between cells
during the transient. Indeed, Philip cautioned that rigorous justi-
fication of (8) might require that the middle lamella does not
support stress, such that each cell wall is mechanically indepen-
dent of its neighbor. For leaf mesophyll cells bordered by extensive
air space, cell-to-cell mechanical coupling may indeed be weak
and one might justify (8) simply on those grounds. However, this
argument is unlikely to apply in epidermal tissues, or the closely
packed cells around the vasculature. In between these two limits
of purely elastic mechanical interactions and no mechanical
interactions between cells lies the possibility of viscous interac-
tions, such that the stresses imposed on a cell by the swelling of its
neighbors may be partly relaxed by slippage or ‘creep’ in their
relative positions. Here we focus on the simpler limiting cases of a
purely elastic linkage (case 1), versus no mechanical linkage
between cells (case 2).

In order to ask what happens if the middle lamella does
support elastic stress in a non-trivial way (case 1), we have to
return to the more rigorous poroelastic theory of continuum
mechanics, from which we departed after equation (4). For the
sake of simplicity, we again consider small deformations of a linear
elastic material, and therefore neglect the difference between
laboratory and material coordinates. Poroelastic theory tells us
that because of the mechanical coupling between volume elements
(cells), stresses induced by swelling can propagate through a tissue
ahead of the swelling front, causing a change in the water potential
of the unswollen tissue in advance of any change in water content
(Hong et al., 2008a; Doi, 2009). To see this, consider that in
poroelastic theory the relationship linking the mean normal stress
in a body to the water content (related to the sum of the normal
strains) and water potential is given by

dC ¼
1

3vK
dskkþ

1
vK

dψ : ð9Þ

Here K is the volumetric modulus, skk=3 is the mean normal stress,
the mechanical pressure exerted on a volume element (or by
analogy a cell) by its neighbors. For a freely (without external
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constraints) swelling sheet of tissue, at equilibrium the normal
stresses are again zero, and dCeq ¼ ð1=vKÞ dψ eq. This relation says
that the equilibrium swelling behavior is a function of just one
parameter, K, which plays the same role for tissues as the quantity
εþπ does for cells. However, during the transient the field of stress
is generally not zero, and the water potential of the permeating
fluid is a function not just of the local water content (i.e., volume),
but of the local deformation (i.e., shape) as well, as illustrated in
Fig. 1 (adapted from Doi, 2009).

To describe the local deformation, the balance of forces that
describes the field of stress in x, y, zmust be considered in addition
to conservation of mass, and the equation governing the evolution
of the water potential field can be shown to take the more
complex form (Doi, 2009; Yoon et al., 2010)

∂ψ
∂t

þ4G
dζ
dt

¼
3ð1&νÞvK

1þν
k
∂2ψ
∂x2

: ð10Þ

The second term on the left hand side describes the stress due to
the change in the strain in the y, z directions ζ, that accompanies
swelling propagating along the x direction, where G is the shear
modulus, such that during the transient the overall shape of the
block is conserved; note that this conservation of shape is
not imposed, but emerges from a balance of forces in the
tissue (Doi, 2009). On the RHS, we see that two parameters are
necessary to characterize the swelling behavior, both K and
Poisson's ratio ν, the ratio of transverse (y, z) strain that accom-
panies an imposed axial (x) strain. For a linear poroelastic body, G,
K, ν, are related by,

G¼
3Kð1&2νÞ
2ð1þνÞ

: ð11Þ

We can now ask under what conditions do we approach Philip's
approximation that mechanical coupling between cells is unim-
portant (G¼0). From (11) we see that for G¼0 requires ν¼0.5,

meaning that a change in the shape of a volume element or cell
leads to no overall volume change, i.e., no fluid migration. Hence,
for this special value of ν¼0.5 water potential is function only of
the water content, and not the shape of the volume element or cell
(n.b., in poroelastic theory, ν is an apparent Poisson's ratio that
results from fluid migration; instantaneously, both the fluid and
the dry fraction are considered incompressible. For an illustrative
physical example of this idea see Yoon et al., 2010). Inserting
ν¼0.5 into (10) and (11), we find

∂ψ
∂t

¼ vKk
∂2ψ
∂x2

;
dC
dψ

! "

eq
)

1
vK

) c: ð12Þ

For the special case that the water potential of the ‘cells’ is
independent of their shape, one dimensional poroelastic flow (1)
does indeed collapse to the heat equation form (8), and the local
relationship between water content and potential follows the
global equilibrium swelling relationship. Although the cells are
mechanically coupled, and shape change propagates ahead of
volume change during water uptake, there is no effect on the
driving force for flow as the cells have no preferred shape. Note that
this way of arriving at the heat equation (8) differs from Philip's
approximation that the middle lamella does not support stress.

However, neither Philip's justification for the heat equation
form (no mechanical linkages between cells), nor the assumption
of no shape preference for cells that reduces poroelasticity to the
heat equation form, are defensible in the literal sense. First, plant
cells adhere to one another to form a macroscopic body capable of
withstanding gravity; second, plant cells take on a preferred shape
based on the orientation of cellulose microfibrils in their walls
(Burgert, 2006). What we have gained by finding the relation
between the heat equation form and linear poroelastic theory is an
analytical basis for evaluating whether the heat equation form still
provides a reasonable approximation to the full poroelasitic theory
in the case that individual cells have a shape preference ðνa0:5Þ
and the middle lamella supports stress. Based on a mathematical
analysis of the structure of the solution to (10) at long times by Doi
(2009), it can be shown that the dependence of the dominant term
of the solution, the ‘longest relaxation time’, on the value of Poisson's
ratio over the expected range of ν¼ 0:1-0:5 that seems appropriate
for plant tissues (Niklas, 1992) varies by only 12% (Appendix A).

Such a weak effect of ν on relaxation times has also been
suggested for gels based on numerical implementations of linear
poroelasticity (Cai et al., 2010). It appears therefore that the heat
equation form (8) that follows from ν¼0.5 may provide a good
approximation for describing the kinetics of changes in tissue
water content and potential in plants. Nevertheless, it is unlikely
that plant material is ever an ideal isotropic, homogenous linear
poroelastic material. Therefore (8) may be best viewed as a leading
order approximation, not necessarily realistic in terms of the
details of local deformation. In studies of plant water transport,
due to methodological constraints (e.g., the metastability of the
water in the xylem) material properties such as hydraulic capaci-
tance as well as water potential and volumetric water content are
typically averaged over whole organs, such as leaves (Kramer and
Boyer, 1995). As long as the whole organ (e.g., ‘leaf level’) relation-
ship between water potential and water content remains in a
linear range (e.g., much of the range above the leaf turgor loss
point, Boyer, 1995), we can apply linear poroelastic theory.
According to Doi's (2009) analysis of longest relaxation times,
we should then be able to adopt the approximation ν¼0.5 and so
find the heat equation form (8) with an expected error of at most
12%. It is on these grounds that we will adopt the heat equation
form of Philip (1958b) as the basis for the description of leaf tissue
hydraulics below.

Fig. 1. Free swelling of a plane sheet of tissue, from an initial unswollen (white)
state to a final swollen (shaded, or blue (online)) state. During the transition the
overall shape of the block is conserved, and the unswollen cells in the center must
change shape to accommodate the swelling of the outer tissue. To the extent the
cells have a preferred shape, the unswollen cells will experience a change in
potential that precedes any volume change.

F.E. Rockwell et al. / Journal of Theoretical Biology 340 (2014) 251–266254



Author's personal copy

3. Liquid flow in the apoplast versus the symplast

3.1. Thin-walled cells

In deriving a hydraulic conductivity for a population of cells,
Philip (1958a) assumed the dominance of cell-to-cell (cross-
membrane and plasmodesmatal) flow, neglecting the apoplast.
However, we need not assume negligible flow in the wall space to
model aggregates of cells as an homogenous material character-
ized by a single overall conductivity. Previous simulations,
employing an electrical circuit analogy, have suggested that as
long as a cell is near local water potential equilibrium (LE) with its
own wall, simple volume averaging of hydraulic conductivity and
capacity to define ‘composite’ (apoplastic and symplastic) material
properties agrees well with numerical simulations of transient
flow along parallel paths Molz (1976) and Molz et al. (1979). In this
case, the poroelastic diffusivity becomes,

κl ¼
kl
cl

¼
AsksþAaka
VscsþVaca

; ð13Þ

where A and V refer to the area and volume fractions of the two
paths, and the subscripts l, a, s reference the total cellular liquid
phase, apoplast and symplast respectively.

