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Stability of jammed packings I: the rigidity length scale†

Carl P. Goodrich,*a Wouter G. Ellenbroekb and Andrea J. Liua

In 2005, Wyart et al. [Europhys. Lett., 2005, 72, 486] showed that the low frequency vibrational properties

of jammed amorphous sphere packings can be understood in terms of a length scale, called ‘*, that

diverges as the system becomes marginally unstable. Despite the tremendous success of this theory, it

has been difficult to connect the counting argument that defines ‘* to other length scales that diverge

near the jamming transition. We present an alternate derivation of ‘* based on the onset of rigidity.

This phenomenological approach reveals the physical mechanism underlying the length scale and is

relevant to a range of systems for which the original argument breaks down. It also allows us to present

the first direct numerical measurement of ‘*.
1 Introduction

Disordered solids exhibit many common features, including a
characteristic temperature dependence of the heat capacity and
thermal conductivity1 and brittle response to mechanical load.2

A rationalization for this commonality is provided by the
jamming scenario,3,4 based on the behavior of packings of ideal
spheres (i.e. so frictionless spheres at zero temperature and
applied stress), which exhibit a jamming transition with
diverging length scales3,5–12 as a function of packing fraction.
According to the jamming scenario, these diverging length
scales are responsible for commonality, much as a diverging
length near a critical point is responsible for universality.

One of these length scales, the “cutting length” ‘*, is directly
tied to the anomalous low-frequency behavior that leads to the
distinctive heat capacity and thermal conductivity of disordered
solids,1 and is thus considered a cornerstone of our theoretical
understanding of the jamming transition. This length arises
from the so-called cutting argument introduced by Wyart et al.6,7

which is a counting argument that compares the number of
constraints on each particle to the number of degrees of
freedom in a system with free boundary conditions. Despite its
importance, however, the connection between the cutting
length derived by Wyart et al. and other physical length scales
that diverge with the same exponent5,9,10 has not been
understood.

In this paper, we show that ‘* is more robustly dened as a
rigidity length. It is therefore relevant even for systems for
which counting arguments are less useful, such as packings of
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frictional particles13–15 or ellipsoids,16–18 or for experimental
systems where it is not possible to count contacts. While this
approach is applicable to these more general systems, we will
use the traditionally employed so sphere packings to motivate
the rigidity length and illustrate its scaling behavior. We also
show that ‘* is directly related to a length scale identied by
Silbert et al.5 that arises from the longitudinal speed of sound.
2 Model and numerical methods
2.1 Generating mechanically stable packings

We numerically generate packings of N¼ 4096 frictionless disks
in d ¼ 2 dimensions at zero temperature. Particles i and j
interact with a harmonic, spherically symmetric, repulsive
potential given by VðrijÞ ¼ 3

2
ð1� rij=sijÞ2 only if rij < sij, where rij

is the center-to-center distance, sij is the sum of their radii and
3h 1 sets the energy scale. All lengths will be given in units of s,
the average particle diameter, and frequencies will be given in
units of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
keff=m

p
, where keff is the average effective spring

constant of all overlapping particles and m is the average
particle mass.

Mechanically stable athermal packings were prepared with
periodic boundary conditions by starting with randomly placed
particles (corresponding to T ¼ N) and then quenching the
total energy to a local minimum. Energy minimization was
performed using a combination of linesearch methods (L-BFGS
and Conjugate gradient), Newton's method and the FIRE algo-
rithm19 to maximize accuracy and efficiency. The distance to
jamming is measured by the pressure, p, and the density of a
system was adjusted until a target pressure was reached.
Systems were discarded if the minimization algorithms did not
converge. For reasons discussed in Section 3, each packing was
then replaced with a geometrically equivalent unstressed spring
network.

The arguments we will present will concern the average
number of contacts of each particle, Z, which approaches 2d in
Soft Matter, 2013, 9, 10993–10999 | 10993
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the limit of zero pressure. At positive pressure, the contact
number is given for harmonic interactions by the relation
Z � 2d � p1/2.3,20

2.2 Creating a cut system

We create a cut system by rst periodically tiling the square unit
cell, consistent with the periodic boundary conditions. We then
remove all particles whose center is outside a box of length L. By
rst tiling the system, we are able to take cuts that are larger
than the unit cell, as well as cuts that are smaller. We have
checked that our results are not dependent on the choice of N¼
4096 particles per unit cell.

