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Abstract

Current models of leaf hydration employ an Ohm’s law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow
between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the midplane, neglecting the discrete
placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the
vascular network to a representative areole (region bounded by the vascular network), and represents the volume of tissue within the
areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and
these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate
woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor
and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling
factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry.
Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration,
and consider the relation of transpirational gradients to equilibrium leaf water potential measurements.
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1. Introduction

1.1. Characterizing the hydraulic constraints on leaves

As plants open their stomata to allow the inward flux of CO2,
the chemical potential of liquid phase water at the evaporating
sites falls until, in steady state, the resulting flux of liquid water
into the leaf balances the flux of water vapor from the stom-
ata. Thus, measures of the hydraulic efficiency of the liquid
flow correlate with maximum stomatal aperture, and therefore
carbon gain (Boyce et al., 2009; Brodribb et al., 2007). Yet,
the extent to which this hydraulic efficiency is determined by
the transport properties of the cells and airspaces that make up
the tissue between the leaf veins and the stomata, or depends
directly on the characteristics of the vascular system itself, re-
mains uncertain. While vein density has been shown to cor-
relate with various measures of leaf water transport efficiency
at broad phylogenetic scales (Brodribb et al., 2007, 2010), the
relationship is likely not strictly causal. In angiosperms, the
dominant resistance to liquid flow in a leaf is believed to reside
downstream of the veins, in the tissue outside the vasculature
(Cochard et al., 2004; Sack et al., 2004; Brodribb et al., 2010).
Vascular conductance per unit leaf area may then simply scale
with the resistance of the tissue path. Yet while the partition-
ing of leaf transport properties between vasculature and tissue
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may be central to understanding hydraulic limits on leaf level
productivity, current practice in plant physiology lumps vascu-
lar and tissue properties into a single whole-leaf conductance,
Klea f (Sack et al., 2002).

A major obstacle to partitioning ‘whole-leaf’ transport prop-
erties between vasculature and tissue is a lack of models that de-
scribe these different pathways in terms of experimentally avail-
able, physically well-defined parameters. For example, whole-
leaf hydraulic conductances (Klea f ) are often defined as the pro-
portionality between an observed flux and the difference in wa-
ter potential between the leaf and a source, typically a reser-
voir (lab) or branch (in situ) of known water potential (Scoffoni
et al., 2008; Brodribb and Holbrook, 2006). While seen as offer-
ing the advantage of defining a conductance under transpiring
conditions, the water potential of the leaf is in fact measured un-
der non-transpiring conditions, typically in the pressure cham-
ber. This leads to ambiguity in the description of the driving
force for the observed flux, as the pressure chamber reports the
volume and capacitance weighted average potential of the tis-
sue, once the gradients induced by transpiration have collapsed,
and not the potential at the sites of evaporation within the leaf
that we seek (Boyer, 1985; Sack et al., 2002).

Other characterizations of Klea f have their own limitations.
In high pressure flow methods, the driving force is well de-
fined, but the flow path measured is unknown (Tyree and Che-
ung, 1977), a problem that applies equally to methods where a
reduction in the pressure in the liquid phase at the air water in-
terfaces inside the leaf blade is imposed by means of a vacuum
pump. Consequently, it is not possible to directly relate con-
ductances defined by such methods to material properties of the
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leaf. Indeed, we do not even know how to compare hydraulic
conductances defined by evaporative methods to high pressure
flow methods (Sack et al., 2002). The fact that Klea f is not in
general a physically well-defined quantity may also underlie its
apparent response to exogenous environmental factors that alter
the flux (Rockwell et al., 2011).
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Figure 1: 1D steady-state model a leaf as vascular and tissue resistance in series,
with the liquid flux driven by the potential difference ψsource−ψstomata (Brodribb
et al., 2010). In practice, the flux is directly observed, and the ∆ψ driving
that flux is taken as the difference between source and whole leaf potential
as measured by the pressure chamber (dotted line). As the latter reports the
average potential of the tissue, unless vascular resistance dominates (A) the
error may be large (B).

Nevertheless, some effort has been made to separate the vas-
cular and tissue components conceptually with respect to steady
state evaporative methods, and account for the effect of vein
spacing. Brodribb et al. (2010) propose a 1D model relating
whole leaf conductance to leaf structure by invoking an electri-
cal analogy, decomposing the Klea f of a transpiring leaf into a
vascular and mesophyll conductance in series, where the meso-
phyll conductance is defined as the distance Dm from a vein to
the furthest evaporating site divided by the hydraulic conduc-
tivity of the mesophyll cells. The model is then made concrete
by assuming that all evaporation is peristomatal, and defining
Dm as the hypotenuse of a right triangle formed by the distance
from a vein to the epidermis, and half the inter-vein distance.
This Dm is taken as the effective length of transport through
the tissue that incorporates the effect of vein spacing. Yet Klea f

is still defined experimentally as the proportionality between
the flux and the difference between source potential and aver-
age potential of the tissue reported by the pressure chamber.
So defined, Klea f contains an implicit assumption of negligible
gradients in the tissue during transpiration, one required if the
average potential of the tissue is to converge with the difference
in potential between the lower epidermis and source (Figure 1).
Furthermore, we do not know how faithfully the definition of
Dm maps the 1D series model to what is at least a 2D problem
in the case of parallel veins, and a 3D problem for reticulate
veins.

Alternatively, progress in unravelling the hydraulics con-
straints on leaves may be made by characterizing tissue hy-
draulic properties through isothermal rehydration experiments
(i.e., non-transpiring conditions), and then modeling the non-
isothermal competition between vapor and liquid transport in
the leaf, to satisfy an observed transpirational flux. This ap-
proach avoids the uncertainties regarding driving force or path
length that complicate both the evaporative and high pressure
flow methods. For rehydration experiments, the difference in

initial and final water potentials is well defined if the measure-
ments are made at equilibrium (Boyer, 1995). In addition, the
location of the ‘sinks’ for water uptake are the same as for
a pressure-volume curve, providing the relationship between
changes in potential and changes in water content during the
transient. The only uncertainty remaining for the isothermal
transient analysis is the form of an appropriate model by which
potential differences and time are related, one that captures the
effect of a tissue hydrating through an embedded vascular net-
work. This uncertainty we attempt to address here.

1.2. Current models of leaf hydration

Two approaches to modeling transient leaf hydration can be
found in the literature. The first approach adopts a discrete
ohms law analogy (Brodribb and Holbrook, 2004), that treats
the leaf as a vascular ‘resistor’ in series with a capacitor, the
leaf tissue, which stores charge (water) but has negligible in-
ternal resistance itself (Horowitz and Hill, 1989). As we will
show, this approach conforms to the assumption of a domi-
nant vascular resistance. The second approach is based on a
continuum description that smooths discrete cellular perme-
abilities into tissue conductivities. Here the capacity for wa-
ter storage is distributed throughout a resistive medium, arriv-
ing at a mathematical form analogous to the one-dimensional
heat equation (Philip, 1958a). This form has been employed to
describe volume uptake and water potential relaxation in leaf
tissues (Boyer, 1968, 1969), neglecting vascular resistance by
assuming a fixed, continuous source potential at the leaf mid-
plane. Here we show that both of these models can be derived as
the limiting cases of a more general model describing transient
flow through a rigid network in series with an elastic tissue.

We have previously considered the transport properties of
leaf tissue as a composite of protoplasts, cell wall, and air space
(?). We now attempt to account for the leaf vasculature in terms
of an average conductance from a source at the petiole to any
point within the leaf along the vein-tissue interface. The anal-
ysis is complicated by the fact that the veins occupy discrete
locations in the vascular plane in a leaf, rather than forming a
continuous plane of supply, resulting in a 3D ‘partially-active’
boundary condition problem that necessitates numerical simu-
lation to find a solution. By comparing the 3D numerical sim-
ulations to the general form of a 1D analytic solution, we eval-
uate the utility of the assumption of a continuous plane of vas-
cular supply as a way of arriving at a 1D form of the transient
hydration problem. We also evaluate the use of the ‘effective
length’ of Brodribb et al. (2010), Dm, to account for the dis-
crete placement of the veins. Finally, we seek scaling factors
that reduce the 3D problem to an equivalent 1D form, and ex-
amine the relationship between these factors and leaf geometry
through regression analysis.

2. Model development

2.1. Representation of the vascular network

During a rehydration experiment, water flows from a source
reservoir at constant potential, through the petiole and leaf
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Table 1: Symbol definitions

Quantity Symbol Units

Leaf half-thickness L m
Vein to lower epidermis le m
Vascular xylem half width a m
Effective length Dm m
Intervein distance w m
Area A m2

Volume V m3

Uptake (cumulative flow) Q mol
Molecular flux J mol m−2 s−1

Water potential ψ Pa
Characteristic time τ s
Poroelastic Diffusivity κ m2 s−1

Hydraulic capacity c mol m−3 Pa−1

Leaf capacitance cA mol m−2 Pa−1

Vascular conductance h mol m−2 Pa−1 s−1

Hydraulic conductivity k mol m−1 Pa−1 s−1

Leaf hydraulic conductance Klea f mol m−2 Pa−1 s−1

Table 2: Dimensionless symbols

Dimensionless Quantities Symbols

Potential Ψ

Time T
Uptake Φ

Biot number B
Subscripts & Superscripts Symbols

Leaf tissue `
Reservoir r
Initial state o
Final state f
Leaf area basis A
Vein area basis V
Vein to epidermis e
Hypotenuse model 4
3D to 1D Scaling Factors Symbols Equations

Transient hydration ξ, η 53-58
Steady state flux ς, ζ, ε 59-63
Leaf to epidermal potential φ, ω 65, 66
Vasc. volume correction γ 17

xylem, and into the tissue that then changes in water content.
Boyer (1968, 1969) idealized the hydration of a leaf as a one
dimensional flow from the vascularized midplane, regarded as
a continuous source of water at a fixed potential, toward the
upper and lower epidermis, which hydrate in parallel. This ap-
proach involves two related assumptions. First, that the network
of veins is sufficiently conductive relative to the tissue that vas-
cular potential, at every point in the network, sits very close to
the potential of the external reservoir. Second, that the veins are
sufficiently close together that lateral gradients in the tissue be-
tween the veins are small, and the flow is nearly unidirectional
(one dimensional) through the leaf thickness. To the extent that
these assumptions are not met, this model’s estimate of the tis-
sue conductivity will be lower than the true value, as the resis-
tance that derives both from flow through the vasculature and
the spacing between veins will be assigned to the tissue.

Here we first relax the assumption of negligible vascular re-
sistance. For the leaves of many plants, we expect that the axial
resistance of the xylem is small (but not negligible) relative to
the radial resistance through the tissue (Cochard et al., 2004; Ye
et al., 2008). If the leakage to the tissue is concentrated in the
highest (smallest) vein orders, then we can consider each are-
ole as hydrating in parallel, and neglect the presumably small
variations in the axial conductance to each areole. Similarly, if
the total vascular pressure drop is large relative to the variation
within the vasculature of an areole, we can then approximate
the xylem network as providing a single average vascular con-
ductance, hV , to every point along the vein-tissue interface.

