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Thank you!

Thank you for inviting me to give this talk!
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Lattice points

The Cartesian plane R2 contains a special subset, called the
integer lattice.

This is the set of points (x , y) ∈ R2 such that x and y are both
integers. It is denoted Z2.

For example, (2, 3) is an integer lattice point. (π, 1) is not.
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Counting

Given a region S in R2, it can be interesting to ask how many
lattice points S contains.

For example, let S(r) be a circle of radius r centered at the origin.
The Gauss circle problem asks: how many integer lattice points are
in S(r)?

Gauss proved that this number is no more than πr2 + 2
√

2πr . It is
a famous problem to find a more accurate upper bound.
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Triangles

This talk will be about lattice points in triangles.

For example, let T be the triangle with vertices:

(3, 0), (0, 3), (0, 0).

Question: How many integer lattice points are in T?

It is helpful to think of T as the region between the positive x-axis,
the positive y -axis, and the line x + y = 3.

Thus, we want to find the number of pairs of nonnegative integers
(m, n) such that m + n ≤ 3.
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Example continued

How many pairs are there? We have:

(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0).

So there are 10 lattice points.
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Another triangle

What about the triangle with vertices (0, 0), (0, 1) and (1, 0)?

Here, the equation of the slant edge is x + y = 1.

There are 3 : (0, 0), (0, 1), and (1, 0).

Let t be a positive integer. What about the triangle with vertices
(0, 0), (t, 0) and (0, t)?

Let’s call the number of lattice points in this triangle P(t).
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Can we find a nice formula for P(t)?

One can compute the first few values of P(t) by hand. They are:

P(1) = 3, P(2) = 6, P(3) = 10, P(4) = 15, P(5) = 21.

Is there a pattern? Can we find a closed formula for P(t)?
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The first few points of P(t)
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A closed formula!

In fact, with a little work, one can show:

Formula

P(t) = 1
2(t + 1)(t + 2).

In particular, P(t) is a polynomial in t. Question: Do similar
formulas hold for other triangles?
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Pick’s theorem

The answer is yes!

For example, let Ta,b be the triangle with vertices (0, 0), (a, 0), and
(0, b). Let A be the area of Ta,b, and let B be the number of
lattice points on the boundary of Ta,b.

Let Pa,b(t) be the number of lattice points in the triangle with
vertices (0, 0), (ta, 0), and (0, tb).

Theorem 1 (Pick’s theorem)

Pa,b(t) = At2 + 1
2Bt + 1.
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An example

For example, let’s use Pick’s theorem to compute Pa,b(t) where
a = 3 and b = 1. We have A = 3

2 .

How about B?

There are 5 lattice points on the boundary
((0, 0), (1, 0), (0, 1), (0, 2), and (0, 3)). Thus B = 5. So Pick’s

Theorem says that:

P3,1(t) =
3

2
t2 +

5

2
t + 1.
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The Ehrhart polynomial

Pick’s theorem holds more generally.

Specifically, let P be a
convex polygon in the plane with integer vertices. Let A be the
area of P and let B be the number of integer lattice points on the
boundary of P.

For a positive integer t, let

t · P = {(tx , ty)|(x , y) ∈ P},

and let LP(t) be the number of lattice points in t · P.

Theorem 2 (Pick’s theorem)

LP(t) = At2 + 1
2Bt + 1.

The counting function LP(t) is called the Ehrhart polynomial of P.
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The Ehrhart quasipolynomial

In fact, if P is a convex planar polygon with rational vertices, then
an analogue of Pick’s theorem still holds.

Define the counting function LP(t) as before: LP(t) counts integer
lattice points in the polygon t · P for positive integer t.

Theorem 3

If P is a convex polygon with rational vertices, then LP(t) is a
quadratic quasipolynomial in t

A quadratic quasipolynomial is a polynomial

c2(t)t2 + c1(t)t + c0(t),

where each ci is a periodic function of t. The minimum common
period of the ci is called the period of ci .
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An example of a quasipolynomial

Here is an example:

Define c2(t) = c1(t) = 1. Define

c0(t) :=

{
1 if t is even,
0 if t is odd,

Then c2(t)t2 + c1(t) + c0(t) is a quasipolynomial. It has period 2.
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What is the period of the Ehrhart quasipolynomial?

The denominator of a rational polygon P is the minimum integer
D such that the vertices of D · P have integer coordinates.

