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Summary

Successfully placing fossils in phylogenies is integral to
understanding the tree of life. Crown-group Paleozoic mem-
bers of the arachnid order Opiliones are indicative of ancient
origins and one of the earliest arthropod terrestrialization
events [1, 2]. Opiliones epitomize morphological stasis,
and all known fossils have been placed within the four extant
suborders [3-5]. Here we report a Carboniferous harvestman
species, Hastocularis argus gen. nov., sp. nov., recon-
structed with microtomography (microCT). Phylogenetic
analysis recovers this species, and the Devonian Eophalan-
gium sheari, as members of an extinct harvestman clade. We
establish the suborder Tetrophthalmi subordo nov., which
bore four eyes, to accommodate H. argus and E. sheari, the
latter previously considered to be a phalangid [6—9]. Further-
more, embryonic gene expression in the extant species
Phalangium opilio demonstrates vestiges of lateral eye
tubercles. These lateral eyes are lost in all crown-group
Phalangida, but are observed in both our fossil and outgroup
chelicerate orders. These data independently corroborate
the diagnosis of two eye pairs in the fossil and demonstrate
retention of eyes of separate evolutionary origins in modern
harvestmen [10-12]. The discovery of Tetrophthalmi alters
molecular divergence time estimates, supporting Carbonif-
erous rather than Devonian diversification for extant subor-
ders and directly impacting inferences of terrestrialization
history and biogeography. Multidisciplinary approaches
integrating fossil and neontological data increase confi-
dence in phylogenies and elucidate evolutionary history.

Results and Discussion

Terrestrial arthropods have a sparse fossil record due to low
preservation potential; the environments in which they live
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favor rapid decay over burial, and many—such as Opi-
liones—possess a poorly mineralized exoskeleton. As a result,
fundamental questions in arthropod evolutionary history
remain unresolved. Examples include the number and timing
of terrestrialization events [1], the diagnosis of ancestral and
derived characters [13], and the evolutionary relationships of
many iconic lineages [14, 15]. The exceptional preservation
of Scotland’s Rhynie Cherts provided the earliest currently
recognized Opiliones (harvestman). This Devonian species,
Eophalangium sheari, was placed within the suborder Eupnoi
on the basis of genitalic morphology [4, 5]. Such clarity of
phylogenetic placement is unusual for Opiliones; as an
example, a Lower Carboniferous fossil (Brigantibunum listoni)
was too poorly preserved to permit accurate placement [16].
Furthermore, cladistic analyses are infrequently applied in
placing such fossils; two Carboniferous species from the
Montceau-les-Mines Lagerstétte are the only nonamber fossil
harvestmen to be included in a cladistic analysis to date,
being recovered as members of the suborders Eupnoi and
Dyspnoi [3].

Phylogenetic Analyses Reveal a Distinct Fossil

Harvestman Suborder

Hastocularis argus gen. nov., sp. nov. is a new Carboniferous
harvestman, resolved using microtomography (microCT) (see
“Systematic Palaeontology” in the Supplemental Results
and Discussion available online; Figures 1H-1M and 2; http://
dx.doi.org/10.5061/dryad.r32p3). It possesses median eyes,
as expected in a modern phalangid (a member of one of the
three noncyphophthalmid orders), on an anteriorly projecting
ocularium (Figures 1I-1K, black arrowheads) and a pair of
raised lateral prosomal tubercles on the carapace (Figure 1l),
with associated eyes (Figures 1J and 1K, white arrowheads).
Its oval body has a broad prosoma-opisthosoma boundary
and dorsal opisthosomal segmentation in the form of seven
transverse ridges (http://dx.doi.org/10.5061/dryad.r32p3).
Three-segmented chelicerae are tucked between the pedi-
palps, which have median coxapophyses at the anterior
margin of a preoral chamber (http://dx.doi.org/10.5061/
dryad.r32p3). Tuberculated legs possess a tarsus divided
into seven tarsomeres, and leg Il bears coxapophyses. Be-
tween the coxae of leg IV is an open gonostome with a protrud-
ing penis, whose smooth shaft and dorsal terminal process are
visible (Figures 1L and 1M).

But the morphology of H. argus includes characters previ-
ously considered synapomorphic for both mite harvestmen
(Cyphophthalmi) and Phalangida (Figure 1A). The open gono-
stome and ozophores are exclusive to Cyphophthalmi (Figures
1C and 1D), while a scutum completum (contiguous dorsal
prosomal-opisthosomal carapace; Figure 1B) is only found in
Cyphophthalmi and one family of Phalangida, Sandokanidae
[9, 17]. Intromittent male genitalia, elongate legs with
numerous tarsomeres, and the ocularium are characteristic
of Phalangida (Figures 1E-1G).

