
Visual Analysis of Hidden State Dynamics in
Recurrent Neural Networks

Hendrik Strobelt, Sebastian Gehrmann, Bernd Huber, Hanspeter Pfister, and Alexander M. Rush
Harvard School of Engineering and Applied Sciences1

{hstrobelt, gehrmann, huber, pfister, rush}@seas.harvard.edu

Select
View

Match
View

b ca d e

f
g

Fig. 1. The LSTMVIS user interface. The user interactively selects a range of text specifying a hypothesis about the model. This range
is then used to match similar hidden state patterns in the dataset which are displayed below. The selection is made by specifying
a start-stop range in the text (gray border (b) and blue highlight (c)) and an activation threshold (red dashed line). The selection is
visualized by (a) the hidden states selected, (d) the number of active states and (e) the activation ranges for each hidden state. The
tool can then match this selection with similar hidden state patterns in the data set of varying lengths (f), providing insight into the
representations learned by the model. The match view additionally includes user-defined meta-data (such as part-of-speech tags) (g)
which allows the user to further refine or confirm the selection hypothesis.

Abstract— Recurrent neural networks, and in particular long short-term memory networks (LSTMs), are a remarkably effective tool for
sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better
understanding these models have studied the changes in hidden state representations over time and noticed some interpretable
patterns but also significant noise. In this work, we present LSTMVIS a visual analysis tool for recurrent neural networks with a focus
on understanding these hidden state dynamics. The tool allows a user to select a hypothesis input range to focus on local state
changes, to match these states changes to similar patterns in a large data set, and to align these results with domain specific structural
annotations. We further show several use cases of the tool for analyzing specific hidden state properties on data sets containing
nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical
analysis.

1 INTRODUCTION

Recurrent neural networks (RNNs) [6] have proven to be a very effec-
tive general-purpose model for capturing long-term dependencies in
textual applications. Recent strong empirical results indicate that in-
ternal representations learned by RNNs capture complex relationships
between the words within a sentence or document. These improved
representation have led directly to end applications in machine trans-
lation [12, 22], speech recognition [2], music generation [4], and text
classification [5], among a variety of other applications.

While RNNs have shown clear improvements for sequence mod-
eling, the models themselves are black boxes, and it remains unclear

exactly how a particular model is representing long-distance relation-
ships within a sequence. Typically, RNNs contain millions of param-
eters and utilize repeated non-linear transformations of large hidden
representations under time-varying conditions. These factors make
the model inter-dependencies challenging to interpret without sophisti-
cated mathematical tools. How do we enable users to explore complex
network interactions in an RNN and directly connect these abstract
representations to human understandable inputs?

In this paper, we focus on visual analysis to allow experimenters to
explore and form hypotheses about RNN hidden state dynamics in their

ar
X

iv
:1

60
6.

07
46

1v
1

 [
cs

.C
L

]
 2

3
Ju

n
20

16

models.

• We develop a visual encoding for exploring hidden state dynamics
around a selected input phrase and finding similar hidden state
patterns in a large dataset.

• We present use cases applying this technique to identify and
explore patterns in RNNs trained on large datasets for text and
other domains.

• We introduce the LSTMVIS tool to allows users to analyze a
set of pre-trained models. A live system can be accessed via
lstm.seas.harvard.edu and the source code is provided.

We start in Section 2 by formally introducing the recurrent neural
network model and in Section 3 by describing related techniques for
visualizing RNNs in practice. In Section 4 we describe domain goals
and their mapping to visualization tasks, and then in Section 5 present
the visual design choices made to satisfy these goals. In Section 6
we turn toward practical use cases and demonstrate the application
of the tool to three different problems. We conclude by discussing
implementation details and future challenges.

2 BACKGROUND: RECURRENT NEURAL NETWORKS

In recent years, deep neural networks have become a central model-
ing tool for many artificial cognition tasks, such as image recognition,
speech recognition, and text classification. While the architectures for
these tasks differ, the models each learn a series of non-linear transfor-
mations to map an input into a hidden black-box feature representation.
This hidden representation is learned to perform an end task.

