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Solids between the mechanical extremes of order
and disorder
Carl P. Goodrich1*, Andrea J. Liu1 and Sidney R. Nagel2

For more than a century, physicists have described real solids
in terms of perturbations about perfect crystalline order1.
Such an approach takes us only so far: a glass, another
ubiquitous form of rigid matter, cannot be described in any
meaningful sense as a defected crystal2. Is there an opposite
extreme to a crystal—a solid with complete disorder—that
forms an alternative starting point for understanding real
materials? Here, we argue that the solid comprising particles
with finite-ranged interactions at the jamming transition3–5

constitutes such a limit. It has been shown that the physics
associated with this transition can be extended to interactions
that are long ranged6. We demonstrate that jamming physics
is not restricted to amorphous systems, but dominates the
behaviour of solids with surprisingly high order. Just as the
free-electron and tight-bindingmodels represent two idealized
cases from which to understand electronic structure1, we
identify two extreme limits of mechanical behaviour. Thus, the
physics of jamming can be set side by side with the physics of
crystals to provide an organizing structure for understanding
the mechanical properties of solids over the entire spectrum
of disorder.

The jamming transition can be studied in its purest form at zero
temperature in disordered packings of spheres interacting through
finite-range, repulsive interactions4,5. At the transition, the packing
fraction, φ, is just sufficient to cause unavoidable contact between
particles. The marginally jammed state at this transition represents
an extreme limit of solids—the epitome of disorder—in several
ways. First, for a perfect crystal, the ratio of the shear to bulk
modulus, G/B, is of order unity whereas for a liquid, G/B= 0
(ref. 1). At the jamming transition, the response to shear is infinitely
weaker than the response to compression4. That G/B vanishes at
the jamming transition implies that the marginally jammed solid
lies at the extreme edge of rigidity4,5. Second, any crystalline solid
supports sound modes at sufficiently low frequency; as the wave-
length of sound is long enough to average over microscopic details,
the crystal, even with defects, is well approximated as an elastic
medium1. At the jamming transition, however, there are diverging
length scales that exceed the wavelength of sound, even at arbitrarily
low frequencies. This leads to qualitatively new physics: a new class
of vibrational mode that overwhelms plane-wave behaviour4–8.

The marginally jammed solid also sits at a critical point, the
jamming phase transition. This suggests that properties of this
state, including the two distinguishing characteristics of vanishing
G/B and a plateau in the density of states, might be reflected
in systems away from the transition. For instance, although the
jamming transition is inaccessible to particles with Lennard–Jones
interactions, features such as the boson peak in Lennard–Jones
glasses can be understood by treating the long-range attractions as a

correction to jamming physics6. Similarly, numerous other studies
indicate that the jamming transition influences the behaviour of
systems with three-body interactions9–13, friction14–16, temperature17
and aspherical particles18–20. Here, we show that the physics of
jamming is relevant over a surprisingly broad range of disorder.
Even when a solid looks crystalline to the eye, it may nevertheless
manifest mechanical properties better described by jamming than
by crystalline physics.

We focus on the simplest systems that can capture both jamming
and crystalline physics, namely packings of frictionless spheres of
mass ms and diameter σ . Spheres i and j interact only if they
overlap, in which case they feel a linear repulsive force of magnitude
fij=ε

(
1− rij

σ

)
, where rij is their separation. All quantities are in units

of ms, σ and ε. We generate packings using an unbiased algorithm
that can tune continuously between a crystal and the marginally
jammed solid.We begin withN spheres arranged in a perfect crystal
and introduce point defects in three ways. In variant A, we begin
with N = 4,000 spheres in a face-centred cubic (fcc) lattice and
introduce vacancy defects by randomly removing some fraction,
m, of the spheres. The size of the box is then adjusted to obtain
a desired volume fraction φ. The system is then relaxed to a local
energy minimum using the FIRE algorithm21. Variant B is identical
to A except that we begin with a body-centred cubic lattice with
N =4,394. Variant C again begins with an fcc lattice withN =4,000
but defects are introduced as vacancy–interstitial pairs (that is, for
every sphere that is removed, another is randomly inserted).