As the veins inhabit discrete locations within the vascular
plane, rather than filling it to provide a continuous boundary,
they constitute a ‘partially active’ boundary condition, as occurs
in chemical engineering problems where one or more of the
boundaries of a domain of interest is composed of a patchwork
of catalytic and inert surfaces (Dudukovic and Mills, 1985).
Such problems in 3D do not admit an analytic solution. There-
fore, to relax the second assumption of one dimensionality, we
employ a numerical analysis of the full 3D problem. We then
study how the 3D problem may be mapped to a 1D, continuous
boundary value problem, for which we can find a closed form
mathematical solution useful for interpreting hydration experi-
ments.

2.2. Specification of the domain of interest
We consider a leaf with reticulate venation, in which the

highest vein orders demarcate approximately square domains
of tissues (areoles), with a width and depth 2w, and a thickness
from lower to upper epidermal surfaces 2L (Figure 2 A). As the
gradients in potential will be symmetrical about the center of
the vein, and the mid-plane between veins, we consider a do-
main of 1/4 of an areole, or w × w × 2L. The vascular plane
(vp) is located at the transition between spongy and palisade
parenchyma, a distance le from the lower epidermis, such that
vp marks the plane of the lower surface of a vein’s xylem. The
distance to the lower epidermis le, vp, and the half thickness of
the leaf L are related by,

le = 2L · (1 − vp). (1)
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Figure 2: Geometry of a Quercus rubra leaf. A: Cryo-SEM cross section
through the leaf thickness 2L, showing vein width 2a, areole half-width w,
plane of vasculature vp, and distance to lower epidermis le. B: Normalized
geometry of a representative quarter areole (grey); the full areole is demarcated
by dotted lines, and defined as a domain of tissue 2w × 2w bounded by the
vascular network. Water enters across the surfaces of the cut-out vein volume.

In the cross section of a vein (middle left side of Figure 2
A), the width and height of the xylem in the vascular bundle is
defined as 2a, such that the xylem in a bundle forms a square
with a total perimeter 8a. To simplify the boundary conditions,
we approximate the xylem filled part of the vein as square, fill-
ing an L shaped region in the quarter areole with a total surface
area 8 · (a × w) − 6a2. It is on the xylem boundary, rather than
the boundary of the vascular bundle inclusive of the phloem,
that we locate the vein-tissue interface and the transition from
vascular to tissue transport. To describe the effect of transport
though the vasculature on the availability of water at the vein-
tissue interface, we define hv as the effective conductance of the
vascular network to the vein-tissue interface within a represen-
tative areole. The principal source of estimates of hV are vein
cutting experiments, which define a conductance hA based on
the flux and pressure drop between the petiole and the cut-vein
order that is then normalized to the leaf area (Sack et al., 2004).
An estimate of hV then follows from re-normalizing to the vein
surface area, or

hV = hA

(
w2

8aw − 6a2

)
(2)

The interior of the domain we regard filled by a homoge-
nous, isotropic tissue. The description of leaf tissue as a ho-
mogenous, isotropic media composed of protoplasts, cell walls,
and airspace, has been addressed previously (?). Briefly, for
deformations of a few percent, as occur in rehydration experi-
ments, we neglect the changes in dimensions and between-cell
mechanical interactions that accompany water uptake. The re-
sulting equation governing transient hydration has the form of
the heat equation, with a hydraulic capacity, c`, the moles of
water stored per unit nominal volume per unit potential, play-
ing a role similar to that of a heat capacity.

The hydraulic capacity of leaf tissue is in practice defined
from the linearized slope of a leaf pressure-volume curve, nor-
malized to the leaf blade volume. As we have excluded the
vascular volume from our domain of interest, the hydraulic ca-
pacity of the 3D domain must be renormalized from the ‘full’
volume 2L · w2 to the domain volume, leading to

c3D
` ≡ c`

(
1 − a2

w2

(
2w − a

L

))−1

. (3)

Here we introduce the superscript 3D to keep track of parame-
ters defined specifically in relation to the 3D domain. The ratio
of the hydraulic conductivity of the tissue to hydraulic capac-
ity then forms a poroelastic diffusivity κ`, which together with
the length L of the tissue over which transport occurs defines τ,
the characteristic time scale for the propagation of potential or
volume change in the tissue,

κ3D
` ≡

k`
c3D
`

, τ3D ≡ L2

κ3D
`

. (4)

The intrinsic behavior of our domain of tissue during a transient
between two hydration states is then completely characterized
by the time τ3D.
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2.3. Non-dimensionalization of the 3D transient problem

We will follow the standard practice of transforming the
equations we are studying by substituting non-dimensional
variables (Deen, 1998; Bridgman, 1922). One advantage
of this approach is that is makes the mathematical structure
of a problem and its solution clearer. For example, non-
dimensionalization organizes the parameters in a problem into
one or more dimensionless groups upon which the solution then
depends: the value of a particular parameter only really matters
in relation to the others with which it is grouped. To rescale
the physical dimensions, we adopt the half thickness L as the
characteristic length of the problem, and introduce new spatial
variables (X = x/L, Y = y/L, Z = z/L). The resulting domain
is shown in Figure 2 B. The potential is normalized by,

Ψ =
ψ − ψr

ψo − ψr
, (5)

where ψr is the potential of the reservoir supplying the petiole,
and ψo is the initial potential of the leaf. The epidermal surfaces
located at (X = 0, 2) constitute insulated (no-flux) boundaries as
long as the stomata are closed. The faces of the domain shared
with the neighboring areoles, hydrating in parallel, are also no-
flux boundaries by symmetry. Thus, everywhere on the domain
surface σ, except the vascular surfaces σV , the flux across the
surface is zero,

On σ , σV , ~n · ∇Ψ = 0, (6)

where ~n is the normal vector to the domain surface.
On the vascular surfaces, the flux into the tissue must be

equal to the flux from the reservoir to the vascular surface. La-
beling the vascular surfaces according to their normal vectors
(e.g., the vascular surface lying in the YZ plane is σx), the re-
scaled boundary conditions on the vascular surfaces become,

On σV x : −k`
∂ψ

∂x
= hV (ψr − ψ)→ −∂Ψ

∂X
+

hV L
k`

Ψ = 0, (7)

On σVy : −k`
∂ψ

∂y
= hV (ψr − ψ)→ −∂Ψ

∂Y
+

hV L
k`

Ψ = 0, (8)

On σVz : −k`
∂ψ

∂z
= hV (ψr − ψ)→ −∂Ψ

∂Z
+

hV L
k`

Ψ = 0. (9)

The non-dimensional groups scaling the potential at the vascu-
lar boundary represent the ratios of vascular to tissue conduc-
tance over the lengths of the domain along the coordinate axes.
Similar ratios of parameters arise in the analysis of many heat
transfer problems, as for example the ratio of the heat conduc-
tance away from a body to the thermal conductivity of the body
over its characteristic size. This combination of a conductance,
length and a conductivity arises often enough in heat transfer
that it is termed a Biot number (Lienhard IV and Lienhard V,
2006), and given the symbol B. Here we will borrow that con-
vention, and define B3D = hV L/k`. Within the domain, the
equation governing the potential field during the transient has
the form of the heat equation (Philip, 1958b; ?), and after the
change of variables becomes,

∂Ψ

∂t
= κ3D

`

(
∂2Ψ

L2∂X2 +
∂2Ψ

L2∂Y2 +
∂2Ψ

L2∂Z2

)
, (10)

I.C. : Ψ(X,Y,Z, t ≤ 0) = 1, (11)

subject to the above boundary conditions. We next define a
non-dimensional time variable T 3D = t/τ3D, such that,

∂Ψ

∂T 3D =

(
∂2Ψ

∂X2 +
∂2Ψ

∂Y2 +
∂2Ψ

∂Z2

)
, (12)

I.C. : Ψ(X,Y,Z,T 3D ≤ 0) = 1. (13)

This completes the specification of the 3D problem. Since we
have normalized time to the time scale of the tissue in the do-
main, the non-dimensional 3D solution varies only as a function
of the ratio of vascular conductance to transport through the tis-
sue (B3D), which enters through the boundary conditions, the
length ratio w/L that enters through the geometry of the do-
main, and a/L and vp which enter through the geometry of the
vascular-tissue interface. The numerical solutions can then be
tabulated as a function of B3D,w/L, a/L, and vp.

2.4. Estimating k3D
`

from transient experiments
As in practice plant physiologists are limited to only equilib-

rium measurements of water potential, what we want to know
is the average potential within the the domain at each point in
time, which is to say the uniform potential the entire domain ul-
timately goes to if it is allowed to come to internal equilibrium
after t seconds of hydration. We therefore average the numer-
ical solution for the potential field across the domain at each
time step, to arrive at a solution for the equilibrium potential
of the leaf (a single value) as a function of the time variable
T 3D, or Ψ(T 3D). We next define the non-dimensional halftime
T 3D

1/2 as the value of T 3D at which Ψ = 0.5, when the initial po-
tential has relaxed halfway toward its ultimate value, equal to
that of the source. For any particular geometry as defined by
w/L, a/L, vp, the numerical value of T 3D

1/2 will vary, as indeed
the full solution does, as a function of B3D. However, as B3D it-
self depends on the unknown value of k`, estimating k` involves
iteration. For each value of T 3D

1/2, an estimate of k` follows from
an experimental observation of the half-time for volume uptake
or potential relaxation, t1/2, and the identity,

c3D
`

L2

k3D
`

≡ τ3D ≡ t1/2
T 3D

1/2

. (14)

From all of these values of k3D
`

, each associated with a particular
value of B3D, the value that satisfies the definition of the Biot
number,

k3D
` =

hvL
B3D , (15)

provides the desired estimate of the hydraulic conductivity of an
experimental leaf’s tissue. In summary, this procedure charac-
terizes k` for a given leaf, given estimates of hA, c`, L,w, a, vp,
and t1/2.
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2.5. Survey of leaf geometrical parameters
To study the behavior of the numerical solution to the 3D

problem as a function of leaf geometry, we calculated w/L, a/L,
and the location of the vascular plane vp (taken as the transition
from palisade to spongy mesophyll), for 23 temperate woody
species. For Quercus rubra, we estimated these parameters
based on fresh microtome sections viewed at 200x (n=5). For
the 22 other taxa, published data included bundle sheath cell
diameter, but not the minor vein xylem width 2a. To estimate
the latter, we noted that, based on paradermal sections for these
leaves (Wylie, 1939), as well as two other studies (Dengler and
MacKay, 1975; Russin and Evert, 1984), and Quercus rubra
(this study), the width of the xylem in the smallest veins typ-
ically is on the order of one bundle sheath cell diameter, such
that 2a = Dbsc. For the survey data lacking direct measure-
ments of minor vein widths, adopting this rule for a resulted in
a mean minor vein half-width of 5.9 µm, with a range of 4 to
8. These estimates appear to be in accord with the typical mi-
nor vein radius of 6 µm for dicotyledons reported by Armacost
(1944), as cited by Sack et al. (2004). Our xylem source region,
the cut out volume in Figure 2 A, 2a high and 2a wide on the
adaxial side of the vascular plane, is therefore equivalent to an
interface with three bundle sheath parenchyma on the top and
sides of the xylem, plus an interface with the phloem side of the
vein 2a long. In this accounting, the phloem is considered part
of the tissue.

