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World capital markets have experienced large scale sovereign defaults on a number of oc-

casions. In this paper we develop a quantitative model of debt and default in a small open

economy. We use this model to match four empirical regularities regarding emerging markets:
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and interest rates and the current account are positively correlated. We highlight the role of the
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1 Introduction

World capital markets have experienced large scale sovereign defaults on a number of occasions, the

most recent being Argentina’s default in 2002. This latest crisis is the fifth Argentine default or

restructuring episode in the last 180 years.1 While Argentina may be an extreme case, sovereign

defaults occur with some frequency in emerging markets. A second set of facts about emerging

markets relates to the behavior of the interest rates at which these economies borrow from the

rest of the world and their current accounts. Interest rates and the current account are strongly

countercyclical and positively correlated to each other. That is, emerging markets tend to borrow

more in good times and at lower interest rates as compared to slumps. These features contrast with

those observed in developed small open economies.

In this paper we develop a quantitative model of debt and default in a small open economy, which

we use to match the above facts. Our approach follows the classic framework of Eaton and Gersovitz

(1981) in which risk sharing is limited to one period bonds and repayment is enforced by the threat

of financial autarky. In all other respects the model is a standard small open economy model where

the only source of shocks are endowment shocks. In this framework, we show that the model’s

ability to match certain features in the data improve substantially when the productivity process

is characterized by a volatile stochastic trend as opposed to transitory fluctuations around a stable

trend. In a previous paper (Aguiar and Gopinath (2004)), we document empirically that emerging

markets are indeed more appropriately characterized as having a volatile trend. The fraction of

variance at business cycle frequencies explained by permanent shocks is shown to be around 50% in

a small developed economy (Canada) and more than 80% in an emerging market (Mexico).

To isolate the importance of trend volatility in explaining default, we first consider a standard

business cycle model in which shocks represent transitory deviations around a stable trend. We

find that default is extremely rare, occurring roughly twice every 2,500 years. The weakness of the
1See Reinhart, Rogoff and Savastana (2003).
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standard model begins with the fact that autarky is not a severe punishment, even adjusting for

the relatively large income volatility observed in emerging markets. The welfare gain of smoothing

transitory shocks to consumption around a stable trend is small. This in turn prevents lenders from

extending debt, which we demonstrate through a simple calculation a la Lucas (1987). We can

support a higher level of debt in equilibrium by assuming an additional loss of output in autarky.

However, in a model of purely transitory shocks, this does not lead to default at a rate that resembles

those observed in many economies.

The intuition behind why default occurs so rarely in a model with transitory shocks and a stable

trend is described in Section 3. The decision to default rests on the difference between the present

value of utility (value function) in autarky versus that of financial integration. Quantitatively, the

level of default that arises in equilibrium depends on the relative sensitivity of the two value functions

to endowment shocks. When the endowment process is close to a random walk there is limited need

to save out of additional endowment, leaving little difference between financial autarky and a good

credit history, regardless of the realization of income. At the other extreme, if the transitory shock is

iid over time, then there is an incentive to borrow and lend, making integration much more valuable

than autarky. However, an iid shock has limited impact on the entire present discounted value

of utility, and so the difference between integration and autarky is not sensitive to the particular

realization of the iid shock. At either extreme, therefore, the decision to default is not sensitive

to the realization of the shock. Consequently, when shocks are transitory, the level of outstanding

debt — and not the realization of the stochastic shock —is the primary determinant of default. This

is reflected in financial markets by an interest rate schedule that is extremely sensitive to quantity

borrowed. Borrowers internalize the steepness of the “loan supply curve” and recognize that an

additional unit of debt at the margin will have a large effect on the cost of debt. Agents therefore

typically do not borrow to the point where default is probable.

On the other hand, a shock to trend growth has a large impact on the two value functions
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(because of the shock’s persistence) and on the difference between the two value functions. The latter

effect arises because a positive shock to trend implies that income is higher today, but even higher

tomorrow, placing a premium on the ability to access capital markets to bring forward anticipated

income. In this context, the decision to default is relatively more sensitive to the particular realization

of the shock and less sensitive to the amount of debt. Correspondingly, the interest rate is less

sensitive to the amount of debt held. Agents are consequently willing to borrow to the point that

default is relatively likely. This theme is developed in Section 4.