For text processing and other sequence modeling tasks, recurrent
neural networks (RNNs) are a central architecture. A major challenge
of working with variable-length text sequences is producing compact
representations which capture or summarize long-distance relations in
the text. These relationships are particularly important for tasks that re-
quire processing and generating sequences such as machine translation.
RNN-based models seem to effectively learn representations for this
information.

Throughout this work, we will assume that we are given a sequence
of words w1, . . . ,wT for time 1 to T . These might consist of English
words that we want to translate or a sentence whose sentiment we would
like to detect, or even some other symbolic input such as musical notes
or code. Additionally we will assume that we have a mapping from
each word into vector representation x1, . . . ,xT . This representation
can either be a standard fixed mapping, such as word2vec [20], or can
be learned with the rest of the model.

Formally, RNNs are a class of neural networks that sequentially map
input word vectors x1 . . .xT to a sequence of fixed-length representa-
tions h1, . . . ,hT . This is achieved by learning a function RNN, which
is applied recursively at each time-step t ∈ 1 . . .T :

ht← RNN(xt,ht−1)

which takes input vector xt and a hidden state vector ht−1 and gives
a new hidden state vector ht . Each hidden state vector ht is in RD.
These vectors, and particularly how they change over time, will be the
main focus of this work. We are interested in each c ∈ {1 . . .D} and
the change of a single hidden state ht,c as t varies.

The model learns these hidden states to represent the features of the
input words. As such they can be learned for any modeling tasks utiliz-
ing discrete sequential input. In this paper we will focus primarily on
the task of RNN language modeling [19, 27], a core task in natural lan-
guage processing. In language modeling, at time t the prefix of words
w1, . . . ,wt is taken as input and the goal is to model the distribution
over the next word p(wt+1|w1, . . . ,wt). An RNN is used to produce
this distribution by applying a linear model over the hidden state vector
ht . Formally we define this as p(wt+1|w1, . . . ,wt) = softmax(Wht+b)
where W,b are parameters. The full computation of an RNN language
model is shown in Figure 2.

x t-2 x t-1 x t

h t-2 h t-1 h t

p t

wt-1 wtwt-2

Fig. 2. A recurrent neural network language model being used to
compute p(wt+1|w1, . . . ,wt). At each time step, a word wt is converted
to a word vector xt , which is then used to update the hidden state
ht← RNN(xt ,ht−1). This hidden state vector can be used for prediction.
In language modeling (shown) it is used to define the probability of the
next word, p(wt+1|w1, . . . ,wt) = softmax(Wht +b).

It has been widely observed that the hidden states are able to cap-
ture important information about the structure of the input sentence
necessary to perform this prediction. However, it has been difficult to
trace how this is captured and what exactly is learned. For instance,
it has been shown in some cases that RNNs can count parentheses or
match quotes, but is unclear whether RNNs naturally discover aspects
of language such as phrases, grammar, or topics. In this work, we focus
particularly on exploring this question by examining the dynamics of
the hidden states through time.

Finally, we note that our experiments will mainly focus on long
short-term memory networks (LSTM) (hence the name LSTMVIS) [9].
LSTMs define a variant of the function RNN that has a modified hidden
state update which can more effectively learn long-term interactions1.
As such these models are widely used in practice. In addition, LSTMs
and RNNs can be stacked in layers to produce multiple hidden state vec-
tors at each time step, which further improves performance. While our
results mainly use stacked LSTMs, our visualization only requires ac-
cess to some time evolving abstract vector representation, and therefore
can be used for any layer of the model.

3 RELATED WORK

Understanding RNNs through Visualization Our core contribu-
tion, visualizing the state dynamics of LSTM in a structured way, is
inspired by previous work on convolutional networks for in vision ap-
plications [21, 28]. In linguistic tasks, visualizations have shown to be
useful tool for understanding certain aspects of LSTMs. In [14], static
visualization techniques are used to help understand LSTM hidden
states in language models. This work demonstrates that selected cells
can model clear events such as open parentheses and the start of URLs.
In [17], additional techniques are presented, particularly the use of
gradient-based saliency to find important words. This work also looks
at several different models and datasets including text classification and
auto-encoders. In [10, 11], the authors show that RNNs specifically
learn lexical categories and grammatical functions that carry semantic
information, partially by modifying the inputs fed to the model. While
inspired by these techniques, our approach tries to extend beyond single
examples and provide a general interactive visualization approach of
the raw data for exploratory analysis.