To determine the phylogenetic placement of this group,
we included the new species in a matrix comprising 158
morphological characters and five molecular loci for extant
species, coding the oldest harvestman fossil, E. sheari, in a
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Figure 1. Extant Opiliones and the Identification of a Fossil Stem Group

(A) Basal split between Cyphophthalmi (mite harvestmen) and Phalangida (all remaining harvestmen).

(B-G) Lateral view of adult Pettalus (B) with eye mounted on ozophore (arrow) and SEM magnification of the ozophore (C) showing the lateral eye (bottom)
and dorsal ozopore (top). The open gonostome of the cyphophthalmid Metasiro with lateral flanges (arrowheads) is shown in ventral view (D). Eyes of
Phalangida (E) are typically mounted on a centralized ocularium (F), and the gonostome is sealed with a hinged operculum (G).

(H-L) 3D reconstructions of Hastocularis argus gen. nov., sp. nov.

(H) Whole body and appendages.

(I) Lateral view of body and chelicerae showing ocularium (black arrow) and ozophores (white arrows).

(J) Right anterior region shows the ocularium (black arrow), ozophores (white arrows), and corresponding eyes (arrowheads).

(K) Left anterior region shows bilateral symmetry of ozophores and eyes.

(L) Intromittent genitalia (green) and open gonostome, with lateral flanges (orange).

(M) Schematic interpretation of intromittent genitalia.

ch, chelicera; g, gonostome; ig, intromittent genitalia; L1, first leg; pp, pedipalp. Scale bars represent 250 um (G), 500 um (L and M), 1 mm (J and K), 2 mm (1),
and 4 mm (H). See also http://dx.doi.org/10.5061/dryad.r32p3.
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phylogenetic matrix for the first time (http://dx.doi.org/10.
5061/dryad.r32p3). Bayesian inference analysis of this total
evidence data set recovers H. argus as sister species to the
Devonian E. sheari (posterior probability [PP] = 0.64) in
Tetrophthalmi and this clade as sister group to Cyphophthalmi
(PP = 0.73; Figure 3A). Lack of nodal support stems from
considerable missing data in the fossil taxa and resultant topo-
logical instability. We therefore mapped branch attachment
frequency (BAF) of Tetrophthalmi for post-burn-in a posteriori
trees. The three most frequent placements of this clade are as
stem-Cyphophthalmi (BAF = 39.5%), stem-Phalangida (BAF =
20.2%), or stem-Palpatores (BAF = 14.0%), the last being one
of the two main divisions of Phalangida (Figure 3A). Ordinal
placement of other fossil taxa (e.g., Ameticos scolos and
Macrogyion cronus) is consistent with the total evidence Opi-
liones analysis previously published (although E. sheari was
not included in that study [3]).

One of the earliest terrestrial animals, E. sheari is of key
phylogenetic importance [1, 3, 7]. Previously considered a
member of Eupnoi, a suborder that includes many typical
modern long-legged harvestmen, this species shares an ante-
riorly projecting ocularium and a previously overlooked open
gonostome with H. argus [4]. Due to the previous sectioning
of E. sheari, ozophores are equivocal in this fossil. But the
combination of an ocularium, open gonostome, and intromit-
tent genitalia is unique to (Eophalangium + Hastocularis).
This character combination, coupled with co-occurrence in
H. argus of median eyes on an ocularium and ozophores, pre-
cludes placement in extant Opiliones suborders, thereby sup-
porting the validity of Tetrophthalmi subordo nov.

Re-evaluation of Homology Statements of Eyes in
Opiliones

Arthropod eyes are labile in nature, and independent, multiple
eye losses are common in Chelicerata, the division of arthro-
pods that includes arachnids and horseshoe crabs [2]. The
ancestral chelicerate eye state comprises median (simple
ocelli) and lateral eyes (e.g., faceted eyes in horseshoe crabs;
those with a reflective layer [the tapetum] in spiders) [18].
Various chelicerate lineages have lost the median (e.g., pseu-
doscorpions), the lateral (e.g., solifuges), or both (e.g., extant
ricinuleids, palpigrades, in addition to many troglomorphic

Figure 2. An Idealized Reconstruction of Hasto-
cularis argus gen. nov., sp. nov. in Life on the Ba-
sis of the MicroCT Models

Shown in dorsal, lateral, ventral, and anterolateral
aspect.

species) eye pairs [19]. Harvestmen
have at most a single pair of eyes: those
of Cyphophthalmi occur laterally,
whereas eyes generally occur medially
in Phalangida (Figures 1A-1C, 1E, and
1F) [10, 18, 20]. Neither type is defini-
tively homologous to lateral eyes, as
would be evidenced by an unambigu-
ous tapetum or facets [10-12]. Thus,
the homology of Opiliones eyes remains
contentious. A harvestman with both
eye pairs—as seen in Hastocularis
argus gen. nov., sp. hov.—would estab-
lish the separate evolutionary origins of
the cyphophthalmid and phalangid eyes, providing a direct
link to the plesiomorphic state observed in other arachnid or-
ders and falsifying the homology of the single eye pair of Cy-
phophthalmi and Phalangida.

