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We start with a Rosen-Roback spatial equilibrium.  A person who chooses to live in a given house receives each period a city-specific 

wage level, “w”, a city-specific amenity level, “A”, a location-specific amenity level “a”, and pays rent “r”. 1   Free mobility implies that 

= raAw −++ U , where U  refers to the reservation flow of utility.   This equality implies that rent equals UaAw −++ , or ar += θ , 

where UA −w +≡θ .   The composite term θ  combines wages, city-specific amenities, and reservation utility to form an overall demand for the 

city.  The location-specific amenities might capture distance to the city center in a conventional monocentric model, but they can also reflect any 

exogenous characteristic that makes one place more desirable than another.  We further assume that each city is small relative to the overall 

economy so that general equilibrium effects can be ignored.2 

We assume that θ  follows a classic Brownian motion: dzdtd σαθ += .  Location-specific amenities “a” are fixed over time.  These 

amenities differ across the N lots that exist in the city and the distribution of ‘a’ is characterized by a cumulative distribution F(a) and a density 

f(a).   Each lot can only contain one house, and we assume that all houses are physically identical.  Houses cost ‘C’ to build and ‘m’ to use (or 

maintain).  If the resident pays ‘m’, then the house does not depreciate.  If the owner does not pay ‘m’, then the house is not usable, but it becomes 

usable as soon as the resident pays ‘m’ again.  This can be understood as an endogenous depreciation model in which houses only leave the market 

when r<m, but even then, exit need not be permanent.  Consequently, at any point in time, houses with values of ‘a’ for which am >−θ  will not 

be in use.  We let  )()(ˆ tta m θ−=  denote the amenity level of the lowest quality occupied housing in the city in period t.   

                                                 
1 It is easiest to think of everyone as a renter, but equivalently, every resident can be thought of as an owner-occupier where “r” represents the user cost of owner-
occupied housing.   
2 General equilibrium effects would prevent us from treating the reservation utility as an exogenous parameter.   
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Developers make construction decisions to maximize the expected value of future net revenues, discounted continuously at a rate ρ .3  

Using the tools of Dixit and Pindyck (1994), we know that a developer, who owns a site with amenity level ‘a’, will build when θ  equals a 

threshold value of *θ  = am −+λ , where λ satisfies the condition  with 1)( =+− −φλρλφ eC
αρσα

ρφ
−+

=
22 2

2
 .  For values of θ  

above *θ , building is strictly preferred, and for values of θ  below *θ , not building is strictly preferred.   

Housing value is determined by the continuous time Bellman equation, ( ) ( ))(1 θπθρ dVE
dt

V += , where E(.) represents the 

expectations operator, ( )θV  represents the value of the house and ( )0,maMax −+= θπ .  The value of the house itself only changes with θ , 

which follows the stochastic process dzdtd σαθ += .  Therefore, Ito’s Lemma tells us that ( ) ( )( )dtV θσθ ′′+ 25.VdVE α ′=)( .  The Bellman 

equation then can be rewritten as ( ) ( ) ( )θσρ VV ′′+ 25.θαπθ V ′+= .   Solving this differential equation tells us that ( )θV  takes the form 
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, where k, ,  and  are constants of integration.   0 1k 2k

 
3 Their maximand is , where n(t) refers to net revenues in each time period. ∫
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In the region where ma >+θ , the value function must take the form ( )
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and in the region where ma <+θ , the value function takes the form ( )
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jkθ =V , where   are constants.  As 

the value of ( )θV  should go to zero as θ  approaches ∞− , it must be that .  The option value of leaving the house empty should go to 

zero as 

0=1
bk

θ  approaches , so .  Thus, we have the solution that ∞+ 02 =ak ( )θV  equals 
θ
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To solve for   and , we use that fact that there can be no jumps in either ak1
bk2 ( )θV  or ( )θV ′  at ma =+θ  (the smooth pasting 

property).  The first equality requires that 
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or 
( ) a
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are positive.   

To calculate the point at which construction makes sense requires calculating the value of an empty lot.  We use ( )θQ  to capture this 

value and note that the differential equation   ( ) ( ) ( )θσθαθρ QQQ ′′+′= 25.  again must hold.  This tells us that 
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+= ekekQ cc   .  As the option to build must approach 0 as θ  approaches ∞− , it must be that .  We now 

use the notation that 

01 =ck

*θ  is the level of θ  at which construction is optimal.  As it would never make sense to build when ma <+θ , we use the 

fact that ( ) CVQ −= *)(* θθ  and ( )* *)(θθ VQ ′=′  (i.e., the smooth pasting property) to solve for the constants.  Together, these two conditions 

give us the equations  
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 Solving these equations yields: 
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The equation am −+= λθ* can be inverted, so we can say that for any given value ofθ , there exists a value of ‘a’, denoted , which 

represents the least attractive lot-specific amenity level that will be developed.  As such, optimal development implies that the number of built-up 

lots in a growing city equals .  The value of

*a

*))(1( aFN − λ , and, hence, *θ  (for a given a) or a* (for a givenθ ) rises with C and σ  and falls 

withα .  As construction costs (C) rise or as the city’s growth trend (α ) falls, the threshold for construction increases and the level of 

development falls.  As the degree of randomness (σ ) rises, the option value of leaving a house empty rises and this also reduces the amount of 

development. 
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We then let θλ −+= ma*  denote the lowest amenity value lot that has been developed in the city, where θ  is the highest value that 

)(tθ has reached.  If )(tθ reaches a value greater thanθ , new housing is built and the city grows.  However, if )(tθ falls belowθ , the city does 

not necessarily shrink.  All units remain occupied until )(tθλθ >−  (or, equivalently, until *)(ˆ ata > ).  The size of λ  determines the extent of 

the buffer zone in which demand can fall before the city loses population.   

Because we can derive proofs in the case of the deterministic model, we proceed assuming that , and then return to the stochastic 

case for our simulations.