Extending RNN Models for Interpretability Recent work has
also developed methods for extending RNNs for certain problems to
make them easier to interpret (along with improving the models). One

1Note that LSTMs maintain both a cell state vector and a hidden state vector
at each time step. Our system can be used to analyze either or both of these
vectors (or even the LSTM gates), and in our experiments we found that the cell
states are easier to work with. For simplicity, however, we refer to these vectors
generically as “hidden states” throughout the paper.

lstm.seas.harvard.edu

a b c d

Fig. 3. The hypothesis selection process. In (a) the selection covers a little prince and has a threshold `= 0.3. Blue hidden highlighted states
are selected. In (b) the threshold ` is raised to 0.6. In (c) the bottom gray slider is extended left, eliminating hidden states with values above ` after
reading of (word to the left). In (d) the gray slider is additionally extended right, removing hidden states above the threshold after reading “.” (word to
the right).

popular technique has been to use a neural attention-mechanism to allow
the model to focus in on a particular aspect of the input. In [3] attention
is used for soft alignment in machine translation, in [26] attention is
used to identify important aspects of an image for captioning, and
in [8] attention is used to find important aspects of a document for an
extraction task. These approaches have the side benefit that they “show”
what aspect of the model they are using. This approach differs from
our work in that it requires changing the underlying model structure,
whereas we attempt to interpret the hidden states of a fixed model
directly.

Interactive Visualization of Neural Networks There has been
some work on interactive visualization for interpreting machine learn-
ing models. In [24], the authors present a visualization system for feed-
forward neural networks with the goal of interpretation, and in [13], the
authors give a user-interface for tuning the learning itself. The recent
Prospector system [15] provides a general-purpose tool for practition-
ers to better understand their ML model and its predictions. There
has also been work on user interfaces for constructing models such as
TensorBoard [1] and the related playground for convolutional neural
models playground.tensorflow.org/. Our work is most similar
in spirit to [24] in that we are mostly concerned with interpreting the
hidden states of a particular model, however our specific goals and
visual design are significantly different.

4 GOALS AND TASKS

Given that RNNs act as a black-box, their success leaves open the
question of why they are so effective at representing the history of
words. LSTMVIS focuses particularly on the dynamics of RNN hidden
states and targets the related question:“What information does an RNN
capture in its hidden states?”. Addressing this question is the main
goal of our project and the focus of a series of discussions. During this
iterative process, we identified the following domain goals for a user of
LSTMVIS:

• G1 - Formulate a hypothesis about (linguistic) properties that
the hidden states might learn to capture for a specific model. This
hypothesis requires an initial understanding of hidden state values
over time and a close read of the original text.

• G2 - Refine the hypothesis based on insights about learned tex-
tual similarities based on patterns in the dynamics of the hidden
states. Refining a hypothesis may also mean rejecting it.

• G3 - Compare models and datasets to allow early generaliza-
tion about the insights the representations provide, and to observe
how task and domain may alter the patterns in the hidden states.

From these three goals we propose tasks for visual data analysis. The
mapping of these tasks to domain goals is indicated by square brackets:

• T1 - Visualize hidden states over time to allow exploration of
the hidden state dynamics in their raw form. [G1]

• T2 - Filter hidden states by using discrete textual selection along
with continuous thresholding. These selections methods allow the
user to form hypotheses and to separate visual signal from noise.
[G1,G2]

• T3 - Match selections to similar examples based on hidden state
activation pattern. A matched phrase should have intuitively simi-
lar characteristics as the selection to support or reject a hypothesis.
[G2]

• T4 - Align textual annotations visually to matched phrases.
These annotations allow the user to compare the learned rep-
resentation with alternative structural hypotheses such as part-
of-speech tags or known grammars. The set of annotation data
should be easily extensible. [G2,G3]