The presence of two sets of eyes in Hastocularis argus is
supported by structures associated with a specific eye type
in modern opilionids (Figures 1C and 1F). Median eyes (Figures
111K, black arrowheads) are located on an anteriorly projec-
ting ocularium (a condensed region of cuticle that bears the
median eyes of Phalangida). The raised lateral prosomal tuber-
cles on the carapace are interpreted as ozophores, which bear
the laterally occurring eyes in some extant Cyphophthalmi
(Figure 11). Consistent with this interpretation, H. argus has a
single socket-like depression at the base of the ozophore in-
terpreted as an eye (Figures 1J and 1K, white arrowheads).
Given that phylogenetic analyses recover Tetraophthalmi sub-
ordo nov. as a stem-Cyphophthalmi (or a competing alterna-
tive, stem-Phalangida), optimization of this character state
suggests that the ancestor of Opiliones also bore both sets
of eyes, a plesiomorphic condition that occurs in a grade of
chelicerates that includes horseshoe crabs, scorpions, and
spiders.

Embryonic Gene Expression in a Phalangida Reveals
Vestiges of Ozophores

We reasoned that the presence of multiple eye types in
Tetrophthalmi (median and lateral) may have resulted in tran-
sient retention of this morphology during embryogenesis of
modern species. We therefore investigated the developmental
genetics of eye-associated outgrowths (ocularium and ozo-
phores) in a member of Phalangida, Phalangium opilio. The
appendage-patterning gene Distal-less (DIl) is commonly co-
opted to pattern nonappendage outgrowths. In the model
harvestman Phalangium opilio, recent work has demonstrated
that Po-Dll is expressed in domains that give rise to the ocula-
rium. Po-DIl knockdown results in the loss of the ocularium
[21]. We reinvestigated embryonic Po-DIl expression during
several consecutive stages of development. In addition to
the ocularial domains (Figures 4A-4C, black arrowheads), we
observed multiple transient, paired expression domains of
Po-DlIl in the lateral fields ventral to the semilunar grooves (Fig-
ures 4A-4C, white arrowheads). These domains peak in
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expression strength in stage 14 embryos and wane thereafter.
In all Opiliones, these tissues ultimately form the secretory
ozopore (the opening of the repugnatorial glands), which is
situated at the tip of an outgrowth, the ozophore, in Cyphoph-
thalmi (Figure 1C). In P. opilio, an outgrowth does not form in
this region in wild-type embryos, and Po-DIl knockdown dem-
onstrates no associated loss-of-function phenotype. These
data suggest that the domains in the lateral eye fields repre-
sent vestiges of ozophores. Similar transient DIl domains are
reported to signify vestigial outgrowths in other arthropods.
For example, they are observed in the intercalary segment of
millipedes, which putatively bore true appendages in the
ancestor of mandibulate arthropods [22], and in the vestigial
exopods of extant horseshoe crabs [23, 24].

These developmental genetic data independently corrobo-
rate the hypothesis of a four-eyed harvestman ancestor.
Limitations in the tractability of Cyphophthalmi species for
developmental genetic techniques have precluded the gener-
ation of comparable data for this group. In Cyphophthalmi em-
bryos, we predict conversely strong DIl domains in the lateral
eye fields and vestigial DIl expression in the dorsal anterior
of the eye fields, where the ocularium would occur. The

quently, ages of divergences within

Opiliones have been historically
overestimated, which has immediate implications for down-
stream analyses. For example, some groups of harvestmen
serve as textbook cases of vicariant biogeography, a disci-
pline contingent upon accurate molecular dating [8, 25-27].

Overestimation of divergence time estimates may also
suggest implausible evolutionary scenarios that are incon-
sistent with biogeochemistry (e.g., availability of atmospheric
oxygen) or availability of suitable habitat [28-30]. Previously
implied eupnoid diversification in the Devonian, compared to
Carboniferous diversifications in a large number of terrestrial
crown-group arthropods [1, 19, 31], has made Opiliones a sus-
piciously ancient outlier.

To reassess divergence times, we constructed a matrix of
272 extant harvestman species and seven chelicerate out-
groups for five genes. Using bona fide crown-group Cyphoph-
thalmi and Phalangida fossils and treating Tetrophthalmi as
stem-Cyphophthalmi or stem-Phalangida, we estimated the
diversification of Opiliones at 414 million years ago and of all
four suborders in the Carboniferous (Figure 3B), much younger
than the previously proposed Devonian ages for Eupnoi and
Dyspnoi [6, 7]. Estimated ages within Cyphophthalmi and La-
niatores were unaffected by the new calibration [8, 9]. We
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estimated a late Cambrian (491 million years ago) Xiphosura-
Arachnida split and the radiation of crown group arachnids
during the early Ordovician (475 million years ago). As an
external check, these dates are in accord with the earliest
known xiphosuran, which is Lower Ordovician in age [32],
and the earliest arachnid, which is Silurian [33].