The analyses by Molz, conducted prior to the discovery of
aquaporins, assumed that cell-to-cell flow in the symplast
occurred primarily through plasmodesmata. Yet the greater lim-
itation of these studies is the lack of a framework for generalizing
the analysis of whether local equilibrium could be expected
beyond the particular parameter values culled from the literature
of the day. Here we account for aquaporin-mediated cross-mem-
brane flow, and investigate the errors associated with the compo-
site description in two stages. First, we undertake a scaling
analysis to analyze the structure of the coupled transport problem
in thin-walled cells to find three non-dimensional groups of
parameters that determine the structure of the solution. Next,
we consider four cases based on the relative magnitudes of these
groups to identify the conditions favoring close coupling of
apoplastic and symplastic potential (LE). Based on one of these
parameter groupings, we develop an order-of-magnitude criteria
for the assumption of local equilibrium. We then use this criteria
to guide a numerical analysis of the parameter values for which
the composite description converges with the numerical solution
to the coupled set of equations for apoplastic and symplastic flow.

We start by defining thin-walled cells as cells with an indivi-
dual length lc much greater than the thickness of their wall, wa,
and expect this geometrical condition, lc⪢wa, to describe most of
the parenchyma inside a leaf (Esau, 1960). Transport cell-to-cell
and through the wall can be written in the form of two diffusion
type equations describing the propagation of a change in potential
accompanying flow in the two paths, coupled by an exchange of
water in response to the local water potential difference across the
plasma membrane. Beginning with the geometry in Fig. 2, and the
condition that lc⪢wa, the areas and volumes of the two compart-
ments (neglecting terms of size wa

2 or smaller) are,

As ¼ l2s * l2c &4walc

Aa ¼ l2c & l2s * 4walc

Vs ¼ l3s * l3c &6wal
2
c

Va ¼ l3c & l3s * 6wal
2
c ð14Þ

The subscripts a and s refer to the apoplastic and symplastic paths
respectively, lc is the length of a cell in the flow direction (middle
lamella to middle lamella), ls is the length of the protoplast, and wa

is the thickness of the cell wall, such that ls ¼ lc&2wa. Conserva-
tion of water molecules in the two compartments then can be

written as

AsΔxΔCs|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
accumulation

¼ &½AsJsjxþΔx&AsJsjx,Δt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

change in axial flux

þ4lsΔx Ja;sΔt
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
net radial flux

; ð15Þ

AaΔxΔCa|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
accumulation

¼ &½AaJajxþΔx&AaJajx,Δt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

change in axial flux

&4lsΔx Ja;sΔt
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
net radial flux

: ð16Þ

The fundamental theorem of calculus then leads directly to,

∂Cs

∂t
¼ &

∂Js
∂x

þ
4ls
l2s

Ja;s; ð17Þ

∂Ca

∂t
¼ &

∂Ja
∂x

&
4ls

4lcwa
Ja;s: ð18Þ

Note that in writing the exchange terms we have chosen to regard
the exchange flux Ja;s as positive when net exchange occurs into
the symplast. The individual fluxes, with the hydraulic conductiv-
ity as the proportionality between the potential gradient and the
molar flux, are

Ja ¼ &ka
∂ψ a
∂x

; Js ¼ &ks
∂ψ s
∂x

ð19Þ

Ja;s ¼
Lm
v

ðψ a&ψ sÞ; ð20Þ

where Lm is the permeability of the membrane system between
the vacuole and cell wall. For cell-to-cell flow dominated by
aquaporins (rather than plasmodesmata), symplastic conductivity
comprises the permeability of two protoplasts in series with two
wall sections ‘smeared’ over the cell length,

ks ¼
Lplc
2v

¼
Lmlc
2v

$ %&1

þ
kalc
2wa

$ %&1
" #&1

; ð21Þ

where Lp is the permeability of a cell including its wall. This leads
to a condition for neglecting the contribution of the wall to cell-to-
cell flow,

Lm * Lp if
Lmwa

vka
⪡1: ð22Þ

Assuming the above constraint is satisfied, which is not too
onerous for small wa, then the transfer conductance from apoplast
to symplast can be approximated,

Lm
v

*
2ks
lc

: ð23Þ

To eliminate Ca and Cs from (17) and (18), we need to define
the hydraulic capacities that characterize the symplastic and

Fig. 2. Dimensions of the symplast and apoplast in the principal direction of flux
for an ideal cubic cell.
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apoplastic paths. As with ks above, the capacity of the symplastic
path, which we call csp, has a small contribution from the abutting
walls that separate two adjacent protoplasts;

csp ¼
Vs

Vsp
csþ

2l2s wa

Vsp
ca ¼

ls
lc
csþ

2wa

lc
ca ð24Þ

However, as plant tissues decline in volume, losses of water from
cell walls are thought to be negligible relative to losses in volume
from the symplast (Kramer and Boyer, 1995), or l3s cs⪢6l

2
s waca, and

therefore lscs⪢6waca. We then neglect the contribution of the wall
sections, and take csp * cs. Substituting cs and ca into (17) and (18)
brings us to two equations in terms of ψ and t,

∂ψ s
∂t

¼
ks
cs
∂2ψ
∂x2

þ
8ks
cslcls

ψ a&ψ s
& '

; ð25Þ

∂ψ a
∂t

¼
ka
ca

∂2ψ
∂x2

&
2ks

calcwa
ψ a&ψ s
& '

: ð26Þ

In order to study the structure and behavior of these two
equations, we take the standard step of re-scaling to dimension-
less variables, with the goal of assessing the relative importance of
the individual terms (Deen, 1998). To this end, we re-scale
potential and the spatial coordinate to new variables that range
from zero to one,

Ψ ¼
ψ&ψ1
ψ o&ψ1

;
x
L
¼ X; ð27Þ

where ψ1 is the potential of some source at x¼0, ψo is the initial
potential of the tissue, L is the length of the cell file, and n the
number of cells, such that L¼ n ( lc . We next re-scale time by a
characteristic time τ, with units of seconds,

t
τ
¼ T : ð28Þ

This completes the step of introducing dimensionless variables.
Note that at this point we do not know yet what τ is; instead we
will let the process of making each term dimensionless determine
the characteristic time scale. Substituting the new variables into
(25) and (26) yields,

∂Ψ s

τ ∂T
¼

ks
csL2|ffl{zffl}
τ & 1
s

∂2Ψ s

∂X2 þ
8ks
cslslc|ffl{zffl}
τ & 1
s;a

ðΨ a&Ψ sÞ; ð29Þ

∂Ψ a

τ ∂T
¼

ka
caL2|ffl{zffl}
τ & 1
a

∂2Ψ a

∂X2 &
2ks

calcwa|fflfflffl{zfflfflffl}
τ & 1
a;s

ðΨ a&Ψ sÞ: ð30Þ

From (29) and (30) we can identify four candidate time scales that
characterize the problem: the characteristic times for changes of
potential to propagate along each path independently ðτs; τaÞ, and
the characteristic times for potential change in each domain due to
transfer of water from the other ðτs;a; τa;sÞ.

Here we choose τ¼ τa, which results in three dimensionless
groups,

∂Ψ s

∂Ta
¼

ksca
kacs|ffl{zffl}

I

∂2Ψ s

∂X2
|fflffl{zfflffl}
Oð1Þ

þ
ksca
kacs

8L2

lcls|fflfflfflfflffl{zfflfflfflfflffl}
II

ðΨ a&Ψ sÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0-1

ð31Þ

∂Ψ a

∂Ta
¼
∂2Ψ a

∂X2
|fflffl{zfflffl}
Oð1Þ

&
ks
ka

2L2

lcwa|fflfflfflffl{zfflfflfflffl}
III

ðΨ a&Ψ sÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0-1

ð32Þ

Group I represents the efficiency of potential relaxation through
the symplast relative to through the apoplast, which is order one,
hereafter, O(1), by our construction. Group II represents the

relaxation of the symplast by the adjacent apoplast, and III the
tensioning of the apoplast by the adjacent symplast. However,
the importance of these transfer processes, relative to transport
within a compartment, depends also on the potential difference
ðΨ a&Ψ sÞ, which may range from zero to one.

Note too that although the spatial derivatives are both Oð1Þ, the
magnitudes of the time derivatives are not, and are instead set by
the need to balance the RHS of each equation. That is, we do
not know how many ‘T’ it takes for Ψ to go to Ψ1 in either the
apoplast or symplast; it depends on the magnitudes of the
parameter groups I, II, III and the difference in potential between
the two domains. We can now organize the behavior of the
coupled equations with regard to whether the apoplast–symplast
potential difference tends toward one or zero (i.e., LE) into five
cases, based on whether I, II, and III are each much more or much
less, or about the same, as one.

Case 0: I* 1. If group I is about one, then potential relaxes at
the same rate in both domains, and ðΨ a&Ψ sÞ-0: local equili-
brium holds by definition, and we can write a composite transport
equation in terms of a single poroelastic diffusivity summing area
and volume weighted conductivities and capacitances.