2.3 Calculating zero modes and rigid clusters

To calculate the vibrational modes of the unstressed spring
network, we diagonalize the dN by dN dynamical matrix Dab

ij ,
which is given by the second derivative of the total energy with
respect to particle positions:

Dab
ij ¼

X
hi;ji

kij
v2rij

vrai vr
b
j

; (1)

where rai is the a component of the position of particle i, and

kijh
v2VðrijÞ
v2rij

is the stiffness of the bond. The eigenvectors give the

polarization of eachmode, and the corresponding eigenvalues are
the square of themode frequency. Note that the dynamical matrix
for sphere packings, as opposed to unstressed spring networks,
has an additional term that is proportional to the stress.

Using the zero modes (i.e.modes with zero eigenvalues), one
can easily calculate rigid clusters directly from their denition
(see Section 5). However, since only the zero modes are required
to calculate rigid clusters, we use a pebble game algorithm
developed by Jacobs and Thorpe21,22 to understand the rigidity
percolation transition in bond- and site-diluted lattices. This
algorithm decomposes any network into distinct rigid clusters
and can also be used to calculate the number of zero modes. We
use the pebble game because its tremendous efficiency allows
us to calculate rigid clusters for very large systems, although
rigid clusters can always, in principle, be derived frommodes of
the dynamical matrix. Soware for running the pebble game
algorithm was obtained online at http://exweb.asu.edu/.

Note that zero modes, and thus rigid clusters, can be derived
purely from the connectivity of the system without knowledge of
the particular form of the interaction potential. Thus, our results
are completely general for so nite-ranged potentials; only the
scaling between pressure and excess contact number needs to be
adjusted, as described in ref. 4, if other potentials were used.

3 Review of the cutting argument6,7

The cutting argument6,7 addresses the origin of the low-frequency
plateau in the density of vibrational modes in jammed pack-
ings.3,5 Consider an innite, mechanically stable packing of so
frictionless spheres in d dimensions at zero temperature and
applied stress. Two spheres repel if they overlap, i.e. if their center
to center distance is less than the sum of their radii, but do not
10994 | Soft Matter, 2013, 9, 10993–10999
otherwise interact. “Rattler” particles that have no overlaps
should be removed. Since the remaining degrees of freedom
must be constrained, the average number of contacts on each
particle, Z, must be greater than or equal to 2d, which is precisely
the jump in the contact number at the jamming transition.3,12

It is instructive to study a simpler system, the “unstressed”
system, in which each repulsive interaction between pairs of
particles in the system is replaced by a harmonic spring of
equivalent stiffness k at its equilibrium length. The geometry
of this spring network is identical to the geometry of the
repulsive contacts between particles in the original system and
the vibrational properties of the two systems are closely related.7

Now consider a square subsystem of linear size L obtained by
removing all the contacts between particles (or, in the language
of the unstressed system, all springs) that cross the boundary
between the subsystem and the rest of the innite system. Let
the number of zero frequency modes in the cut system be q and
the number of these zero modes that extend across the cut
system be q0. Wyart et al.6,7 used these modes to construct trial
vibrational modes for the original innite packing, as follows. If
we restore the cut system with these q0 extended zero modes
back into the innite system, the modes would no longer cost
zero energy because of the contacts that connect the subsystem
to the rest of the system. Trial modes are therefore created by
deforming each extended zero mode sinusoidally so that the
amplitudes vanish at the boundary. This deformation increases
the energy of each mode to order uL

2, where uL � 1/L.
Note that if a mode is not extended, then it must be localized

near the boundary, since the uncut system has no zero modes.
However, the above procedure involves setting the mode
amplitude to zero at the boundary, and so cannot be applied to
such modes. It is therefore crucial to use only the q0 extended
modes to construct trial modes.