These reassessments offer more-consistent dates of diver-
sification for extant harvestman suborders, which coincide
with evolutionary radiations of numerous terrestrial arthropod
groups. For example, Carboniferous origins have been re-
ported for such groups as orthosternous scorpions [34], en-
dopterygote insects [35, 36], spiders [37], and numerous
paraneopteran [38, 39] and polyneopteran [40, 41] insects.
These radiations may have been linked to high atmospheric
oxygen concentration in the Carboniferous [42], but could
also partially reflect sampling bias [43]. Nevertheless, a wide
range of studies across the tree of life [43] and the sedimentary
rock record [44] are starting to establish a clear chronology of
the development of terrestrial ecosystems. Our estimate of
arachnid origins (and thus likely terrestrialization) is in
accordance with other recent estimates [30] in suggesting
Cambro-Ordivician terrestrialization. Devonian Opiliones ori-
gins match well the pattern of basal radiations within major
clades throughout the Silurian and Devonian. Stem groups of
many terrestrial arthropod lineages are first found in the Devo-
nian, suggesting similar times of origin [1, 31]. Increasingly
familiar terrestrial arthropod (and, indeed, invertebrate and
vertebrate) fauna then develops in the Euamerican coal for-
ests, as with harvestmen. Our findings thus both provide a
novel analysis in reinforcing this chronology and emend a pre-
vious outlier in the evolutionary history of Opiliones.

Conclusions

Deciphering the placement of fossil lineages has been a recal-
citrant puzzle in many rami of the tree of life, most markedly
when a given lineage has a poor fossil record, is not prone to
fossilization, or has undergone an ancient rapid radiation.
However, placing fossils is integral to recognizing key macro-
evolutionary transitions, demonstrating the order of character
acquisition during evolution, and inferring the ages of ancient
divergences. Here we reveal an extinct harvestman sub-
order through microtomographic investigation of Hastocularis
argus, coupled with total evidence phylogenetic analysis. This
species is a singular discovery, as it demonstrates that the
condition of both median and lateral eye types is a lost plesio-
morphic state of Opiliones. Independent corroboration of this
hypothesis is provided by developmental genetics; gene
expression data in Phalangium opilio reveal putative vestiges
of ozophores during embryogenesis as a pair of transient DI/
expression domains with no associated phenotype upon

Figure 4. Dorsal Outgrowth and Neurogenesis in
Phalangium opilio

Expression of Po-DIl in intermittent develop-
mental stages shows coalescence of ocularial
domains (black arrowheads). Transient appear-
ance of ventrolateral domains (white arrowheads)
develops after stage 10 (A), being first observed
in stage 14 embryos (B) and waning by stage 18
(C). Abbreviations are as in Figure 1. In (A) and
(B), arrows indicate the labrum. Scale bars repre-
sent 200 um. See also Figure S1.

gene silencing of DIl. We thus show that fossils can be suc-
cessfully placed in phylogenies through multiple, consilient
approaches to analysis of morphological characters. Our
interpretation of eye homology in Opiliones is anticipated to
inform future efforts aimed at deciphering the genetic mecha-
nisms differentiating eye types in chelicerates, as well as
panarthropods more broadly. In this manner, complementary
approaches to evolutionary biology can ground paleontolog-
ical inference in experimental results and open new avenues
of scientific inquiry. Fossils help to explain otherwise enig-
matic observations in extant taxa, and the integration of palae-
ontology, phylogenetics, and development has great potential
as a means of understanding morphological evolution within a
group.

Experimental Procedures

Materials

A single fossil from Montceau Les Mines, MNHN-SOT 43943, was scanned
(Collection Sotty 2, deposited in the Muséum d’histoire naturelle d’Autun
belonging to the Muséum national d’Histoire naturelle, Paris). This was a
void within a siderite nodule, which has split into four parts; one part could
not be located.

MicroCT Reconstruction

Two scans were performed at the Natural History Museum, London on a
Nikon HMX-ST 225 with a tungsten reflection target. That of the whole fossil
(three parts) was conducted at a current/voltage of 185 1A/180 kV, with a
2 mm copper filter and 3,142 projections, providing an 18.4 um voxel size.
A local scan of the prosoma was performed at a current/voltage of
195 pA/195 kV, with a 0.5 mm copper filter and 6,284 projections, providing
a resolution of 6.6 um. Both were reconstructed with CTPro V2.1, and the
resulting tomographic data sets were used to create two 3D, virtual models
of the organism (both provided at http://dx.doi.org/10.5061/dryad.r32p3)
using the custom SPIERS software suite [45] following the methods of Gar-
wood et al. [46]. Isosurfaces were ray-traced in Blender [47]; missing ele-
ments of the limbs were created using the software’s mesh creation tools
and rendered partially transparent.