For the remainder of the possibilities, we can ask which
poroelastic time scale is faster (i.e., how large group I is), and
then consider the efficiency of transfer between compartments
relative to transport within them (the size of II and III). Note that
the groups I and II differ only by a geometrical factor that has to be
large, meaning that in the symplast, potential change due to
transfer out will always be fast relative to potential change due
to transport within. The cases we need to consider are thereby
reduced to four, based on the behavior of groups I and III:

Case 1: I⪢1; III⪢1: Propagation of potential changes within the
symplast is faster than in the apoplast, and, within the apoplast,
potential changes due to transfer is more important than diffusion.
As a result, apoplastic potential is a slave to symplastic transport—
it just contributes capacitance to the governing equation, slowing
down the kinetics from what would be expected for the symplast
alone. LE holds.

Case 2: I⪢1; III⪡1: Again, propagation of potential changes in the
symplast is faster than in the apoplast, while the effect of transfer on
the time for relaxation in the apoplast is weak. Note that this case
requires ca⪢cs ( 2L2=ðlcwaÞ to satisfy both conditions, which seems
unlikely as changes in total cell volume for changes inwater potential
are typically dominated by changes in the volume of the vacuole,
included in the symplastic compartment (Kramer and Boyer, 1995).
Efficient transfer slows the symplast to the point that it follows the
diffusive time scale of the apoplast. LE holds.

Case 3: I⪡1; III⪢1: Propagation of potential changes in the
apoplast is faster than in the symplast, but transfer of potential
out of the apoplast is even faster, holding the two domains close
together. LE holds.

Case4: I⪡1; III⪡1: As in Case 3, propagation of potential changes
in the symplast is very slow relative to the apoplast, however
transport within the apoplast is much more efficient than transfer
out. The kinetics of the two compartments therefore ‘uncouple’ in
time

∂Ψ s

∂Ta
¼
ksca
kacs

∂2Ψ s

∂X2
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

- 0

þ
ksca
kacs

8L2

lcls
ðΨ a&Ψ sÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

- 1

ð33Þ

∂Ψ a

∂Ta
¼
∂2Ψ a

∂X2
|fflffl{zfflffl}
Oð1Þ

&
ks
ka

2L2

lcwa
ðΨ a&Ψ sÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
- 0

: ð34Þ

The apoplast goes to source potential before it ever sees demand
from the symplast, and, from the symplastic perspective, the
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entire apoplast goes instantly from Ψ o ¼ 1, to source potential
Ψ1 ¼ 0. LE fails.

With uncoupling, water permeates into the symplast from the
apoplast over all six surfaces of a cubic cell, requiring an update to
the geometry for the net radial flux in (15). After returning to
dimensional variables, the uncoupled governing become

∂ψ s
∂t

¼
ks
cs

12
lcls

ðψ1&ψ sÞ; ð35Þ

∂ψ a
∂t

¼
ka
ca

∂2ψ a

∂x2
: ð36Þ

Recalling the definitions of ks and c in terms of cellular parameters,
given by (6) and (5), and that for a cubic cell 6=lc is the ratio of
surface area SA to volume V, (35) becomes,

∂ψ s
∂t

¼ Lp
SA
V

ðεþπÞðψ1&ψ sÞ: ð37Þ

The result is that in Case 4, the entire tissue follows the same
kinetics as a single cell. As tissues appear to have at least an order
of magnitude longer relaxation time than individual cells, tens of
seconds versus seconds (Kramer and Boyer, 1995), the complete
uncoupling of Case 4 seems outside the realm of realistic solutions
for plant tissue. Nevertheless, leaf tissues are often implicitly
assumed to follow first order kinetics, following an ohm's law
analogy whereby the tissue is treated as an ideal capacitor
(Brodribb and Holbrook, 2003; Scoffoni et al., 2008; Johnson
et al., 2009). For the case of hydrating leaves, such a ‘lumped
capacity’ model may yet be justified if cavitation results in the
xylem becoming the limiting resistance to flow (Rockwell et al., in
submission). However, in general tissues should not be expected to
follow the first order kinetics of single resistor–capacitor model.

Instead, for tissues the interesting case appears to be Case 3, for
which the critical condition for LE is,

ks
ka

2L2

lcwa
⪢1: ð38Þ

The LHS of (38) describes the local leakiness, from apoplast to
symplast, relative to permeation through the apoplast; when this
leakiness is relatively large the potential of the two compartments
converges. In considering the magnitude of this term, it is helpful
to note that we can express L as n ( lc, where n is the number of
cells across which transport occurs. The LHS of (38) can then be
estimated as,

ks
ka

2L2

lcwa
¼

ks
ka|{z}
- 1

2n2

1|{z}
- 50

lc
wa|{z}
- 100

- 5000: ð39Þ

The ratio of the conductivities comes from potato parenchyma
(Michael et al., 1997), for which ks * ka, 2.8 and 2.7'10&12

mol m&1 Pa&1 s&1 respectively. While comparable estimates of
ka appear to be scarce, estimates of ks from other pressure probe
experiments appear to be consistent with the potato data, with ks
on the order of 1.6 and 1.5'10&12 mol m&1 Pa&1 s&1 for Zea mays
and Tradescantia leaf epidermal cells (Kim and Steudle, 2007;
Ye et al., 2008). For a cell file five cells long, with lc 25 μm and wa

0.25 μm, the RHS of (39) evaluates to - 5000, which is indeed
much larger than 1, and LE seems a good assumption. Yet,
estimates of Lp from cell pressure probe experiments, and Lm from
protoplast swelling assays, can range over orders of magnitude
even in a single plant organ (Kramer and Boyer, 1995; Ramahaleo
et al., 1999), and so we must regard ks=ka - 1 as very poorly
constrained. We can then ask how small group III can be before LE
becomes a bad assumption, such that, more to the point, adopting
the composite model leads to large errors. To address this
question, we compared the solutions based on the composite

description of the poroelastic diffusivity, (13), to numerical solu-
tions of the coupled equations.

3.2. Numerical solutions for thin-walled cells

We solved the coupled equations, non-dimensionalized using
the apoplastic poroelastic time scale as in (31), (32), using the
partial differential equations solver pdepe in Matlab (Mathworks,
Natick, MA, USA). We studied the problem of potential relaxation
in a file of cells with an initial uniform potential ψo, hydrating at
time t40 from a source of water at constant potential ψ1, located
at x¼0. At x¼L, an impermeable cuticle provides a ‘no flux’
boundary. The non-dimensionalized boundary and initial condi-
tions for both the apoplastic and symplastic domains become,

source boundary-Ψ jX ¼ 0 ¼ 0; ð40Þ

no flux boundary-
∂Ψ
∂X X ¼ 1 ¼ 0;j ð41Þ

initial condition-Ψ jTa o0 ¼ 1: ð42Þ

For the sake of comparison to the numerical results, we then
sought the solution to the composite problem in terms of the
apoplastic time scale Ta ¼ t=τa. Starting with,

∂Ψ
τa∂Ta

¼
κl
L2

∂2Ψ
∂X2 ; ð43Þ

and multiplying both sides by τa brings us to,

∂Ψ
∂Ta

¼ γ
∂2Ψ
∂X2 ; γ ¼

As
ks
ka

þAa

Vs
cs
ca

þVa

ð44Þ

subject to the boundary and initial conditions above. As an aside,
we note that γ shows the mathematical linkage underlying the
coincidence of local equilibrium and the composite model. With
the geometry considered here, lc⪢wa, the area and volume frac-
tions of the symplast are much greater than those of the apoplast,
and taking As * Vs, we find γ is equal to group I in (31). Hence, (44)
has the form of the symplast equation (31), excepting the transfer
term. This means that if the composite model holds, in the
symplast equation the transfer term must be negligible relative
to the poroelastic–diffusive term, and since the derivative is O
(1) by construction, we find the inequality,

ksca
kacs

⪢ ksca
kacs

8L2

lcls
ðΨ a&Ψ sÞ: ð45Þ

Dividing through by the LHS and using the relation L¼ nlc and the
thin walled condition wa⪡lc , leads to,

ð8n2Þ&1⪢ðΨ a&Ψ sÞ; ð46Þ

which shows the role of cell number in inhibiting potential
differences between compartments during transients.