It should be noted that in the steady state analyses to fol-
low we will assume these leaves have open stomata only on the
lower epidermal surface, yet at least Populus deltoides is known
by us to have stomata on both surfaces. Nevertheless, its inclu-
sion in the analysis is not unreasonable, insofar as under con-
ditions of high evaporative demand such leaves may preferen-
tially shut stomata on the upper surface and so be functionally
hypostomatous (Foster and Smith, 1986). For this species, the
results should be viewed as limited to those conditions.

2.6. Basis for transient 3D and 1D model comparisons
To find a 1D representation, we construct a homogenous

boundary condition by assuming a continuous vascular plane
(CVP) at the midpoint through the leaf thickness, with a con-
ductance to each of the upper and lower halves of the leaf de-
fined as h = hA/2 (Figure 3). To compare such a 1D model
to the 3D model above, we expect we can again can express
the solution in terms of a non-dimensional halftime, T 1D

1/2 and a
characteristic time τ1D, as

t1/2 = T 1D
1/2 · τ1D, τ1D =

c1D
` L2

k1D
`

, B1D =
h

hV
B3D. (16)

By definition, if the solutions are equivalent the ratio of their
halftimes t1/2 must be one. We now use this fact to develop a
criterion for how well an estimate of tissue conductivity, based
on the 1D model, will conform to the tissue conductivity fitted
by the 3D model. The ratio of the halftimes leads to an expres-
sion for the ratio of the tissue conductivities predicted by the
1D and 3D models that can be evaluated in terms of the dimen-
sionless halftimes;

1 =
T 1D

1/2 · τ1D

T 3D
1/2 · τ3D

=
T 1D

1/2

T 3D
1/2

c1D
`

c3D
`

k3D
`

k1D
`

,

k1D
`

k3D
`

=
T 1D

1/2

T 3D
1/2

γ, γ = 1 − a2

w2

(
2w − a

L

)
. (17)

The factor γ is required to account for the small difference in
the tissue volume to which c is referenced in the two models.
With (17), and the relationship between B3D and B1D in (16),
we have arrived at a test of the ability of the 1D model to cap-
ture the behavior of the full 3D problem. Equation (17) says
that for the 1D model to provide an estimate of tissue hydraulic
conductivity in tolerable agreement with the 3D model, we re-
quire that γT 1D

1/2/T
3D
1/2 ≈ 1. To find T 1D

1/2 as a function of B1D, we
need to solve the 1D problem, which we turn to below.

2.7. Analytic solutions to the 1D transient problem
While in the 3D problem statement the location of the vas-

cular plane was a variable independent of the leaf thickness,
for the 1D problem we consider flow toward either epidermis
through the average thickness, equal to half the leaf thickness.
Centering the coordinate system on the mid-plane, we focus on
a 1D domain that spans a distance 0 to L in x, which hydrates in
parallel with the domain from 0 to −L (Figure 3). The evolution
of the water potential field is then governed by,

∂ψ

∂t
= κ1D

`

∂2ψ

∂x2 , κ1D
` ≡

k1D
`

c1D
`

. (18)

In the case the stomata are closed, there is no flux across the
epidermis at L,

∂ψ

∂x

∣∣∣∣
x=L

= 0 for all t, (19)

while at the mid plane at x = 0, the flux into one half-thickness
of the leaf is equal to half the flux from the reservoir to the
midplane,

−k1D
`

∂ψ

∂x

∣∣∣∣
x=0

= h (ψr − ψ (x = 0, t > 0)) , (20)

where again, h = hA/2. Re-scaling the variables according to,

X =
x
L

T 1D =
t
τ1D Ψ =

ψ − ψr

ψo − ψr
, (21)

we define the characteristic time τ1D with the hydraulic capacity
as it is generally defined (i.e., normalized to the entire leaf blade
volume),

τ1D =
c1D
` L2

k1D
`

, (22)

to arrive at the dimensionless form of the 1D problem,

∂Ψ

∂T 1D =
∂2Ψ

∂X2 . (23)

The initial and boundary conditions are transformed to
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Table 3: Survey of temperate deciduous leaf geometry with the resulting 3D to 1D scaling factors from the numerical simulations

Source: Wylie (1939), Dbsc L w a vp ξ η ζ ε φ ω
except as noted. µm µm µm µm - - - - - - -

Ulmus americana 12 83.7 40.5 6 0.65 1.261 1.046 0.113 1.057 0.759 -0.254
Ailanthus glandulosa 8.5 86.15 34.75 4.25 0.6 1.304 1.044 0.092 1.032 0.736 -0.255
Syringa vulgaris 14.3 156.5 59.7 7.15 0.64 1.316 1.040 0.099 1.029 0.751 -0.246
Populus deltoides2 14 110 55.6 7 0.5 1.353 1.025 0.090 1.041 0.695 -0.266
Platanus occidentalis 10.6 82.2 42.3 5.3 0.63 1.378 1.036 0.125 1.041 0.738 -0.241
Quercus velutina 12 92.3 49.45 6 0.57 1.398 1.026 0.112 1.040 0.712 -0.251
Rus glabra 11.3 90.3 46.9 5.65 0.65 1.420 1.040 0.136 1.038 0.740 -0.232
Robinia pseudo-acacia 8 58.6 34 4 0.64 1.475 1.035 0.148 1.039 0.729 -0.228
Quercus rubra3 12.1 102.4 57.4 6 0.64 1.532 1.050 0.151 1.030 0.721 -0.219
Fagus grandifolia1 10.5 80 55 5.4 0.5 1.676 1.023 0.138 1.030 0.662 -0.229
Vitis vulpina 16.6 75 70.2 8.3 0.54 1.706 1.025 0.179 1.058 0.664 -0.228
Quercus macrocarpa 7.8 68.1 44.9 3.95 0.61 1.769 1.023 0.182 1.023 0.686 -0.199
Tilia americana 13 56.5 56.5 6.5 0.49 1.797 1.045 0.176 1.058 0.641 -0.230
Malus ionesis 11 70.6 60.9 5.5 0.58 1.925 1.023 0.213 1.032 0.661 -0.197
Catalpa speciosa 14 71.5 79 7 0.5 2.196 1.023 0.232 1.037 0.618 -0.195
Parthenocissus quinquefolia 15.4 82.8 90.2 7.7 0.49 2.230 1.023 0.229 1.034 0.613 -0.194
Cercis canadensis 12 61 70.5 6 0.49 2.309 1.024 0.242 1.035 0.607 -0.191
Acer saccharinum 10.2 43.4 76.5 5.1 0.56 3.401 1.044 0.483 1.033 0.541 -0.131
Aristolochia durior 11 47.5 86 5.5 0.51 3.584 1.031 0.451 1.031 0.526 -0.135
1Dengler (1975), 2Russin (1984), 3this study.
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2.7. Analytic solutions to the 1D transient problem
While in the 3D problem statement the location of the vas-

cular plane was a variable independent of the leaf thickness,
for the 1D problem we consider flow toward either epidermis
through the average thickness, equal to half the leaf thickness.
Centering the coordinate system on the mid plane, we focus on
a 1D domain that spans a distance 0 to L in x, which hydrates
in parallel with the domain from 0 to �L. The evolution in time
of the water potential field is then governed by,

@ 

@t
= `

@2 

@x2 , ` ⌘ k`
c`
. (18)

In the case the stomata are closed, there is no flux across the
epidermis at L,

@ 

@x

����
x=L
= 0 for all t, (19)

while at the mid plane at x = 0, the flux into one half-thickness
of the leaf is equal to half the flux from the reservoir to the
midplane,

�kl
@ 

@x

����
x=0
= h ( r �  (x = 0, t > 0)) , (20)

where again, h = hA/2. Re-scaling the variables according to,

X =
x
L

T 1D =
t
⌧1D  =

 �  r

 o �  r
, (21)

we define the characteristic time ⌧1D with the hydraulic capacity
as it is generally defined (i.e., normalized to the entire leaf blade

volume),

⌧1D =
c`L2

k`
, (22)

to arrive at the dimensionless form of the 1D problem,

@ 

@T 1D =
@2 

@X2 . (23)

The initial and boundary conditions are transformed to

 (X,T 1D  0) = 1, (24)
@ 

@X

����
X=1
= 0, (25)

�@ 
@X

����
X=0
+

hL
k`
 

⇣
X = 0,T 1D > 0

⌘
= 0. (26)

We again find a Biot number, in the second term of (??), defined
as B1D = hL/k`. While we have scaled the variables to range
from zero to one, and the spatial derivatives to be order one,
the magnitude of the Biot number is free to vary, and we can
consider the behavior of the mid plane boundary condition in
the limit that the Biot number is very large, very small, or about
one.

2.7.1. B1D � 1
In the limit that conductance through the vasculature is much

greater than through the tissue we have

B1D =
hL
k`
� 1,  

⇣
X = 0,T 1D > 0

⌘
! 0. (27)

Since the non-dimensionalized flux, the first term in (??), is
at most order one, then to satisfy the full expression in (??),
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Table 2: Survey of temperate deciduous leaf geometry with the resulting 3D to 1D scaling factors from the numerical simulations

Source: ?, Dbsc L w a vp ⇠ ⌘ ⇣ ✏ � !
except as noted. µm µm µm µm - - - - - - -

Ulmus americana 12 83.7 40.5 6 0.65 1.261 1.046 0.113 1.057 0.759 -0.254
Ailanthus glandulosa 8.5 86.15 34.75 4.25 0.6 1.304 1.044 0.092 1.032 0.736 -0.255
Syringa vulgaris 14.3 156.5 59.7 7.15 0.64 1.316 1.040 0.099 1.029 0.751 -0.246
Populus deltoides2 14 110 55.6 7 0.5 1.353 1.025 0.090 1.041 0.695 -0.266
Platanus occidentalis 10.6 82.2 42.3 5.3 0.63 1.378 1.036 0.125 1.041 0.738 -0.241
Quercus velutina 12 92.3 49.45 6 0.57 1.398 1.026 0.112 1.040 0.712 -0.251
Rus glabra 11.3 90.3 46.9 5.65 0.65 1.420 1.040 0.136 1.038 0.740 -0.232
Robinia pseudo-acacia 8 58.6 34 4 0.64 1.475 1.035 0.148 1.039 0.729 -0.228
Quercus rubra3 12.1 102.4 57.4 6 0.64 1.532 1.050 0.151 1.030 0.721 -0.219
Fagus grandifolia1 10.5 80 55 5.4 0.5 1.676 1.023 0.138 1.030 0.662 -0.229
Vitis vulpina 16.6 75 70.2 8.3 0.54 1.706 1.025 0.179 1.058 0.664 -0.228
Quercus macrocarpa 7.8 68.1 44.9 3.95 0.61 1.769 1.023 0.182 1.023 0.686 -0.199
Tilia americana 13 56.5 56.5 6.5 0.49 1.797 1.045 0.176 1.058 0.641 -0.230
Malus ionesis 11 70.6 60.9 5.5 0.58 1.925 1.023 0.213 1.032 0.661 -0.197
Catalpa speciosa 14 71.5 79 7 0.5 2.196 1.023 0.232 1.037 0.618 -0.195
Parthenocissus quinquefolia 15.4 82.8 90.2 7.7 0.49 2.230 1.023 0.229 1.034 0.613 -0.194
Cercis canadensis 12 61 70.5 6 0.49 2.309 1.024 0.242 1.035 0.607 -0.191
Acer saccharinum 10.2 43.4 76.5 5.1 0.56 3.401 1.044 0.483 1.033 0.541 -0.131
Aristolochia durior 11 47.5 86 5.5 0.51 3.584 1.031 0.451 1.031 0.526 -0.135

1Dengler (1975), 2Russin (1984), 3this study.