02 =σ

4  In deterministically growing cities, λ = Cρ  so Cma ρθ =−+* , so that construction occurs to the point where the 

interest rate times construction costs equals net rents.  In deterministically declining cities, λ  satisfies ( ) )1( /αρλα e−−=ρλρ C− , and 

θλ −+= ma* .  Net rents for new construction must exceed the interest rate times construction cost when rents are expected to decline.        

We define time zero so that )0(θ  is the historical maximum value that θ  has reached (i.e., θθ =)0( ).  We also use the following 

linearizing approximation throughout the analysis:  

Approximation One: 
( ) ( )

( ) xf
aF

aFxaF
min1

=
−

−+
.   

Proposition 1 then follows (see Appendix for the proofs). 

 

                                                 
4 Given that urban growth rates are remarkably correlated over time (see Table 2 below), treating them as being characterized primarily by different growth 
trends may not be a bad approximation in reality.   
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Proposition 1: If θθ =)0(  then the growth rate of the city between period 0 and period t will equal  tf αmin  if 0≥α , 0  if  

1
0

2

−+
−

≥> − tet
C
ρρ

ρα  , and )(min λα +tf  if  α
ρ

ρ
ρ ≥

−+
−

− 1

2

tet
C

.  

 

The proposition divides cities into three groups.  Cities with positive growth trends grow at a rate equal to the trend rate times the time 

period times , where  reflects the number of lots close to the construction margin.  Cities with negative values of α which are small in 

absolute value have no change in population.  Rents and prices fall in these places, but there is no change in the number of occupied units because 

rents remain above maintenance costs.  In cities with more substantial negative trends, the rents of some houses no longer cover maintenance 

costs, so they are left vacant.  While these cities do have population losses, these losses are much smaller than the gains of growing cities’ whose 

trends are comparable in absolute value.   

minf minf

This sluggish response to negative shocks leads to Proposition 2:  

Proposition 2:  If θθ =)0( ,  is constant across cities, but minf α varies across cities then:  
ˆ(a) If the distribution of α  is symmetric and single peaked around 0>α  , then the mean growth rate is greater than the median, but the 

difference between the mean and median growth rates falls with α̂ . 
εβαα ++= z(b) If 0 , where z is an observable urban characteristic, and ε  is symmetric, mean zero, and single peaked, then for any 

positive constant k, the derivative of growth with respect to z will be greater when βα /)0−(= kz  than when βα /)( 0 kz +−= . 
 

The first part of the proposition states that if differences across cities are the result of different trends in demand, and if these trends are 

symmetrically distributed across cities, then population growth rates will be skewed to the left.  The second part of the proposition tells us that 
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observable factors which impact city growth will have a greater impact on population growth when these observable characteristics predict a 

positive growth rate than they will when they predict negative growth.  This result reflects the fact that durable housing restricts the tendency of 

cities to lose population, even if the level of demand for the city has fallen.   

We now consider growth rates starting from timeτ , so that for declining cities, )(τθ will not equalθ .  Proposition 3 describes the 

persistence of growth rates: 

Proposition 3: The population growth rate between time τ  and time τ2  equals the growth rate between time 0 and time τ  if the city is growing.  

If the city lost population between time 0 and time τ , then the growth rate between timeτ  and time τ2  will equal 
)(1 ατ− /

1
λ −

 times the 

growth rate between time zero and time τ .  
 

Both growing and declining cities have persistent growth rates because we assumed that the urban dynamics are the result of deterministic 

trends.  However, the relationship between past growth and future growth is stronger for declining cities.  This strong persistence of decline occurs 

because the durability of housing delays the onset of population loss. As a result, past population loss understates the degree that demand for the 

city truly has fallen.   

For declining cities, the value of )(τθθ −  can be measured using the share of the housing stock that is valued at less than the price of new 

construction (denoted S).  If )(. τθθλ −> , no homes have yet fallen into disuse.  Using Approximation One, we know that the share of homes 

with prices less than the price of new construction (S) equals ( ))(min τθθ −f .  If we then consider urban decline between time τ and time t (where 
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t > τ), once homes start to decay, the share of housing priced less than construction costs rises to λminf and the rate of population decline 

equals )(min τα −tf .  Further calculations produce: 

min

+ et
f

ρ

t −+ ))(( ταλ

 

Proposition 4a: If there is variation in α  across cities but is constant, then the expected growth rate of a city between time minf τ and time t falls 

discontinuously as S rises from zero, is independent of S when S is greater than zero but less than 
1

2

−− t

C
ρ

τρ
 , and then declines monotonically 

with S for higher values of S.   
  
 
 
The share of the initial stock of housing that is valued below construction costs reflects the size of the city’s negative trend.  When S is low, α  is 

negative but small in absolute value, and the expected growth rate between time τ  and time t is zero. For higher levels of S, the growth rate equals 

Sf −•min .  

We can prove a result similar to Proposition 4a in the stochastic case, where we eliminate city-specific trends and assume that all cities 

have the same basic parameter values.  At timeτ , the city is again characterized by )(τθ , the current value of θ , and )(τθ , the highest value that 

θ  has reached by that time.   The share of the housing stock that is priced below construction costs again equals ( )λτθτ ),()min −Maxf θ (  and 

Proposition 4b follows:5  

                                                 
5  In this case, λ  solves ( )σρλσρρλ 212)( −−=− eC .      
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Proposition 4b:  Expected city population growth declines with S when S is less than λ , but then rises discontinuously at the point where S 
equals λ .    
 

This proposition reiterates the conclusion of Proposition 4a that increases in the share of housing with values below the cost of new construction 

lower the expected growth rate, but in this case there is a reversal of the comparative static at the point where S equals λ .  This reversal occurs 

because once S equals λ , the large supply of cheap housing makes it easier to grow because these houses can be reoccupied more cheaply than 

houses could be built from scratch.        