In comparing the composite solution with the numerical
results, we need to account for the fact that plant physiologists
are currently limited methodologically to equilibrium measure-
ments of plant water potentials. In this context, this means that
the only potential that can be measured accurately is the potential
of the tissue once all gradients induced by transient flow have
collapsed, and the cell file is once again characterized by a single,
uniform potential. We therefore integrated the composite solution
with respect to X to find the equilibrium potential predicted for
the tissue after hydration for t seconds. The solution to (44) is well
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known; after integration it becomes,

Ψ cðTaÞ ¼
8
π2 ∑

1

n ¼ 0

expð&λ2nγTaÞ
ð2nþ1Þ2

; λn ¼
2nþ1

2

! "
π; ð47Þ

and, for numerical evaluation, it is generally sufficient to retain
only the first ten terms of the infinite series, as the individual
terms die off with both increasing n and T (Crank, 1957). The
numerical solutions for the apoplast and symplast domains were
also integrated over X, and the equilibrium potential of the cell file,
as a function of hydration time, found as the volume fraction V
and hydraulic capacity weighted average of the symplastic and
apoplastic potentials,

Ψ nðTaÞ ¼
VacaΨ aðTaÞþVscsΨ sðTaÞ

VacaþVscs
ð48Þ

Fig. 3 shows the relaxation curves with the ratio of the hydraulic
conductivities, ks=ka, lowered to 0.01 and 0.001, with group III
evaluating to 50 and 5 respectively. For the first case (panel A), the
composite and numerical solutions follow similar kinetics, and the
apoplastic and symplastic domains remain well coupled (inset).

For the case that group III drops to five (ks/ka¼0.001, panel B), the
composite solution diverges from the numerical, and the differ-
ence in the average potential of the symplast and apoplast
becomes large, especially at very early times (inset). The initial
rapid decrease in the apoplast occurs as it would if it were an
isolated domain, which would approach zero by t=τa ¼ 2; as the
average potential of the apoplast falls while the symplast has yet
to change, flow into the apoplast falls even as the amount of
transfer-flow to the symplast increases, and the progress of the
apoplast toward zero slows.

We can quantify the failure of the composite model, as a
function of group III varying from 5 to 50, by comparing the ratio
of the halftimes t1=2, that is the times at which the composite and
numerical solutions predict the cell file will have relaxed to half its
initial value. This is an appropriate metric for comparison as
rehydration transients in plant tissue are generally fit near the
halftime (Brodribb and Holbrook, 2003). The halftime predicted by
the composite solution (47) can be found by evaluating the solution
forΨ c ¼ 0:5, retaining a finite number of terms in the series (here, 10),
with the well known result tc1=2 ¼ 0:197τa=γ (Crank, 1957). The
halftime predicted by the numerical solution is by definition tn1=2 ¼

Tn
1=2τa, where Tn

1=2 is the solution time Ta at which Ψ n ¼ 0:5. The test
of the competence of the composite model is then,

tc1=2
tn1=2

)
0:197 τc
Tn
1=2 τa

)
0:197
Tn
1=2γ

* 1: ð49Þ

Fig. 4 shows that the composite halftime is still within 10% of the
numerical result for the coupled transport model until group III
drops below 20, and that agreement drops precipitously once
group III falls below 10. We note that this result is broadly
consistent with the result of the scaling analysis that group III
should be at leaf an order of magnitude greater than 1 to justify an
assumption of LE and the composite model. However, the compar-
ison of halftimes as function of group III provides more specific
criteria for adopting the composite model. For example, for an
expected error in hydraulic conductivity estimates of less than
10%, Fig. 4 provides,

ks
ka

2L2

lcwa
Z20: ð50Þ

This result means that, with the typical parenchyma geometry
considered for the evaluation of group III in (39), even if the
estimate of ks=ka based on the potato parenchyma Michael et al.
(1997) is one hundred times higher than the true typical case, the
composite model can still be justified. This is so even though, with
this conductivity ratio of ks=ka ¼ 0:01, the flux through the
apoplast is four times that through the symplast. If, on the other

Fig. 3. Tissue potential relaxation curves for ks=ka ¼ 0:01 (A) and 0.001 (B). Solid
line is the numerical solution, open circles the composite model. Insets show the
average potentials reached within the symplast (dashed line) and apoplast (solid
line) in the numerical solutions.

Fig. 4. Ratio of the halftime for tissue relaxation predicted by the composite model
to the halftime of the numerical solution, as a function of transfer efficiency relative
to apoplastic transport.
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hand, the material properties k, c for the symplast and wall space
are indeed of the same order of magnitude, then for thin-walled
cells the total poroelastic diffusivity (13) will be well approximated
by the symplast properties alone, and the diffusivity is well
approximated by the form given by Philip (1958b),

κl *
LplcðεþπÞ

2
: ð51Þ

The advantage of this equation is that it connects the parameter
governing tissue behavior (κl) to cell-level properties.

The above differs slightly from Philip (1958b) in that the latter
includes a shape factor, which represents the proportion of cell-to-
cell contact area to cell cross-sectional area. This factor may
generally be neglected in the case of experimentally derived
estimates of Lp: if cells adjacent to probed cells serve as the sink
for flows induced in pressure probe experiments, as it seems they
must given the small volume of the adjacent wall space, then such
a correction would be already reflected in the experimentally
measured values. Yet this raises an issue with the usual inter-
pretation of pressure probe experiments. The relatively small sink
represented by a cell's associated apoplast implies that Lp values
reported from pressure probe experiments are most likely equal to
Lp=2 in Philips' model, given that the analysis of pressure probe
data typically assumes a sink of constant potential surrounds the
cell of interest outside the plasma membrane (Kramer and Boyer,
1995). This assumption, while justified for the algal cells for which
the mathematics were originally formulated, likely fails for cells
embedded in tissues of thin-walled parenchyma, and we expect
that two sets of membranes are crossed in the transient cell-to-cell
flow induced by the pressure probe.

3.3. Numerical analysis for thick walled cells

Based on the above arguments, (39) offers strong support for
the existence of local equilibrium in aggregates of thin walled cells,
such as commonly make up the mesophyll and epidermal tissues
of leaves. However, cells packed around major veins may often be
thick-walled, and therefore we might question whether the
composite model can be expected to adequately describe leaf
tissue. To extend our analysis to thick walled cells, we relax the
assumption that the radial gradients through the wall are negli-
gible, and model the resulting 3D potential relaxation problem
using a finite element analysis software package (Comsol 4.2a,
Comsol Inc., Burlington, MA, USA). By symmetry, we study a
quarter section of symplastic path and adjacent L shaped wall
path for cells with a symplastic length ls¼20 μm, wall thickness
wa¼10 μm, through a thickness of 100 μm or five cells; coordi-
nates are then normalized by the longest length for transport,
L. The non-dimensional variables are taken as,

X ¼
x
L
; Y ¼

y
L
; Z ¼

z
L
; ð52Þ

Ψ ¼
ψ ðtÞ&ψ1
ψ o&ψ1

; Ta ¼ t
ka
caL2

: ð53Þ

Substituting (52) into the 3D form of Philip's poroelastic equation
(8) provides the non-dimensional form governing transport along
the central symplastic path,

∂Ψ
∂Ta

¼
ksca
kacs

∂2Ψ
∂X2 þ

∂2Ψ
∂Y2 þ

∂2Ψ
∂Z2

$ %
; ð54Þ

and along the peripheral wall path,

∂Ψ
∂Ta

¼
∂2Ψ
∂X2 þ

∂2Ψ
∂Y2 þ

∂2Ψ
∂Z2

$ %
: ð55Þ

The boundary and initial conditions are given by,

source boundary-Ψ jX ¼ 0 ¼ 0; ð56Þ

no flux ðepidermisÞ-
∂Ψ
∂X X ¼ 1 ¼ 0;j ð57Þ

no flux ðsymmetryÞ-
∂Ψ
∂Y Y ¼ 1;0 ¼

∂Ψ
∂Z Z ¼ 1;0 ¼ 0;

((
(((( ð58Þ

at an interface-Ψ a ¼Ψ s; ðJa& JsÞ ( n
!¼ 0 ð59Þ

initial condition-Ψ jTo0 ¼ 1: ð60Þ

Fig. 5 shows the numerical solutions to the 3D problem for
values of ks=ka ¼ 0:1;0:01;0:001 at their halftimes. For the first two
values, the halftimes predicted by the composite model (44) and
(47) are within 99% and 94% of the halftimes for the respective
numerical solutions, while for the third agreement drops to 82%.
For ks=ka ¼ 0:001, the gradients in the symplast are almost entirely
lateral, and the dominant flow into the symplast is through the
radial walls. Indeed, even for ks=ka ¼ 0:01 the 94% agreement in
halftimes occurs despite that fact that radial flow appears an
important path for hydration of the symplast, and LE is not very
well supported. As in the thin walled Case 3, the composite model
can provide an apt description of the bulk behavior even when the
apoplast is the dominant path for flow.

Finally, considering that in Michael et al.'s (1997) data the Lp of
cells as measured by the pressure probe as reported is on the order
of 10&7 m s&1 MPa&1, while the range for plant cells is reported to
be 10&6 to 10&8 (Boyer, 1995), then apoplastic and symplastic
conductivities may in general be within an order of magnitude of
each other ðks=ka ¼ 10-0:1Þ, and the composite model justified
for thick walled cells as well. At the very least, the presence of
thick-walled cells in a tissue should not constitute grounds for
rejecting the composite model.

