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ce vibrations in jammed sphere
packings

Daniel M. Sussman,*a Carl P. Goodrich,a Andrea J. Liua and Sidney R. Nagelb

We study the vibrational properties near a free surface of disordered spring networks derived from jammed

sphere packings. In bulk systems, without surfaces, it is well understood that such systems have a plateau in

the density of vibrational modes extending down to a frequency scale u*. This frequency is controlled by

DZ ¼ hZi � 2d, the difference between the average coordination of the spheres and twice the spatial

dimension, d, of the system, which vanishes at the jamming transition. In the presence of a free surface

we find that there is a density of disordered vibrational modes associated with the surface that extends

far below u*. The total number of these low-frequency surface modes is controlled by DZ, and the

profile of their decay into the bulk has two characteristic length scales, which diverge as DZ�1/2 and DZ�1

as the jamming transition is approached.
1 Introduction

Amorphous solids with free surfaces share a number of
intriguing features. Nanometrically thin lms of polymers and
small-molecule glasses have glass-transition temperatures that
are substantially lower than in bulk materials; nanoparticles
display an excess of low-frequency modes in their vibrational
densities of states compared to their bulk counterparts;1 and
free surfaces in nanopillars mediate the allowed failure modes
that lead to shear banding.2,3 These ndings are all correlated
with the observation that relaxation dynamics are more rapid
near a free surface than in the bulk.4 The enhanced dynamics
extend some distance into the bulk, but fail to correlate with
measures of static structure that have been explored.4 An
outstanding challenge is to nd a structural feature that decays
slowly enough from the surface that may be used to explain the
increase in dynamics. More generally, the characteristic length
scale over which a disordered solid is inuenced by a free
surface is unknown.

It is well-established in supercooled liquids that regions
with large root-mean-squared short-time particle uctuations
are also regions that on longer time scales are more likely to
exhibit particle rearrangements.5 Furthermore, these short-
time uctuations are themselves correlated with low-
frequency, quasi-localized modes (which have low energy
barriers to rearrangements6) in both supercooled uids7,8 and
jammed systems.9 The successful use of low-frequency modes
to identify a structural population of potential ow defects in
bulk systems9,10 leads us to investigate the vibrational modes at
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the surface of model disordered systems. Specically, we study
disordered spring networks in dimensions d¼ 2 and d¼ 3. The
networks are derived from jammed packings of so spheres
described in more detail below. In the bulk, these networks are
characterized by the average coordination of each particle, hZi,
where the jamming transition occurs at the isostatic point
hZi ¼ Zc ¼ 2d.11

In bulk jammed systems a population of disordered low-
frequency “anomalous” modes12 swamp out the plane waves
predicted by continuum elasticity. These additional modes can
be understood as a consequence of a diverging length scale: as
the jamming transition is approached from high density there
is a diverging length scale l* � DZ�1 where DZ h (hZi � Zc)12,13

that controls the effect of free surfaces on the stability of the
system.12,14 The low-frequency sound modes are connected to
the zero-energy modes associated with uniform translations of
the system, and similarly the anomalous modes are connected
to zero-energy deformation modes that exist at the jamming
transition in a system with free boundaries, according to a
variational argument.12

Just as for systems with periodic boundary conditions, in
disordered systems with a free surface the diverging length
scales of jamming herald a new class of modes, and we nd a
robust population of disordered low-frequency vibrational
modes localized near the surface. While there are zero-energy
modes localized at the surface on the scale of a particle diam-
eter,14 we nd that the nonzero-frequency vibrations have an
intricate spatial structure that extends into the bulk with length
scales set by the proximity to the jamming transition. In addi-
tion to l* there is a second diverging length that controls system
stability with respect to nite-wavevector boundary deforma-
tions,13,15 the transverse length scale lT � DZ�1/2. We nd that
this length is also relevant to disordered surface modes. These
Soft Matter, 2015, 11, 2745–2751 | 2745
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lengths, and other diverging lengths with the same scalings,16,17

have been argued to characterize the length below which
continuum elasticity fails11 and the detailed disordered struc-
ture must be considered to understand the response of the
amorphous material to point forces.

The remainder of the paper is organized as follows. We begin
in Section 2 by describing the numerical preparation protocol
for our systems. Section 3 presents our numerical results on
disordered spring networks, beginning in Section 3.1 with data
on the vibrational density of states and continuing in Section
3.2 in which we investigate the spatial structure of the surface
vibrational modes. We close with a discussion of these results
in the context of the broader class of amorphous solids in
Section 4.