2.7. Analytic solutions to the 1D transient problem

While in the 3D problem statement the location of the vas-
cular plane was a variable independent of the leaf thickness,
for the 1D problem we consider flow toward either epidermis
through the average thickness, equal to half the leaf thickness.
Centering the coordinate system on the mid plane, we focus on
a 1D domain that spans a distance 0 to L in x, which hydrates
in parallel with the domain from 0 to �L. The evolution in time
of the water potential field is then governed by,

@ 

@t
= `

@2 

@x2 , ` ⌘ k`
c`
. (18)

In the case the stomata are closed, there is no flux across the
epidermis at L,

@ 

@x

����
x=�L
= 0 for all t, (19)

@ 

@y
,
@ 

@z
= 0  x=le =  e (20)

while at the mid plane at x = 0, the flux into one half-thickness
of the leaf is equal to half the flux from the reservoir to the
midplane,

�k1D
`

@ 

@x

����
x=0
= h ( r �  x=0) (21)

where again, h = hA/2. Re-scaling the variables according to,

X =
x
L

T 1D =
t
⌧1D  =

 �  r

 o �  r
, (22)

we define the characteristic time ⌧1D with the hydraulic capacity
as it is generally defined (i.e., normalized to the entire leaf blade
volume),

⌧1D =
c`L2

k`
, (23)

to arrive at the dimensionless form of the 1D problem,

@ 

@T 1D =
@2 

@X2 . (24)

The initial and boundary conditions are transformed to

 (X,T 1D  0) = 1, (25)
@ 

@X

����
X=1
= 0, (26)

�@ 
@X

����
X=0
+

hL
k`
 

⇣
X = 0,T 1D > 0

⌘
= 0. (27)

We again find a Biot number, in the second term of (27), defined
as B1D = hL/k`. While we have scaled the variables to range
from zero to one, and the spatial derivatives to be order one,
the magnitude of the Biot number is free to vary, and we can
consider the behavior of the mid plane boundary condition in
the limit that the Biot number is very large, very small, or about
one.

2.7.1. B1D � 1
In the limit that conductance through the vasculature is much

greater than through the tissue we have

B1D =
hL
k`
� 1,  

⇣
X = 0,T 1D > 0

⌘
! 0. (28)
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Figure 3: 1D Continuous Vascular Plane (CVP) model of leaf hydration. The
vasculature is represented as an effective conductance h independently supply-
ing both domains, above and below the mid-plane of the leaf at x = 0, such
that hydration of the tissues towards the upper and lower surfaces (epidermi) at
x = −L, L occurs in parallel.

Ψ(X,T 1D ≤ 0) = 1, (24)
∂Ψ

∂X

∣∣∣∣
X=1

= 0, (25)

−∂Ψ

∂X

∣∣∣∣
X=0

+
hL
k1D
`

Ψ
(
X = 0,T 1D > 0

)
= 0. (26)

For the 1D model, the Biot number is defined in the second term
of (26) as B1D = hL/k1D

` . While we have scaled the variables to
range from zero to one, and the spatial derivatives to be order
one, the magnitude of the Biot number is free to vary, and we
can consider the behavior of the mid plane boundary condition
in the limit that the Biot number is very large, very small, or
about one. A detailed development of the solutions and their
approximation is given in Appendix A; the results relevant to
the current discussion are given below.

2.7.1. B1D � 1
When the Biot number is very large, the water potential of the

vascular plane approaches that of the external reservoir, as as-
sumed by Boyer (1968). After a leaf has hydrated for t seconds,
and then come to internal equilibrium throughout the tissue, the
dominant term and thus approximate solution is given by,

ψ(t) − ψr

ψo − ψr
≈ 8
π2 exp

(
−π

2

4
k`

c`L2 t
)
. (27)

The above form is expected to converge with the full solu-
tion after an amount of time given by 0.14 τ1D, and the non-
dimensional halftime in this limit for comparison with the 3D
solution is just T 1D

1/2 = 0.197.

2.7.2. B1D � 1
In the limit the Biot number is much less than 1, the gra-

dients within the tissue become negligible relative to the gra-
dients through the xylem, justifying a ‘lumped-capacity’ ohms

7



law analogy of a resistor (xylem) in series with an ideal capac-
itor (tissue with zero internal resistance). The solution is then,

Ψ(t) = exp
− h

c1D
`

L
t
 . (28)

With the change of variables cA/(2L) = c1D
` as the capacitance

of the leaf per unit leaf area, and K`/2 = h, (28) is the form
adopted by (Brodribb and Holbrook, 2004) for quantifying the
susceptibility of leaf xylem to cavitation. The non-dimensional
halftime is given by,

T 1D
1/2 =

0.693
B1D . (29)

2.7.3. B1D ∼ 1
When the Biot number is between the limiting cases, we

solve the full problem (23 to 26), which leads to an expression
for the non-dimensional halftime. More simply, in Appendix
A we show that the inverted solution for the hydration time can
be conveniently approximated as the sum of the time for flow
through the vasculature and through the tissue,

t(Ψ) = T 1D(B1D � 1,Ψ)τ1D + T 1D(B1D � 1,Ψ)
τ1D

B1D . (30)

The non-dimensional halftime is then given by,

T 1D
1/2 = 0.197 +

0.693
B1D . (31)

The times over which this approximation holds are discussed in
the results (3.3).

2.8. Numerical simulation of the 3D steady state problem
To address the question of how well the continuous vascular

plane assumption performs in steady state, we first studied the
3D problem for steady flow between the vascular plane at x = 0
and the lower epidermis at x = le, as might occur during tran-
spiration, assuming isothermal transport within the leaf (i.e., if
vapor transport due temperature induced gradients in saturated
vapor pressure are not important). For the steady state prob-
lem, we regard the potential at the lower epidermis ψe as the
unknown we ultimately wish to solve for, with k3D

`
defined by

a transient experiment. We then normalize the geometry of the
domain according to X = x/le,Y = y/le,Z = z/le, such that the
lower epidermis is located at X = 1. In this setting, a rescal-
ing of the potential into a non-dimensional form that has the
desired range from 1 at the source reservoir r to 0 at the lower
epidermis e, is given by

Ψ =
ψ − ψe

ψr − ψe
. (32)

In the domain, conservation of water molecules in steady state
leads to,

0 =

(
∂2Ψ

∂X2 +
∂2Ψ

∂Y2 +
∂2Ψ

∂Z2

)
. (33)

With the new definition of Ψ, the boundary conditions at the
vascular interface are then,
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Table 2: Survey of temperate deciduous leaf geometry with the resulting 3D to 1D scaling factors from the numerical simulations

Source: ?, Dbsc L w a vp ⇠ ⌘ ⇣ ✏ � !
except as noted. µm µm µm µm - - - - - - -

Ulmus americana 12 83.7 40.5 6 0.65 1.261 1.046 0.113 1.057 0.759 -0.254
Ailanthus glandulosa 8.5 86.15 34.75 4.25 0.6 1.304 1.044 0.092 1.032 0.736 -0.255
Syringa vulgaris 14.3 156.5 59.7 7.15 0.64 1.316 1.040 0.099 1.029 0.751 -0.246
Populus deltoides2 14 110 55.6 7 0.5 1.353 1.025 0.090 1.041 0.695 -0.266
Platanus occidentalis 10.6 82.2 42.3 5.3 0.63 1.378 1.036 0.125 1.041 0.738 -0.241
Quercus velutina 12 92.3 49.45 6 0.57 1.398 1.026 0.112 1.040 0.712 -0.251
Rus glabra 11.3 90.3 46.9 5.65 0.65 1.420 1.040 0.136 1.038 0.740 -0.232
Robinia pseudo-acacia 8 58.6 34 4 0.64 1.475 1.035 0.148 1.039 0.729 -0.228
Quercus rubra3 12.1 102.4 57.4 6 0.64 1.532 1.050 0.151 1.030 0.721 -0.219
Fagus grandifolia1 10.5 80 55 5.4 0.5 1.676 1.023 0.138 1.030 0.662 -0.229
Vitis vulpina 16.6 75 70.2 8.3 0.54 1.706 1.025 0.179 1.058 0.664 -0.228
Quercus macrocarpa 7.8 68.1 44.9 3.95 0.61 1.769 1.023 0.182 1.023 0.686 -0.199
Tilia americana 13 56.5 56.5 6.5 0.49 1.797 1.045 0.176 1.058 0.641 -0.230
Malus ionesis 11 70.6 60.9 5.5 0.58 1.925 1.023 0.213 1.032 0.661 -0.197
Catalpa speciosa 14 71.5 79 7 0.5 2.196 1.023 0.232 1.037 0.618 -0.195
Parthenocissus quinquefolia 15.4 82.8 90.2 7.7 0.49 2.230 1.023 0.229 1.034 0.613 -0.194
Cercis canadensis 12 61 70.5 6 0.49 2.309 1.024 0.242 1.035 0.607 -0.191
Acer saccharinum 10.2 43.4 76.5 5.1 0.56 3.401 1.044 0.483 1.033 0.541 -0.131
Aristolochia durior 11 47.5 86 5.5 0.51 3.584 1.031 0.451 1.031 0.526 -0.135

1Dengler (1975), 2Russin (1984), 3this study.

2.7. Analytic solutions to the 1D transient problem

While in the 3D problem statement the location of the vas-
cular plane was a variable independent of the leaf thickness,
for the 1D problem we consider flow toward either epidermis
through the average thickness, equal to half the leaf thickness.
Centering the coordinate system on the mid plane, we focus on
a 1D domain that spans a distance 0 to L in x, which hydrates
in parallel with the domain from 0 to �L. The evolution in time
of the water potential field is then governed by,
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we define the characteristic time ⌧1D with the hydraulic capacity
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volume),

⌧1D =
c`L2

k`
, (23)

to arrive at the dimensionless form of the 1D problem,
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We again find a Biot number, in the second term of (27), defined
as B1D = hL/k`. While we have scaled the variables to range
from zero to one, and the spatial derivatives to be order one,
the magnitude of the Biot number is free to vary, and we can
consider the behavior of the mid plane boundary condition in
the limit that the Biot number is very large, very small, or about
one.