• TX - Provide a general interface that can be used with any
RNN model and text-like dataset. It should make it easy to
generate crowd knowledge and trigger discussions on similarities
and differences between a wide variety of models. [G3]

5 VISUAL DESIGN

LSTMVIS supports the formulation of a hypothesis (T1, T2, G1) in the
Select View (Sect. 5.1) and can trigger refinement of a hypothesis (T3,
T4, G2) in the Match View (Section 5.2), while remaining agnostic to
the underlying data or model (TX). We first describe the visual design
and interaction paradigms used in the two views and how they facilitate
the domain goals, and then discuss design iterations for LSTMVIS in
Section 5.4.

5.1 Select View
The Select View, shown in the top half of Figure 1, is centered around
a single time-series plot. The x-axis is labeled with the word inputs
w1, . . . ,wT for the corresponding time step. (If words do not fit into the
fixed width for time steps they are distorted). In the plot itself, we show
the hidden state vectors h1, . . . ,hT at each time step (one point for each
of the D values). The hidden state dynamics are encoded through time
to form a parallel coordinates plot (T1). That is there is one line for
each of the D hidden states between each time-steps. Figure 1 shows
the movement of each hidden state though the full sequence.

The full plot of hidden state dynamics can be difficult to comprehend
directly. Therefore, LSTMVIS allows the user to formulate a hypothe-
sis (G1) about the semantics of a subset of hidden states localized to a
range of text. The user selects a phrase that may express an interesting
property. For instance, the user may select a range within a shared
nesting levels in tree-structured text (see Section 6.1), a representative
noun phrase in a text corpus (see Section 6.2), or a chord progression
in a musical corpus(see Section 6.3).

To select, the user brushes over a range of words that form the
pattern of interest. In this process, she implicitly focuses on the hidden
states that are “on” in the selected range. The dashed red line on
the parallel coordinates plot indicates a user-defined threshold value,
`, that partitions the hidden states into “on” (all timesteps ≥ `) and

playground.tensorflow.org/

“off” (any < `) within this range. In addition to selecting a range, the
user can modify the brush slider below (gray) to define that hidden
states must also be “off” immediately before or after the selected range.
Figure 3 shows different combinations of slider configurations and
the corresponding hidden state selections. We call this set of selected
hidden states S1 ⊂ {1 . . .D}.

The defined selection of hidden states is mirrored in a discrete plot
below the word labels. Blue bar charts indicate the percentage of “on”
cells at each visible time step that are in the set selected S1. The
gray lines underneath reveal the ranges that are covered by each of the
selected hidden states. These elements enable the user to preview the
coverage of sequences in the local neighborhood. To eliminate high-
frequency changes along the time axis, a length filter can be applied.

At the bottom of the Select View, the full set S1 is listed. Hov-
ering over a hidden state representation in one of the described plots
highlights this hidden state across all plots. Hidden states can also
be deselected individually. Figure 1 shows a selected hidden state
highlighted in red.

The described interactive methods allow the user to define a hypoth-
esis range which results in the selection of a subset of hidden states
based on the definition of a specific threshold (T2, G1) and only relies
on the hidden state vectors themselves (TX). To refine or reject the
hypothesis the user can then make use of the Match View.

5.2 Match View
The Match View, shown in the bottom half of Figure 1, provides evi-
dence for or against the selected hypothesis. The view provides a set
of relevant matched phrases that have similar hidden state patterns as
the phrase selected by the user. This style of nearest neighbors search
can provide an intuitive view of the hidden states that are on for the
hypothesis.

With the goal of maintaining an intuitive match interface, we define
the matches to be “ranges in the data set that would have lead to a
similar set of on hidden states under the selection criteria”. Formally,
assume that the user has selected a threshold ` with hidden states S1
and has not limited the selection to the right or left further. We rank all
possible candidate ranges in the dataset starting at time a and ending at
time b with a two step process

1. collect the set of all hidden states that are “on” for the range,

S2 = {c ∈ {1 . . .D} : ht,c ≥ ` for all a≤ t ≤ b}

2. rank the candidates by the number of overlapping states |S1∩S2|
using the inverse of number of additional “on” cells −|S1∪S2|
and candidate length b−a as tiebreaks.