We now turn to the implications of the model for prices.  Data availability forces us to focus on median prices and rents, and we let 

 refer to the median occupied lot’s amenity value as of time t.  As demand for a city changes, two things happen which cause the median 

rent to shift.  First, the price of any given lot is directly determined by 

)(tamed

θ  so demand directly moves prices.  Second, the identity of the median lot 

will change as the size of housing stock changes.  As cities build more homes, the median lot will have a lower value of “a” because new 

construction has increased the number of fringe lots with low levels of site-specific amenities.  This effect can help explain observations like Las 

Vegas (discussed above) where population soars and real rents actually fall.  As the city grows, the median lot is becoming relatively less 

attractive.     

We now treat 
)(2

*)(

medaf
af

 as a constant and use the following approximation, 

Approximation # 2: ( ) ( ))()(
)(2

*)()( ττ marmar
med

medmed ata
af
afata −•=− , 
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where denotes the marginal lot in use, which equals in growing cities and in declining cities.  We also now return to the 

deterministic model where home prices equal 

)(tamar )(* ta )(ˆ ta

( ) 2/ ρθ −+ ma /αρ +  in a growing city and ( ) 2)(
/1/ ραρθ

θ
α
ρ











−+−+

−+ ma
ema   in a 

declining city.  In a growing city, θ  is rising and the value of a* is falling over time because of new construction, so the overall change in the 

median housing price equals 



)




(2

*)(

medaf
aft

ρ
α

−1 .  If  “a” was distributed uniformly, then new supply would halve the positive impact of 

increasing demand on the median housing price.  Following Proposition 1, in a declining city in which α  is less than zero but greater 

than
1ρ

2

−+
−

− tet
C
ρ

ρ
, there will be no supply response to urban decline.  Hence, the change in demand will be fully reflected in price changes.  For 

declining cities with values of α  that are more negative, there will be a supply response that will mediate the price response and less attractive 

homes will leave the market.  

These calculations and conclusions lead us to Proposition 5: 

Proposition 5: (A) If εβαα ++= z0 , where z is an observable urban characteristic, and ε  is symmetric, mean zero and single peaked, then for 
any positive constant k, the derivative of rent growth with respect to z will be less when βα /)0( −=z k  than when βα /)( 0 kz +−= . 
(B) If εβαα ++= z0 , where z is an observable urban characteristic, then the derivative of housing price growth with respect to z will jump 

from 







−

)(2
)(1

*

medaf
aft

ρ
β

to 
ρ
βt

 when 0=α .  
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(C)  For any growing city, housing price growth will equal 







−

)(2
)(11 *

min
medaf

af
fρ

times the percentage growth in population.  For any declining 

city, the ratio of housing price decline to population decline will be greater than this quantity.     
 
 

Part (A) of Proposition 5 tells us that the impact of exogenous characteristics on rent growth will be smaller for growing cities than for 

declining cities.  This comes from the fact that durability means that the supply adjustment will be less for declining cities. Part (B) gives us a 

similar result for housing price changes.  Part (C) suggests that the relationship between changes in prices and changes in population will be 

concave.  The slope of price change on population change will be less for growing cities than for declining cities.  This result stems from the 

smaller supply response for declining cities.  These conclusions formalize Figure 1, which provides the essential intuition that urban growth should 

show up most in rising numbers of people, but urban decline should show up most in declining home prices.        

The different implications for price and quantity changes may be the most distinct implication of the durable housing model.  If housing 

was putty, not clay, then rising demand for a city would create more houses that have higher prices; declining demand would reduce the housing 

stock and cause housing prices to fall.  Durability generates the asymmetry between housing prices and population growth.  In growing cities, 

rising prices and rising population levels go together; but in declining cities, prices fall first and far more steeply than population declines.  We 

now turn to the empirical implications of the model, and then simulate the model in Section V.   

 
Calibrating the Model 
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We now calibrate the model to see whether our framework can mimic the empirical features of urban decline.  To do so, cities with the 

strongest negative trends should not depopulate even over long time spans, and declining cities generally should exhibit relatively small population 

changes and relatively large price declines.  Because rents reflect current demand for the city rather than expectations about the future, we focus on 

them.  Since most rented units are apartments, we use figures pertaining to them for the calibration exercise. 

The key parameters of the model are as follows:   (1) C, the cost of construction, (2) m, the cost of maintenance, (3) ρ , the interest rate, 

(4) α , a city-specific growth trend, (5) the distribution of a’s, or lot-specific amenity values within the city, and (6) , the variance of city-

specific demand shocks.  Given these parameter values, and given an initial value for 

2σ

θ , we will be able to examine in more detail the 

implications of the model.  We will assume each time period is a year and choose parameter values that reflect conditions between 1950 and 2000.  

We then simulate changes in population and prices over a fifty year period.  All figures discussed in this section are in 2000 dollars.   

The dynamics of median annual rents are used to impute the values of α and σ2.  We were able to collect a consistent set of rent data from 

the six decennial censuses dating back to 1950 for 206 cities.6  As r = θ – a, the change in median rents (denoted r50) over a decade will have two 

components: r50, t+10 – r50, t = (θ t+10 – θ t) + (a50, t+10 - a50, t).  The θ t+10 – θ t term represents the change in demand for the city over the decade, and the 

a50, t+10 - a50, t  term reflects the change in the identity of the median unit.  Because of the supply response, the change in median rents understates 

the true change in demand for a city. 

                                                 
6 More specifically, the data are as reported in various County and City Data Books, except for the 2000 figures, which were obtained from the Census web site.  
Median home price data also are available, but using rent data is more straightforward for the reason noted above and because it obviates the need to estimate a 
housing service flow based on the asset price.  