Phylogenetic Placement of Fossils

The morphological data matrix compiled by Giribet et al. [20] and modified
by Garwood et al. [3] was modified to code the new specimen and additional
fossils (Eophalangium sheari and Mesobunus dunlopi), containing 158 char-
acters and 46 taxa. The morphological data matrix is available in the public
database Morphobank (Project 793). The morphological data matrix was
analyzed in combination with the five-gene molecular data set of Giribet
et al. [6], modified by treatment with GBlocks v.0.91b [48] to cull positions
of ambiguous homology. The combined matrix of 4,043 characters is avail-
able at http://dx.doi.org/10.5061/dryad.r32p3. These data were analyzed
under Bayesian inference in MrBayes v.3.1.2 [49], with the morphological
partition assigned a discrete equal rates model [50] and each gene assigned
a unique GTR + | + I' model, as selected in jModeltest v.0.1.1 [51, 52]. Four
runs each with four chains, and a default distribution of hot and cold chains,
were conducted for 107 generations. Convergence diagnostics were as-
sessed in Tracer v.1.5 [53], and 25% of all 16 runs were discarded as
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burn-in. Branch attachment frequencies were obtained from a posteriori
trees using Phyutility v.2.2 [54].

Estimation of Divergence Times

The five-gene phylogenetic matrix sampling 272 extant harvestman species
and seven chelicerate outgroups is available at http://dx.doi.org/10.5061/
dryad.r32p3. Ages of clades were inferred using BEAST v. 1.7.4 [55, 56].
Each data partition was assigned a unique GTR + | + I" model as previously
outlined [8, 9], and a birth-death speciation tree prior was implemented.
Fossil taxa were used to calibrate divergence times: Arachnida with an
exponential prior from 430 to 525, with dates closer to the younger bound
upweighted, based on the presence of the earliest fossil scorpions [1, 2];
Opiliones with an exponential prior from 411 to 500 (dates close to 411 up-
weighted) on the basis of E. sheari from the Rhynie chert [4, 5]; Eupnoi,
Dyspnoi, and Phalangida with a uniform prior from 411 to 305 and no up-
weighting on the basis of the fossils reported by Garwood et al. [3]; and
an exponential prior for Stylocellidae (105 to 310, dates close to 105 are up-
weighted, as discussed by Giribet et al. [8]). Analysis is otherwise as re-
ported by Sharma et al. [9], with two Markov chains run for 1 08 generations.

Developmental Gene Expression

Fragments of the genes Po-ems, Po-otd, Po-Pax6, and Po-so were isolated
from a developmental transcriptome of Phalangium opilio, and gene identi-
ties were confirmed by reciprocal BLAST as in Sharma et al. [57]. Identifica-
tion and probe synthesis for Po-DIl are described in Sharma et al. [21].
Embryo fixation, riboprobe synthesis, whole-mount in situ hybridization,
and imaging were conducted following methods detailed by Sharma et al.
[57]. Expression of sense probes revealed only background staining
incurred by cuticle deposition. The list of gene-specific primers for sense
and antisense riboprobe synthesis is provided in Table S1.

Accession Numbers

The GenBank accession numbers for the neurogenetic marker se-
quences reported in this paper are as follows: KJ623612 (Banklt1710404
P_opilio_ems), KJ623613 (Banklt1710404 P_opilio_Pax6), KJ623614
(Banklt1710404 P_opilio_so), and KJ623615 (Banklt1710404 P_opilio_otd).
The Dryad DOI for the data reported in this paper is http://dx.doi.org/10.
5061/dryad.r32p3.
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one figure, and one table and can be found with this article online at
http://dx.doi.org/10.1016/j.cub.2014.03.039.

Author Contributions

R.G. conducted tomography and digital visualization of H. argus, P.S. con-
ducted phylogenetics and evo-devo. All authors contributed intellectually to
the study and to completion of the manuscript.

Acknowledgments

We are grateful to Sylvain Charbonnier for curatorial assistance and Paul
Selden for conveying materials and would like to acknowledge the assis-
tance provided by the Manchester X-ray Imaging Facility, which was funded
in part by the EPSRC (grants EP/F007906/1, EP/F001452/1, and EP/
102249X/1). Gene expression data were generated in the laboratory of Cas-
sandra G. Extavour. We are indebted to four anonymous reviewers, whose
comments and suggestions greatly refined this work. R.G. is an 1851 Royal
Commission Research Fellow, a Scientific Associate at the Natural History
Museum, London, and a member of the Interdisciplinary Centre for Ancient
Life (UMRI). P.P.S. was supported by the NSF Postdoctoral Research
Fellowship in Biology under grant number DBI-1202751. This work was
partially supported by internal MCZ funds to G.G.