The cutting argument now makes the assumption that q0 ¼
aq, where a is a constant independent of L. Before the cut, the
number of extra contacts in the subsystem above the minimum
required for stability is N extra

c � (Z � 2d)Ld. When the cut is
made, we lose N cut

c � Ld�1 contacts. Naive constraint counting
suggests that q0 � q ¼ max(�(N extra

c � N cut
c ),0), as shown by the

solid black line in Fig. 2. Since N extra
c and Ncut

c both depend on L,
we can dene a length scale ‘* by

q0 ¼ 0 if L. ‘*
q0 . 0 if L\‘*:

(2)

The onset of zero modes is marked by Nextra
c ¼ Ncut

c , so

‘* � 1

Z � 2d
: (3)

The variational argument now predicts that at least q0/2 of
the total Ld eigenmodes of the full system must have frequency
less than order uL, so the integral of the density of states from
zero to uL must be

ðuL

0

duDðuÞ$ q0

2Ld
: (4)

However, D(u) is an intrinsic property of the innite system and
must be independent of L. Therefore, assuming no additional
This journal is ª The Royal Society of Chemistry 2013
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low frequency modes beyond those predicted by the variational
argument, we can vary L to back out the full density of states, as
follows.

If L > ‘*, then q0 ¼ q ¼ 0 andð  uL

0

duDðuÞ ¼ 0: (5)

For L < ‘*, we can write q0/2 ¼ a(Ncut
c � Nextra

c )/2 � Ld(uL � 1/‘*),
which leads to ð  uL

0

duDðuÞ � uL � 1=‘*: (6)

Eqn (5) and (6) imply that

DðuÞ ¼
�
0 if u\u*

const: if u.u*;
(7)

where u* h 1/‘* � Z � 2d denes a frequency scale. Note that
while ‘* is potential independent, the units of frequency, and
thus u*, depend on potential.4 This argument predicts that the
density of states has a plateau that extends down to zero
frequency at the jamming transition, where Z � 2d ¼ 0. Above
the jamming transition, when Z � 2d > 0, the plateau extends
down to a frequency u* before vanishing. This agrees well with
numerical results on the unstressed system.7 Note the impor-
tance of the length scale ‘*, which denes the frequency scale
u* and is responsible for the excess low frequency modes.
Fig. 2 Number of excess zero modes as a function of the number of excess
contacts after the cut. Each data point is an average of configurations at constant
pressure.
4 Too many zero modes

In the cutting argument, the length scale ‘* is dened as the
size of a cut region, L, where the number of extended zero
modes, q0, rst vanishes (eqn (2)). The argument then assumes
that this coincides with the disappearance of all nontrivial zero
modes, q, which is assumed to occur when the cut system is
isostatic (i.e. when N cut

c ¼ N extra
c ). Wyart et al. showed7 numer-

ically that this is true when Z¼ 2d, but they do not provide such
evidence for over-constrained systems.

Fig. 1a shows a system that remains over-constrained aer
the cut (N extra

c > N cut
c ). The cutting argument would assert that
Fig. 1 Subsystems cut from a N¼ 4096 particle packing at a pressure pz 2.5� 10�

blue participate in the zero modes. The solid red particles form a rigid cluster. (b) A s
one additional particle from the system in (b). This added a single additional zero m
contains 21 particles. The breakup of the rigid cluster from (b) to (c), and the appearan
the cutting length. (d) A small system below ‘* with q ¼ 33 zero modes. The large

This journal is ª The Royal Society of Chemistry 2013
the only zero modes are the trivial global translations and
rotations, but we nd that there are in fact 60 non-trivial zero
modes. This is generalized in Fig. 2, which shows that q > 0 for
all cut sizes L and values of N extra

c � N cut
c . Clearly, one cannot use

the onset of zero modes to determine ‘*.
However, note that the zero modes in Fig. 1a exist only

around the boundary (the particles depicted by blue circles),
while none of the non-trivial zero modes extend into the region
of solid red particles. Since these zero modes are not fully
extended, the system is above the cutting length. As noted by
Wyart et al.,6 the scaling of the cutting argument would still be
robust if the number of these excess boundary zero modes
scales as Ld�1. However, as can be seen in Fig. 1a, these modes
penetrate a non-negligible distance into the bulk of the system
and so this scaling is not obvious.
5 Cluster argument

We now reformulate the cutting argument in a way that does
not rely on the total number of zero modes but is specically
4. (a) A large subsystemwith q¼ 60 non-trivial zeromodes. Only particles circled in
maller subsystem with q ¼ 35 zero modes. (c) A subsystem obtained by removing
ode that extends across the entire system. The largest remaining rigid cluster only
ce of the corresponding extended zeromode, is the phenomenon associatedwith

st rigid cluster contains 14 particles.