If the original selection is limited on either side (as in Figure 3), we
modify step (2) to take this into account for the candidates. For instance
if there is a limit on the left, we only include state indices c in S2 in
that also satisfy ha−1,c < `.

For efficiency, in practice we do not score at all possible candidate
ranges (datasets typically have T > 1 million). We limit the candidate
set by filtering to ranges with a minimum number of hidden states
from S1 over the threshold `. These candidate sets can be computed
efficiently using run-length encoding.

A length histogram is also generated that indicates the distribution
of phrase lengths in the matches. Hovering over a histogram bin reveals
details about this bin and clicking on one filters the matches to the
desired length.

The top 50 results are shown in the Match View. For each time
step, the matches are encoded as a linked heatmap, which indicates the
amount of overlap with S1 at each timestep. The color of the heatmap
for each time step can be applied directly to the background of the
results to better see the matches.

Furthermore the user can provide additional annotations which are
displayed as categorical heatmaps (T4). We imagine these annotations
can act as ground truth data, e.g. part-of-speech tags for a text corpora,
or as further information to help calibrate the hypotheses. Mapping

a

b

Fig. 4. Early-stage prototypes of the system. (a) Hidden state vectors
are encoded as heatmaps over time. This style places emphasis on the
relationships between neighboring (vertically adjacent) states, which has
no particular meaning for this model. (b) A selection prototype utilizing
parallel coordinates. This prototype emphasized selections based on
small movements of state values directly on the plot, which made it
difficult to specify connections between hidden state values and source
text.

annotation data to the matches is a simple method to reveal pattern
across results. These results can lead to further data analysis or a
refinement of the current hypothesis.

5.3 Navigation Along the Time Axis
LSTMVIS provides several convenience methods to navigate to spe-
cific time steps. Buttons on the timeline can be used to move forward
and backward. LSTMVIS also offers search functionality to find spe-
cific phrases. Finally, the selection panel on the top left can be used
to efficiently switch between the different layers of the same model
and between datasets (TX). As all different layers and datasets can be
displayed in the same way, the user can easily compare models.

5.4 Design Iterations
During the course of the project we developed seven interactive proto-
types of varying complexity highlighting different aspects of the data.
In this section we present two fundamental design decisions that lead
to the final system.

5.4.1 Visual Encoding of State Dynamics
Inspired by a standard static visualization in the RNN literature, we
first encoded hidden state vectors as a heatmap along the time-axis
(Figure 4(a)). This style has been favored as a view of the complete
set of hidden states h1, . . . ,hT . However, this approach has several
drawbacks in an interactive visualization. Foremost, the heatmaps do
not scale well with increasing dimensionality D of hidden state vectors.
They use a non-effective encoding for the most important information,
i.e. hidden state values by color hue. Additionally they emphasize the
order of hidden states in each vector, but this relative order of abstract
hidden states is not actually used by the model itself.

Instead we decided to consider each hidden state as a data item and
time-steps as dimensions for each data item in a parallel coordinates
plot. Doing so, we encode the hidden state value using the more

a

b

Fig. 5. Plot of a phrase from the parenthesis synthetic language. In
(a), the full set of hidden states is shown. Note the strong movement
of states at parenthesis boundaries. In (b), a selection is made at the
start of the fourth level of nesting. Even in the select view it is clear that
several hidden states represent a four-level nesting count.

effective visual variable position. Figure 4(b) shows the first iteration
on using a parallel coordinates plot. The abundance of data points along
the plot is additionally encoded with a heatmap in the background to
emphasize dense regions (e.g. around the zero value) but also highlight
sparse regions. In the final iteration, we omitted this redundant encoding
for the sake of clarity and to highlight wider regions of text.