2 System preparation

We begin by numerically generating jammed packings of N
bidisperse spheres in two and three dimensions. We use two
distributions (i) 50–50 mixture of spheres with diameter ratio
1 : 1.4 and (ii) a polydisperse mixture using a at distribution of
particle sizes between s and 1.4s, where s represents the
smallest particle diameter. The interaction between particles i
and j is the harmonic so repulsive potential,

V
�
rij
� ¼

8<
:

3

2

�
1� rij

�
sij

�2
rij\sij

0 rij $ sij

; (1)

where rij is the distance between particle centers, sij is the sum
of their radii, and 3 sets the energy scale. As is common in
simulations of binary mixtures, we will take all particles to have
equal mass m, and we expect that taking the mass to be
proportional to the particle size to have only very modest effects
on the results we report below. In what follows we will measure
energies in units of 3, distances in units of the average particle
diameter, pressures in units of 3/sd�1, and frequencies in units

of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ms2

p
. To obtain a jammed conguration at a target

pressure, p, particles were initially placed at random in the
simulation box with periodic boundary conditions (i.e. in an
innite temperature conguration). The system was then
quenched to zero temperature by combining linesearch
methods, Newton's method, and the FIRE algorithm.18 The
system was then incrementally expanded or compressed
uniformly and then re-quenched to zero temperature until the
target pressure was obtained to within 1%. For each congu-
ration specied by a total number of particles of 256 # N #

10 000 and a pressure of 10�8 # p # 10�1, approximately 1000
states were prepared for analysis.

When using a purely repulsive potential there is a challenge
in dealing with free surfaces; most notably, if one removes
particles to create a surface in a nite-pressure jammed
conguration, force balance would no longer be satised and
the system would expand. We circumvent this problem by
studying the corresponding “unstressed” network.19,20 We
replace each pairwise interaction with a harmonic unstretched
spring between nodes at the particle centers. This gives us a
system with the same geometry and connectivity as the original
2746 | Soft Matter, 2015, 11, 2745–2751
sphere packing. These unstressed networks are the cleanest way
to understand the bulk density of states of the jammed particle
packings, and can be used to understand, e.g., heat transport
properties of the original system.21 They are also useful for
systems with attractive interactions, such as Lennard-Jones
systems.22

We thus replace the jammed packing with the unstressed
network. Formally, one constructs the dN � dN dynamical
matrix M ij by taking the second derivative of the energy:

M ijh
v2U
v~riv~rj

, where

U ¼ 1

2

X
hi;ji

kij

��
~ri �~rj

�
$r̂ij

�2

: (2)

Here i and j refer to particle indices, the sum is over neighboring

particles, and kij ¼ v2VðrijÞ
v2rij

is the stiffness of the bond.

Crucially, this expression for the dynamical matrix neglects
terms proportional to stress that are present in the sphere
packing. The pressure at which the sphere packing was
prepared sets the average contact number for the unstressed
system, and we thus use initial packing pressure as a proxy for
the spring network connectivity. For the positive pressures and
harmonic interactions considered in this work, the average
excess contact number is hZi � 2d � p1/2.11 The dynamical
matrix can be diagonalized to obtain the density of states, D(u),
of the unstressed spring network. In periodic jammed cong-
urations the anomalous modes lead to a plateau in the a density
of states that extends down to a characteristic frequency u* �
DZ.13 Below this frequency, the density of anomalous modes
drops to zero. In the following, we will report measurements
with respect to an estimate of u* z 2

ffiffiffi
p

p
, which is approximately

the frequency at which the density of states for bulk systems
drops below 1.

