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We introduce a principle unique to disordered solids wherein the contribution of any bond to one global
perturbation is uncorrelated with its contribution to another. Coupled with sufficient variability in the
contributions of different bonds, this “independent bond-level response” paves the way for the design of
real materials with unusual and exquisitely tuned properties. To illustrate this, we choose two global
perturbations: compression and shear. By applying a bond removal procedure that is both simple and
experimentally relevant to remove a very small fraction of bonds, we can drive disordered spring networks
to both the incompressible and completely auxetic limits of mechanical behavior.
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The properties of amorphous solids are essentially and
qualitatively different from those of simple crystals [1]. In a
crystal, identical unit cells are interminably and symmetri-
cally repeated, ensuring that all cells make identical con-
tributions to the global response of a solid to an external
perturbation [2,3]. Unless a crystal’s unit cell is very
complicated, all particles or interparticle bonds contribute
nearly equally to any global quantity, so that each bond plays
a similar role in determining the physical properties of the
solid. For example, removing a single bond from a perfectly
ordered array or network decreases the overall elastic
strength of the system, but in such a way that the resistance
to shear and the resistance to compression drop in tandem
[4], leaving their ratio nearly unaffected. Disordered materi-
als are not similarly constrained. We will show that as a
consequence one can exploit disorder to achieve a unique,
varied, textured, and tunable global response.
A tunable global response is a corollary to a new

principle that emerges for disordered matter: independent
bond-level response. This independence refers not only to
(1) the significant variation in the response at the individual
bond level, but also, and more importantly, to (2) the dearth
of strong correlations between the responses of any specific
bond to different perturbations. To illustrate this principle,
we consider the specific perturbations of compression and
shear. We construct networks in which individual bonds are
successively removed to drive the overall system into
different regimes of behavior characterized by the ratio
G=B of the shear modulus G to the bulk modulus B.
Starting from the same initial network, we can remove as
few as 2% of the bonds to produce a network with a value
of G=B that is either nearly zero [incompressible limit
where the Poisson ratio is ν ¼ 1=ðd − 1Þ in d dimensions]
or nearly infinite (maximally auxetic with ν ¼ −1 [5])

merely by removing different sets of bonds. Moreover, by
using different algorithms or starting with different net-
works, one can confine the region within which the bonds
are removed to strips of controllable size, ranging from a
few bond lengths to the size of the entire sample [6]. This
has the practical consequence that one can achieve precise
spatial control in tuning properties from region to region
within the network—as is needed for creating origami [7,8]
or kirigami [9] materials.
We construct networks numerically by starting with a

configuration of particles produced by a standard jamming
algorithm [10,11]. We place N soft repulsive particles at
random in a box of linear size L and minimize the total
energy until there is force balance on each particle. We
work in either two or three dimensions and start with a
packing fraction that is above the jamming density. After
minimizing the energy of a configuration, we create a
network by replacing each pair of interacting particles with
an unstretched spring of unit stiffness between nodes at
the particle centers [12]. We characterize the network by the
excess coordination number ΔZ≡ Z − Ziso, where Z is the
average number of bonds at each node and Ziso ≡ 2d −
2d=N is the minimum for a system to maintain rigidity in d
dimensions [13]. We note that networks produced this way
have no long-range order [10], unlike networks constructed
by randomly displacing sites on a lattice [14,15].
For each network, we use linear response to calculate the

contribution Bi of each bond i to the bulk modulus
B ¼ P

iBi. (Bi is proportional to the change in energy
of bond i when the system is uniformly compressed, see
the Supplemental Material [16] for details.) The distribu-
tion of Bi in three dimensions is shown in blue in Fig. 1.
In all plots, data are averaged over 500 networks, each
with approximately 4000 nodes and an initial excess
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coordination number ΔZinitial ≈ 0.13 (corresponding to a
total number of bonds that is about 2% above the minimum
needed for rigidity).
Similarly, we can start with the same initial network and