5.4.2 Formulating a Hypothesis
One challenge we faced in early design iterations was allowing the
user to easily express hypotheses with selection. In Figure 4(b), we
show a preliminary draft using a common filter method for parallel
coordinates along each axis. When experimenting with this kind of
selection, two major drawbacks of this approach became evident. First,
it was very cumbersome to formulate a hypothesis for a longer range
by adjusting many y-axis brush selectors at a fine granularity. Second,
selecting directly on the hidden state values felt decoupled from the
original source of information – the text. The key idea to facilitate this
selection process was allow the user to easily discretize the data based
on a threshold and select on and off ranges directly on top of the words
(as described in Section 5). This idea generalizes and adds interactivity
to the manual approaches developed in [14].

6 USE CASES

In experimenting with the system we trained and explored many dif-
ferent RNN models, datasets and tasks, including word and character
language models, neural machine translation systems, auto-encoders,
summarization systems, and classifiers. Additionally we also experi-
mented with other types of real and synthetic input data.

In this section we highlight three findings that demonstrate the gen-
eral applicability of LSTMVIS paradigms for analysis of hidden states.

6.1 Proof-of-Concept: Parenthesis Language
As proof of concept we trained an LSTM as language model on syn-
thetic data generated from a very simple counting language with a

a

b

Fig. 6. Phrase selections and match annotations in the Wall Street
Journal. In (a), the user selects a closed selection of a very marked
improvement (turning off when improvement is seen). The matches
found are entirely other noun phrases, and start with different words.
Note that here ground-truth noun phrases are indicated with an orange
highlight. In (b) we select an open range starting with has invited. The
results are various open verb phrases (green highlight). Note that for
both examples the model can return matches of varying lengths.

parenthesis and letter alphabet Σ = {() 0 1 2 3 4 }. The language
is constrained to match parentheses, and nesting is limited to at most
4 levels deep, where each opening parenthesis increases nesting level
and each closing parenthesis decreases the nesting level. Numbers are
generated randomly, but are constrained to indicate the nesting level at
their position. For example a string in the language looks like:

,
where blue lines indicates ranges of nesting level ≥1. Similarly, orange
and green lines indicates nesting level ≥2 and ≥3.

To analyze this language, we view the states in LSTMVIS (we show
the the cell states of a multi-layer 2x300 LSTM model). An example
is shown in Figure 5(a). Here even the initial parallel coordinates plot
shows a strong regularity, as hidden state changes occur predominately
at parentheses.

Our hypothesis is that the hidden states mainly reflex the nesting
level. To test this, we select a range spanning nesting level four by se-
lecting the phrase (4. We immediately see that several hidden states
seem to cover this pattern and that in the local neighborhood several
other occurrences of our hypothesis are covered as well, e.g. the empty
parenthesis and the full sequence (4 4 4 . This observation simply
confirms earlier observations that has demonstrate simple context-free
models in RNNs and LSTMs [7, 25].

6.2 Phrase Separation in Language Modeling
Next we consider the case of a real-world natural language model. For
this experiment we trained a 2-layer LSTM language model with 650
hidden states on the Penn Treebank [18] following the medium-sized
model of [27]. While the model is trained for language modeling
(predict the next word), we were interested in seeing if it additionally
learned properties about the underlying language structure. To test
this, we additionally include annotations in the model from the Penn
Treebank. We experimented with including part-of-speech tags, named
entities, and parse structure.

Here we focus on the case of phrase chunking. We annotated the
dataset with the gold-standard phrase chunks provided by the CoNLL
2003 shared task [23] for a subset of the treebank (Sections 15-18).

Fig. 7. PCA projection of the hidden state patterns (S1) of all multi-word
phrasal chunks in the Penn Treebank, as numerical follow-up to the
phrase chunking hypothesis. Red points indicate noun phrases, blue
points indicate verb phrases, other colors indicate remaining phrase
types. While trained for language modeling, the model separates out
these two phrase classes in its hidden states.

These include annotations for noun phrases and verb phrases, along
with prepositions and several other less common phrase types.

While running experimental analysis, we found a strong pattern that
selecting noun phrases as hypotheses leads to almost entirely noun
phrase matches. Additionally we found that selecting verb phrase pre-
fixes would lead to primarily verb phrase matches. In Figure 5.4.2(a,b)
we show two examples of these selections and matches.