Soft Matter, 2013, 9, 10993–10999 | 10995
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Fig. 3 (a) An arbitrary surface (solid black line) of size L and an enclosed rigid
cluster (stripes). The rigid cluster has an average contact number of Z0 in the bulk
and ~Z at the boundary. As L becomes large, fluctuations in Z0 and ~Z vanish. (b)
Possible values of L such that a rigid cluster fits within the surface. Rigid clusters
can either be small or larger than some minimum value. This minimum value
defines ‘*.

‡ For now, we place no restrictions on the fractal dimension of the shape.
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View Article Online
designed to identify the onset of extended zero modes, which are
the ones needed to obtain u*. The mathematics will be similar
to that in the cutting argument, but the setup and interpretation
will be different. We will rst introduce the idea of rigid clusters
and illustrate the associated phenomenon that identies the
cutting length. We will then provide a rigorous derivation of the
scaling of ‘* in jammed packings.

Our argument is motivated by the simple fact that if none of
the zero modes are extended, then by denition there must be
a cluster of central particles that these modes do not reach.
Since this cluster does not participate in any zero modes, any
deformation to the cluster increases its energy. Thus, such
clusters have a nite bulk modulus and we will refer to them as
being rigid. The solid red particles in Fig. 1a are an example of
a rigid cluster. To be precise, a rigid cluster is dened as a
group of particles (within an innite d dimensional system
with average contact number Z) such that, if all other particles
were removed, the only zero modes in the unstressed system
would be those associated with global translation and rota-
tion. This is purely a geometrical denition and is indepen-
dent of potential.

Fig. 1b–d shows the same system as Fig. 1a, except with
progressively smaller cut regions. Fig. 1a and b are both
dominated by a rigid cluster that covers approximately 84% of
the cut region. However, while the cut region in Fig. 1c differs
from that in Fig. 1b by only a single particle, it has no rigid
cluster larger than 21 particles (it is comprised of many small
rigid clusters, the largest of which is shown in red). Apparently,
the removal of a single particle introduced a zero mode that
extends throughout the system and is precisely the type needed
by the variational argument of Wyart et al.6,7

This sudden breakup of the rigid cluster, which coincides
with the onset of extended zero modes, is a non-trivial
phenomenon that marks the length scale ‘*. We will now
provide a formal derivation of this phenomenon, which leads to
a clear physical denition of ‘* and allows us to derive its
scaling.

Consider an arbitrary d � 1 dimensional closed surface with
characteristic size L (for example, the solid black curve in
Fig. 3a). We will begin by asking whether or not it is possible for
all the particles within this surface to form a single rigid cluster.
For the cluster to be rigid, it must satisfy

Nc � dN$ � 1

2
dðd þ 1Þ (8)

where N and Nc are the number of particles and contacts in the

cluster, respectively, and
1
2
dðd þ 1Þ is the number of global

translations and rotations. This is a necessary but not sufficient
condition for rigidity. We can write Nc as

Nc ¼ 1

2
Z0�N �Nbndry

�þ 1

2
~ZNbndry; (9)

where ~Z is the contact number of the Nbndry particles on the
boundary and Z0 is the contact number of the particles not on
the boundary (see Fig. 3a). We can also dene the positive
constants a and b such that N ¼ 2aLd and Nbndry ¼ 2bLd�1+g,
where g$ 0 depends on the shape of the surface, with g ¼ 0 for
10996 | Soft Matter, 2013, 9, 10993–10999
non-fractal shapes.‡ For shapes that have multiple character-
istic lengths, e.g. a long rectangle, the choice of which length to
identify as L is irrelevant as it only leads to a change in the
constants a and b. For concreteness, we will always take L to be
the radius of gyration.

Eqn (8) now becomes

aLd�1þg
�ðZ0 � 2dÞL1�g � c

�
$ � 1

2
dðd þ 1Þ; (10)

where c ¼ b
a
ðZ0 � ~ZÞ. 0. Eqn (10) is trivially satised if (Z0 � 2d)

L1�g � c > 0, which implies

L.LminðZ0; c;gÞh
� c

Z0 � 2d

�1=ð1�gÞ
: (11)

We will refer to clusters that satisfy eqn (11) as macroscopic
clusters. However, it is also possible for (Z0 � 2d)L1�g � c < 0,
provided L is very small, because the right hand side of eqn (10)
is small and negative.