2.7.1. B1D � 1
In the limit that conductance through the vasculature is much

greater than through the tissue we have
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! 0. (28)
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2.7.1. B1D � 1
In the limit that conductance through the vasculature is much

greater than through the tissue we have

B1D =
hL
k`
� 1,  

⇣
X = 0,T 1D > 0

⌘
! 0. (28)

6

Figure 4: 1D Continuous Vascular Plane (CVP) model for steady flow to the
lower epidermis. The vascular conductance hA spreads the transport capacity
of the veins over the entire vascular plane at x = 0, a distance le from the lower
epidermis, with no flow into the portion of the leaf above the plane.

On σvx :

−k3D
`

∂ψ

∂x
= hV (ψr − ψ)→ −∂Ψ

∂X
+

hV le
k3D
`

(1 − Ψ) = 0, (34)

On σvy :

−k3D
`

∂ψ

∂y
= hV (ψr − ψ)→ −∂Ψ

∂Y
+

hV le
k3D
`

(1 − Ψ) = 0, (35)

On σvz :

−k3D
`

∂ψ

∂z
= hV (ψr − ψ)→ −∂Ψ

∂Z
+

hV le
k3D
`

(1 − Ψ) = 0. (36)

Specifying Ψ = 0 at the lower epidermis, (X = 1,Y,Z), with
the upper epidermis treated as impermeable for the case of a
hypostomatous leaf, and a no flux condition by symmetry on all
other surfaces as before, completes the 3D problem statement.

We should also note that the form of the Biot number for
the steady state problem differs from that of the transient, due
to a change in the characteristic length from L to le. We give
this new Biot number the subscript e in reference to transport to
the lower epidermis. The Biot number for the steady state 3D
problem is then given by B3D

e = hvle/k3D
`

, and the relationship
between the 3D steady state Biot number and that of the related
transient solution, from which k3D

`
is determined, is just,

B3D
e = B3D · le

L
. (37)

2.9. Analytic solution to the 1D steady state problem
For the 1D problem, as there is no flux to the upper epi-

dermis, and the vascular conductance supplying the flux to the
lower epidermis is then 2h = hA (Figure 4) . We solve,

∂2Ψ

∂X2 = 0, (38)

with BCs :
∂Ψ

∂X

∣∣∣∣
X=0

+
hAle
k1D
`

(1 − ΨX=0) = 0, (39)

ΨX=1 = 0. (40)
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The solution follows easily from two integrations and applica-
tion of the boundary conditions,

Ψ =
B1D

e

1 + B1D
e

(1 − X) , B1D
e =

hAle
k1D
`

. (41)

For the steady-state numerical solution with any given B3D
e , its

1D approximation is given by the above according to,

B1D
e =

hA

hv
B3D

e . (42)

2.10. Basis for steady-state model comparisons

We compare the two solutions by evaluating the magnitude
of the total flux at the lower epidermal surface. Requiring that
the numerical (3D) and analytic (1D) fluxes be equal leads to,

k3D
`

(ψr − ψe)
le

〈
∂Ψ

∂X

∣∣∣∣
3D

X=1

〉
= k1D

`

(ψr − ψe)
le

B1D
e

1 + B1D
e
. (43)

The angle brackets indicate an averaging operation, as intro-
duced in (A.10), here applied to the gradient in Ψ at X = 1.
From this we can construct two tests of how well the 1D steady-
state solution concurs with the 3D steady-state solution. For the
first case, we consider the true value of k` as well as ψr − ψe to
be known. The ratio of the 1D to 3D gradients is then equal
to the ratio of the predicted fluxes, and the 1D model is well
specified if that ratio is close to one, or

B1D
e

1 + B1D
e

〈
∂Ψ

∂X

∣∣∣∣
3D

X=1

〉−1

=
J1D

J3D ≈ 1. (44)

For the second test, we take k1D
` to be defined by the 1D analysis

of a transient experiment. We can then ask what the total error
arising from reduction to 1D would be in estimating the driving
force, the potential difference ∆ψ = ψr − ψe, for an observed
flux. For that case, the test is

k3D
`

k1D
`

1 + B1D
e

B1D
e

〈
∂Ψ

∂X

∣∣∣∣
3D

X=1

〉
=

∆ψ1D

∆ψ3D ≈ 1. (45)

This second test incorporates both transient and steady-state
sources of error arising from the assumption of a continuous
vascular plane.

2.11. Test of an ‘effective’ tissue length in conjunction with a
continuous vascular plane

To improve the continuous vascular plane assumption, one
could consider an effective length through the tissue to attempt
to slow down the 1D model to account for the true multidimen-
sional nature of the flow. The specific hypothesis that has been
suggested, and that we want to test, is that, for steady flow from
the veins to the stomatal bearing surface the effective distance
through the mesophyll is given by Dm,e =

√
l2e + w2, or the hy-

potenuse of a right triangle formed by the half thickness and
half inter vein distance (Brodribb et al., 2007, 2010).

For the transient problem, where flow occurs both to the up-
per and lower surfaces, the average relevant length is Dm =√

L2 + w2. Again, the vascular conductance to half the leaf
thickness is just half the leaf area normalized vascular conduc-
tance, hA/2. The Biot number for the 1D hypotenuse transient
model, B4, is then related to the Biot number of the numerical
transient model by,

B4 = B3D hA

2hV

Dm

L
,

hA

2hV
= 4

a
w
− 3

a2

w2 . (46)

As hydraulic capacity is normalized to the leaf volume A ·2L,
the introduction of a nominal length through the tissue requires
a re-normalization of the hydraulic capacity if we are to con-
serve the number of water molecules ∆N absorbed during the
transient, where ∆N = ∆ψ(A2L)c`. Given a new nominal vol-
ume of A · 2Dm, the rescaled capacity that conserves ∆N is then
c`L/Dm. The characteristic time for the 1D hypotenuse model
becomes τ4 = c`LDm/k`, and the test of the model is,

k4`
k3D
`

=
T41/2
T 3D

1/2

γ
Dm

L
, (47)

which says that the k` fitted by the 1D hypotenuse model will
conform to that of the 3D numerical solution if the RHS equals
one. The solution to the 1D model used to calculate T41/2 is
as before, with T4 = t/τ4 and B4 replacing T 1D and B1D in
(A.17).

For the 1D steady state problem in an hypostomatous leaf,
the solution is as in (41), with X = x/Dm,e, and B1D

e replaced
by,

B4e =
hADm,e

k`
, or B4e =

hA

hV
B3D

e
Dm,e

le
(48)

With k` considered perfectly known, the test of how well the
1D effective length model describes the gradient at the epider-
mis relative to the 3D solution becomes,

B4e
1 + B4e

le
Dm,e

〈
∂Ψ

∂X

∣∣∣∣
3D

X=1

〉−1

≈ 1. (49)

The test for how well the potential drop to the epidermis would
be captured by this effective length idea, again combining errors
arising from both 1D transient and 1D steady state analyses,
becomes,

k3D
`

k4
`

1 + B4e
B4e

Dm,e

le

〈
∂Ψ

∂X

∣∣∣∣
3D

X=1

〉
=

∆ψ4

∆ψ3D ≈ 1. (50)

3. Results

3.1. Utility of the continuous vascular plane (CVP) 1D model
As w/L decreases across the four species modeled (Acer,

Tilia, Quercus rubra, Ailanthus), the gradients in the 3D tran-
sient simulations become more one-dimensional, as can be seen
qualitatively in a plot of the isopotential surfaces at the hydra-
tion halftimes (Figure 5). A similar effect of w/L can be seen
in the isopotential surfaces of the steady state numeric solution
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Figure 5: Numerical simulations of the isosurfaces of the potential field Ψ at the halftime of hydration in a quarter areole for four leaf geometries (Figure 2 B,
Table 3), showing the increasingly 1D nature of the solution away from the veins with decreasing w/L. The color range shows the wettest (blue) to driest (maroon)
potentials at the halftime: the shapes of the isosurfaces in each geometry are conserved for all Biot numbers, while the numeric scale associated with the color
map varies across Biot numbers, as well as between geometries. However, by definition the average Ψ in every case is one half. A: Acer saccharinum; B: Tilia
americana; C: Quercus rubra; D: Ailanthus glandulosa.

(Figure 6). As a result of this sensitivity to w/L, the test of
the 1D transient model (eqn. 17) performs well for Ailanthus
glandulosa over a larger range of B3D values, falling within a
±10% tolerance over B3D < 6 (Figures 7 D, 5 D). Conversely,
as w/L approaches two, as in Acer saccharinum (Figures 7 A,
5 A), the range over which the CVP assumption works well
falls to B3D < 0.5. That is, the larger the gradients in Y,Z in
the 3D solution, the less well the 1D CVP model predicts k`.
Similarly, in the steady state model comparisons (eqn’s 44, 45,
Figure 7), the CVP 1D model does better the faster the isosur-
faces in potential flatten in the Y,Z plane as one moves from the
vein toward the lower surface (Figure 6). That in all cases the
CVP 1D model converges with the 3D simulation at the low-
est values of B3D (Figure 7), arises simply from the fact that
at those Biot numbers the solutions depend almost entirely on
hA, as the vasculature is the limiting resistance for the hydration
of the tissue. The agreement in this limit, itself trivial, decays
rapidly for the mid-range of Biot numbers as the halftimes be-
come very sensitive to the exact value of the Biot number, and
then asymptote to a near constant value as B3D goes to infinity.
This behavior also characterizes the 1D solution, as shown in
Table A.1, where as B goes to infinity the solution approaches
the limiting case of a fixed potential ψr at the vascular-tissue
boundary.

That the ratio of 1D conductivity to 3D falls below one in-
dicates that simply ‘spreading’ the vascular conductance over
the vascular plane to reduce the dimensions of the flow to 1D,
as in the CVP model, leads to a solution with too short a half-
time (eqn. 17). The CVP model therefore tends to overestimate
the total effective conductance of the vascular system, leading
to an underestimate of k`. The CVP model similarly overesti-
mates the steady state gradient at the epidermis, and so the flux
(eqn. 44). As these two errors are in different directions, they

partially offset each other in estimating the source to epidermis
potential difference, though when the underestimate in the con-
ductivity is large it forces large overestimates in the potential
difference as well (eqn. 45).

3.2. Utility of the CVP plus effective tissue length 1D model
The results of transient, steady, and combined test are in Fig-

ure 8. For all geometries, the addition of an effective length
improved the 1D CVP model with respect to the ratio of the
conductivities and steady non-dimensional gradients. The im-
provement in the conductivity estimate came about not by in-
creased congruence of the halftimes, but by the scaling of those
times by the ratio of the length scales (eqn. 47). The same
was also true for the ratio of the gradients (eqn. 49). However,
as the net effect was for the gradients to be under-predicted,
rather than over-predicted as by the CVP alone, the resulting
errors were compounded in the estimate of the total potential
drop (eqn. 50). As with the CVP alone, the CVP plus effective
length strategy also improved with decreasing w/L. However,
as w/L < 1, Dm approaches L, and the improvement with re-
spect to the CVP alone model diminishes, as can be seen by
comparing the results for Ailanthus (Figures 7 D, 8 D). Thus
the adoption of the hypotenuse formed by L and w as an effec-
tive length to account for the discrete placement of veins, while
resulting in some improvement, is still far from satisfactory in
providing a consistent and accurate reduction of the 3D prob-
lem across a range of Biot numbers and leaf geometries.