calculate Gi, the contribution of each bond to the shear
modulus G ¼ P

iGi. (A finite system is not completely
isotropic, so the shear modulus varies with direction [17];
we calculate the angle-averaged shear modulus, which
approaches the isotropic shear modulus in the infinite
system-size limit [18].) The resulting distribution for Gi
is shown in purple in Fig. 1. Note that the distributions of
the bond contributions to B and G are continuous, broad,
and nonzero in the limit Bi, Gi → 0. That is, some bonds
have nearly zero contribution to the bulk or shear modulus
while others contribute disproportionately. For both B and
G, the distribution forms a power law at low values of Bi or
Gi, which is then terminated above hBii and hGii by
approximately exponential cutoffs. Such a significant
variation in bond-level response is consistent with previous
observations [19,20] and is in stark contrast to a perfect
crystal where the distributions would be composed of
discrete delta functions.
We next ask if there is a correlation between how an

individual bond responds to shear and how it responds to
compression. Do bonds with a large contribution to the
bulk modulus also have a proportionately large contribution
to the shear modulus? Figure 2(a) shows the joint prob-
ability distribution PðBi; GiÞ. A strong positive correlation
between Bi and Gi would produce a linear trend on this
graph, which is clearly not observed. We conclude that the
correlations are weak, although we note that they are also
not vanishingly small (see the Supplemental Material [16]).

This lack of strong correlation between Bi and Gi is again
qualitatively different from what one would find for a
simple crystal. Thus, Figs. 1 and 2(a) illustrate a previously
unrecognized property that is well obeyed by our disor-
dered networks: independent bond-level response.
This new property suggests that one can tailor the

behavior of the network by selectively removing (pruning)
those bonds that contribute more or less than the average to
one of the moduli. By so doing, one can decrease one
modulus with respect to the other.
First, we consider the known case of rigidity percolation

[4,21,22], where a bond is picked at random and removed.
This pruning is repeated until the system becomes unstable
at ΔZ ¼ 0. We have implemented a slight variation of this
procedure: at each step, a bond is removed only if each
node it connects has at least dþ 1 remaining bonds in d
dimensions. This is the condition for local stability of a
particle in the original jammed packing [23]. As the excess

FIG. 1 (color online). Variation in bond-level response. Dis-
tribution on a log-linear scale (inset: log-log scale) of the
contribution of each bond to the macroscopic bulk and shear
moduli, Bi and Gi, for 3D networks with ΔZinitial ≈ 0.13. Here i
indexes bonds. At low Bi or Gi, the distributions follow power
laws with exponents −0.51 and −0.38, respectively. At high
values, the distributions decay over a range that is broad
compared to their means hBii and hGii.

–

–

–
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FIG. 2 (color online). Independence of bond-level response.
(a) Joint probability distribution of Bi and Gi for 3D networks
with ΔZinitial ≈ 0.13. There is little apparent correlation between
the response to compression (Bi) and to shear (Gi) for a given
bond i. (b) The value of G when bonds with the largest (purple
squares) and smallest (purple circles) Bi are removed is nearly
indistinguishable from G when bonds are removed at random
(purple crosses). Similarly, B is very similar whether bonds with
the largest Gi (blue triangles) are removed or bonds are removed
at random (blue pluses).
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coordination number decreases, the bulk and shear moduli
vanish together, so that G ∼ B ∼ ΔZ [4,21,22,24] [see
Fig. 2(b)]. Therefore, as shown in Fig. 3, G=B is indepen-
dent of ΔZ.
We now implement the idea of selected-bond removal in

a variety of ways. First, we remove the bond with the
smallest Bi, namely the weakest contribution to the bulk
modulus (provided, as above, that each node connected to
this bond has at least dþ 1 remaining bonds). Since the
distribution PðBiÞ is continuous and nonzero as Bi → 0,
bond removal has almost no effect on the bulk modulus.
However, since there is little correlation between the
contribution of each bond to the bulk and shear moduli,
there is a much larger effect on the shear modulus. Once the
bond has been removed, the contributions Bi and Gi of the
remaining bonds to the moduli must be recalculated
because they depend on the connectivity of the entire
network. This process of removing the bond with the
smallest Bi and then recalculating the values of Bi for the
remaining bonds is then repeated many times. Figure 2(b)
shows that when bonds with the smallest Bi are succes-
sively removed, the shear modulus is linearly proportional
to ΔZ. Furthermore, it is quantitatively indistinguishable
from the case where bonds are removed at random. The
ability to alter the behavior of B without affecting the
behavior of G is a clear demonstration of the principle of
independent bond-level response.
Since removing bonds with the smallest Bi has little effect

on the bulk modulus, we would expect G=B → 0
as ΔZ → 0. As shown in Fig. 3, we indeed find that
G=B ∼ ΔZμB− , with μB−