It follows that it is only possible for the particles in our
arbitrary surface to form a rigid cluster if the cluster is either
very small or larger than Lmin; rigid clusters of intermediate
sizes cannot exist! Rigid clusters cannot exist below Lmin

because the balance between the over constrained bulk and the
under constrained boundary shis towards the boundary as the
cluster size decreases. On the other hand, if a cluster is suffi-
ciently small, then it can be rigid, as can be seen from the
following constraint count for a triangular cluster of three
particles. For this cluster, there are six degrees of freedom, three
constraints and three zeromodes. Because the three zero modes
correspond to rigid translation in two directions and rigid
rotation, they do not destroy the rigidity of the cluster.

Note that if L is large, then uctuations in Z0 and c vanish and
Z0 ¼ Z. Lmin is thus constant for all translations and rotations of
the surface and is independent of L, depending only on the
actual shape of the surface.
This journal is ª The Royal Society of Chemistry 2013
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Given our arbitrary shape parameterized by c and g, and the
innite packing parameterized by Z, Lmin(Z,c,g) is the minimum
possible size of any macroscopic rigid cluster in the Z � 2d� 1
limit. However, we wish to nd the minimum size of any rigid
cluster regardless of shape, which we do by nding c* and g* that
minimize Lmin and dening ‘*h Lmin(Z,c*,g*). In the limit Z/

2d, we immediately see that g* ¼ 0 and

‘* ¼ c*

Z � 2d
: (12)

As depicted in Fig. 3b, we are le with the result that rigid
clusters must either be very small or larger than ‘*, which we
now interpret as a rigidity length.
Fig. 4 The smallest macroscopic rigid cluster for the system depicted in Fig. 1.
The rigidity of the cluster formed by the solid red and black particles is destroyed if
any of the black boundary particles are removed. None of the red particles make
physical contact with the blue particles (which are not in the rigid cluster) and are
not considered part of the boundary. The rigidity length, which is defined as the
5.1 Estimating an upper bound

We will now derive an upper bound for the magnitude of ‘* in
the Z / 2d limit. Since c � LNbndry/N, c is minimized when the
shape is a d dimensional hypersphere. We can approximate N
and Nbndry to be N z fVL

d and Nbndry z fSLd�1, where f is the
packing fraction and VL

d and SLd�1 are the volume and surface
area of a d dimensional hypersphere with radius of gyration L.
Using SLd�1/V

L
d ¼ wdd/L, where wd is the ratio of the radius of

gyration of a hypersphere to its radius,§ the Z / 2d limit of ‘*
becomes

‘*z
wdd

�
2d � ~Z

�
Z � 2d

: (13)

Eqn (13) is a quantitative derivation of ‘* as a function of Z
that depends only on the value of ~Z, the average contact number
at the boundary.

We put an upper bound on ‘* by obtaining a lower bound for
~Z. Note that any particle at the boundary of the rigid cluster
cannot have d or fewer contacts. Removing such a particle
would remove d degrees of freedom and at most d constraints,
and so the rigidity of the rest of the cluster would not be
affected. Thus, ~Z $ d + 1 and

‘* #
wddðd � 1Þ
Z � 2d

: (14)

5.2 Numerical verication

We will now use the cluster argument to calculate ‘* numeri-
cally. Note that the rigid cluster in Fig. 1b is not necessarily the
smallest rigid cluster. The cluster breaks apart when the particle
closest to the edge is removed (Fig. 1c), but it is possible that
other particles at the edge of the rigid cluster can be removed
without destroying the rigidity. The minimum rigid cluster that
denes ‘* has the property that rigidity is lost if any boundary
particle is removed.

We calculate ‘* by taking a large cut system (see Section 2)
and nding the smallest macroscopic rigid cluster. To do this,
we remove a particle that is randomly chosen from the
boundary and decompose the remaining particles into rigid
clusters. If there is no longer a macroscopic rigid cluster, then
§ w2 ¼ ffiffiffiffiffiffiffiffi
1=2

p
and w3 ¼

ffiffiffiffiffiffiffiffi
3=5

p
.