3.3. Scaling factors for the transient models
Motivated by the 1D result of a simple linear relationship

between B1D and the quantity B1D · T 1D
1/2 in (A.20), and the re-

sulting approximate form (30), we sought similar relationships
in the solutions to the 3D problem forB3D = 0.1→ 40, for each
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Figure 6: Numerical simulations of the isosurfaces of the steady potential field Ψ for four leaf geometries (Figure 2 B, Table 3), showing the increasingly 1D nature
of the gradients as w/le decreases from left to right. The specific numeric values associated with the color map (blue = wet, maroon = dry) vary between geometries
and with the Biot number, but the shapes of the isosurfaces are conserved across the range of Biot numbers for any particular leaf. Isosurfaces are evenly spaced,
such that the absence of surfaces from the upper portion of some domains indicates a region of high homogeneity in potential. A: Acer saccharinum; B: Tilia
americana; C: Quercus rubra; D: Ailanthus glandulosa.

of the 19 leaf geometries in Table 3. We found that a model of
the form,

B3DT 3D
1/2 = αB3D + β (51)

could be fit for each individual leaf geometry (i.e., α and β var-
ied between species) with an r2 > 0.999 (data not shown). As
before, equation (51) re-arranges to

t1/2 = ατ3D + β
τ3D

B3D . (52)

As t1/2 is an experimental result, we can posit the existence
of scaling factors ξ and η, such that the approximate analytic
solution (31) set equal to the observed halftime correctly yields
an estimate of k` equivalent to that fit by the 3D model. Setting
these two expressions for t1/2 equal yields,

ατ3D + β
τ3D

B3D = 0.197ξτ1D + 0.693η
τ1D

B1D . (53)

Setting like terms equal yields two equations that define ξ and
η as,

ξ =
α

0.197
τ3D

τ1D , η =
β

0.693
τ3D

τ1D

B3D

B1D . (54)

The ratios of 3D to 1D τ and B have been previously identified.
The scaling factors relating 3D to 1D halftimes, particular to a
specific leaf geometry but independent of Biot number, are then

ξ =
α

0.197
1
γ
, η =

β

0.693
1
γ

hA

2hV
. (55)

ξ and η for each leaf geometry are given in Table 3. Notably, η
in all cases was very close to one, and may indeed be estimated
as one, or the mean value of 1.033.

While we were then able to find a scaling for each leaf ge-
ometry that related the 3D simulation to a 1D solution, this
is only really useful if one can avoid the necessity of running
the numerical simulations and predict ξ for any leaf based on
its geometry. To explore this possibility, we employed regres-
sion analysis, finding a strong linear dependence of ξ on both
Dm/L =

√
1 + w2/L2 and w/L, with a slight advantage to the

former. Knowledge of L and w therefore appears sufficient to
find a good estimate of the 3D halftime with the re-scaled CVP
1D model for any Biot number (Figure 9 A, Table 4).

That a measure of the ratio of inter-vein distance to thickness
does so well on its own may be due to a relative lack of variation
in a in our data, the vein xylem half-width. Including a sensi-
tivity to a into the model does however further improve the fit
for leaves with relatively large or small vascular surface areas
(Figure 9 B, Table 4). With regard to location of the veins in
the thickness, values of vp larger or smaller than one half make
hydration less efficient and slow down the halftime, including
a term based on the absolute deviation of vp from one half did
not result in any further improvement.

While ξ is fit to only one point on the time and potential
curve, the scaling may be applied to the whole relaxation curve
described by inverting the approximate solution (27). Replac-
ing the time dimension into the equation then yields hydration
time as a function of Ψ,

t = ξ
4
π2 ln

(
8

Ψπ2

)
c1D
` L2

k1D
`

− η ln (Ψ)
2c1D

` L
hA

. (56)
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Figure 7: Comparison of the 3D and 1D solutions, using an effective vascular
conductance h, as a function of the Biot number B3D for four leaf geometries
in order of decreasing w/L. Triangles are the ratio k1D

`
/k3D
`

from the transient
solutions (eqn. 17). From the steady state solutions, circles are the ratio of
the predicted fluxes (eqn 44), filled squares the ratio of the predicted potential
drops to the lower epidermis (eqn. 45). Dashed lines are drawn at 0.9 and 1.1,
bounding the region in which errors are less than 10%. A: Acer saccharinum;
B: Tilia americana; C: Quercus rubra; D: Ailanthus glandulosa.

Where k` is the parameter of interest, re-arrangement leads to

k1D
` = ξ

4
π2 ln

(
8

Ψπ2

)
c1D
` L2

t + η ln (Ψ) 2c1D
`

L
hA

. (57)

To investigate how well the the scaled 1D model captures the
full numeric relaxation curve, and therefore how well (57) will
perform for values of Ψ , 0.5, we plotted the numeric equi-
librium relaxation curve versus (56) scaled to the numeric time
scale, or

T 3D = γξ
4
π2 ln

(
8

Ψπ2

)
− γη ln (Ψ)

B1D , (58)

with the values for ξ and η given in Table 3. We also plot the
curve given by scaling T in (A.5) by γξ and retaining the first
five terms, and inverting the expression using the ‘FindRoot’
function in Mathematica 8 (Wolfram research Inc., Champaign,
IL, USA) to find the tissue contribution to the total time as a
function of Ψ. The resulting curves are in Figure 10. For the
range of leaf geometries represented by Acer, Tilia, and Ailan-
thus, agreement between the scaled 1D and 3D curves in the
region of experimental interest where the solution is not overly
sensitive to either measurement errors in time or potential, from
Ψ = 0.7 → 0.3, was excellent over the range of B3D. For
B3D = 0.1, both forms of the 1D model fully overlap as the vas-
cular time dominates. At B3D = 40, the more one dimensional
3D solution of Ailanthus, due to its low w/L ratio, leads to near
perfect agreement between the 1D and 3D curves even below
Ψ = 0.3.
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Figure 8: Comparison of the 3D and 1D solutions using the effective length
idea of Brodribb et al. (2007), as a function of the Biot number B3D for four
leaf geometries in order of decreasing w/L. Triangles are the ratio k4

`
/k3D
`

from
the transient solutions (eqn. 47). From the steady-state solutions, circles are the
ratio of the predicted fluxes (eqn. 49), filled squares the ratio of the predicted
potential drops to the lower epidermis (eqn. 50). Dashed lines are drawn at
0.9 and 1.1, bounding the region in which errors are less than 10%. A: Acer
saccharinum; B: Tilia americana; C: Quercus rubra; D: Ailanthus glandulosa.

3.4. Empirical scaling factors for the steady state models
For the steady state potential gradients at the lower epider-

mis, we posit the existence of some scaling factor ς for the one
dimensional Biot number such that,

ςB1D
e

1 + ςB1D
e

=

〈
∂Ψ

∂X

∣∣∣∣
3D

X=1

〉
. (59)

Regression of ς on B1D
e , based on data from the numeric so-

lutions with B3D = 0.1 → 40, provides a linear relation
(r2 > 0.998) for all leaf geometries of the form,

ς−1 = ζB1D
e + ε, (60)
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2
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Figure 9: Predicting the scaling factor ξ that maps the 3D transient problem to
a 1D solution using leaf geometry. A: ξ versus the value predicted by linear
regression on Dm/L, (r2 = 0.974, n = 19). B: ξ versus a model including both
Dm/L and a2/wL, (r2 = 0.997, n = 19).
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Figure 10: Potential relaxation curves showing equilibrium whole leaf potential Ψ as a function of hydration time T 3D, for three different leaf geometries and values
of the Biot number. Closed circles represent the numeric simulations, open circles the scaled 1D approximate solution (eqn. 58), and solid line the 1D solution
found by retaining 5 terms and inverting the series solution for Ψ(T ) (eqn. A.17) with the time variable re-scaled to Tγξ. Insets highlight the fit in the region most
useful for fitting k`, from about Ψ = 0.7, where all three curves converge, to about Ψ = 0.2, after which small errors in potential determination may begin to strongly
influence parameter estimates. The largest errors are in the tail of the Acer B3D = 40 curve, below Ψ = 0.3, which reach as high as 17%.
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Figure 11: Predicting the scaling factor ζ that maps the 3D steady problem to
a 1D solution using leaf geometry. A: ζ versus the value predicted by linear
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Figure 12: Modeling the parameters φ and ω that relate B1D
e to <Ψ >, which

sets the scaling between the average potential in the leaf and the total source to
lower epidermis potential difference driving a steady flux. A: φ versus the value
predicted by linear regression on le/Dm,e, wle/a2, vp (r2 = 0.997, n = 19).
B: ω versus the value predicted by linear regression on le/Dm,e, wle/a2, vp
(r2 = 0.995, n = 19).

which leads directly to a scaling between the 1d and 3D models
for all values of the Biot number,

B1D
e

ε + (1 + ζ)B1D
e

=

〈
∂Ψ

∂X

∣∣∣∣
3D

X=1

〉
. (61)

Fitted values of ζ and ε for each leaf geometry are given in
Table 3. As with η, ε may be approximated as one, or taken as
its average value of 1.037. Regression of ζ on the geometry of
the steady state problem yielded a strong dependence on Dm,e/le
(Figure 11 A, Table 4 A), and as before adding a term sensitive
to a further improved the fit (Figure 11 B, Table 4 B).

We can use the above result to estimate epidermal water po-
tential when source potential for a leaf and the flux are both
known. The relationship between an observed flux and the
scaled 1D solution is given by,

Jle
k1D
`

(ψr − ψe)
=

B1D
e

ε + (1 + ζ)B1D
e
, (62)

leading to an expression for epidermal water potential as,

ψe = ψr − Jle
k1D
`

ε + (1 + ζ)B1D
e

B1D
e

. (63)

3.5. Parameters relating epidermal water potential to equilib-
rium whole leaf measurements

As current technology allows only equilibrium water poten-
tial measurements on whole leaves or tissues, a natural question
is how such measurements relate to the total gradient in poten-
tial across the leaf, ψr − ψe. While ψr is known in the lab,
or is available from potential measurements on bagged (non-
transpiring) leaves that record stem potential, ψe is not gener-
ally directly obtainable. By definition, at steady state the aver-
age non-dimensional potential of the tissue domain in the 3D
simulation, <Ψ>, is related to the average dimensional poten-
tial from an equilibrium measurement, <ψ>, by

<Ψ> (ψr − ψe) + ψe =<ψ>, (64)

which leads directly to,

ψe =
<ψ> − <Ψ> ψr

1− <Ψ>
. (65)

Following our previous approach, to develop an equation to pre-
dict <Ψ > we sought a linear relationship for each leaf geom-
etry between B1D

e and B1D
e <Ψ >. For numeric solutions over

the given range of Biot numbers, the resulting fit for all leaf ge-
ometries had a minimum r2 = 0.998 (Figure 12). With φ as the
slope and ω the intercept of each regression, the average non-
dimensional potential of the tissue in the steady state solution
for any Biot number is given by

<Ψ>= φ +
ω

B1D
e
, (66)

where the values of φ and ω for each geometry are reported in
Table 3. We then regressed φ and ω versus leaf geometry, with
the resulting models given in Table 4. As before, both a measure
of the width to length ratio for the steady problem and relative
vascular area contribute to the model, but unlike the previous
two cases the location of the vascular plane vp needed to be in-
cluded to fully explain the variation between leaves. This can
be understood as arising from a need to account for the amount
of tissue above the vascular plane that sits close to vascular po-
tential, and which will therefore pull the average potential of
the tissue closer to that of the vascular-tissue interface.