Clearly, these algorithms generate perfect crystals when m= 0.
When m= 1, variant C is identical to the algorithm commonly
used for jamming5. For all variants,m≈1/2 leads to configurations
indistinguishable from jammed ones; thus, the two end points of
all three variants coincide respectively with the perfect crystal and
jamming. We adjust m and φ to generate states that span the two
extreme cases. We then characterize the order using F6 to measure
neighbour correlations of bond-orientational order22,23 (Methods).
F6=1 for a perfect crystal and F6≈0 for a disordered system.

We study themechanical response of packings as a function of the
pressure, p. Three example zero-temperature configurations at high
pressure are shown in Fig. 1a–c. The first is a slightly defected crystal
with a very small density of vacancies. The second is disordered,
indistinguishable from a jammed system. The third ‘intermediate’
system is structurally a defected crystal with F6 ≈ 0.9, but, as we
shall see, behaves mechanically like a jammed solid. As p decreases,
Fig. 1e shows that for the first two systems F6 remains constant; for
the third F6 decreases but stays high, F6> 0.75. Even as p→ 0, its
structure remains predominantly crystalline (Fig. 1d).

For the perfect fcc crystal, each particle has exactly 12 neighbours
at any p> 0. Likewise, the slightly defected crystal of Fig. 1a has
an average number of contacts per particle, Z , that is independent
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Figure 1 | The behaviour of three example systems. a–c, Images of three example systems generated using Variant A of our algorithm. A nearly perfect
crystal with F6= 1.0 (a), a disordered sample with F6=0.1 (b), and a defected crystal with F6=0.9 (c). Blue (red) particles have high (low) local order (see
Methods). d, The same system as c after the pressure has been lowered by about seven orders of magnitude. e–g, The global order parameter F6, excess
contact number Z−Ziso, and ratio of the shear modulus to bulk modulus G/B as a function of pressure for the three systems. h–j, The density of vibrational
modes D(ω) for the three systems at di�erent pressures. D(ω) for a perfect fcc crystal is provided for comparison. Note that the intermediate system,
although very highly ordered, behaves in its mechanical and vibrational properties much more like the disordered sample than like the nearly perfect crystal.

of pressure (Fig. 1f). The disordered system of Fig. 1b decreases
towards the isostatic value, Ziso ≈ 2d , as p is lowered, consistent
with the well-established scaling of Z − Ziso ∼ p1/2 for jammed
spheres with harmonic interactions4,5,24. Surprisingly, as the pressure
is lowered in the system with intermediate order, we find that Z also
approaches Ziso as a power law with roughly the same exponent.
Apparently, despite the high degree of crystallinity, this system
becomes marginally coordinated at low pressures.

The mechanical responses of these three systems are shown in
Fig. 1g. The slightly defected crystal shows the expected response,
with G/B remaining constant as p→0, whereas for the disordered
system, G/B∼p1/2 as expected near the jamming transition4,5. For
the intermediate sample, not only is Z − Ziso similar to that of a
jammed solid, but Fig. 1g shows that the mechanical properties are
also more like a jammed solid than a crystalline one: G/B vanishes
as p→0 with the same power law as in jamming.

We alsomeasure the density of normalmodes of vibration,D(ω),
which is directly related to the mechanical and thermal properties
of the solid within the harmonic approximation25. Low-frequency
modes in crystals correspond to plane waves and follow Debye
scaling: D(ω)∼ ωd−1 (Fig. 1h). Disordered systems, in addition,
possess a class of ‘anomalous’ modes that result in a low-frequency
plateau in D(ω) (Fig. 1i; ref. 7), related to Z−Ziso (ref. 8). Figure 1j
shows that the intermediate sample, which looks highly crystalline,
has a low-frequency density of states that closely resembles that of
the disordered system26.