 14



The value of a50, t+10 - a50, t  is determined by estimating how much the median rent should have changed based on the change in the rental 

stock and the initial distribution of rents.  For example, if the rental stock in a city increased by 10 percent over the decade, then the new median 

rental would have been the 45th percentile rental unit in the initial time period.  More generally, a50, t+10 - a50, t  = a50, t -a50-.5x, t, with ‘x’ representing 

the percentage change in units over the decade.  The value of a50, t -a50-.5x, t is the difference in rents between the median rent and the rent at the 

50+.5x percent.  We use this difference, estimated from the initial period distribution of rents, to correct rent changes so they only reflect θ t+10 – θ 

t, the true change in demand for the city.7  

We then decompose θt+10 – θt into three terms:  (a) the city-specific trend αi , which does not change over time for any city i;  (b) a 

common national effect, µt , which can vary over time;  and (c) a city-specific idiosyncratic shock, εi,t , that also can vary across decades, and is 

mean zero with variance σ2.  In effect, θt+10 – θt = αi + µt + εi,t .  This representation is useful because it allows us to isolate individual city trends 

separately from national changes.  While we had no national changes in the model (because everything was relative to the national average), for 

simulation purposes it is impossible to sensibly treat post-war rent data without addressing the nation-wide increase in housing rents.  Hence, we 

compute µt for each decade as the mean change in θ, weighted by beginning of period population.8 

                                                 
7 The results reported below are based on the rent distribution (from well-defined central cities) from the 1980 Census, which is the first year for which 
consistently good distributional data were available.  The impact of adjusting for the change in the median unit can be very large for the most rapidly growing 
places in particular.  In San Diego for example, median real rent growth over the 1960s and 1970s was only $57 and $23, respectively.  However, the expansion 
of the city’s housing stock in each decade was so large that the implied changes in theta (the true demand shock) were $690 and $1178, respectively.  For a city 
such as Detroit that has been losing units on net, the decline in real median rents understates the true magnitude of the negative demand shock.  For example, real 
median rents declined by about -$13 during the 1960s, but we estimate that the change in theta between 1960 and 1970 was -$117.   We also experimented using 
the rent distribution from the 1990 Census, but none of our findings are sensitive to the choice of year. 
8 Nothing of importance is changed if we weight by housing units. 
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Subtracting this value from θt+10 – θt provides an estimate of αi + εi,t for each city in each decade.  Our estimate of αi is then obtained by 

averaging this value over the five decades of data we have for every city.  The weighted mean of α is zero by construction (median=-$9), with a 

standard deviation of $40 per year.  While there are many places with strong positive annual trends, (e.g., the 75th percentile value for α equals 

+$22 per year over the 1950-2000 time span), we are most interested in cities with declining trends.  Des Moines (IA) is the 25th percentile city 

with a negative trend of $-30 per year, Buffalo is the 10th percentile city with a negative trend of -$49 per year, and Youngstown (OH) is the first 

percentile city with a trend of -$71 per year.   

We can then estimate the value of σ2 by examining the deviation of adjusted rent changes  (or dθ) from their trend for each city.  The 

overall standard deviation of this value is $750 for decadal differences, which implies an annual standard deviation of $75.9  Thus, our estimate of 

σ2  is $5,625 (or 75*75).    As for the discount rate, Dixit and Pindyck (1994) show that the risk-free model using a risk-adjusted rate is equivalent 

to a model with risk-averse investors, so the appropriate calibration for ρ  is a risk-adjusted rate.  We use .08 as a value for the annual rate of 

interest ρ , a figure that approximates the real return on equities.10   

The R.S. Means Company provides consistent data on construction costs per square foot for single-family homes dating back to 1950, but 

to match the rent data we must translate this into a production cost for apartments.  We use the American Housing Surveys to gain insight into the 

relative size of rented versus owned units. According to the 1985 national file of the AHS, the living space of the median apartment was almost 

                                                 
9 This standard deviation hides a break between the 1950-1980 period and the 1980-2000 period.  During the early period, standard deviations are about $500 
dollars per decade.  In the later period, they are approximately double that amount.   
10 We have experimented with different rates ranging from .06 to .10.  None of our basic conclusions are altered by these changes in ρ.   
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exactly half that of the median owner-occupied home (810ft2 versus 1,612ft2).11  If we assume that the standard home in 1950 contained 1,400ft2 of 

living area, then a typical apartment of that era was about 700ft2 in size.12  Multiplying this by the cost per square foot in 1950 for a modest quality 

home yields an estimate of $30,800 (in 2000 dollars) for C.13          

These parameters help us to simplify the model discussed above.  The key construction condition implied by the Dixit and Pindyck-based 

model is 

(4) 
( )
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=−−+ −+
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ρθ
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)*(222
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2
2

*
ma

eCma  .    

Given our parameter values, or indeed any reasonable perturbation of those values, the αρσα

ρ

−+

−
22 2

2 C

e  option value term is essentially zero (even for 

cities with strong negative trends).  This means that we can work with the construction condition that ma −+*θ  (net rents) equals 

( ) ραρσαρ 22 22 −++C .  Given our parameters, the value of Cρ  is $2,464.  The cutoff level for net rents is $2,516 for growing cities with 

an alpha of +$50, $2,652 for cities with no trend, and $3,141 for declining cities with α=-$50.  Thus, the net rents needed to justify construction 

must be about 25 percent higher in a declining city than in a growing city.    