4. Isothermal water vapor transport in leaves

We next consider how to account for the fact that leaf tissues
are not just aggregates of cells, but include significant intercellular
air spaces, typically 5–50% by volume (Byott, 1976) (Fig. 6). As in
considering the symplast and apoplast fractions of the cells, we are
again interested in whether we can represent the air and cell
volumes as a homogenous medium, whose material properties are
again a volume weighted combination of the properties of the two
domains, and to what degree success depends on local equilibrium
between the two phases (liquid in the cells, vapor in the air space)
along axes perpendicular to the principal flux.

To address this problem, it is convenient to express transport in
the two phases as a function of a common driving force. Based on
the Clausius–Clapeyron equation, and the relation between satu-
rated vapor pressure and water potential (Nobel, 2005), we can
write the molar concentration of water molecules per unit volume
of air, Cv, in equilibrium with a tissue inhabited by a liquid with
water potential ψ at temperature θ as,

Cvðθ;ψ Þ ¼ Cref
θref

θ
exp &

λ
R

1
θ
&

1
θref

 !

þ
ðψþpatm&pvðθÞÞv

Rθ

! "" #

;

ð61Þ

where the reference concentration and temperatures are taken as
1.28 mol m&3 and 298.15 K. As Clausius–Clapeyron describes the
coexistence of the pure phases, and water potential is defined as
zero at atmospheric pressure, the liquid ‘pressure’ dependent term
ðψþPatm&pvðθÞÞ is written so that it will be zero (and the effects of
liquid pressure on vapor concentration vanish) when the liquid
phase has an absolute ‘pressure’ ðψþPatmÞ equal to the vapor
pressure pvðθÞ.
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Following the convention in coupled heat and mass transport
of treating the total molar concentration of air Cair as constant
(Bird et al., 1960), the molar flux of water vapor driven by
gradients in the mole fraction of water vapor, χv, becomes,

Jv ¼ &CairDv∇χv ¼ &Dv∇Cv ð62Þ

¼ &Dv
∂Cv

∂ψ
∇ψþ

∂Cv

∂θ
∇θ

! "
: ð63Þ

Eq. (61) can be linearized for small variations in temperature of
70.5 1C, and potential of 71 MPa, with an error less than
0.001 mol m&3. We can then write the linearized form of (62) as

Jv ¼ &Dv cψv ∇ψþcθv∇θ
) *

; cψv ¼
∂Cv

∂ψ
; cθv ¼

∂Cv

∂θ
; ð64Þ

where cψv and cθv are constants found by linearizing the partial
derivatives around the temperature and potential that characterize
the problem. For the isothermal problem, applicable to rehydra-
tion experiments on leaves in thermal equilibrium with their
surroundings, kv ¼Dvc

ψ
v defines the effective hydraulic conductiv-

ity of the air space, and cψv describes the capacity of air to store
water molecules as vapor. Here we are neglecting the thermal
gradients within the leaf that would be induced by the evaporative
cooling and ‘condensive’ heating that must accompany the inter-
nal redistribution of water molecules through the vapor phase.
However, we expect that for most leaves conduction in the liquid
phase is efficient enough that such a thermal feedback on vapor
transport will be minimal (Appendix C), and in this ‘quasi-
isothermal’ limit consider the concentration of water vapor in
equilibrium with the adjacent liquid phase to be a function of the
liquid phase water potential alone.

We can now write isothermal transport within the leaf in both
phases in terms of a common driving force,

in the air spaces-
∂ψ
∂t

¼
kv
cψv

∇ψ ¼Dv∇ψ ; ð65Þ

in the cells-
∂ψ
∂t

¼
kl
cl
∇ψ ¼ κl∇ψ ; ð66Þ

at an interface-ψ v ¼ψ l; Jl ¼ Jv: ð67Þ

Comparing the diffusivities for the two phases, Dv is on the order
of 10&5 m2 s&1, while κl, taken as κs as estimated from pressure
probe experiments, ranges in order of magnitude from 10&12 to
10&9, with a consensus value about 10&10 (Kramer and Boyer,
1995). This does not mean however that transport through the
vapor phase outweighs transport through the tissue. The differ-
ence in diffusivities is largely due to the vanishingly small quantity
of water it takes to change the potential of the air compared to the
tissue; that is, cψv =cl - 10&5. As a result, the expected values of
both kl and kv, the parameters that determine the magnitude of
the fluxes, are much closer. For example, at 25 1C, Dv¼2.5'
10&5 m2 s&1, cψv ¼ 9' 10&9mol m&3 Pa&1, and kv¼2.3'10&13

mol m&1 Pa&1 s&1. This is an order of magnitude lower than kl
values found above. However, data for Arabidopsis protoplasts in
Morillon and Chrispeels (2001) provide a mean membrane perme-
ability (Pos) of 70 μm s&1, for an Lp of 5'10&13 m Pa&1 s&1, and a
ks of 4.2'10&13 mol m&1 Pa&1 s&1 (for the relation between Pos
and Lp, see Appendix B). Arriving at an expected value for a
population of cells is challenging, as the range for individual
protoplasts spans an order of magnitude above and below the
mean. In addition, in leaves these distributions appear to have a
long tail at the high end (Ramahaleo et al., 1999; Martre et al.,
2002), and the median value, which may be more important for
determining tissue behavior, typically lower than the mean. Thus,
while the hydraulic capacity of the gas phase is negligible relative
to the cells, transport may not be, with the relative area available
for vapor diffusion an important factor. To try to clarify the limits
of describing a 1D domain composed of both air and cells with a
composite model, we again compare the results of the composite
description with a numerical solution for the 3D domain (Comsol
4.2a, Comsol Inc., Burlington, MA, USA).

Fig. 5. Isosurfaces for the potential field Ψ at the halftime of transient hydration in a thick walled cell file. (A) Geometry of the cell file; grey is apoplast, blue symplast.
(B) ks=ka ¼ 0:1; (C) ks=ka ¼ 0:01; (D) ks=ka ¼ 0:001. Numeric values associated with the color scale (blue¼wet, maroon¼dry) vary slightly in each case, but by definition the
mean Ψ in each case is 0.5. Ratios of the composite halftime to numeric halftime are 0.99, 0.94, and 0.82 respectively. Even for the extreme case of ks=ka ¼ 0:001, the error in
the composite model is only 18%, despite the breakdown in local equilibrium between the symplast and its adjacent wall space.
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To simplify the analysis, we rescale the spatial coordinates x, y,
z by a length that characterizes transport. Choosing that length
again as L, we adopt the new variables X ¼ x=L;Y ¼ y=L; Z ¼ z=L,
with the resulting domain of interest as in Fig. 7A. To consider
transport in a part of a leaf most favorable to vapor transport, we
model our domain on a spongy mesophyll with air filled pore
space diameters 2R twice the characteristic size of the cells 2r. The
later is generous to vapor movement as in the spongy mesophyll of
temperate woody leaves air space diameters appear to be about
equal to those of the neighboring cells (Wylie, 1939). Symmetry
reduces the representative domain of interest to a quarter air
space plus an L-shaped region equal to the half thickness of the
adjacent cells, and by definition the boundaries normal to
Y, Z then have a no-flux condition. We adopt the non-dimensional
variables,

X ¼
x
L
; Y ¼

y
L
; Z ¼

z
L
; ð68Þ

Ψ ¼
ψ ðtÞ&ψ1
ψ o&ψ1

; T ¼
t
τ3D

; τ3D )
L2

κl
: ð69Þ

Substituting (68) and (69) into (65) and (66) provides the non-
dimensional forms of the governing equations for transport through

the air space,

cv
cl
∂Ψ
∂T

¼
kv
kl

∂2Ψ
∂X2 þ

∂2Ψ
∂Y2 þ

∂2Ψ
∂Z2

$ %
; ð70Þ

and in the cellular space,

∂Ψ
∂T

¼
∂2Ψ
∂X2 þ

∂2Ψ
∂Y2 þ

∂2Ψ
∂Z2

$ %
: ð71Þ

The boundary and initial conditions are given by,

source boundary-Ψ jX ¼ 0 ¼ 0; ð72Þ

no flux ðepidermisÞ-
∂Ψ
∂X X ¼ 1 ¼ 0;j ð73Þ

no flux ðsymmetryÞ-
∂Ψ
∂Y Y ¼ 1;0 ¼

∂Ψ
∂Z Z ¼ 1;0 ¼ 0;

((
(((( ð74Þ

at an interface-Ψ v ¼Ψ l; ðJl& JvÞ ( n
!¼ 0 ð75Þ

initial condition-Ψ jT ¼ 0 ¼ 1: ð76Þ

The dimensions of the domain of interest in X is then L/L¼1, the
length of the cell file, and d=L¼ ðrþRÞ=L in y, z. We expect that
the larger the length ratio, L/d, the shallower the gradients will be in
the y, z planes normal to x; for a representative leaf with a half
thickness of 100 μm, a mesophyll cell radius of 10 μm, and an inter-
cellular airspace radius of 20 μm, we take L¼100 μm, d¼30 μm, as
one might expect for the spongy mesophyll (Wylie, 1939). For the
sake of concreteness, we fix the ratio of the hydraulic capacities by
considering a red oak leaf for which cv=cl ¼ 6' 10&6. We then ask
what happens when the total conductivity to the molecular flux of
water is dominated by the cells, is about equal, or is dominated by
the air space, and solve for kv=kl ¼ 0:1, 1, 10.