The next set of facts concerns the phenomenon of countercyclical current accounts and interest

rates. In the current framework where all interest rate movements are driven by changes in the

default rate, the steepness of the interest rate schedule makes it challenging to even qualitatively

match the positive correlation between interest rates and the current account. This is because, on

the one hand, an increase in borrowing in good states (countercyclical current account) will, all else

equal, imply a movement along the heuristic “loan supply curve” and a sharp rise in the interest

rate. On the other hand, if the good state is expected to persist, this lowers the expected probability

of default and is associated with a favorable shift in the interest rate schedule. To generate a positive

correlation between the current account and interest rates we need the effect of the shift of the curve

to dominate the movement along the curve. A stochastic trend is again useful in matching this fact

since the interest rate function tends to be less steeply sloped and trend shocks have a significant

effect on the probability of default. Accordingly, in our benchmark simulations, a model with trend

shocks matches the empirical feature of a positive correlation between the interest rate and the

current account. The model with transitory shocks however fails to match this fact. The prediction

for which both models perform poorly is in matching the volatility of the interest rate process.2

The model with shocks to trend generates default roughly once every 125 years, which is a ten-fold
2The additional observed volatility may be due to a volatile risk premium, as suggested by Broner, Lorenzoni, and

Schmukler (2004).
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improvement over the standard model but still shy of the observed pattern for chronic defaulters.

We bring the default rate closer to that observed empirically for Latin America by introducing

third-party bail-outs. Realistic bailouts raise the rate of default dramatically — bailouts up to 18%

of GDP lead to defaults once every 27 years. However, the subsidy implied by bailouts breaks the

tight linkage between default probability and the interest rate. Interest rate volatility is therefore

an order of magnitude below that observed empirically.

The business cycle behavior of markets in which agents can choose to default has received in-

creasing attention in the literature. The approach we adopt here is a dynamic stochastic general

equilibrium version of Eaton and Gersovitz (1981) and is similar to the formulations in Chatter-

jee et al (2002) on household default and Arellano (2003) on emerging market default. Our point

of distinction from the previous literature is the emphasis we place on the role of the stochastic

trend in driving the income process in emerging markets. We find that the presence of trend shocks

substantially improves the ability of the model to generate empirically relevant levels of default.

Moreover, we obtain the coincidence of countercyclical net exports, countercyclical interest rates

and the positive correlation between interest rates and current account observed in the data. This

is distinct from what is obtained in Arellano (2003) and Kehoe and Perri (2002).

In the next section we describe empirical facts for Argentina. Section 2 describes the model

environment, parameterization and solution method. Section 3 describes the model with a stable

trend and its predictions. Section 4 describes the model with a stochastic trend and performs

sensitivity analysis. Section 5 examines the effect of third party bailouts on the default rate and

Section 6 concludes.

1.1 Empirical Facts

Reinhart et al (2003) document that among emerging markets with at least one default or restruc-

turing episode between 1824 and 1999, the average country experienced roughly 3 crises every 100
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years. The same study documents that the external debt to GDP ratio at the time of default or

restructuring averaged 71%. A goal of any quantitative model of emerging market default is to

generate a fairly high frequency of default coinciding with an equilibrium that sustains a large debt

to GDP ratio.

Table 1 documents business cycle features for Argentina over the period 1983.1 to 2000.2 using

an HP filter with a smoothing parameter of 1600 for quarterly frequencies. A striking feature of

the business cycle is the strong countercyclicality of net exports (-0.89) and interest rates spreads

(-0.59). Interest rates and the current account are also strongly positively correlated (0.68). These

features regarding interest rates, in addition to the high level of volatility of these rates, have been

documented by Neumeyer and Perri (2004) to be true for several other emerging market economies

and to contrast with the business cycle features of Canada, a developed small open economy. Aguiar

and Gopinath (2004b) document evidence of the stronger countercyclicality of the current account

for emerging markets relative to developed small open economies. In the model we emphasize

the distinction between shocks to the stochastic trend and transitory shocks. This is motivated by

previous research (Aguiar and Gopinath (2004b)) that documents that emerging markets are subject

to more volatile shifts in stochastic trend as compared to a developed small open economy.

2 Model Environment

To model default we adopt the framework of Eaton and Gersovitz (1981). Specifically, we assume

that international assets are limited to one period bonds. If the economy refuses to pay any part of

the debt that comes due, we say the economy is in default. Once in default, the economy is forced

into financial autarky for a period of time as punishment.

We begin our analysis with a standard model of a small open economy that receives a stochastic

endowment stream, yt. (We discuss a production economy in Section 4.1.). The economy trades a
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single good and single asset, a one period bond, with the rest of the world. The representative agent

has CRRA preferences over consumption of the good:

u =
c1−γ

1− γ
. (1)

The endowment yt is composed of a transitory component zt and a trend Γt:

yt = e
ztΓt. (2)

The transitory shock, zt, follows an AR(1) around a long run mean µz

zt = µz(1− ρz) + ρzzt−1 + εzt (3)

|ρz| < 1, εzt ∼ N(0,σ2z), and the trend follows

Γt = gtΓt−1 (4)

ln(gt) = (1− ρg)(ln(µg)− c) + ρg ln(gt−1) + εgt (5)

¯̄
ρg
¯̄
< 1, εgt ∼ N(0,σ2g), and c = 1

2

σ2g
1−ρ2g

.