This journal is ª The Royal Society of Chemistry 2013
the boundary particle was necessary for rigidity and is put back.
If the rigid cluster remains then the particle was not necessary
for rigidity and we do not replace it. This process is repeated
with another randomly chosen boundary particle until all the
particles at the boundary of the rigid cluster are deemed
necessary for rigidity. See the ESI† for a video that demonstrates
this process. The resulting rigid cluster (e.g. see Fig. 4) cannot be
made any smaller and so its radius of gyration measures ‘*.

Fig. 5a shows that ‘* diverges as (Z � 2d)�1, consistent with
the cutting argument and our reformulation. In the small Z �
2d limit, ‘* is just below the theoretical upper bound of eqn (14)
(red dashed line). Fig. 5b shows that ~Z, the contact number of
boundary particles, is approximately 3.25 as Z / 2d, slightly
above the lower bound of 3. The solid white line in Fig. 5a shows
the quantitative prediction from eqn (13) using ~Z ¼ 3.25, which
agrees extremely well with the data.

According to ref. 6, the extended zero modes of the cut
system should be good trial modes for the low frequency modes
of the system with periodic boundaries. Consider a system just
below ‘* so that there is only one extended zero mode. The
global translations and rotations, as well as the boundary zero
modes, can be projected out of the set of zero modes by
comparing them to the modes of the system just above ‘*.
Fig. 5c shows the projection of that single extended zero mode
onto the dN modes of the full uncut system as a function of the
frequency of the uncut modes. This mode projects most
strongly onto the lowest frequency modes, implying that it is, in
fact, a good trial mode from which to extract the low frequency
behavior, as assumed.6 Along with the rst direct measurement
of ‘*, our results provide the rst numerical verication that the
trial modes of the variational argument are highly related to the
low frequency modes of the periodic system.
radius of gyration of the cluster, is ‘* ¼ 12.8 (in units of the average particle
diameter).

Soft Matter, 2013, 9, 10993–10999 | 10997
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Fig. 5 (a) ‘* as a function of Z � 2d, measured for individual systems as
described in the text. (b) ~Z z 3.25 in the limit Z / 2d, close to the predicted
bound. The solid white line in (a) is the quantitative prediction of eqn (13) using ~Z
¼ 3.25, while the dashed red line is the upper bound obtained from ~Z ¼ 3. (c) The
projection, P(u), of the single extended zero mode just below ‘* onto the modes
of frequency u in the uncut system, averaged over many realizations.
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5.3 Advantages of the cluster argument over the counting
argument

Along with adequately dealing with the excess zero modes in
Fig. 2, the cluster argument has a few additional advantages. In
it, ‘* is dened as the smallest rigid cluster, regardless of shape,
whereas the cutting argument has to specify a at cut. This is a
potential issue because the value of ‘* is sensitive to the shape
of the cut. For example, if one were to consider a shape with a
non-trivial fractal dimension, then N cut

c would no longer scale
as Ld�1, resulting in a length with entirely different scaling.
Wyart et al.6,7 argue that a at cut is a reasonable choice for the
purposes of their variational argument, but a physical length
scale with relevance beyond the variational argument should be
more naturally dened. The cluster argument not only provides
such a physical denition, it explains unambiguously why a at,
non-fractal cut was the correct choice in the cutting argument.

Furthermore, dening ‘* in terms of the number of zero
modes can be problematic. For example, rattlers must be
removed and internal degrees of freedom like particle rotations
must be suppressed. For packings of ellipsoidal particles, to take
one example, the choice of degrees of freedom is critical. Jammed
packings of ellipsoids lie below isostaticity16 and their unstressed
counterparts can have an extensive number of extended zero
modes. Despite this, when the aspect ratios of the ellipsoids are
small, there is a band of modes similar to those for spheres, with
a density of states that exhibits a plateau above u* � Z � 2d.17

One would thus expect a length scale ‘* � 1/u*, but the
constraint counting of the cutting argument does not predict
this. While the cluster argument also relies on zero modes and
thus cannot be applied directly in this case, the intuition that ‘*
is a rigidity length scale should carry over. Packings of ellipsoids
can have zero modes and still be rigid, and the cluster argument
would predict that there is a length scale below which a packing
with free boundaries loses its rigidity.