                                                 
11 This size relationship held throughout the 1990s, but we do not have similar data for prior years.   
12 There are no good data on house or apartment size prior to the 1985 AHS.  Data on the living area of newly constructed units are available from 1973-on, and 
the size of new homes has been increasing over the past quarter century.   Thus, there is no doubt that the typical residence was somewhat smaller in 1950 than it 
is today.  
13 Given the uncertainty surrounding the true value of C, we experimented with different values for it.  Changes of 10-20 percent (plus or minus) do not change 
the nature of the results reported in Table 5.   
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Another immediate implication of our parameter values is that the component of housing prices that comes from the option of leaving the 

house empty (described fully in Appendix 2) is almost always less than one percent of the value of the home.  As such, housing prices can be 

approximated by the formula from the deterministic version of the model, 2ρ
α

ρ
θ

+
−+ ma

.14  

We look to data on the bottom end of the rent distribution for guidance on minimum required maintenance expenditures.  Required costs 

must be at least as high as the cheapest rents we see being charged.  Data on apartments in urban areas from the 1950 Census indicates that 97 

percent of all units rented for at least $860 per year (in 2000 dollars).15  Only five percent of units were rented for under $990 annually.16 Given 

that the vast majority of units are not rented for under $1,000 per year, we assume that ‘m’ equals $1,000 in our base simulation.17   

                                                 
14 For example, in a city where demand is declining annually by an extreme -$100 per year, the option component is worth only $3,274 for a unit with annual net 
rents of $2,000, $7,157 for a unit with annual net rents of $1,000, and $10,583 for a unit with annual net rents of only $500.   
15 More specifically, these figures were taken from the table entitled “Dwelling Units—Contract and Gross Monthly Rent of Non-Farm Renter-Occupied Units:  
1940 and 1950” (No. 905) in the 1956 Statistical Abstract of the United States (p. 784).  The underlying data source is the decennial census. 
16 The underlying data actually are reported in interval form, so this calculation was made assuming a uniform density of units across dollar values within any 
given interval.   
17This implies that ‘m’ amounts to 29 percent of median annual rent in 1950 and is a little more than 3 percent of C, or production costs.  Data from other sources 
confirms the reliability of this parameter value and these ratios to median rent and asset value.  For example, more recent data on rents from the 2000 Census 
documents that 95 percent of rents were at least $2,400 per year, with the latest American Housing Survey telling us that 95 percent of apartments rented for more 
than $1,775.  These numbers suggest that something like $1,800 per year would be a good estimate for ‘m’ if we wanted to simulate fifty years beginning in 
2000.  Mean and median rents in 2000 for our 206 city sample were $6,672 and $6,492, respectively, so that the minimum rent required before it is left vacant is 
about 25 percent of median rent in the 2000.  This is slightly below, but still quite close to the ratio of ‘m’ to median rent that we are using for our 1950-based 
starting point.    

Data from the 2001 Consumer Expenditure Survey(CES) on spending by homeowners provide added support that our assumption regarding required 
costs is a sound one.  Given an average house value of approximately $150,000, the CES data show that owners spend about $8,850 annually across five relevant 
categories:  Property Taxes, Maintenance/Repairs/Insurance, Utilities/Fuels/Public Services, Housekeeping Supplies, and Household Furnishings and Equipment.  
While this amounts to nearly 6 percent of value, much of it clearly is not required for continued occupancy.   If we assume that 80 percent of Property Taxes and 
Utilities/Fuels/Public Services costs are required for the marginal unit, along with 20 percent of the other costs (on the assumption that one can really skimp on 
maintenance, housekeeping, and furniture), estimated spending falls to about $4,800 or 3.2 percent of asset value.    
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The last parameter we need to pin down before running our calibration exercise involves the distribution of “a” or the site-specific amenity 

value.  Conceptually, this should be inferred from the distribution of rents across sites, holding constant the quality of the structure.  To 

approximate this, we estimated a rent hedonic on apartments (including MSA dummies) using the national files of the American Housing Survey, 

and then use the residuals from that estimation to represent site quality.18  The simulation results discussed below are based on a distribution of ‘a’ 

from the 1985 AHS, with the figures scaled down to account for the change in median rents between 1950 and 1985.  Naturally, the mean of the 

residuals is zero (the median is -$126, with all figures representing annual rents in 2000 dollars to be comparable with the other parameter values 

discussed above).  The standard deviation of the distribution is $987, indicating that there are some very high and low quality sites at the extremes 

of the distribution.19   

There are a fixed number of developable sites in our calibration exercise, and we set the initial value of θ=$4,000 to reflect an initially 

attractive city which still has room to grow before its bumps into our artificial, binding constraint on new residences.  This initial value generates a 

decent-sized city in the initial period and is consistent with the typical 1950 rent.20  We think of this starting point as characterizing the many 

                                                 
18 The hedonic itself is a standard one, with rents regressed on a host of physical characteristics reported in the AHS.  These include the type of heating system, 
the age of the structure, the presence of full kitchen and plumbing facilities, the number of bathrooms, the number of bedrooms, the number of other rooms, the 
presence of central air conditioning, and MSA dummies.   Experimentation with different functional forms does not alter the results in any significant way. 
19 A relatively large city with (say) 75 percent of its potential sites developed would have the site quality associated with the value from the 25th percentile of the 
rent residual distribution, or -$624, in our calibration.  Conversely, a relatively small city with only one-quarter of all its potential sites developed would have the 
site quality given by the value from the 75th percentile of the rent residual distribution, or +$495.  Real median rents averaged $304 per month across our 206 
cities in 1950.  Hence, site quality (as opposed to the physical structure) accounts for no more than two months of rent for places in the middle of the distribution.  
In the tails (i.e., for really large and really small places), this obviously is not the case. 
20 The mean of the median rents in 1950 across the 206 cities in our sample was $3,650 (in 2000 dollars).  Hence, the initial attractiveness of the city is being 
driven by city-level forces (wages or amenities), not site-specific quality values, which we think is appropriate.     
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manufacturing cities that were thriving following the Second World War, but that were soon beset by the long-term negative shock associated with 

the de-urbanization of manufacturing. 