¼ 1.01� 0.01. This behavior is
identical to the scaling found in the original jammed sphere
packings, where ΔZ is lowered by decompressing the
system.
We can drive the same initial network to the opposite

limit G=B → ∞ by successively removing bonds with the
largest contribution to B. As before, independent bond-
level response predicts that the shear modulus will again
decrease linearly withΔZ, as we indeed find [see Fig. 2(b)].
However, the bulk modulus will decrease more quickly, as
prescribed by the high Bi tail of the distribution, suggesting
that the ratio G=B should increase. The result of this
successive bond-removal algorithm is shown by the blue
squares in Fig. 3. We find that G=B ∼ ΔZμBþ , where
μBþ ¼ −7.96� 0.01. Thus, the increase in G=B occurs
with a much steeper power law than the decrease of G=B
when the bond with the smallest contribution to B is
removed.
The algorithms mentioned above can be extended in a

number of ways. As a further example, one can remove the
bond with the largest contribution to the shear modulus to
drive G=B towards zero. In this case, independent bond-
level response implies that the bulk modulus will respond
as if bonds were removed randomly, so that B ∼ ΔZ [see
Fig. 2(b)]. However, the shear modulus decreases more

rapidly; we find G=B ∼ ΔZμGþ , where μGþ ¼ 1.82� 0.01
(purple diamonds in Fig. 3).
Note that the presence of a nontrivial zero-frequency

vibrational mode (which our bond-cutting procedure does
not explicitly forbid) would herald an instability in the
structure. We look for such modes by diagonalizing
the dynamical matrix, but do not observe them until the
system is at or extremely close to isostaticity [25]. If we
remove bonds with the smallest Gi, however, we find
that zero modes appear when ΔZ is still quite large,
preventing G=B from diverging as we would expect. A
variant of our procedure could prevent this (e.g., by
including a constraint that a removed bond not create
any zero modes).
We can tune two-dimensional networks with equal ease.

We construct spring networks in two dimensions with
approximately 8000 nodes and an initial coordination
number of ΔZinitial ≈ 0.047, which is about 1% above
the minimum needed for rigidity. As shown in Fig. S2
of the Supplemental Material [16], the behavior of G=B is
qualitatively similar to Fig. 3. When bonds with the
smallest Bi are removed, we find that G=B ∼ ΔZμB− , with
μB−

¼ 1.27� 0.01. This is close to the behavior known for
jammed packings (G=B ∼ ΔZ1), though it is certainly not

FIG. 3 (color online). Tuning global response in three dimen-
sions. The ratio of shear to bulk modulus, G=B, for four pruning
algorithms. Error bars (included) are smaller than the symbols.
Lines are fits to the data over the indicated range and have slopes,
from top to bottom, of −7.96, −0.01, 1.01, and 1.82. Starting with
the same initial conditions, we can tune global response by 16
orders of magnitude by pruning of order 2% of the bonds.
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as clean as in three dimensions. When we prune bonds that
resist compression the most (largest Bi), we find that
G=B ∼ ΔZμBþ , where μBþ ¼ −5.36� 0.01. At the smallest
ΔZ, G=B ∼ 1010. Finally, when bonds with the largest Gi
are removed we find that G=B ∼ ΔZμGþ , with
μGþ ¼ 3.05� 0.01. Although G=B diverges or vanishes
with slightly different power laws in two and three
dimensions, the overall effect is no less dramatic.
Note that our procedures are remarkably efficient in

tuning G=B. Figure 3 shows that by removing about 2% of
the bonds in three-dimensional networks we can obtain a
difference of more than 16 orders of magnitude in the tuned
value of G=B, depending on which bonds we prune. In two
dimensions, we are able to obtain differences in G=B that
span over 17 orders of magnitude by pruning only ∼1% of
the bonds. This is even more surprising given the fact that
Bi and Gi are somewhat correlated. The fact that we can
still tune the ratio of the moduli so drastically demonstrates
the robustness of the principle of independent bond-level
response.
The limit G=B → 0 corresponds to the incompressible