Received: November 15, 2013
Revised: January 29, 2014
Accepted: March 13, 2014
Published: April 10, 2014

References

1.

10.

11.

12

13.

14,

15.

16.

17.

18.

19.

20.

21.

. Dunlop,

Dunlop, J.A., Scholtz, G., and Selden, P.A. (2013). In Water-to-Land
Transitions, A. Minelli, G. Boxshall, and G. Fusco, eds. (Berlin:
Springer Berlin Heidelberg), pp. 417-439.

. Dunlop, J.A. (2010). Geological history and phylogeny of Chelicerata.

Arthropod Struct. Dev. 39, 124-142.

. Garwood, R.J., Dunlop, J.A., Giribet, G., and Sutton, M.D. (2011).

Anatomically modern Carboniferous harvestmen demonstrate early
cladogenesis and stasis in Opiliones. Nat Commun 2, 444.

. Dunlop, J.A., Anderson, L.l., Kerp, H., and Hass, H. (2004). A harvestman

(Arachnida: Opiliones) from the Early Devonian Rhynie cherts,
Aberdeenshire, Scotland. Trans. R. Soc. Edinb. Earth Sci. 94, 341-354.
J.A., Anderson, L.l., Kerp, H., and Hass, H. (2003).
Palaeontology: preserved organs of Devonian harvestmen. Nature
425, 916.

. Giribet, G., Vogt, L., Gonzalez, A.P., Abel, P.G., Prashant, S., and Kury,

A.B. (2010). A multilocus approach to harvestman (Arachnida:
Opiliones) phylogeny with emphasis on biogeography and the system-
atics of Laniatores. Cladistics 26, 408-437.

. Hedin, M.C., Starrett, J., Akhter, S., Schonhofer, A.L., and Shultz, J.W.

(2012). Phylogenomic resolution of paleozoic divergences in harvest-
men (Arachnida, Opiliones) via analysis of next-generation transcrip-
tome data. PLoS ONE 7, e42888.

. Giribet, G., Sharma, P.P., Benavides, L.R., Boyer, S.L., Clouse, R.M.,

De Bivort, B.L., Dimitrov, D., Kawauchi, G.Y., Murienne, J., and
Schwendinger, P.J. (2012). Evolutionary and biogeographical history
of an ancient and global group of arachnids (Arachnida: Opiliones:
Cyphophthalmi) with a new taxonomic arrangement. Biol. J. Linn. Soc.
Lond. 705, 92-130.

. Sharma, P.P., and Giribet, G. (2011). The evolutionary and biogeo-

graphic history of the armoured harvestmen - Laniatores phylogeny
based on ten molecular markers, with the description of two new fam-
ilies of Opiliones (Arachnida). Invertebr. Syst. 25, 106-142.

Sharma, P.P., and Giribet, G. (2006). A new Pettalus species (Opiliones,
Cyphophthalmi, Pettalidae) from Sri Lanka with a discussion on the evo-
lution of eyes in Cyphophthalmi. J. Arachnol. 34, 331-341.

Alberti, G., Lipke, E., and Giribet, G. (2008). On the ultrastructure and
identity of the eyes of Cyphophthalmi based on a study of Stylocellus
sp. (Opiliones, Stylocellidae). J. Arachnol. 36, 379-387.

Shear, W.A. (1993). New species in the opilionid genus Stylocellus from
Malaysia, Indonesia and the Philippines (Opiliones, Cyphophthalmi,
Stylocellidae). Bull. Br. Arachnol. Soc. 9, 174-188.

Engel, M.S., Davis, S.R., and Prokop, J. (2013). Insect wings: the evolu-
tionary development of nature’s first flyers. In Arthropod Biology and
Evolution, A. Minelli, G. Boxshall, and G. Fusco, eds. (Berlin: Springer
Berlin Heidelberg), pp. 269-298.

Legg, D.A., Sutton, M.D., and Edgecombe, G.D. (2013). Arthropod fossil
data increase congruence of morphological and molecular phylogenies.
Nat Commun 4, 2485.

von Reumont, B.M., Jenner, R.A., Wills, M.A., Dell’ampio, E., Pass, G.,
Ebersberger, I., Meyer, B., Koenemann, S., lliffe, T.M., Stamatakis, A.,
et al. (2012). Pancrustacean phylogeny in the light of new phylogenomic
data: support for Remipedia as the possible sister group of Hexapoda.
Mol. Biol. Evol. 29, 1031-1045.

Dunlop, J.A., and Anderson, L.1. (2005). A fossil harvestman (Arachnida,
Opiliones) from the Mississippian of East Kirkton, Scotland. J. Arachnol.
33, 482-489.

Sharma, P.P., and Giribet, G. (2009). Sandokanid phylogeny based on
eight molecular markers—the evolution of a southeast Asian endemic
family of Laniatores (Arachnida, Opiliones). Mol. Phylogenet. Evol. 52,
432-447.