This hints that the model has implicitly learned a representation
for language modeling that can differentiate between the two types of
phrases. Of course the tool itself cannot confirm or deny this type of
hypothesis, but the aim is to provide clues for further analysis. We
can check, outside of the tool, if the model is clearly differentiating
between the classes in the phrase dataset. To do this we compute the
set S1 for every noun and verb phrase in the shared task. We then run
PCA on the vector representation for each set. The results are shown in
Figure 6.2, which shows that indeed these on-off patterns are enough
to partition the noun phrases and verb phrases.

6.3 Musical Chord Progressions
Finally we looked at some non-text data sets to get a better under-
standing of long-range patterns. Past work on LSTM structure has
emphasized cases where single hidden states are semantically inter-
pretable. For text data sets, we found that with a few exceptions (quotes,
brackets, and commas) this was rarely the case. However, for datasets
with more regular long-term structure, single states could be quite
meaningful.

As a simple example, we collected a large set of songs with annotated
chords for rock and pop songs to use as a training data set, 219k chords
in total. We then trained an LSTM language model to predict the next
chord wt+1 in the sequence, conditioned on previous chord symbols
(chords are left in their raw format).

When we viewed the results in LSTMVIS we found that the regular
repeating structure of the chord progressions is strongly reflected in
the hidden states. Certain states will turn on at the beginning of a
standard progression, and remain on though variant-length patterns
until a resolution is reached. In Figure 6.3, we examine three very
common general chord progressions in rock and pop music. We select
a prototypical instance of the progression and show a single state that
captures the pattern, i.e. remains on when the progression begins and
turns off upon resolution.

7 IMPLEMENTATION

LSTMVIS consists of two modules, the visualization system and the
RNN modeling component.

a

b

c

Fig. 8. Three examples of single state patterns in the guitar chord dataset.
In (a), we see several permutation of the very common I - V - vi - IV
progression (informally, the “Don’t Stop Believing” progression). In (b)
we see several patterns ending in a variant of the I- vi- IV- V (the 50’s
progression). In (c), we see two variants of I - V - vi -iii - IV - I (beginning
of the Pachelbel’s Canon progression). Chord progression patterns are
based on http://openmusictheory.com/.

The visualization is a client-server system that uses Javascript and
D3 on client side and Python, Flask, h5py, and numpy on server side.
Timeseries data (RNN hidden states and input) is loaded dynamically
through HDF5 files. Optional annotation files can be specified to map
categorical data to labels (T4). New data sets can be added easily by a
declarative YAML configuration file.

The RNN modeling system is completely separated from the visual-
ization to allow compatibility with any deep learning framework (TX).
For our experiments we utilized the Torch framework and the Element
RNN library [16]. We trained our models separately and exported
results to the visualization.

The source code and models are available at lstm.seas.harvard.
edu.

8 CONCLUSION

LSTMVIS provides an interactive visualization to facilitate data anal-
ysis of recurrent neural network hidden states. The tool is based on a
two-step process where a user can select a range of text to represent
a hypothesis about the RNN representation, the tool then can match
this selection to other examples in the data set. The tool easily allows
for external annotations to verify or reject hypothesizes. It minimally
requires a time-series of hidden states, which makes it easy to adopt for
a wide range of visual analyses of different data sets and models, and
even different tasks (language modeling, translation etc.).

To demonstrate the use of the model we presented three case studies
describing how the tool can be applied to different data sets. On syn-
thetic data, the tool clearly separates out the core underlying structure.
On natural language data, states are noisier, but we can find clear splits
between known linguistic structures like noun and verb phrases. For
these tasks the tool not only helps narrow down hypotheses but also pro-
vides specific information such as hidden states and textual annotations
to spur on further statistical testing. For future work, we would like to
explore different matching criteria, to allow other forms of annotation,
and to analyze the usage of the tool in practice.