Experimental systems present a similar challenge because
the contact network is oen difficult to determine. However, our
result that ‘*marks a rigidity transition suggests that the elastic
10998 | Soft Matter, 2013, 9, 10993–10999
properties of a system could be used to measure ‘*. Such a
measurement should be experimentally tractable, would not
require knowledge of the vibrational properties, and would not
require specication of the degrees of freedom of the system.
5.4 Additional comments

As in the cutting argument, the cluster argument assumes that
spatial uctuations in Z are negligible. Wyart et al. argue7 that
uctuations in Z are negligible in d > 2 dimensions, and that the
condition of local force balance suppresses such uctuations
even in d ¼ 2 in jammed packings. We have applied our proce-
dure from Section 5.2 to bond-diluted hexagonal lattices where
these uctuations are not suppressed. Although these systems
display a global rigidity transition21,22 when they have periodic
boundary conditions, they do not exhibit an abrupt loss of
rigidity at some length scale that could be interpreted as ‘* when
they have free boundary conditions. It remains to be seen if ‘*
exists in this sense for bond-diluted 3 dimensional lattices.

Finally, our result that rigid clusters cannot exist on length
scales below ‘* appears to be consistent with results of Tighe,23

as well as that of Düring et al.,24 for oppy networks below
isostaticity. There, they nd that clusters with free boundaries
replaced by pinned boundaries cannot be rigid for length scales
above 1/|Z� 2d|. The use of pinning boundary particles has also
been used by Mailman and Chakraborty25 to calculate a point-
to-set correlation length above the transition that appears to
scale as ‘*.
6 Discussion

We have reformulated the cutting argument in terms of rigidity
instead of constraint counting. Networks derived form sphere
packings can only be rigid when they have free boundaries if
they are larger than a characteristic length ‘*, which diverges at
the jamming transition. Systems just smaller than this rigidity
length exhibit extended zero modes that are highly correlated
with the anomalous low-frequency modes of the periodic
systems, conrming the variational argument of Wyart et al.6,7

In contrast to the original counting argument, the generalized
denition of ‘* does not depend on the nature of an arbitrary
cut. The insight that ‘* marks a rigidity transition extends the
relevance of the length to systems where constraint counting is
either non-trivial (such as packings with internal degrees of
freedom) or not practical (such as experimental systems where
determining contacts is oen difficult).

The new rigidity interpretation of ‘* makes it transparently
clear that the cutting length ‘* is equivalent to the length scale
‘L, identied by Silbert et al.5 For systems with periodic
boundaries, the anomalous modes derived from the zero modes
swamp out sound modes at frequencies above u*. Thus, the
minimum wavelength of longitudinal sound that can be
observed in the system is ‘L ¼ cL/u*, where cL ¼ ffiffiffiffiffiffiffiffi

B=r
p

is the
longitudinal speed of sound, B � (Z � 2d)0 is the bulk modulus,
and r is the mass density of the system.

For systems with free boundaries that are smaller than ‘*,
rigid clusters cannot exist so the bulk modulus and speed of
This journal is ª The Royal Society of Chemistry 2013
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sound vanish. The minimum wavelength of longitudinal sound
that can be supported is therefore given by the minimum
macroscopic cluster size, ‘*. From the scalings of B and u*, we
see that ‘L � (Z � 2d)�1 � ‘*. Our denition of ‘* implies that
the two length scales not only have the same scaling but have
the same physical meaning.

Silbert et al. also identied a second smaller length scale ‘T
from the transverse speed of sound, which depends on the
shear modulus. For systems with free boundaries to be rigid,
they must support both longitudinal and transverse sound, and
so while our reasoning applies to both ‘L and ‘T, ‘* should be
the larger of the two, so that the condition for rigidity for a
cluster of size L is L T ‘* ¼ ‘L. Note that systems with periodic
boundary conditions of size L [ ‘T are stable to innitesimal
deformations of the shape of the boundary.26,27

Ideal sphere packings have the special property that the
number of contacts in a packing with periodic boundary condi-
tions is exactly isostatic at the jamming transition in the ther-
modynamic limit.3,12 Here, we have shown that the number of
contacts in such a system with free boundary conditions is exactly
isostatic (eqn (8) is satised with a strict equality) in the cluster of
size ‘*. This simplicity makes ideal sphere packings a uniquely
powerful model for exploring the marginally jammed state.
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