The solution to the 1D composite model has the same form as (47),
with the poroelastic diffusivity given by the average conductivity and
capacity of the air and liquid sub-domains, weighted by their
respective areas and volumes,

κℓ ¼
kℓ
cℓ

¼
AlklþAvkv
V lclþVvc

ψ
v
; τ1D ¼

L2

κℓ
: ð77Þ

For a quantitative measure of the effect of neglecting in plane
gradients between cells and adjacent airspace, we can again consider
the halftimes for transport predicted by the solution to the composite
model expressed in terms of τ1D, in relation to that observed for the
numerical simulation, for which time is denominated in terms of τ3D.
With the above boundary conditions, the halftime predicted by the
composite model is 0:197τ1D, and the test for the competence of the
composite model is just

τ1DT1D
1=2

τ3DT3D
1=2

* 1-
κl
κℓ

0:197
T3D
1=2

* 1; ð78Þ

where the unknown T3D
1=2 is found from averaging the potential field in

the cellular domain at each time step of the numerical solution (note
that the hydraulic capacity of air is negligible relative to that of the cell
fraction, and so the potential in the airspace is immaterial in
determining the potential attained by the whole domain as it comes
to equilibrium after hydration for t seconds). Fig. 7 shows the iso-
surfaces of the potential field in the domain at the halftime given by
the numerical simulations. Qualitatively, we can see that for vapor
conductivity less than or about equal to that of the liquid path, near
local equilibrium is observed between air and cell fractions. Even for
vapor conductivity 10 times greater than the cell fraction, the phases
do not show too much separation in potential. However, for
kv=kl ¼ 0:1, 1, 10, the quantitative test for the composite model
based on the ratio of the halftimes, (78), evaluates to 0.999, 0.99,

Fig. 6. Schematic showing the general structure of leaf mesophyll and epidermal
tissues. (A), (D) Upper and lower epidermis (multicellular). (B) Palisade mesophyll,
cylindrical photosynthetic cells organized in vertical files separated by narrow air
spaces (anisotropic connectivity between cells). Typically, files may be 1–5 cells
thick (1 cell shown). (C) Spongy mesophyll, irregular to globular shaped cells
with more extensive air spaces, typically 3–10 cells thick (isotropic connectivity
between cells). Arrow shows the principal axis of transport towards the epidermis.
A vascular network irrigates the mid-plane between the spongy and palisade
mesophyll (not shown).
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0.9 respectively. Thus, for kv=kl ¼ 10 the error relevant to parameter
estimates is already greater than in the thick-walled comparison
ks=ka ¼ 0:01, despite the fact that lateral gradients appear less devel-
oped in the vapor than in thick-walled case. That is, despite an
apparently close approximation of LE, the composite model can lead
to overestimates of transport because it assumes that the high
conductivity of the vapor path can directly feed the large sink of the
cell fraction; the composite model does not capture the fact that the
highly conductive path is limited to the relatively negligible storage
capacity of the airspace.

In this test we have taken a very local view of transport just in
the spongy mesophyll, a tissue characterized by large air fractions
(here, 44%). However, at the whole leaf level air fractions are
smaller and therefore we may expect the error resulting from
fitting hydraulic conductivities from observed halftimes using the
composite model will be lower than estimated here. Furthermore,
when kl exceeds 2.3'10&14 mol m&1 Pa&1 s&1 (i.e., kv=klo10),
which we expect to encompass most leaves, expected errors even
for the 44% air fraction considered here are less than 10%.
Neglecting the hydraulic capacity of the vapor phase then leads
to a simplified composite model of the form,

κℓ *
AlklþAvkv

V lcl
: ð79Þ

The approximation in (79) arises from the fact that cψv ⪡cl for any
real volumetric air fraction. Noting that the area fractions in the
direction of transport should be about equal to the respective
volume fraction, we arrive at

κℓ *
klþ

Vv

V l
kv

cl
: ð80Þ

The definition of a composite conductivity as the volume fraction
weighted sum of the component conductivities is expected to do
well when the component materials are arrayed in parallel in the
direction of transport, as for example, would be the case for
transport through the leaf thickness within the palisade parench-
yma. Where the air and liquid fractions are continuous only along
non-linear pathlines, as in the spongy mesophyll, it is customary
to ascribe the difference between the observed conductivity and

that calculated according to volume fraction to the effect of a
tortuosity (Cussler, 1997), to which we give the symbol ξ. In this
view, tortuosity accounts for the fact that in substances with
heterogeneous material properties transport may not be strictly
one-dimensional, depending on the arrangement of the compo-
nent materials.

As a ‘tortuous’ bend in a cell file implies a similar bend in the
adjacent airspace, it might be assumed that the tortuosity of the
two phases must be equal. However, it seems that observed
tortuosities can be larger than might be reasonably attributed
simply to the increase in path length (Cussler, 1997); that is, the
definition of tortuously as the difference between an observation
and theoretical expectation makes it a catch-all parameter in
which various physical effects may lurk. We thus define separate
tortuosities, ξv and ξl, for the two phases. With respect to the
liquid phase, the parameter defined by experiment is the effective
conductivity of the liquid path, kl=ξl; only in rare situations is it
likely to be possible to arrive at separate estimates of ξl and kl. In
contrast, for the vapor phase, the effective hydraulic conductivity,
kv=ξv, must be built up from the known material properties Dv and
cψv , and an independent estimate of ξv. In general, tortuosity may
be expected to be about three, with a typical range from two to six
(Cussler, 1997); in the context of leaf internal air spaces, a value of
1.5 has been suggested (Pieruschka et al., 2005). Accounting for
tortuosity, the poroelastic diffusivity of the tissue becomes,

κℓ *

kl
ξl

þ
Vv

V l

kv
ξv

cl
: ð81Þ

Eq. (81), together with (13) and (5), completes the description of
leaf tissue as a composite media in terms of the constituent
material properties of membranes, cell walls, and air.

4.1. Impact of cell size and number on hydration times

We began this analysis by discussing how discrete cellular
properties, such as membrane permeabilities and cell size, could
be scaled to a continuous property such as hydraulic conductivity.
Doing so allowed us to adopt the ideas of continuum mechanics,

Fig. 7. Isosurfaces in potential Ψ for a tissue composed of cells and adjacent airspace at the halftime of transient hydration through the thickness (X), for three values of kv=kl:
(A) Geometry of the vapor domain (intercellular airspace) in blue and liquid domain (cells) in grey; (B) kv=kl ¼ 0:1; (C) kv=kl ¼ 1; (D) kv=kl ¼ 10. Numeric values associated
with the color scale (blue¼wet, maroon¼dry) vary slightly in each case, but by definition the mean Ψ in each domain is 0.5. Ratios of the composite halftime to numeric
halftime are 0.999, 0.99, and 0.9 respectively. The relatively small hydraulic capacity of the gas phase causes the composite model to significantly overestimate transport for
kv=kl410, even as the gas and liquid phases remain near local equilibrium.
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and avoid the complexity of a fully discrete description. However,
in some cases it may be illuminating to return to the original
discrete variables. For example, in the limit that cell-to-cell flow
dominates transport, the dependence of the characteristic time
τ on cell permeability can be found simply as,

τℓ ¼
cℓL2

κℓ
¼

cℓn2l2c
Alkl

¼
2
Al

(
vcℓlc
Lp

( n2: ð82Þ

For such tissues, the time for changes in potential or water content
to propagate will be linearly related to the characteristic cell size lc,
but will grow as the number of cells n squared. Hydraulic
limitation may then arise from the number of cell-to-cell transi-
tions, rather than linear distances, and n ( lc may be a more useful
variable than L in analyzing internal leaf structure. The steady state
conductance Kn for transport over n cells is then,

Kn ¼
AlLp
2vn

: ð83Þ

Notably, (83) emphasizes that, in the limit that tissue conductivity
is dominated by membrane permeability, cell number, and not
actual tissue dimensions, may provide the most informative
measure of how far a cell can be from the vasculature before
transport limitations become too great. For example, the relatively
low value of ks calculated here for Arabidopsis may be explained by
its small cell size, lc¼30 μm, while its mean Lp falls within the
range of the other species discussed (2–7'10&13 m Pa&1 s&1).