Shultz, J.W. (2007). A phylogenetic analysis of the arachnid orders
based on morphological characters. Zool. J. Linn. Soc. 150, 221-265.
Dunlop, J.A., and Penney, D. (2012). Fossil Arachnids (Manchester: Siri
Scientific Press).

Giribet, G., Edgecombe, G.D., Wheeler, W.C., and Babbitt, C. (2002).
Phylogeny and systematic position of Opiliones: a combined analysis
of chelicerate relationships using morphological and molecular data.
Cladistics 18, 5-70.

Sharma, P.P., Schwager, E.E., Extavour, C.G., and Giribet, G. (2012).
Evolution of the chelicera: a dachshund domain is retained in the deuto-
cerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol. Dev.
14, 522-533.


http://dx.doi.org/10.5061/dryad.r32p3
http://dx.doi.org/10.5061/dryad.r32p3
http://dx.doi.org/10.5061/dryad.r32p3
http://dx.doi.org/10.5061/dryad.r32p3
http://dx.doi.org/10.1016/j.cub.2014.03.039

Please cite this article in press as: Garwood et al., A Paleozoic Stem Group to Mite Harvestmen Revealed through Integration of Phy-
logenetics and Development, Current Biology (2014), http://dx.doi.org/10.1016/j.cub.2014.03.039

Integrative Approaches in Systematic Paleontology
7

22.

23.

24,

25.

26.

27.

28.

29,

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

M

42,

43.

44,

45.

Prpic, N.M., and Tautz, D. (2003). The expression of the proximodistal
axis patterning genes Distal-less and dachshund in the appendages
of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role
of these genes in patterning the head appendages. Dev. Biol. 260,
97-112.

Mittmann, B., and Scholtz, G. (2001). Distal-less expression in embryos
of Limulus polyphemus (Chelicerata, Xiphosura) and Lepisma saccha-
rina (Insecta, Zygentoma) suggests a role in the development of mech-
anoreceptors, chemoreceptors, and the CNS. Dev. Genes Evol. 211,
232-243.

Briggs, D.E.G., Siveter, D.J., Siveter, D.J., Sutton, M.D., Garwood, R.J.,
and Legg, D.A. (2012). Silurian horseshoe crab illuminates the evolution
of arthropod limbs. Proc. Natl. Acad. Sci. USA 109, 15702-15705.
Boyer, S.L., Clouse, R.M., Benavides, L.R., Sharma, P.P., Schwendinger,
P.J., Karunarathna, ., and Giribet, G. (2007). Biogeography of the world:
a case study from cyphophthalmid Opiliones, a globally distributed
group of arachnids. J. Biogeogr. 34, 2070-2085.

Crisp, M.D., Trewick, S.A., and Cook, L.G. (2011). Hypothesis testing in
biogeography. Trends Ecol. Evol. 26, 66-72.

Sharma, P.P., and Wheeler, W.C. (2013). Revenant clades in historical
biogeography: the geology of New Zealand predisposes endemic
clades to root age shifts. J. Biogeogr. 40, 1609-1618.

Graur, D., and Martin, W. (2004). Reading the entrails of chickens:
molecular timescales of evolution and the illusion of precision. Trends
Genet. 20, 80-86.

Crisp, M.D., and Cook, L.G. (2005). Do early branching lineages signify
ancestral traits? Trends Ecol. Evol. 20, 122-128.

Rota-Stabelli, O., Daley, A.C., and Pisani, D. (2013). Molecular timetrees
reveal a Cambrian colonization of land and a new scenario for ecdyso-
zoan evolution. Curr. Biol. 23, 392-398.

Garwood, R.J., and Edgecombe, G.D. (2011). Early Terrestrial Animals,
Evolution, and Uncertainty. Evol. Educ. Outreach 4, 489-501.

Van Roy, P., Orr, P.J., Botting, J.P., Muir, L.A., Vinther, J., Lefebvre, B., el
Hariri, K., and Briggs, D.E. (2010). Ordovician faunas of Burgess Shale
type. Nature 465, 215-218.

Dunlop, J.A. (1996). A trigonotarbid arachnid from the Upper Silurian of
Shropshire. Palaeontology 39, 605-614.

Legg, D.A., Garwood, R.J., Dunlop, J.A., and Sutton, M.D. (2012). A
taxonomic revision of Orthosternous scorpions from the English
Coal-Measures aided by X-ray micro-tomography. Palaeontol.
Electron. 15, 14A.

Nel, A., Roques, P., Nel, P., Prokin, A.A., Bourgoin, T., Prokop, J.,
Szwedo, J., Azar, D., Desutter-Grandcolas, L., Wappler, T., et al.
(2013). The earliest known holometabolous insects. Nature 503,
257-261.