We then computed 1,000 simulations of cities with different city-level trends.  We suspect that our inability to control fully for increasing 

unit quality over time (e.g., rising unit size, better materials, etc.) leads the estimates of α discussed above to understate the true extent of trend 

decline and overstate the amount of trend growth.  If they are systematically misstated by $25, then we should use an alpha of -$100 to represent 

the cities with the most severely negative trends in the data (as α’s<-$75 are rarely observed in the data), and so forth.  Table 5 reports actual and 

simulated population changes for cities with differing levels of trend decline.21 

Among the 206 central cities in our sample, there literally are only a handful (Detroit, Johnston, Saginaw, St. Louis and Youngstown) with 

average annual declines in demand of around -$75 over the entire second half of the 20th Century.  As the top panel of Table 5 documents, actual 

population loss among this group over the 1950-2000 time period averaged a little over 50 percent.  The simulation results for this group of cities, 

which are reported in the adjacent panel, yielded slightly higher losses, with the mean run losing 68 percent of its population (the median was -72 

percent), and with the inter-quartile range of simulated population losses running from -83 percent to –58 percent.  While this overestimates actual 

losses, the correspondence with reality seems close given that we are dealing with such extreme cases.  Our simulations also suggest that the 

probability of complete depopulation is zero for these cities with the strongest negative trends.22      

                                                 
21 We also provide simulation results for cities with a zero trend.  However, we do not report findings for cities with clear positive trends.  Because our 
calibration exercise works with a fixed number of developable sites, cities with strong positive trends quickly build out and then are constrained.  While such a 
set-up well may have useful implications for the analysis of attractive areas with binding growth controls, that is a topic for future research.  Our focus here is on 
decline. 
22 That is, there is no case among the 1,000 simulation runs in which all housing units were abandoned.  
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A larger group of 26 cities was estimated to have somewhat less negative trends in demand of about -$50.  We include cities with alphas 

as low as -$60 (e.g., Flint and Cleveland) and as high as -$40 (e.g., Toledo and Baltimore).  Once again, because our estimates of alpha understate 

the full extent of the negative trend in demand for these cities, the second panel of  

Table 5 reports on how our simulations for a city with α=-$75 matches their history over 1950-2000.   

The mean actual population loss between 1950 and 2000 for these 26 cities was  

-25 percent.  The median city lost 31 percent of its people, and the inter-quartile range runs from  

–39 percent to –17 percent.  The mean population loss among the 1,000 simulation runs was –26 percent, which almost perfectly matches actual 

experience.  And, we only do slightly less well when we look at the inter-quartile range of simulation results which ran from –47 percent to 0 

percent (i.e., no population loss).23  The model captures the long-run history of these cities quite well. 

 Our third set of cities includes 51 places with modestly negative alphas of about -$25 per year.  We include all cities with estimated annual 

trends ranging from -$15 to -$35 (this would include Chicago, Philadelphia, Des Moines and New Orleans).  For the reason discussed above, we 

try to simulate their experience using α=-$50. Actual experience for this group shows relatively little population loss or gain.  The mean 

percentage change in population over the 1950-2000 time span was –3 percent and the median was -9 percent, with a standard deviation of 24 

percent.   

                                                 
23 Five of the 26 cities in this group actually experienced a population increase between 1950 and 2000.  Thus, a 25 percent probability of having no loss or a 
population gain is not at odds with actual experience for this group of cities.  Of these, Toledo (OH), Peoria (IL), and Waterloo (IA) grew from 1-5 percent over 
the fifty years.  Five percent of our simulation runs yielded population gains of from 2-7 percent, with none generating more than 10 percent growth.  Only 
Decatur (GA) and Davenport (IA), which each grew by over 20 percent, are outside the range of our simulation findings, as only one percent of the simulations 
generated values of that magnitude. 
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 The simulation results reported in the third panel of Table 5 largely are consistent with this type of outcome, as the mean and median 

simulations yield virtually no population change.  The inter-quartile range also is tightly centered on no change, with the 25th percentile result 

being no change and the 75th percentile result showing a 3 percent increase.  Ten percent of the simulations generated growth of more than 10 

percent, with one percent of the runs resulting in more than a 25 percent population gain.  Less than 10 percent of the simulation runs resulted in 

population loss.  These simulations suggest that a productive, attractive place with a high initial θ that experiences only a moderate negative trend 

in demand will not decline or grow very much.      

 Our fourth set of cities have measured city trends that are close to zero, and we include each place with an annual alpha ranging from -$10 

to +$10.  As discussed above, we then try to simulate their experience using α=-$25 in the model.  It is noteworthy that the 40 cities in this group 

almost always (in 36 cases) had larger populations in 2000 than in 1950.  The mean growth rate was 61 percent (standard deviation of 49 

percentage points), with the inter-quartile range running from 29 percent to 86 percent.  The fourth panel in Table 5 shows that we under predict 

the extent of population growth for this group, as mean simulated growth is 8 percent and the 75th percentile growth is 11 percent.  Hence, we do 

not capture the magnitude of growth that actually occurs among this group of cities, but we are successful in that we never predict decline (i.e., 

there are no cases of population decline in any of the 1,000 simulation runs).   

 The fifth set of cities examined includes 29 places with estimated local trends around $25 per year that we try to simulate using α=$0 for 

the reason discussed above.  Included in this group are places such as Tuscaloosa, Columbus, Boston, Abilene, and Memphis.  These cities 

experienced strong population gains over the second half of the 20th Century.  The mean growth rate is 127 percent (standard deviation of 85), with 

the 25th percentile growth being 68 percent.  The simulation results in the adjacent panel do systematically predict growth for this type of city, but 

 22



once again we understate the actual change.  Our mean simulation run generates a 23 percent population increase, and there are only 6 percent of 

the runs yielding increases of over 50 percent (the maximum is 59 percent).  Hence, once again we are able to correctly model that a trendless city 

will grow, not decline, but we are not able to predict the strength of growth that actually occurs.24   

 Our simulation results also yield patterns of price changes that are consistent with the implications of our durable housing model of urban 

decline.  For example, plotting the relationship between the percentage change in price and population across all our simulations would find it 

strongly concave.  The more negative the trend in demand, the greater the percentage decline in price; and, positive growth generally is not 

associated with strongly increasing prices.25  If we look over one period intervals (versus the fifty year spans considered in Table 5), the variability 

in price change is greater when there is no population change than it is when there is population growth.  Idiosyncratic local shocks can lead to 

price increases even for cities not growing or can magnify price drops in places with negative trends, but adding units in growing places naturally 

reduces the price impact.   