Theorem 4

If P is a convex rational polygon, then the period of LP(t) always
divides the denominator of D.

This is useful, but one would like to know more!
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Period collapse

For example, a basic question that is often asked is the following:

Question

For what rational polygons P is the period of P less than the
denominator?

When the period of P is less than the denominator of P, we say
that period collapse occurs.
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When does period collapse occur?

Aaron Kleinman and I wanted to understand the period collapse
question better.

We asked the following simplified version.

Question

Let a be a rational number greater than 1, and consider the
triangle Ta with vertices (0, 0), (0, a), (1

a , 0). Can we determine
exactly when the period of Ta is 1?

Note that if a = p
q in lowest terms, then the denominator of Ta is

pq.
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Here is the answer:

Theorem 5 (CG., Kleinman)

The period of Ta is 1 if and only if a = gn+1

gn
, where gn is the nth

odd-index Fibonacci number.

The Fibonacci numbers start 1, 1, 2, 3, 5, 8, 13, . . ., so the sequence
gn starts

g1 = 1, g2 = 2, g3 = 5, g4 = 13, . . .

In our proof, the Fibonacci numbers come up because they are the
integer solutions to the equation

x2 + y2 − 3xy = −1.
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Are other interesting sequences related to this problem?

One can ask if other interesting recursive sequences are related to
the period collapse problem.

Aaron and I decided to also study
triangles T̃a, defined to have vertices (0, 0), (0, a), ( 1

2a , 0).

Theorem 6 (CG.,Kleinman)

The triangle T̃a never has period 1. It has period 2 if and only if
(p, q) is a “companion Pell number”.

A similar result holds for the family of triangles with vertices
(0, 0), (0, 3a), ( 1

2a , 0).
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Symplectic geometry

Symplectic geometry is a special geometry that is related to
classical mechanics and “parameter spaces”.

While symplectic geometry has had many applications, many basic
questions are poorly understood. For example, very little is known
about when one symplectic shape M “fits inside” another
symplectic shape N. This means that there is an injective map
from M into N that preserves the “symplectic” geometry on M
and N.

If M fits inside N symplectically, then we say that M symplectically

embeds into N and write M
s
↪→N.
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When does an ellipsoid fit inside a ball?

Some of the simplest symplectic shapes are four-dimensional
symplectic ellipsoids E (a, b) and four-dimensional symplectic balls
B(c).

To understand when an ellipsoid embeds into a ball, we can
define the function

c(a) := inf{µ : E (1, a)
s
↪→B(µ)}, (1)

where the arrow
s
↪→ means that E (1, a) symplectically fits inside

B(µ).
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What is c(a)?

Aaron and I used our results about period collapse of Ehrhart
polynomials to show that c(a) is given by a Fibonacci staircase if

1 ≤ a ≤ τ4,

and we showed that c(a) =
√

a if a ≥ 9. This was originally shown
using different methods by McDuff-Schlenk.

Dan Cristofaro-Gardiner Counting lattice points in triangles and the “Fibonacci staircase”



Counting lattice points
Pick’s formula
Ehrhart theory

Period collapse and number theory
Connection with symplectic geometry

What is c(a)?

Aaron and I used our results about period collapse of Ehrhart
polynomials to show that c(a) is given by a Fibonacci staircase if

1 ≤ a ≤ τ4,

and we showed that c(a) =
√

a if a ≥ 9.

This was originally shown
using different methods by McDuff-Schlenk.

Dan Cristofaro-Gardiner Counting lattice points in triangles and the “Fibonacci staircase”



Counting lattice points
Pick’s formula
Ehrhart theory

Period collapse and number theory
Connection with symplectic geometry

What is c(a)?

Aaron and I used our results about period collapse of Ehrhart
polynomials to show that c(a) is given by a Fibonacci staircase if

1 ≤ a ≤ τ4,

and we showed that c(a) =
√

a if a ≥ 9. This was originally shown
using different methods by McDuff-Schlenk.

Dan Cristofaro-Gardiner Counting lattice points in triangles and the “Fibonacci staircase”



Counting lattice points
Pick’s formula
Ehrhart theory

Period collapse and number theory
Connection with symplectic geometry

The Fibonacci staircase

Dan Cristofaro-Gardiner Counting lattice points in triangles and the “Fibonacci staircase”


	Counting lattice points
	Pick's formula
	Ehrhart theory
	Period collapse and number theory
	Connection with symplectic geometry