With the unstressed spring network in hand, we create a free
surface by removing any bond that crosses a boundary of
interest. In this work we focus on systems in a thin lm or slab
geometry, and so remove the periodic boundary conditions in
the x-direction. This is equivalent to cutting any bond that
crosses x ¼ 0 or x ¼ L where L is the linear system size. Our
system is thus a strip of width L in the x-direction, with periodic
boundary conditions in the remaining directions.
3 Numerical results
3.1 Density of states

We begin by characterizing the density of vibrational modes in
these free-surface systems. Fig. 1 shows representative examples
of the density of states that we obtain by cutting free surfaces at
x¼ 0 and x¼ L in both 2 and 3 dimensions. The different curves
correspond to different pressures at which the harmonic disk
packings were originally prepared. As noted above, before
cutting the free surface the pressure sets the characteristic
length scale l* � DZ�1, and by varying the initial pressure of the
packings we are able to study the density of states as a function
of the ratio l*/L. Although it may be more intuitive to study this
This journal is © The Royal Society of Chemistry 2015
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Fig. 1 (a and b) Density of vibrational modes averaged over 2500
networks derived from jammed packings of N ¼ 500 particles in two
dimensions. (a) From right to left the pressures of the initial packings
are p ¼ 4.0 � 10�6, 6.3 � 10�6, 1.0 � 10�5, 1.6 � 10�5, 2.5 � 10�5, and
4.0 � 10�5, for which L ( l*. (b) From top to bottom the pressures of
the initial packings are p ¼ 1.0 � 10�4, 2.5 � 10�4, 6.3 � 10�4, 1.6 �
10�3, 4.0 � 10�3, and 1.0 � 10�2, for which L T l*. (c) Low-frequency
part of the density of vibrational modes for systems of N ¼ 1000
particles in 3D. From top to bottom the pressures of the initial packings
are p ¼ 6.3 � 10�4, 1.6 � 10�3, 4.0 � 10�3, 1.0 � 10�2, and 2.53 �
10�2, for which L T l*.
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ratio by varying the system size, in practice it is much easier to
prepare systems at a xed size and minimize them to different
targeted pressures. We note in passing that at all values of l*/L
our disordered packings have of order Ld�1 surface zero-
frequency modes:23 for modestly over-constrained systems there
is a DZ-dependent probability per unit surface area of creating a
localized zero-frequency mode. The resulting modes are local-
ized to the surface on the scale of the particle size.14 In addition
This journal is © The Royal Society of Chemistry 2015
to these zero frequency modes, however, there is also a
nontrivial population of nite-frequency modes associated with
the free surface.

When the strip thickness is L z l*, the system as a whole is
brought very close to the isostatic threshold and, by analogy
with bulk systems,13 one expects a plateau in the density of
states extending to arbitrarily low frequencies. When the strip
thickness is L < l*, the system is brought below isostaticity by the
introduction of free surfaces and is no longer rigid. For nite-
sized systems the lowest-frequency plane wave has a frequency
proportional to 1/L, and there are no disordered modes in the
frequency range 0 < u ( u*.24 This leads to an effective gap in
the density of vibrational modes, as seen in Fig. 1(a). The gure
shows a larger gap at lower initial packing pressures, corre-
sponding to a larger ratio of l*/L. Not shown is the delta-func-
tion spike of additional extended zero-frequency modes that
grows as the system is taken farther and farther below the
isostatic point by increasing l*/L.

Our primary focus is on systems with l*/L < 1. These systems
have free surfaces but remain rigid because the system retains
enough contacts to be globally stable. Just as in the periodic
case, there is a plateau that extends down to a frequency u*

s. We
nd that for strips this frequency is a factor of two smaller than
the lower frequency edge of the plateau in identical systems
with full periodic boundary conditions, u*

s z u*/2. This result is
consistent with a cutting argument, as we will show in the
Discussion. The most noticeable feature of Fig. 1(b), however, is
a secondary population of modes below u*

s that is absent in the
periodic system. This feature persists for three-dimensional
systems with cut surfaces, as shown in Fig. 1(c). The additional
modes appear to extend all the way down to zero frequency; the
curves end at low frequencies where we no longer have suffi-
cient statistics. Note that for each l*/L < 1 there is an upturn at
very low frequencies. This upturn is particularly striking at
l*/L� 1 in 2D. An extremely minor upturn has been observed for
periodic jammed systems with DZ < 3 � 10�2,20 but here we see
an apparent power-law increase in the density of states that
scales as u�1/2 at low frequencies. This feature has not been
understood in the context of the counting/variational argu-
ment,12 and is currently unexplained. We nd that the low-
frequency portion of the density of states can be roughly
collapsed by letting the x-axis be u/DZ (so that the bulk
jamming plateau is at the same point for each curve) and
scaling the y-axis as D(u) (DZ)2. Our assessment of the quality of
this scaling collapse is limited, unfortunately, by the relative
lack of statistics for the low-frequency portion of the densities of
states at high pressures.