5. Discussion

5.1. Poroelasticity and plant water relations

It will be noted that in considering the permeation of water
molecules through plant tissues from the perspective of poroelas-
tic theory, we have nevertheless arrived at the same mathematical
form as Philip (1958b), and so it might be argued the extra effort
was superfluous. However, the exercise did make explicit the
approximations and limitations entailed by the use of the heat
equation to describe water transport in elastic tissues, and therein
lies some of its value. The rest of the value lies in pointing plant
physiologists towards a well developed body of theory linking
stress, strain and the chemical potential of water at the tissue
level, a linkage currently absent in canonical plant texts, such as
Niklas (1992), Nobel (2005), and Kramer and Boyer (1995). This
absence reflects a lingering confusion on the relationship between
descriptions of plant tissue from the perspective of solid
mechanics versus that developed in plant cell water relations by
treating a tissue as analogous to a single ‘big cell’. For example,
Cosgrove (1988) pointed out that the bulk modulus ε of cell water
relations could not be identified with the volumetric modulus K of
solid mechanics, as water must flow out of a cell for it to change
volume, while K describes a mass conserving change in volume. In
poroelastic theory this difficulty is resolved, for K, G, ν link
deformation not just to an imposed state of stress, but to the
migration of the fluid as well, while within a volume element
only the solid fraction is conserved and the water content varies
(Biot, 1941; Hong et al., 2008b). As a result, as we have shown, the
poroelastic volumetric modulus K is indeed equivalent to the term
εþπo derived by Philip (1958b) from cell water relations theory.

5.2. Local equilibrium and composite tissue models

Based on our analyses, local equilibrium between cell apoplast
and symplast, and the air in adjacent pore spaces, appears to be a
reasonable starting assumption for investigation of leaf transport
properties averaged over whole leaves. Our conclusions regarding

local equilibrium differ somewhat from Molz (1976), Molz et al.
(1979), who suggested LE between protoplasts and their walls
might be assumed to be the rule rather than the exception in most
plant tissues, except perhaps in leaves, due to the potentially short
path lengths that might exist there for flow. However, with the
updated parameter values considered here, the analytic criteria we
develop (Eq. (39)) supports LE with ks=ka * 0:1 even over cell files
only 2–3 cells long.

We also found that, while LE and the error associated with the
composite model are indeed linked as Molz suggested, the
relationship is sensitive to the geometry and ratio of hydraulic
capacities. For example, in the thick-walled case, we saw that the
composite model continues to do well even as LE breaks down
during the transient, such that its tolerance of divergences in
magnitude between apoplastic and symplastic hydraulic conduc-
tivities is similar to that of the thin walled case. However, in files of
cells with air spaces the composite model proved less robust than
LE as kv4kl. The difference is due to the vanishingly small
hydraulic capacity of the air relative to the cells.

Nevertheless, the fact that the isothermal hydraulic conductiv-
ity of the gas phase coincides with the low end of the range
expected for cells, suggests that errors arising from composite
model may be generally expected to be less than 10%. In the event
kl4kv, the liquid phase material properties dominate the behavior
of the system, and the composite description is simply
κℓ ¼Alkl=V lcl. Yet, should the fits form the composite model to
real data result in an estimate of hydraulic conductivity for the
tissue, kℓ, far below that of air, then the assumption of LE should
be re-examined, as we have shown the composite description
breaks down for kl=kvo0:1.

While we have only explicitly considered the chemical equili-
brium of water molecules, the thermal and chemical problems
have the same mathematical structure, and so the analysis may be
expected to be similar. As the thermal conductivity of air is an
order of magnitude less than that of liquid phase, whose thermal
conductivity may be expected to be of the same order of magni-
tude as water (Vogel, 1983), and because the thermal capacity of
air is likewise an order of magnitude lower than that of water, the
case for a composite model for heat transport would appear to be
stronger than for water molecules. The gas phase cannot ‘short
circuit’ the liquid phase heat flux, as it might if the thermal
conductivity of air were very high; nor will it provide a large
lateral impedance, as the combination of high thermal capacity
and low conductivity might, which would slow the time for heat
transport from what might be expected based on the composite
model. The thermal diffusivity of the composite will then just be
dominated by that of the liquid fraction, or κTℓ ¼Alk

T
l =V lcTl , where

the superscript T refers to thermal properties.

5.3. Pathway of isothermal water flux in leaf tissue

With regard to the competition between isothermal vapor and
liquid transport within a tissue, all of our estimates of kl exceed kv,
though the low end of the ks distribution for individual protoplasts
is comparable. Experimental estimates of kℓ greater than - 2'
10&13mol m&1 Pa&1 s&1 would suggest a dominant role for liquid
flow over vapor diffusion. Mott and Peak (2011) proposed that
vapor diffusion might be more important than liquid flow for
transport through the mesophyll under isothermal (dark) condi-
tions in leaves of Tradescantia, but based on a ks 1.6'10&12

mol m&1 Pa&1 s&1, estimated earlier from data in Ye et al.
(2008), our estimate of kv, and a whole leaf volumetric air fraction
of 15% (Byott, 1976), this would appear unlikely.

While the non-isothermal case is beyond the scope of this
paper, temperature gradients within the leaf have the potential to
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shift more of the flux into the vapor phase than is predicted to
occur in the isothermal case developed here. An idea of the
difference can be gained by considering (64). At 25 1C, cθv ¼
0:075 mol m&3 K&1, and the ratio cθv=c

θ
v indicates that thermal

gradients within leaf tissue of 0.1 1C, the order of magnitude
expected for leaves (Yianoulis and Tyree, 1984), are as efficient at
moving water as liquid phase gradients on the order of 1 MPa.
In addition, while to define average tissue hydraulic properties
from experiments we needed the volumetric air fraction averaged
over the entire leaf, the appropriate air fraction for considering the
transpirational flux between the veins and lower epidermis is that
of the spongy mesophyll, further contributing to the competitive-
ness of the vapor phase. These issues will be further explored in a
subsequent analysis.

The important point with regard to the experimental determi-
nation of material properties is that as long as rehydration
experiments are conducted at a temperature close to transpiring
‘leaf temperatures’ (i.e., the temperature measured by a thermo-
couple at the leaf surface), the isothermal value of kl should still be
appropriate for modeling liquid phase transport under non-
isothermal conditions. This is because temperature variations in
the leaf are expected to be less than o1 1C, while the conductivity
of the cell fraction is thought to have a Q10 of about 2 (Matzner
and Comstock, 2001), from which it follows we can safely neglect
variation in kl due to temperature gradients within a leaf.

With the respect to the question of whether most of the liquid
flux in the leaf mesophyll occurs through the walls or symplast, for
the thin wall aspect ratio considered here, wa=lc ¼ 0:01, we found
that even for ratios of the symplast to apoplast hydraulic con-
ductivity of ks=ka40:05 the steady flux across the symplast will be
larger, simply due to the relatively small area available for
apoplastic flow. Experimental values of kl on the order of
10&11 mol m&1 Pa&1 s&1 would be higher than could be explained
by the symplastic path, based on the estimates of ks given here.
Such values, if observed, would support the concept of a pre-
dominantly apoplastic path in leaf mesophyll tissue, as some work
on leaves assumes (Brodribb et al., 2007, 2010). Despite this
assumption, the fit to the data in Brodribb et al. (2007, Fig. 1B)
implies a universal kℓ for ferns, gymnosperms, angiosperms, and
lycopods of 2'10&12 mol m&1 Pa&1 s&1, which may readily be
accounted for by the estimates of ks based on pressure probe
estimates of Lp given here. Thus it seems unnecessary to invoke a
large apoplastic flux to account for water transport in leaf tissue.

According to Martre et al. (2002), in Arabidopsis estimates of Lp of
this magnitude, - 10&13 m Pa&1 s&1, correspond to Pos410 μm s&1

that are indicative of active aquaporins. LP measurements from
pressure probes do not discriminate between cross-membrane and
plasmodesmatal mediated fluxes, so it is notable that Pos values appear
capable of accounting for the magnitude of observed cell-to-cell
conductivities. An important role for aquaporins within the
symplastic compartment is also consistent with the negative effect
of anoxia, known to gate aquaporins (Tournaire-Roux et al., 2003),
on the rehydration of Quercus rubra leaves (Rockwell et al., 2011).

It is perhaps surprising then that Martre et al. (2002) found no
effect of down regulation of aquaporins on leaf hydraulic con-
ductance, defined as the proportionality between transpiration
and the difference between covered leaf (presumably in equili-
brium with the stem xylem) and transpiring leaf water potentials,
while an effect was seen in roots. Martre et al. conclude these
results are consistent with a dominantly apoplastic path for
transpiration. However, while the potential difference driving flow
across the root was well defined in that study, the relationship
between whole leaf volume averaged water potential measurements
and the potential at the evaporation sites in leaves is not (Sack
et al., 2002).