The system in Fig. 1c indeed behaves mechanically as if it
were jammed, despite its extremely ordered structure. To establish
the generality of this observation, we have generated hundreds of
thousands of packings with varying amounts of order, F6, using the
three versions of our algorithm.

We first separate packings into bins with different degrees of
order. Figure 2 shows, for different values of F6, the average of
Z − Ziso and G/B versus p. Note that before averaging, packings
were also binned in pressure. For the systems in Fig. 1, we lowered
pressure by gradually decreasingφ and reminimizing energy. For the
packings in Figs 2 and 3, we did not lower p but simply varied φ to
obtain packings over a range of pressures, making itmore difficult to
produce low-p packings. Data are shown only for systems generated
with variant A, but the other ensembles show similar features.
The solid lines show the two limiting extremes corresponding to
the perfect fcc crystal (blue) and jammed packings (red). At a
given pressure, both Z−Ziso and G/B increase as systems become
more ordered, but they retain the scaling with pressure associated
with jamming, not the constant value associated with crystalline
behaviour, up to relatively high values of F6. Thus, the system with
intermediate order in Fig. 1c is indeed a representative example of
this trend.

In jamming, the value of Z − Ziso at a given pressure is well
defined. However, for our systems there is a large spread in Z−Ziso
at fixed pressure. Therefore, we have binned systems according to
both p and Z−Ziso and then separated them into whether they do,
or do not, behavemechanically like jammed systems. The separation
between these two groups of configurations in terms of F6 is not
sharp: some packings with F6>0.95 behave like jammed ones and
a few packings with F6 as low as 0.75 respond more like a crystal.
This suggests that there is crossover from crystalline behaviour to
jamming behaviour that occurs at remarkably high order.

To demonstrate this more clearly, Fig. 3a shows that for F6<0.75,
G/B falls cleanly onto a single ‘jamming surface’. This includes all of
the data from all three ensembles. The collapse of the data onto a
single plane is mademore clear in Fig. 3b, where we have rotated the
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Figure 2 | The crossover from jamming physics to crystalline physics.
a, The excess contact number as a function of pressure at di�erent values of
F6 averaged over an ensemble of systems. The blue line shows the constant
Z−Ziso behaviour for a perfect fcc crystal, and the red line shows the
behaviour at jamming. b, The ratio of the shear modulus to bulk modulus
for the same systems. Note that G/B for a perfect crystal is constant at low
pressures but decreases very slightly at higher pressures. The error bars
represent the standard deviations. Only for systems with very high values of
F6 do the properties have the pressure independence expected for a crystal.

point of view to look at the surface edge-on (see also Supplementary
Movie 1). Figure 3c shows that the jamming surface can be scaled
onto a single curve that matches the result expected for jammed
packings (red line). Note that given the smoothness of the data, we
can choose different scalings on the two axes and obtain a similar
collapse. However, as shown by Fig. 2a and the inset in Fig. 3c, G/B
is not simply a function of just p or Z − Ziso, as one might have
expected. As F6→ 1, the manner in which systems approach the
crystalline limit depends on the protocol—as expected, perturba-
tions about a crystal are sensitive to the details of the perturbation.
Figure 3d shows G/B averaged over all systems with F6> 0.75. In
this region there is a mixture of states that behave like crystalline
configurations with those that behave like jammed packings.