The number of modes in this secondary, low-frequency
portion of the density of states strongly suggests that this
contribution to the density of states arises from the existence of
free surfaces. To ensure that we do not include modes that are
present in the bulk, we count only the number of modes below
u*
s/2. For different system sizes the average number of modes

per system in the frequency range 0 < u < u*
s/2 scales with the

free surface area, Ld�1, as expected. Additionally, at xed system
size but with varying initial packing pressure we nd that the
number of modes in this frequency range per system scales as
Soft Matter, 2015, 11, 2745–2751 | 2747
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1=
ffiffiffi
p

p � ðl*Þ. These two features are shown in Fig. 2, which plots
the number of low-frequency modes versus Ld�1p�1/2 for a
variety of pressures and system sizes in both two and three
dimensions. This scaling suggests that the volume of particles
that participate in surface modes with 0 < u < u*

s/2 scales as
Ld�1l*; assuming that surface modes are localized to the surface
leads to the conclusion that particles within l* of the free surface
participate in these modes.
Fig. 3 Typical low-frequency modes for two-dimensional systems
with periodic boundary conditions along the top and bottom edges of
the cell and free boundaries along the vertical edges. Circles represent
3.2 Surface mode structure

We can now look at the spatial structure of the modes that lie in
the new band between u ¼ 0 and u ¼ u*

s. Fig. 3 shows two
typical examples of these modes in a two-dimensional system.
The black lines show the magnitude and orientation of the
polarization vector of the given mode on each particle. The
modes are clearly localized to the free surface. As seen in the top
gure, we occasionally nd modes that tunnel through the
sample and have localized vibrations at both free surfaces.
Additionally, we typically nd that the extent of localization is
weakly frequency-dependent, with a localization length that
grows with frequency. A quantication of this dependence is
difficult, though, as individual modes typically have non-trivial
structure, including plane-wave contributions.

In order to quantify the decay of the vibrational amplitude
from the surface into the bulk, we average the vibrational
amplitude over all modes in the frequency band 0 < u # u*

s.
Specically, we look at the average polarization magnitude and
average squared polarization magnitude of particles between x
and dx as a function of distance, x, from the free surface (similar
to the overlap function dened by Wyart25):

hj~ejsidx¼P
m

P
xi˛½x;xþdx�

��d~Ri;m

��s : (3)

Here m indexes any of the modes whose frequency is in the
surface plateau region, d~Ri,m refers to the vector displacement of
particle i in vibrational mode m, and s ¼ 1 or s ¼ 2. We have
checked that our subsequent results are insensitive to the
choice of upper frequency cut-off in the set of modes we study,
Fig. 2 log–log plot of the number of modes below u*
s/2 versus

Ld�1p�1/2. Points are drawn from two-dimensional packings with
N ¼ 250, 500, 2048 and three-dimensional packings with N ¼ 1000,
10 000. The straight line is a guide to the eye with unit slope.

particle centers and black lines represent the orientation and magni-
tude of particle motion, d~Ri, in that mode. The frequencies correspond
to u/u*

s ¼ 0.24 (top) and u/u*
s ¼ 0.62 (bottom).

2748 | Soft Matter, 2015, 11, 2745–2751
as long as that cut-off is less than u*
s. A representative plot of

this surface-mode prole is shown in Fig. 4.
As shown in Fig. 4(a), the average mode prole decreases

away from the surface. The blue curve, an exponential decay, is a
good t to the region closest to the surface. The prole begins to
deviate from the initial exponential decay at a distance that we
mark in Fig. 4(a) with a vertical blue dashed line. We have
studied mode proles as a function of initial pressure, and for
sufficiently low pressures we consistently see that close to the
surface the prole has a clear exponential decay, and that the
distance over which this exponential decay persists decreases
with increasing pressure. At the highest pressures studied,
when an extrapolation would suggest that the exponential decay
This journal is © The Royal Society of Chemistry 2015
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Fig. 4 (Top) log–log plot of the overlap function for two-dimensional
packings with N ¼ 10 000 and p ¼ 1.0 � 10�3, vertically shifted
(normalized by h|e|2i of the leftmost data point) for clarity. The solid
blue line is an exponential fit over the first region from the surface to
the blue dashed line, while the solid black line is a straight line fit on the
log–log plot that characterizes the third region (from the black dashed
line to the center of the sample). The vertical dashed lines show where
the data deviate by a fixed percentage from the solid fitting lines, with
the black vertical dashed line marking a knee separating the second
from the third regimes. (Bottom) log–log plot of the polarization
magnitude between x and dx for N ¼ 10 000 and pressures of bottom
to top p ¼ 4.0 � 10�3, 6.3 � 10�3, 1.0 � 10�2, 1.6 � 10�2. The dashed
line is a guide to the eye with slope�1/4. The curves have been shifted
vertically for clarity.