Evaporative methods can also give highly nonlinear potential-
flux relations, in which the potential differences between tran-
spiring and non-transpiring leaves appears insensitive to increases
in the flux, a problem particularly for measurements of detached
leaves of young, growing herbaceous plants (Boyer, 1985). In
addition, the potential difference between transpiring and non-
transpiring leaves may be well-defined in plants in which xylem
resistance is much greater than the post-xylem path through the
tissue, such that all the living tissue in the leaf may be approxi-
mated as at one potential, but, in the case of angiosperms, tissue
resistance is not negligible (Cochard et al., 2004). As a result, the
capacitance of tissue not between the minor veins and the stomata
(e.g., palisade and upper epidermis in hypostomatous leaves, rib
tissues) will reduce the sensitivity of the average potential of the
leaf, as measured by the pressure chamber, to changes in vein to
stomata gradients. While attractive for characterizing flux–poten-
tial relations at phylogenetic scales (e.g., Brodribb et al., 2007),
evaporative methods do not appear sufficiently well-defined
physically to probe finer scale leaf structure-function relationships.
In the case of Martre et al. (2002), the method may simply have
been to crude to detect a change in leaf tissue permeability.

In conclusion, our analysis has shown that all of the pathways
considered here, apoplastic, symplastic, and through the air spaces
as vapor, may be important for water transport within a particular
tissue depending on the volume fractions, wall thicknesses, and
temperature gradients that characterize the tissue. Modeling the
path of transpiration in leaf tissues should therefore take all of
these factors into account. Yet while the topology of the walls,
protoplasts and air spaces is complex, a simple composite model of
leaf tissue as a homogenous isotropic medium characterized by
the area and volume averaged material properties of the compo-
nent sub-domains appears to offer a good working hypothesis or
starting point for exploring leaf structure-function relationships
related to water transport.

Appendix A. Sensitivity of poroelastic relaxation times to ν

The solution to diffusion type boundary value problems can be
expressed at any particular time as a sum of n exponential terms,
where the contribution to the solution of any particular term
decays as both n-1 and t-1 (Crank, 1957). As a result, at ‘long
times,’ or after about one quarter of the progress of the transient to
the final equilibrium state has occurred, the solution maybe well
described by a single dominant term. While no closed form
solution to the free swelling linear poroelastic problem exists,
Doi (2009) sketches the expected form of the longest relaxation
time, which will determine the half time of the swelling kinetics.
According to Doi's (2009) solution, the time constant τo of the
dominant term, or ‘longest relaxation time,’ is given by (in our
notation, with L¼h/2),

τo ¼
L2

κλ2
; κ ¼ v

3Kð1&νÞ
1þν

! "
k; ðA:1Þ

where λ is the smallest positive solution to,

λ cot λ¼
4G

3Kþ4G
¼

2ð1&2νÞ
1&ν

: ðA:2Þ

Note that the second equality simply follows from the relationship
between G and K given by (11). Inspection of (A.(1) and A.2) shows
that, for a given hydraulic conductivity k and volumetric modulus
K, the longest relaxation time τo is just a function of the poroelastic
Poisson's ratio, ν. For ν¼0.1 and ν¼0.5, the longest relaxation
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times are calculated as,

τoðν¼ 0:1Þ ¼
0:362L2

vKk
; τoðν¼ 0:5Þ ¼

4L2

π2vKk
: ðA:3Þ

With 4=π2 * 0:405, the difference between the longtime solutions
for the two values of ν is 12%. We also see that the ν¼0.5 case
conforms to the longtime solution for potential diffusion into a
plane sheet, with the permeable surface at x¼0, no-flux by
symmetry at the mid-plane at x¼L, and c) 1=vK (Crank, 1957),

ψ ðtÞ&ψ1
ψ o&ψ1

*
8
π2 exp &

π2k
4cL2

t
! "

: ðA:4Þ

This is indeed for the above boundary conditions the longtime
solution to (12), the heat-equation form we found the equations of
poroelasticity reduce to in the special case ν¼0.5, equivalent to
Philip's (1958b) model (8).

Appendix B. Relating osmotic and potential flows

The relationship between Pos, the permeability defined by
protoplast swelling assays, and Lp, the hydraulic permeability as
measured by the pressure probe, can be found by relating the
absolute volume fluxes (Boyer, 1995; Ramahaleo et al., 1999),

∂v
∂t

¼ PosSo ( vρwΔCos ¼ LpSo (Δψ ; ðB:1Þ

where So is the initial surface area of the protoplast, and Cos is the
osmolality, in mol/kg solvent, as reported in Ramahaleo et al.
In the limit of dilute solutions, ρwCos gives the concentration C in
mol/m3, and vρwCos the dimensionless mole fraction, that describe
the osmotic difference driving flow across the membrane. Using
the relationship between dilute concentrations and water poten-
tial, ψπ ¼ &RTC (Kramer and Boyer, 1995), and recognizing that
the ‘positive’ differences in Cos and ψ driving inward flow have
opposite signs when written more formally as gradients, leads to,

ΔCos

Δψ ¼ ðρwRTÞ
&1-Lp ¼

Posv
RT

: ðB:2Þ

Appendix C. Approximately isothermal vapor transport

Here we consider vapor transport within the leaf tissue, in the
absence of radiative loading of the leaf. Because of the low capacity
of air for water molecules relative to the cells, effectively all of the
water entering the leaf in the liquid phase during a hydration
experiment ultimately resides in the cells, again in the liquid
phase. This means that to the extent water moves through the
internal air space as vapor during a change in hydration, energy
must flow towards the evaporative surfaces (i.e., the bundle
sheath) as well as away from the condensing and absorbing cells
in the mesophyll and epidermis. Only if the amount of energy
removed by evaporation is small relative to the heat capacity of
the tissue, will temperature variations at the evaporating and
condensing sites truly be negligible. Yet, if we treat the entire
tissue (noting that the heat capacity of the air fraction is negligible
compared to that of water) as a reservoir of heat energy, we find
that for a typical oak leaf containing 1.2 g of water in a typical
hydration experiment that results in the uptake of 0.04 g, or - 3%
of the leaf's water content, the energy required to evaporate the
hydration flux relative to the energy required to change tempera-
ture of the leaf water 1 1C is,

λ
cp

( 0:03* 17:5 1C; ðC:1Þ

which tells us that, in the absence of a flow of energy to the
evaporation sites, the thermal gradients induced in the tissue by a
vapor flux would not be negligible. Of course, in the absence of
radiative loading from an external source, energy can flow to the
leaf from the surrounding air, but this potential source is separated
from the leaf tissue by a conductive boundary layer resistance.

A more important source of energy is likely to be the sites of
condensation within the leaf itself. To estimate how important
thermal gradients might then be in slowing vapor transport, we
can find an approximate thermally ‘corrected’ hydraulic conduc-
tivity of the air by imposing the requirement (which would be
exact in steady state) that any latent heat transport must be
conducted back to the evaporating site a distance Δx away. In
terms of the latent heat flux that arises due to vapor transport in
the air fraction Av during rehydration, the conduction of heat
through the leaf tissue required to deliver the heat of condensa-
tion back to the evaporative surface is given by,

AvλJv ¼ kTℓ
Δθ
Δx

; ðC:2Þ

where kTℓ , the thermal conductivity of the leaf, is given by

Alk
T
l þAvk

T
v . Solving (C.2) for the temperature gradient (induced

by vapor transport and driving heat transport from the site of
condensation back to the site of evaporation), and substituting
back into (64), we find an expression for the vapor flux in the air
space that accounts for the adverse impact of a temperature
gradient on vapor transport,

Jv ¼ &Dvc
ψ
v
∂ψ
∂x

&Dvcθv
AvλJv
kTℓ

: ðC:3Þ

Re-arranging (C.3) defines an effective hydraulic conductivity of
the air space, knv , that takes into account thermal effects,

Jv ¼ &knv
∂ψ
∂x

; knv ¼
Dvc

ψ
v

1þDvcθv
Avλ
kTℓ

: ðC:4Þ

For an oak leaf with a tissue thermal conductivity about a third
that of water, or 0.25 J m&1 K&1 s&1, and a whole leaf air fraction
of 12.63% (unpublished data), the correction amounts to only a 4%
reduction in the hydraulic conductivity of the vapor path, a result
due to the efficiency of conduction in the leaf tissue relative to vapor
transport. A full thermal budget would also account for convective
heat transport as well as radiative transfer across the air spaces; it can
be shown these are negligible effects, but formal development of the
arguments will be left to a more complete description of non-
isothermal water transport in leaves, in preparation.
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