It is important to understand the generality of our results. Our al-
gorithms correspond to introducing ordinary vacancies or vacancy–
interstitial pairs to an otherwise perfect crystal. As more of these
simple defects are added, the mechanical behaviour changes char-
acter; at some point, the solid loses all semblance of crystalline be-
haviour even though its structure seems exceptionally well ordered.
We have shown that in this regime the physical properties can be
profitably described as perturbations about the disordered limit of
a solid. Our model is also simplified because we use finite-range
potentials. This choice makes the relevance of the jamming tran-
sition clear but does not limit its applicability: as emphasized above,
the persistence of key features of the jamming scenario in systems
with three-body interactions, friction, temperature, and aspherical
particles implies that our results should be generally relevant. In
particular, long-range attractions, as in Lennard–Jones systems, can
be treated asmerely a perturbation around a jamming description of
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Figure 3 | Robustness of jamming behaviour. a, A three-dimensional plot of
G/B as a function of pressure and Z−Ziso for systems with F6<0.75,
generated with Variant A (green squares), B (orange triangles) and C
(purple circles). The solid blue and red lines give the behaviour of a perfect
fcc crystal and a jammed solid, respectively. b, The same data but shown
from a di�erent point of view to emphasize that all of the points lie on a
well-defined plane. c, As a function of p(Z−Ziso), G/B collapses onto a
single curve for all F6<0.75. This curve coincides with the one for jamming.
The inset shows the data plotted as a function of just Z−Ziso. d, For
F6>0.75, G/B is not cleanly described by jamming physics. The error bars
in c and d represent the standard deviations. In the high F6 regime, many
systems are better described as a defected crystal whereas all states with
F6<0.75 are better described from the jamming scenario.

themechanical properties even though the jamming transition itself
is not accessible6. Recently, it was suggested that hard-sphere sys-
tems below the jamming transition might have different physics27.

Of particular note, crossovers from ordered to disordered be-
haviour have been observed for highly crystalline systems in other
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contexts. When crystalline KBr is doped with KCN, the impuri-
ties form an ‘orientational glass’ without destroying the crystalline
structure. The authors of ref. 28 found a crossover in the thermal
conductivity from crystalline (T 3) to glassy (T 2) scaling when the
concentration of KCN is only around 1%. Moreover, for concentra-
tions of 25% and 50%, the specific heat and thermal conductivity
seemed equally glassy. In sheared quasi-2D foams, the authors of
refs 29,30 found a crossover in the flow profile to that of disor-
dered systems in highly ordered foams with only 2% area defects.
Finally, the authors of ref. 26 showed that introducing a very slight
polydispersity (0.003%) to an fcc crystal of hard spheres just below
jamming causes the vibrational properties to be indistinguishable
from a hard-sphere glass. It is not clear in this case if there exists a
crossover to crystalline behaviour as the polydispersity is decreased,
or if that limit is singular.

Our results provide a new vantage point for understanding the
mechanical response of solids. Starting from the jamming scenario,
we can profitably describe the behaviour of even highly ordered
materials. For example, many polycrystals might be better described
in terms of corrections to jamming behaviour than in terms of
defected crystals. Although perfect order is awell-defined concept, it
has been less clear what perfect disorder means. Our results suggest
that instead of using a structural quantity such as F6, one can char-
acterize order in terms of mechanical properties. A system behaves
ordered when, for example,G/B is roughly constant in pressure and
behaves disordered when it decreases with decreasing pressure. The
spectrum of order in solids therefore has two well-defined limits: a
perfect crystal, with constant G/B and Z−Ziso, and a perfect anti-
crystal, with G/B and Z−Ziso vanishing at zero pressure.

Methods
We measure the degree of order in a given configuration by calculating the
parameter F6. For each pair of neighbouring spheres i and j, the function S6(i, j)
measures correlation of neighbour orientation:

S6(i, j)≡
∑6

m=−6 q6m(i) ·q∗6m(j)∣∣∑
m q6m(i)

∣∣∣∣∑
m q6m(j)

∣∣
where qlm(i) is the standard bond-orientational order parameter31. Summing over
the Nc(i) neighbours of i, we define22,23

f6(i)≡
1

Nc(i)
∑
j nn i

2
(
S6(i, j)−S06

)
where 2 is the step function and S06 is a threshold that is typically taken to be 0.7.
f6(i) measures the fraction of sphere i’s neighbours with highly correlated
neighbour orientations. In a perfect crystal, f6=1 and in a disordered state it is
small. Finally, we average f6(i) over the system to obtain a global order
measure, F6.
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