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Research Laboratory
and DARPA grant FA8750-12-C-0300.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

http://openmusictheory.com/
lstm.seas.harvard.edu
lstm.seas.harvard.edu

[2] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. C. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan,
C. Fougner, T. Han, A. Y. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang,
A. Y. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh, D. Seetapun,
S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan,
and Z. Zhu. Deep speech 2: End-to-end speech recognition in english and
mandarin. CoRR, abs/1512.02595, 2015.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

[4] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling tem-
poral dependencies in high-dimensional sequences: Application to poly-
phonic music generation and transcription. In Proceedings of the 29th
International Conference on Machine Learning, ICML 2012, Edinburgh,
Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress, 2012.

[5] A. M. Dai and Q. V. Le. Semi-supervised sequence learning. In Advances
in Neural Information Processing Systems, pp. 3079–3087, 2015.

[6] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

[7] F. A. Gers and E. Schmidhuber. Lstm recurrent networks learn simple
context-free and context-sensitive languages. IEEE Transactions on Neural
Networks, 12(6):1333–1340, 2001.

[8] K. M. Hermann, T. Kociský, E. Grefenstette, L. Espeholt, W. Kay, M. Su-
leyman, and P. Blunsom. Teaching machines to read and comprehend.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
eds., Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pp. 1693–1701, 2015.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[10] A. Kádár, G. Chrupała, and A. Alishahi. Lingusitic analysis of multi-modal
recurrent neural networks. 2015.

[11] Á. Kádár, G. Chrupała, and A. Alishahi. Representation of linguis-
tic form and function in recurrent neural networks. arXiv preprint
arXiv:1602.08952, 2016.

[12] N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models.
In EMNLP, vol. 3, p. 413, 2013.

[13] A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Interactive optimization for
steering machine classification. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 1343–1352. ACM, 2010.

[14] A. Karpathy, J. Johnson, and F.-F. Li. Visualizing and understanding
recurrent networks. arXiv preprint arXiv:1506.02078, 2015.

[15] J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual
inspection of black-box machine learning models. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, pp.
5686–5697. ACM, 2016.

[16] N. Léonard, S. Waghmare, and Y. Wang. Rnn: Recurrent library for torch.
arXiv preprint arXiv:1511.07889, 2015.

[17] J. Li, X. Chen, E. Hovy, and D. Jurafsky. Visualizing and understanding
neural models in nlp. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pp. 681–691. Association for Computational
Linguistics, San Diego, California, June 2016.

[18] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large
annotated corpus of english: The penn treebank. Computational linguistics,
19(2):313–330, 1993.

[19] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Re-
current neural network based language model. In Interspeech, vol. 2, p. 3,
2010.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pp. 3111–3119,
2013.

[21] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034, 2013.

[22] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems,
pp. 3104–3112, 2014.

[23] E. F. Tjong Kim Sang and F. De Meulder. Introduction to the conll-
2003 shared task: Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural language learning at
HLT-NAACL 2003-Volume 4, pp. 142–147. Association for Computational
Linguistics, 2003.

[24] F.-Y. Tzeng and K.-L. Ma. Opening the black box-data driven visualization
of neural networks. In VIS 05. IEEE Visualization, 2005., pp. 383–390.
IEEE, 2005.

[25] P. R. J. Wiles. Recurrent neural networks can learn to implement symbol-
sensitive counting. In Advances in Neural Information Processing Systems
10: Proceedings of the 1997 Conference, vol. 10, p. 87. MIT Press, 1998.

[26] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S.
Zemel, and Y. Bengio. Show, attend and tell: Neural image caption
generation with visual attention. In F. R. Bach and D. M. Blei, eds.,
Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, vol. 37 of JMLR Proceedings,
pp. 2048–2057. JMLR.org, 2015.

[27] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent Neural Network
Regularization. arXiv:1409.2329, 2014.

[28] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pp. 818–833.
Springer, 2014.

	Introduction
	Background: Recurrent Neural Networks
	Related Work
	Goals and Tasks
	Visual Design
	Select View
	Match View
	Navigation Along the Time Axis
	Design Iterations
	Visual Encoding of State Dynamics
	Formulating a Hypothesis

	Use Cases
	Proof-of-Concept: Parenthesis Language
	Phrase Separation in Language Modeling
	Musical Chord Progressions

	Implementation
	Conclusion