Fig. 5 Length scales marking the end of the exponential decay regime
at small x corresponding to the blue dashed line in Fig. 4(a) (blue solid
circles) and the crossover between the second and third regimes
corresponding to the black dashed line in Fig. 4(a)(black open circles),
as a function of pressure for N ¼ 10 000 particle systems in 2D.
Straight lines are guides to the eye with slopes �0.25 and �0.50,
respectively; these pressure-dependencies correspond to the scalings
of lT and l*. The error bars around each point correspond to the range
of values obtained by varying the parameters of the fitting procedure
described in the main text.
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length is less than thez2s length scale over which the jammed
packings have a non-trivial local structure, it is harder to
observe this exponential decay. We have also conrmed that the
same length scale can be obtained by tting an exponential
decay on a mode-by-mode basis, although this leads to a much
noisier signal. In Fig. 5 we plot (blue solid circles) the distance
at which the average mode prole deviates from an exponential
decay, corresponding to the blue dashed line in Fig. 4, as a
function of pressure. We nd that this distance scales as the
transverse length scale, lT � p�1/4, which diverges at the
jamming transition.13,15,17 By varying the precise region over
which we t and the tolerance at which we declare the prole to
have deviated from the t we obtain the error bars in Fig. 5.

That the modes decay on the scale of the transverse length is
surprising in light of our analysis of the density of states, where
we found of order �Ld�1l* modes below u*

s/2. Since l* > lT, this
suggests that even though the dominant decay length is on the
scale of lT, there must be contributions from particles farther
away from the surface, i.e. on the scale of l*. In fact there are
This journal is © The Royal Society of Chemistry 2015
indications of this length scale in the surface mode prole.
Although the average mode structure beyond lT is complicated
by the nite number of plane waves that may lie in the
frequency band 0 < u < u*, we nd that the initial exponential
decay is consistently followed by a crossover regime which ends
with a knee. At larger x the decay is again faster, indicating a
new regime. The onset of this new regime is marked by a vertical
black dashed line in Fig. 4(a). Although we have a very limited
range in this third regime, the decay in this regime has the same
slope on a log–log plot across the range of pressures for which
the third regime is observable in our N ¼ 10 000 two-dimen-
sional systems. This is shown in Fig. 4(b), where we plot the
mode proles on a log–log plot for several pressures, with
vertical shis, to show that they have the same slope in this
third regime.

We plot the distance corresponding to the onset of the third
regime as a function of pressure in Fig. 5 (black open circles).
We nd that the onset of the third regime of decay scales as
l* � p�1/2, which diverges at the jamming transition.12–14,16 This
is consistent with our expectation that, based on the scaling of
the surface density of states, these surface modes should extend
into the system on the length scale l*.

In summary, the surface modes appear to have a signature of
both of the two diverging length scales associated with
jamming.12–17 The 10 000-particle systems studied have a box
size of roughly 100s � 100s, which accounts for our inability to
observe l* at very low pressures: when the second regime of the
mode prole extends past�50s it cannot be reliably detected as
the second free surface starts inuencing the decay of the
overlap function. Thus, studying the transition between the
secondary and tertiary decay regimes for lower pressures would
require much larger systems. Additionally, as noted above there
Soft Matter, 2015, 11, 2745–2751 | 2749
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is local structure on a scale of �2s, and so when lT is compa-
rable to this distance (at very high pressures) it, too, cannot be
reliably observed.