To estimate k` from steady state experiments, we can elimi-
nate ψe by setting (63) and (65) equal to each other, such that
with < ψ > measured by the pressure chamber, k` remains the
only unknown. However, as k` appears four times, the resulting
equality cannot be reduced to a simple expression for k`, and
therefore is best solved by computer (Matlab or Mathematica
code is available from the corresponding author).

4. Discussion

Given the proliferation of terms, approximations, and ideal-
izations in going from general conservation laws to the approxi-
mate 1D scaled solution (56), it may be useful to briefly summa-
rize them here. The definition of k` rests on local equilibrium
between cell symplast and apoplast, as well as with the adja-
cent intercellular airspace, as discussed previously (Rockwell
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Table 4: Regression of 3D to 1D scaling factors on leaf geometry, (n = 19).
Factor Model F-stat r2

ξ
(

Dm
L

)
2.2286

(
1 + w2

L2

)1/2 − 1.1093 637.93 0.974

ξ
(

Dm
L ,

a2

wL

)
2.2832

(
1 + w2

L2

)1/2 − 46.5422 a2

wL − 0.8068 2697.20 0.997

ζ
(Dm,e

le

)
0.3599

(
1 + w2

l2e

)1/2 − 0.3107 1702.30 0.990

ζ
(Dm,e

le
, a2

wle

)
0.3567

(
1 + w2

l2e

)1/2 − 3.7469 a2

wle
− 0.271 3032.20 0.997

φ
(

le
Dm,e

, wle
a2 , vp

)
0.4086

(
1 + w2

l2e

)−1/2 − 0.0004 wle
a2 + 0.4201vp + 0.1766 1891.90 0.997

ω
(

le
Dm,e

, wle
a2 , vp

)
−0.3045

(
1 + w2

l2e

)−1/2
+ 0.0004 wle

a2 + 0.0896vp − 0.0895 966.30 0.995

et al., 2014). The most important approximation introduced
in this paper is the representation of the vascular network by
a single average conductance to the vein-tissue interface, hA.
Relevant data are scarce, but for the leaves of Tradescantia Ye
et al. (2008) found little variation in the half times of cells lo-
cated at different vascular distances in response to a pressure
pulse at the petiole. As long as leaf water potential measure-
ments are made after the leaf has come to internal equilibrium,
defining an average vascular conductance feeding the tissue is
also consistent with the whole leaf averaging in experimental
determinations of hA from steady flow experiments, in which
a whole leaf liquid flux is driven across the leaf vascular net-
work immersed in a reservoir of water at atmospheric pressure.
The greatest difficulty in decomposing leaf hydraulics into vas-
cular and tissue components may be encountered in obtaining
this estimate of hA. In cutting veins, it can be difficult to ensure
that only the intended order are severed (Sack et al., 2004), and
a large number of cuts are necessary to saturate the response
(Cochard et al., 2004). However, cutting of the tertiary vein or-
der presents fewer difficulties, and may set a useful upper bound
on hA.

As the Biot number represents the ratio of vascular conduc-
tance to the conductance of a given length of tissue, it is natural
to ask how this number relates to the question of whether vas-
cular or tissue resistances dominate in leaves, the question mo-
tivating the vein cutting experiments discussed above. These
studies idealized leaves as two discrete (i.e., Ohm’s law) resis-
tances in series, an average vascular resistance from the petiole
to highest vein order followed by a tissue resistance; the lat-
ter is then bypassed by vein cutting, or removed by treatments
to disrupt tissue membranes, and resulted in some controversy
(Cochard et al., 2004; Sack et al., 2002; Salleo et al., 2003).
Yet, this 1D conception allows no role for vein spacing, which
has been recognized as an important correlate of high transpi-
ration and rehydration rates (Boyce et al., 2009; Brodribb et al.,
2010). Nor in our analysis does the Biot number itself, in either
the 3D or 1D form, capture the effects of vein spacing: as we
have shown the ratio of w to L has a strong effect on hydration
times, independent of B. The question then arises whether the
1D scaled models presented here might inform this debate.

That the important scaling factor for the transient problem
in (56), ξ, acts on the tissue time suggests it is more natural to

quantify the effect of vein spacing in terms of its impact on the
time for flow within the tissue, rather than through the vascu-
lature. Yet, the scaling factor introduced for the steady state
problem ς, itself a function of the Biot number, can be inter-
preted as a rescaling of the vascular conductance hA to account
for the multidimensionality of the flow. Thus while the scaling
factors identified here each have a specific utility, they are in
no way guaranteed to be generalizable beyond the specific re-
lations for which they are defined, and no completely general
mapping of transport in a leaf to 1D appears to exist. The sim-
ple series conception of vascular and tissue resistances should
perhaps therefore be retired in favor of analyzing leaf hydraulic
architecture in terms of models that explicitly account for the
topology of the vein-tissue interface. Some authors have al-
ready taken this approach.

Based on a 2D PDMS leaf analogue, Noblin et al. (2008)
showed that increasing channel density increased the flux for
a given driving force, as the gradients through the gel became
more 1D. As the response saturates as channel density becomes
high, this result leads to an optimal spacing argument that the
inter-vein distance should be equal to the distance from the vas-
cular plane to the lower epidermis (d ≈ δ, in their notation).
For the survey data cited here, we estimate the mean for this
ratio as 2.2, with a range of 1 to 4.7. Given that for leaves
with net venation the minimum domain for analysis is 3D, the
deviation from a 2D theory is perhaps unsurprising: when con-
sidering a quarter section of an areole, where flow occurs over
two sides, the width at which diminishing returns to increasing
vein density sets in will be higher than that suggested by a 2D
view. We have not attempted an optimization analysis in this
study, in part because we do not expect that leaf hydraulics are
optimized for the isothermal rehydration problem principally
considered here. Nevertheless, the approach to the 3D problem
outlined here could be adapted to address questions of optimal-
ity in future.

What we have done in this study is to develop three 1D equa-
tions that, as they can be scaled to the 3D solution with knowl-
edge of the geometry, can be used to characterize leaf hydraulic
function in terms of continuum properties. Equation (57) de-
fines a tissue hydraulic conductivity from transient experiments,
which avoids the current practice of assuming lumped capacity
approximation, the conditions for which are unlikely to be met
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by leaves operating in their normal physiological range of wa-
ter contents. Equation (63) relates this same parameter to steady
state experiments, providing a common basis for comparing the
results of steady and transient experiments that plant physiolo-
gists currently lack. Equation (65) then extends these results
by relating them to < ψ >, the average potential of the leaf re-
moved from steady state, as measured in the pressure chamber.
As all the parameters are related clearly to material properties,
this presents a considerable advance over the current practice
of defining a nominal leaf conductance based on the relation
Klea f = J/(ψr− < ψ >). However it must be emphasized that
these results only apply to peristomatal evaporation (Meidner,
1975; Maier-Maercker, 1983), or where thermal gradients are
not important in driving an internal vapor phase flux. While
peristomatal evaporation is a common assumption (Brodribb
et al., 2010), others see a dominant role for vapor transport
(Mott and Peak, 2011), and gradients in saturated vapor pres-
sure may lead to significant fluxes in the intercellular air spaces
(Pieruschka et al., 2010). The hydraulic conductivity of the tis-
sue in this analysis, k`, accounts for vapor transport due to gra-
dients in saturated vapor pressure in the intercellular air spaces
resulting from water potential gradients in the adjacent cells (?),
and so iso-thermal vapor transport, but not thermal effects. The
non-isothermal problem will be taken up in a subsequent anal-
ysis.

With respect to the relations between the 1D and 3D scaling
factors and leaf geometry, quite reasonable estimates for ξ and
ζ can be made based on L and w alone, neglecting vp and a.This
may be because of relatively low variation in bundle sheath
cell radius, from which we estimated a, in the leaf geometries
considered. While we expect the geometry of most woody an-
giosperms to fall within the geometrical parameter space con-
sidered, extrapolation of these relationships to geometries out-
side the range, particularly for gymnosperms with very large
vascular bundles and for which the requisite domain may be
2D by symmetry, is not recommended. In addition, at long hy-
dration times, as Ψ falls below about 0.3, the kinetics of hydra-
tion toward equilibrium with pure water at atmospheric pressure
slow dramatically (Boyer, 1968; Zwieniecki et al., 2007). Pro-
cesses implicated in such bi-phasic phenomena include growth
(Boyer, 1968), flooding of intercellular air spaces (Rockwell,
2010), hydraulic compartmentation (Zwieniecki et al., 2007),
and the accumulation of solutes at the xylem-tissue interface
(Knipfer et al., 2007). The models discussed here do not ac-
count for such effects. Rather, they provide the simplest possi-
ble descriptions of leaf hydration that capture the effect of vein
spacing, and do so in terms of parameters that may then be di-
rectly related to the average hydraulic properties of a leaf’s cells
(?).

Appendix A. Solutions to the unsteady 1D problem as a
function of the Biot number

Appendix A.1. B1D � 1
In the limit that conductance through the vasculature is much

greater than through the tissue we have

B1D =
hL
k1D
`

� 1, Ψ
(
X = 0,T 1D > 0

)
→ 0. (A.1)

Since the non-dimensionalized flux, the first term in (26), is at
most order one, then to satisfy the full expression in (26), the
term B1DΨ(X = 0) can be at most order one; thus, if B1D � 1,
Ψ(X = 0) must become much less than one. In this limit, we can
approximate (26) with the more tractable boundary condition

Ψ
(
X = 0,T 1D > 0

)
≈ 0. (A.2)

This is the form assumed by (Boyer, 1968), where the vascular
plane is treated as a homogeneously wet layer held at a potential
fixed for all time by an external reservoir. Solutions to this class
of problem are given by Crank (1957), and the representation of
the potential field through the half thickness of the leaf is then
given by

Ψ(X,T 1D) =

∞∑

n=0

4
(2n + 1) π

sin (λnX) exp
(
−λ2

nT 1D
)
, (A.3)

where the λn’s are given by,

λn =

(
2n + 1

2

)
π. (A.4)

When the leaf has hydrated for t seconds and then is allowed to
come to internal equilibrium, the potential of the leaf is given
by

Ψ(T 1D) =
8
π2

∞∑

n=0

exp
(
−λ2

nT 1D
)

(2n + 1)2 . (A.5)

The cumulative uptake Q, in moles of water molecules over the
entire leaf (upper and lower halves), can be found by evaluating
two times the flux from the vasculature to the tissue (at x = 0),
times the area of the leaf, and integrating up to time t.