Béthoux, O. (2009). The earliest beetle identified. J. Paleontol. 83,
931-937.

Selden, P.A. (1996). First fossil mesothele spider, from the Carboniferous
of France. Rev. Suisse Zool. Vol. Hors Sér. 2, 585-596.

Nel, P., Azar, D., Prokop, J., Roques, P., Hodebert, G., and Nel, A. (2012).
From Carboniferous to Recent: wing venation enlightens evolution of
thysanopteran lineage. J. Syst. Paleontol. 10, 385-399.

Smithers, C.N. (1972). The classification and phylogeny of the
Psocoptera. Aust. Mus. Mem. 14, 1-349.

Béthoux, O., Klass, K.D., and Schneider, J.W. (2009). Tackling the
Protoblattoidea problem: Revision of Protoblattinopsis stubblefieldi
(Dictyoptera; Late Carboniferous). Eur. J. Entomol. 706, 145-152.

. Béthoux, O., Cui, Y.-Y., Kondratieff, B., Stark, B., and Ren, D. (2011). At

last, a Pennsylvanian stem-stonefly (Plecoptera) discovered. BMC Evol.
Biol. 11, 248.

Graham, J.B., Aguilar, N.M., Dudley, R., and Gans, C. (1995).
Implications of the late Palaeozoic oxygen pulse for physiology and
evolution. Nature 375, 117-120.

Kenrick, P., Wellman, C.H., Schneider, H., and Edgecombe, G.D.
(2012). A timeline for terrestrialization: consequences for the carbon
cycle in the Palaeozoic. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367,
519-536.

Davies, N.S., and Gibling, M.R. (2013). The sedimentary record of
Carboniferous rivers: Continuing influence of land plant evolution on
alluvial processes and Palaeozoic ecosystems. Earth Sci. Rev. 120,
40-79.

Sutton, M.D., Garwood, R.J., Siveter, D.J., and Siveter, D.J. (2012).
Spiers and VAXML: A software toolkit for tomographic visualisation,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

and a format for virtual specimen interchange. Palaeontol. Electron.
15, 5T.

Garwood, R.J., Ross, A, Sotty, D., Chabard, D., Charbonnier, S., Sutton,
M.D., and Withers, P.J. (2012). Tomographic reconstruction of neopter-
ous carboniferous insect nymphs. PLoS ONE 7, e45779.

The Blender Foundation (2013). Blender (Amsterdam: The Blender
Foundation). http:// http://www.blender.org/.

Castresana, J. (2000). Selection of conserved blocks from multiple
alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17,
540-552.

Huelsenbeck, J.P., and Ronquist, F. (2005). Bayesian analysis of molec-
ular evolution using MrBayes. In Statistical Methods in Molecular
Evolution Statistics for Biology and Health, R. Nielsen, ed. (New York:
Springer), pp. 183-226.

Lewis, P.O. (2001). A likelihood approach to estimating phylogeny from
discrete morphological character data. Syst. Biol. 50, 913-925.
Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algo-
rithm to estimate large phylogenies by maximum likelihood. Syst. Biol.
52, 696-704.

Posada, D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol.
Evol. 25, 1253-1256.

Rambaut, A., and Drummond, A.J. (2009). Tracer v. 1.5. http://beast.bio.
ed.ac.uk/.

Smith, S.A., and Dunn, C.W. (2008). Phyutility: a phyloinformatics
tool for trees, alignments and molecular data. Bioinformatics 24,
715-716.

Drummond, A.J., Ho, S.Y.W., Phillips, M.J., and Rambaut, A. (2006).
Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88.
Drummond, A.J., and Rambaut, A. (2007). BEAST: Bayesian evolu-
tionary analysis by sampling trees. BMC Evol. Biol. 7, 214.

Sharma, P.P., Schwager, E.E., Extavour, C.G., and Giribet, G. (2012).
Hox gene expression in the harvestman Phalangium opilio reveals
divergent patterning of the chelicerate opisthosoma. Evol. Dev. 74,
450-463.


http://www.blender.org/
http://beast.bio.ed.ac.uk/
http://beast.bio.ed.ac.uk/

	A Paleozoic Stem Group to Mite Harvestmen Revealed through Integration of Phylogenetics and Development
	Results and Discussion
	Phylogenetic Analyses Reveal a Distinct Fossil Harvestman Suborder
	Re-evaluation of Homology Statements of Eyes in Opiliones
	Embryonic Gene Expression in a Phalangida Reveals Vestiges of Ozophores
	Increased Accuracy of Harvestmen Molecular Dating Reflects Congruence of Arthropod Evolutionary Dynamics in the Paleozoic
	Conclusions

	Experimental Procedures
	Materials
	MicroCT Reconstruction
	Phylogenetic Placement of Fossils
	Estimation of Divergence Times
	Developmental Gene Expression

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References