While these results are consistent with the findings of the previous section, we are unable to match the precise extent of price changes the 

way we can with population.  In places with negative trends in demand, our simulations generally predict greater real price declines that are 

indicated in the data.  This was not unexpected, as our simulations do not permit changes in unit quality.  While increasing quality for the typical 

                                                 
24 As mentioned in footnote 52, we cannot hope to accurately mimic the behavior of rapidly growing cities.  Among the 29 cities in our sample with clear 
positive trends (e.g., measured alphas in excess of $40 per year), the mean population gain was 239 percent (standard deviation of 141 percent).  The interquartile 
range is from 146-303 percent, so the majority of these places at least doubled in size.  In our framework, cities with strong positive local trends quickly expand 
to occupy all available sites, so that we are constrained to underpredict their growth.  Their behavior is best characterized and explained by the urban growth 
studies discussed in the Introduction.  
25 That is the case until the city is completed developed.  By not allowing the set of developable sites to expand indefinitely, it is as if we have imposed a binding 
growth control.  With a positive alpha, prices can appreciate greatly in that context.  While there appear to be some places with binding restrictions on 
development, they are rare.  Hence, the statement regarding concavity generally applies. 
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unit leads to mismeasurement (i.e., underestimation) of constant quality price declines in places such as Detroit, we have no way of accurately 

measuring the bias.26     

In sum, calibrating the model tell us that, given reasonable parameter values, the gap between the rents needed to justify new construction 

and the rents at which units are left empty is extremely large.  As a result, among cities that once were very productive in the sense they provided 

high wages (or some valuable local amenity), there is no trend decline in demand within the range of the data that leads us to predict these places 

will significantly depopulate (i.e. lose more than 75 percent of their population) even over periods as long as 50 years.  Highly productive cities 

that suffer only small or modestly negative trends in demand, should not expect any significant long-run loss of population.  Productive cities 

paying high wages that are not experiencing any trend in demand will grow over time, as long as builders are free to respond to positive 

idiosyncratic shocks.  An added implication is that for the vast majority of homes in most places, the option value component is not relevant in 

order to understand the slow nature of decline.   

 

Reference 

 
Dixit, Avinash and Robert Pindyck.  Investment Under Uncertainty.  Princeton University Press, 1994.  
 

                                                 
26 The decennial census for 1950 does not report house value or house traits, so we cannot estimate a hedonic model from which constant quality prices could be 
computed.  In fact, micro data on house prices and characteristics are not reported for geographic areas below the state level until 1970.  More modern repeat 
sales indices do not go back in time before 1975. 
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Appendix : Proofs of Propositions 
 

 

Proof of Proposition 1: If 0≥α , then the lowest amenity lot that is developed at time zero has a value of ‘a’ equal to )0(θρ −+ Cm  and the 

lowest amenity lot developed at time t has a value of ‘a’ equal to tCmtCm αθρθρ −−+=−+ )0()( .  Using Approximation One, this implies 

that the growth rate of the city equals tf αmin .   

 If 0<α , then no new lots will be developed.  The least attractive lot, characterized by aa =  that has been developed satisfies 

( ) 









−− α

ρλ

ρλρ eC 1−= α  or ( ) 









−−=−−+

−+
α

θρ

αρθρ
))0((

1)0(
ma

eCma .  As long as mta >+ )(θ  or 0)( >+ tααλ , the lot will remain 

occupied.  Let α~  solve 0~)~( =+ tααλ , which has the unique solution 0
1

~
2

<
−+

−
= − tet

C
ρρ

ρα .  As the derivative of 0>)( + tααλ with respect to 

α  equals ( )C

C

ρ

ρ+




e

t
λ






+
λρ

α
ρλ

−

−1
 (which is always positive), for all cities with values of  α  above α~ , 0>)( + tααλ  and no units will be left 

unoccupied. 
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 For all cities with values of α  below α~ , 0)( <+ tααλ  and mta <++ αθ )0( , so some lots will be left unoccupied.  The number of 

lots left unoccupied will equal ( ))0(FN )() aFt(m −−− αθ  or ( ))()( aFtaFN −−+ αλ , and using Approximation One, this implies that the 

rate of decline will be )(min λα +tf . 

 

Proof of Proposition 2:  (a) We let εαα += ˆ  and use )(εg  to reflect the density of ε , which is mean zero and symmetrically distributed.  The 

median growth rate will equal tf α̂min .  The mean growth rate averaging over cities equals:  
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which is obviously less than dtf α̂min .  The difference between the mean and the median equals  times minf

( ) ( )


















++− ∫
−

−+

−
−=

−

ˆ

1
ˆ

2

)ˆ(

tet
C

ddtg

ρ

α

ρ
ρ

αε

εεεεεα ∫
−+

−
−

−∞=

− 1
ˆ

2

tet
C

g
ρρ

ρ
α

ε

λ  , and the derivative of this with respect to α̂  equals  ( )∫
−

−+

−
−=

−

α

ρ
ρ

αε ρ

ε
ˆ

1
ˆ

2

tet
C

dtg− , which is negative.   

(b) The expected growth rate for a city with characteristic z is: 
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The derivative of this growth rate with respect to z is ( )


















− ∫
−−

−+
−−−=

−

εεβ
βα

ρ
ρ

βαε ρ

z

et
Cz t

dgtf
0

2

0 1

min 1 . 

The difference in this derivative between when kz =+ βα 0  and when kz −=+ βα 0  if k>0 equals ( ) ( )


















− ∫∫
−

−+
−−=

−+
−=

−−

εεεεβ

ρρ ρ
ρ

ε
ρ

ρ
ε

k

edt
Ck

k

edt
Ck dtdt

dgdgdtf

11

min
22

, 

which by the symmetry of ε  equals ( ) ( )








−

εε
1

d









− ∫∫
+

+

−=

−+
−=

−

−

εεβ
ρ

ρ

ρ
ρ

ε

ρ
ρ

ε
1

min

2

2

dt

dt

edt
C

k

k

k

edt
Ck

gdgdtf .  This term is strictly positive by the fact that g(.) is single peaked.   