4 Discussion

The most striking feature of the density of states for strips of
nite width is the presence of a new population of disordered
surface modes with frequencies below u*

s. We identify these as
surface modes because their number scales as Ld�1. Above u*

s,
there is a plateau in the density of states that scales with the
volume of the strip, Ld. The frequency u*

s is half that of the
frequency u*, which marks the lower frequency edge of the
plateau in the bulk density of states. This factor of two may be
understood in the context of a simple counting estimate for l*

and u*.12,14 In bulk systems a counting estimate of l* comes
from thinking about cutting a boundary completely around the
system on a size scale L. The number of bonds cut by this
procedure is Ncut

c ¼ ghZiLd�1, and the number of excess bonds
(above isostaticity) the system had before the cut is Nextra

c ¼
nDZLd, where g and n are prefactors that depend on the
geometry of the cut. Estimating l* as the length at which Ncut

c ¼
Nextra
c yields l* � ghZi/(nDZ). However, in a system that already

has free surfaces in one of the dimensions there is a reduction
in Nextra

c by a surface term: Nextra
c ¼ nDZLd � ghZiLd�1. Equating

Nextra
c and Ncut

c for these free-surface systems thus increases the
counting estimate of l* by a factor of two, and hence u* � 1/l* is
reduced by a factor of two.

A more pressing question to address is why the surface
modes ll in the gap 0 < u# u*

s, with a number of modes in this
regime that scales as l*Ld�1. The fact that the surface modes can
have arbitrarily low frequencies is a consequence of the argu-
ments of Goodrich et al.,26 where it was noted that, depending
on the degree of localization of a givenmode, breaking a contact
can lower that individual mode's frequency by an arbitrary
amount. Thus, if we assume that modes are quasi-localized to
the surface, cutting Ld�1 bonds could generically create a pop-
ulation proportional to �Ld�1 of very-low energy modes (since
this is related to the probability of cutting a bond important to
one of those quasi-localized modes). The scaling of the size of
this population of sub-u*

s modes is independent of the geometry
of the cutting, but the actual number of such modes and their
distribution in frequency could depend on the spatial distri-
bution of cut bonds. In the case of a surface, then, why does the
surface density of states scale as l*?

A justication comes from recalling that if the system has L <
l* then it loses its rigidity.12,14One reasonable assumption is that
this rigidity loss occurs because very so surface modes that
decay from each cut surface to a distance l* can communicate
with each other through the system once L� l*. We observe that
there are two decay lengths governing the decay of the surface
mode prole, lT and l* > lT. If surface vibrations are localized on
a scale of l*, one expects, from a straightforward generalization
of the variational argument of Wyart et al.,12 that some pop-
ulation of them (of order Ld�1) would have an energy cost
bounded by dEloc ( (l*)�2 and thus have a frequency u ( u*.
(This does not preclude the possibility of “surface” modes
2750 | Soft Matter, 2015, 11, 2745–2751
additionally appearing at higher frequencies.) Thus, the
assumption that modes are localized to be within l* of the
surface – which is veried by the appearance of l* as a decay
length in the surface mode prole – immediately suggests a
population of l*Ld�1 modes at frequencies below u*

s, consistent
with our observation.

We note that our observation of two decay lengths in the
prole, lT and l*, is consistent with ideas of Lerner et al.,17 which
suggests that lT is the length scale below which disordered
response, beyond that predicted by continuum elasticity, can be
observed as long as the system is at least l* in size.

It is natural to ask what wemight expect for surface modes in
disordered systems with longer-range interactions. We specu-
late that our ndings may have implications for the existence of
a free-surface length scale in Lennard-Jones thin lms.
Although these systems do not properly have a jamming tran-
sition (it lies inside the liquid–vapor spinodal27), and the surface
modes share the same frequency range as bulk vibrational
modes,28 there may still be a remnant of the two surface length
scales seen in our present studies. One can dene longitudinal
and transverse length scales by comparing the speeds of sound
with the boson peak frequency. For instance, lT � cT/u

*, where
the transverse speed of sound is cT ¼ ffiffiffiffiffiffiffiffiffi

G=r
p

, with G the shear
modulus and r the mass density. In jammed systems of
harmonically repulsive spheres this denition recovers the
expected scalings of lT � p�1/4 and l* � p�1/2.13 We can estimate
these length scales by estimating the boson peak and moduli of
a zero-temperature Lennard-Jones glass whose density corre-
sponds to a zero-pressure state. Doing so, we nd that lT � 2.5s
and l* � 6.0s. While modest, the estimated l* is longer than
static length scales typically observed near free surfaces, and is
roughly consistent with the characteristic size of the mobile
layer of Lennard-Jones polymer glasses below their glass tran-
sition. It is therefore possible that the length scales we observe
for jammed systemsmay survive in the surface properties of real
glassy thin lms.
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