Q(T 1D) = 2A`

∫ t

0
J
∣∣∣∣
X=0

dt =

− 2A`k`
(ψo − ψr)

L
τ

∫ T 1D

0

∂Ψ

∂X

∣∣∣∣
X=0

dT 1D. (A.6)

The non-dimemsionalized uptake is then,

Φ(T 1D) =
Q(T 1D)

(ψr − ψo) V`c`
=

8
π2

∞∑

n=0

1 − exp
(
−λ2

nT 1D
)

(2n + 1)2 , (A.7)

where the first equality defines Φ as the non-dimensionalized
uptake, normalized by the expected uptake given by the wa-
ter potential difference between two equilibrium states, the leaf
volume and hydraulic capacity.
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The series solutions for diffusion type equations given by
(A.5) or (A.7) result in sums of individual exponential terms
that decay fairly rapidly with n, such that as few as 10 terms
need actually be evaluated (Crank, 1957). We can then find the
halftime for relaxation (or uptake) by setting the left hand side
of (A.5) or (A.7) to 0.5 and solving for T 1D, with the result that
T 1D

1/2 = 0.197.
In addition, individual terms of the series also decrease as

times goes on (Crank, 1957), such that after about 0.14 τ1D the
potential is well approximated by the n = 0 term alone,

ψ(t) − ψr

ψo − ψr
≈ 8
π2 exp

(
−π

2

4
k`

c`L2 t
)
. (A.8)

Since τ1D, and therefore 0.14 τ1D, will in general be unknown
prior to experiment, the latter may not provide a useful guide
as to when (27) may be used. However, recalling the definition
of the halftime, t1/2 = 0.197 τ1D, as 0.197 τ1D > 0.14 τ1D we
expect that (27) provides a reasonable approximation to the full
solution when the potential change in an experiment approaches
half the initial value.

Appendix A.2. B1D � 1
In the limit B1D � 1, since the magnitude of Ψ can be at

most 1, the term B1DΨ tends towards zero. In order to satisfy
(26) this requires that the gradient of Ψ in X must also vanish.
Physically, this means that when transport through the tissue
becomes very fast relative to through the vasculature, the gradi-
ent through the tissue becomes vanishingly small. In this limit
the potential anywhere in the tissue approaches the average po-
tential in the tissue, <Ψ>, defined by

<Ψ>=

∫ 1

0
ΨdX. (A.9)

We next write equation 23 in terms of the average potential:

∂ <Ψ>

∂T 1D =

∫ 1

0

∂2Ψ

∂X2 dX = −BΨ
(
X = 0,T 1D > 0

)
. (A.10)

The last equality follows from application of the boundary con-
ditions, (25) and (26).

If we now assert that <Ψ >≈ Ψ
(
X = 0,T 1D > 0

)
, we arrive

at

∂Ψ

∂T 1D = −B1DΨ, with I.C. Ψ(t ≤ 0) = 1. (A.11)

Consequently, the tissue of the leaf can be represented by a sin-
gle potential following first order kinetics. The lumped capacity
solution for the leaf water potential is then just,

Ψ(T 1D) = exp
(
−B1DT 1D

)
, B1DT 1D =

B1D

τ1D t =
h

c1D
`

L
t.

(A.12)
Note that the time scale of the solution in this limit is τ/B1D.
The solution for uptake follows as,

Φ(T 1D) =
Q(T 1D)

(ψr − ψo) V`c`
= 1 − exp

(
−B1DT 1D

)
. (A.13)

With cA = 2L · c` as the capacitance of the leaf per unit leaf
area, and 2h = K`, (28) is the form adopted by (Brodribb and
Holbrook, 2004) for quantifying the susceptibility of leaf xylem
to cavitation, a limit in which we can indeed expect vascular
resistance to dominate that of the tissue. As vascular resis-
tance increases due to embolism, a leaf may indeed approach an
ohmic RC circuit. Specifically, if the declines in h arise due to
cavitation in the petiole, or homogeneously in the finest veins,
then (A.11) represents the ‘lumped capacity’ solution in which
all the cells hydrate with a single time scale, given by cA/K`.

Even in the case of heterogeneous cavitation within the vas-
culature of the blade, (A.11) provides a useful index of hy-
draulic impairment, as long as all potential measurements are
made at equilibrium. That is, for (A.11) to be consistently ap-
plied we required < Ψ >≈ Ψ (X = 0), which tells us we need
to wait to make post-rehydration water potential measurements
until redistribution from hydraulically well-connected areas of
the leaf to those isolated by embolism has occurred, and the
leaf is again described by a single equilibrium potential, as in
the pre-hydration state. In this limit, setting (28) or (A.13) equal
to 0.5 yields the halftime,

t1/2 = 0.693
τ1D

B1D . (A.14)

Appendix A.3. B1D ∼ 1

When conductance through the vasculature neither domi-
nates nor is negligible compared to the conductance through
a half thickness of the tissue, we must solve (23) subject to the
un-reduced boundary condition (26); a general approach is de-
scribed by Carslaw and Jaeger (1959). Solving (23) subject to
(24, 25, 26), the potential field is given by,

Ψ(X,T 1D) =

∞∑

n=1

2(B1D − B1D cos λn + λn sin λn)
B1D + (B1D)2 + λ2

n
[
cos λnX +

B1D

λn
sin λnX

]
exp

(
−λ2

nT 1D
)
. (A.15)

The λn’s are given by the positive real roots of

λ − B1D cot λ = 0, (A.16)

which may be numerically calculated. The equilibrium poten-
tial of the leaf after t seconds of hydration is given by,

Ψ(T 1D) =

∞∑

n=1

2(B1D − B1D cos λn + λn sin λn)2
(B1D + (B1D)2 + λ2

n
)
λ2

n

exp
(
−λ2

nT 1D
)
. (A.17)

The cumulative uptake of water, found by evaluating the flux
into the tissue in the same manner as for (A.6), is then,
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Φ(T 1D) =
Q(T 1D)

(ψr − ψo) V`c`
=

∞∑

n=1

2B1D(B1D − B1D cos λn + λn sin λn)(B1D + (B1D)2 + λ2
n
)
λ2

n
(
1 − exp

(
−λ2

nT 1D
))
. (A.18)

As in the previous case, the contributions from each λn die off

both with increasing n and t. Table A.1 shows the dominant
surviving term after about 0.14 τ1D, as well as the halftimes for
a range values of B1D. Halftimes for uptake and relaxation for a
particular value of B1D were found as before, by setting (A.17)
or (A.18) equal to 0.5, retaining the first ten terms of the series,
and then solving for T 1D

1/2, the value of T 1D when Ψ = 0.5.

Table A.1: Solutions for long times as a function of B1D

B1D Dominant Term Halftime

0.1 0.999 exp(−0.097 T 1D) 7.162 τ1D

0.5 0.996 exp(−0.427 T 1D) 1.614 τ1D

0.75 0.991 exp(−0.595 T 1D) 1.150 τ1D

1 0.986 exp(−0.740 T 1D) 0.918 τ1D

1.25 0.981 exp(−0.866 T 1D) 0.777 τ1D

1.5 0.975 exp(−0.977 T 1D) 0.684 τ1D

1.75 0.969 exp(−1.074 T 1D) 0.616 τ1D

2 0.964 exp(−1.160 T 1D) 0.566 τ1D

2.5 0.953 exp(−1.305 T 1D) 0.494 τ1D

3 0.943 exp(−1.422 T 1D) 0.446 τ1D

3.5 0.934 exp(−1.518 T 1D) 0.412 τ1D

4 0.926 exp(−1.599 T 1D) 0.386 τ1D

4.5 0.919 exp(−1.668 T 1D) 0.365 τ1D

5 0.913 exp(−1.726 T 1D) 0.349 τ1D

6 0.902 exp(−1.821 T 1D) 0.324 τ1D

7 0.893 exp(−1.895 T 1D) 0.307 τ1D

8 0.886 exp(−1.954 T 1D) 0.293 τ1D

9 0.880 exp(−2.002 T 1D) 0.283 τ1D

10 0.874 exp(−2.042 T 1D) 0.274 τ1D

15 0.857 exp(−2.169 T 1D) 0.249 τ1D

20 0.846 exp(−2.238 T 1D) 0.236 τ1D

30 0.835 exp(−2.311 T 1D) 0.223 τ1D

50 0.826 exp(−2.372 T 1D) 0.212 τ1D

100 0.818 exp(−2.412 T 1D) 0.205 τ1D

∞ 0.811 exp(−2.470 T 1D) 0.197 τ1D

Appendix A.4. Approximation of the solution for B1D ∼ 1

As neither the limiting cases are likely to describe leaves op-
erating under normal conditions, and (A.17) is not easily imple-
mented by many plant physiologists, an approximate solution
relating time and potential when B1D ∼ 1 is desirable. For any
observed half time, each value of B1D provides a unique combi-
nation of particular values of h and k1D

` . Bringing together the
definitions of the 1D Biot number (B1D = hL/k1D

` ), the char-
acteristic time (τ1D = c1D

` L2/k1D
` ) and the expression for the

halftime (t1/2 = T 1D
1/2 · τ1D),

τ1D =
c1D
` L
h
B1D → t1/2 =

c1D
` L
h

(
B1D · T 1D

1/2

)
. (A.19)

Regression analysis of the data in Table A.1 shows that the par-
enthetical term on the RHS of (A.19), the Biot number times
the non dimensional halftime, is in turn well approximated by
the simple linear function 0.2B1D + 0.73 (r2 = 0.999). Using
the definition of the Biot number, we then find

t1/2 = 0.2
c1D
` L2

k1D
`

+ 0.73
c1D
` L
h

. (A.20)

As the range ofB1D in the regression is weighted towards values
less than one, the second coefficient approaches the T 1D

1/2 of the
solution in the B1D � 1 limit, whereas as the values of B1D

are weighted towards those larger than one, the first coefficient
approaches the T 1D

1/2 of the solution in the limit B1D � 1. A
more general approximation for the full range of B1D is then
given by,

t1/2 = 0.197
c1D
` L2

k1D
`

+ 0.693
c1D
` L
h

. (A.21)

This result suggests that we may approximate the halftime for
a leaf characterized by any Biot number as the sum of the two
limiting solutions, or,

t(Ψ) = T 1D(B1D � 1,Ψ)τ1D + T 1D(B1D � 1,Ψ)
τ1D

B1D , (A.22)

where the non dimensional times on the RHS are found by in-
verting equations (A.5) or (27) and (28) respectively. Equa-
tion (30) can be interpreted as saying that the hydration time
for a leaf with any Biot number is just the time for permeation
through the tissue, neglecting vascular resistance, plus a contri-
bution from flow through the vasculature that decays to zero as
the Biot number becomes large.
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