limit of a solid where the Poisson ratio, ν ¼ ðd −
2G=BÞ=½dðd − 1Þ þ 2G=B� in d dimensions, reaches its
maximum value of ν ¼ þ1 (in 2D) or þ1=2 (in 3D). The
limit G=B → ∞ corresponds to the auxetic limit where the
Poisson ratio reaches its minimum value of ν ¼ −1. By
using these different pruning algorithms, we can tailor
networks to have any Poisson ratio between these two
limits. This ability provides great flexibility in the design of
network materials.
For many materials [5] the Poisson ratio decreases with

increased connectivity of the constituent particles and
increases with packing density. We note that neither of
these correlations holds for the algorithms we have intro-
duced for tuning the Poisson ratio (or ratio of shear and
bulk moduli). We can reach G=B → ∞ (minimum Poisson
ratio) or G=B → 0 (maximum Poisson ratio) by removing
the same number of bonds from the same starting con-
figuration. Neither the overall connectivity nor the overall
density is different in the two final states. Thus, our
procedures for producing tunable Poisson ratio materials
are fundamentally different from correlations considered in
the literature.
We turn now to spatial correlations between cut bonds.

Driscoll et al. [6] have conducted numerical simulations
and experiments in which they removed bonds with the
largest strain under uniaxial or isotropic compression or
shear. They showed that the cut bonds form a damage zone
whose width increases and diverges as the initial excess
coordination number ΔZinitial → 0; for sufficiently small
ΔZinitial, the pruned bonds are homogeneously distributed
throughout the entire system. Outside this zone, they found
that the network is essentially unaffected.
Since Bi (or Gi) in our simulations is proportional to the

strain squared, our procedure is identical to that of Driscoll

et al. [6] if we remove bonds with the largest contribution to
the relevant elastic constant. So far, all the data we have
presented are for systems with a sufficiently small ΔZinitial
so that the distribution of the cut bonds appears homo-
geneous. However, we find that G=B diverges or vanishes
regardless of ΔZinitial (see Fig. S3 in the Supplemental
Material [16]), demonstrating that the ability to drastically
tune G=B does not depend on the spatial distribution of
removed bonds or system size. When we remove the bond
with the smallest contribution to B or G, the bonds are
removed homogeneously throughout the system, indepen-
dent of ΔZinitial. Our results, combined with the work of
Driscoll et al., means that elastic properties can be tuned
not only globally but also on a local scale controlled by the
initial connectivity—one region may be highly incom-
pressible while a nearby region may be highly auxetic. This
offers tremendous flexibility in the design of new and
interesting materials.
We have presented a number of ways of tuning G=B in

disordered networks by using the principle of independent
bond-level response. However, these ideas may be
extended to other global properties as well. For example,
one can imagine controlling thermal expansion by tuning
nonlinear terms. One can even consider different classes of
systems, such as a disordered resistor network [26,27]
where one may be able to independently adjust the
components of the conductivity tensor to design a highly
anisotropic device. In general, to tune two properties
relative to each other, one first must be able to quantify
contributions at the single-bond level. The principle of
independence holds if (1) there is a sufficient variation in
the bond-level contributions (i.e., Fig. 1) and (2) the
contribution of a bond to one property is not strongly
correlated with its contribution to the other [i.e., Fig. 2(a)].
One could then independently tune these properties by
removing bonds that contribute disproportionally to one
property or the other.
Our results demonstrate that disordered networks pro-

vide particularly elegant opportunities for constructing
mechanical metamaterials with tunable, flexible, and spa-
tially textured response. However, the algorithms we have
presented are not restricted to artificially constructed
materials. Compressing a real network composed of springs
that fail when stressed past a given threshold would lead to
the same network as removing springs with the largest Bi,
provided that the threshold is sufficiently small. It is also
not beyond imagination that one could selectively break
bonds at the nanoscale level in response to global pertur-
bations in complex solids. Indeed, biology appears to be
able to target structures in networks that are under par-
ticularly high stress and to enhance their strength (such as
in trabecular bone [28]). Alternatively, there may be
mechanisms to buckle or sever strongly stressed fibers
(such as in actin networks [29]). It is interesting to ask if
such selective repair or destruction of biological structures
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changes ratios of different mechanical responses such as
the Poisson ratio.
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