 

Proof of Proposition 3:  If the city is growing, then the growth rate for any time period of length τ  equals τminf  .  If the city has lost population 

between time zero and time τ , the overall growth during that period must equal ( )ατλ +minf .  Once a city begins to lose population, the future 

decline rate will be ατminf , so that future decline will equal 
ατλ

ατ
+

 times past decline.   
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Proof of Proposition 4a:  All cities for which α  is positive will have a value of S equal to zero.  Thus, if S=0, the expected growth rate equals 

)0(min >ααtEf , where )0( >ααE  denotes the expectation of α  conditional upon α  being positive.      
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When S is greater than 
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, the expected growth rate equals tf αmin  , so the impact of S on growth will equals 

S
tf

∂
∂α

min  .  The 

value of S equals ( )( )Sf αλmin , so 

α
λ

α

∂
∂

=
∂
∂ 1

min S
f  or 

α
ρλ

α
ρλ

λρλ

α

eC

e

+−











−1

, which is always negative.  

 
Proof of Proposition 4b: The value of S equals ( )λτθτθ ),()(min −Maxf . Using the notation that )(tθ  is the highest value that θ  has reached as 

of time t, we know that if both λθθ >− )()( tt  and λτθτθ >− )()( , the growth rate between time zero and time t equals ( ))()min ( τθθ −tf  .  

Alternatively, if λθθ <− )()( tt  and λτθτθ <− )()( , then urban development is determined by ( ))()(min τθθ −tf .  In the case where 

λτθτθ >− )()( and λθθ <− )()( tt  (which requires )()( τθθ >t ), then the level of growth equals ( ))()(min τθλθ −−tf .  Finally, when 

λθθ >− )()( tt  and λτθτθ <− )()( , the level of growth equals ( ))()(min τθλθ −+tf .   

We now define a new variable , which equals the maximal value that )(~ tθ )(tθ  takes on between time τ  and time t.  The distribution of 
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conditional on both )(τθ  and )(tθ  is 
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This is always negative.  However, if λτθτθ >− )()( , then the expected growth rate of the city equals  times minf
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The derivative of this with respect to )(τθ  equals  
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which is positive.  Thus, the expected growth rate rises with )(τθ  when λminfS = , so that the expected growth rate jumps discontinuously from 

the point where S rises from less than λminf  to the point where λminfS = . 

  

Proof of Proposition 5:   (A) The expected growth in mean rents for a city with exogenous characteristic z equals 
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The difference in this component if kz =+ βα 0  and when kz −=+ βα 0 , if k>0, using the symmetry of ε  equals 
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(B)  If εβαα ++= z0 , the derivative of the growth rate of housing prices with respect to z equals 
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positive line will equal this quantity.  For cities with values of α  that are between zero and 
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Table 1: Simulating Long-Run Decline, 1950-2000  
Actual Decline  Simulated Decline 

Category #1 (cities in most extreme decline:  Detroit, 
Johnstown, Saginaw, St. Louis, Youngstown)  θ(0) = $4,000   
      α = -$100   
      1,000 Runs   
Mean Population Change: -51%    Mean Population Change: -68%   
Standard Deviation 11%    Standard Deviation 20%   
25th Percentile: -59%    25th Percentile: -83%   
50th Percentile: -51%    50th Percentile: -73%   
75th Percentile: -49%    75th Percentile: -58%   
             
Category #2 (26 cities– e.g., Flint, Cleveland, 
Toledo, Baltimore, Buffalo, Dayton, Pittsburgh—with 
second most severe negative local trends)  θ(0) = $4,000   
      α = -$75   
      1,000 Runs   
Mean Population Change: -25%    Mean Population Change: -26%   
Standard Deviation 22%    Standard Deviation 25%   
25th Percentile: -39%    25th Percentile: -47%   
50th Percentile: -31%    50th Percentile: -23%   
75th Percentile: -17%    75th Percentile: 0%   
             
Category #3 (51 cities – e.g., Sioux City (IA), Des 
Moines, Reading (PA), Philadelphia, Chicago, 
Kansas City, Worcester (MA) – with third most 
severe negative local trends)  θ(0) = $4,000   
      α = -$50   
      1,000 Runs   
Mean Population Change: -3%    Mean Population Change: 1%   
Standard Deviation 24%    Standard Deviation 11%   
25th Percentile: -20%    25th Percentile: 0%   
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50th Percentile: -9%    50th Percentile: 0%   
75th Percentile: 12%    75th Percentile: 3%   
             
Category #4 (40 cities – e,g., Wichita (KS), Miami 
(FL), Mobile (AL), New York City, Little Rock, 
Shreveport (LA) – with modest, negative local 
trends)  θ(0) = $4,000   
      α = -$25   
      1,000 Runs   
Mean Population Change: 61%    Mean Population Change: 8%   
Standard Deviation 49%    Standard Deviation 11%   
25th Percentile: 29%    25th Percentile: 0%   
50th Percentile: 54%    50th Percentile: 3%   
75th Percentile: 86%    75th Percentile: 11%   
             

Table 1 (cont’d). 

Category #5 (25 cities – e.g., Tuscaloosa, Boston, 
Columbus (OH), Abilene, Memphis – with no 
meaningfully positive or negative local trend)  θ(0) = $4,000   
      α = $0   
      1,000 Runs   
Mean Population Change: 127%    Mean Population Change: 23%   
Standard Deviation 85%    Standard Deviation 16%   
25th Percentile: 68%    25th Percentile: 8%   
50th Percentile: 112%    50th Percentile: 22%   
75th Percentile: 178%    75th Percentile: 36%   
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