We denote the growth rate of trend income as gt, which has a long run mean µg. The log growth

rate follows an AR(1) process with AR coefficient
¯̄
ρg
¯̄
< 1. Note that a positive shock εg implies

a permanently higher level of output, and to the extent that ρg > 0, a positive shock today implies

that the growth of output will continue to be higher beyond the current period. We assume that

E
©
limt→∞ βt(Γt)

1−γª = 0 to ensure a well defined problem, where 0 < β < 1 denotes the agent’s

discount rate.

Let at denote the net foreign assets of the agent at time t. Each bond delivers one unit of the

good next period for a price of q this period. We will see below that in equilibrium q depends on

at and the state of the economy. We denote the value function of an economy with assets at and

access to international credit as V (at, zt, gt) (see the Appendix for a formal derivation with more

complete notation). At the start of the period, the agent decides whether to default or not. Let V B
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denote the value function of the agent once it defaults. The superscript B refers to the fact that the

economy has a bad credit history and therefore cannot transact with international capital markets

(i.e. reverts to financial autarky). Let V G denote the value function given that the agent decides

to maintain a good credit history this period. The value function of being in good credit standing

at the start of period t with net assets at can then be defined as V (at, zt, gt) = max
­
V Gt , V

B
t

®
.

At the start of period t, an economy in good credit standing and net assets at will default only if

V B(zt, gt) > V
G(at, zt, gt).

An economy with a bad credit rating must consume its endowment. However, with probability

λ it will be “redeemed” and start the next period with a good credit rating and renewed access

to capital markets. If redeemed, all past debt is forgiven and the economy starts off with zero net

assets. We also add a parameter δ that governs the additional loss of output in autarky3.

In recursive form, we therefore have:

V B(zt, gt) = u((1− δ)yt) + λβEtV (0, zt+1, gt+1) + (1− λ)βEtV
B(zt+1, gt+1) (6)

where Et is expectation over next period’s endowment and we have used the fact that λ is indepen-

dent of realizations of y. If the economy does not default, we have:

V G(at, zt, gt) = max
ct
{u(ct) + βEtV (at+1, zt+1, gt+1)} (7)

s.t.ct = yt + at − qtat+1

The Appendix derives some key properties of the value functions.

The international capital market consists of risk neutral investors that are willing to borrow

or lend at an expected return of r∗, the prevailing world risk free rate. The default function

D(at, zt, gt) = 1 if V B(zt, gt) > V G(at, zt, gt) and zero otherwise. Then equilibrium in the capi-
3Rose (2002) finds evidence of a significant and sizeable (8% a year) decline in bilateral trade flows following the

initiation of debt renegotiation by a country.
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tal market implies

q(at+1, zt, gt) =
Et{(1−Dt+1)}

1 + r∗
. (8)

The higher the expected probability of default the lower the price of the bond.

To emphasize the distinction between the role of transitory and permanent shocks we present

two extreme cases of the model described above. Model I will correspond to the case when the

only shock is the transitory shock zt and Model II to the case when the only shock has permanent

effects, gt.4 Since few results can be analytically derived we discuss at the outset the calibration

and solution method employed.

2.1 Calibration and Model Solution

Benchmark parameters that are common to all models are reported in Table 2A. Each period refers

to a quarter with a quarterly risk free interest rate of 1%. The coefficient of relative risk aversion

of 2 is standard. The probability of redemption λ = 0.1 implies an average stay in autarky of 2.5

years, similar to the estimate by Gelos et al (2003). The additional loss of output in autarky is

set at 2%. We will see in our sensitivity analysis (Section 4.1) that high impatience is necessary

for generating reasonable default in equilibrium. Correspondingly, our benchmark calibration sets

β = 0.8. Authors such as Arellano (2003) and Chatterjee et. al. also employ similarly low values of

β to generate default. The mean quarterly growth rate is calibrated to 0.6% to match the number

for Argentina.

The remaining parameters characterize the underlying income process and therefore vary across

models (Table 2B). To focus on the nature of the shocks, we ensure that the HP filtered income

volatility derived in simulations of both models approximately match the same observed volatility

in the data. In Model I, output follows an AR(1) process with stable trend and an autocorrelation
4One of the reasons we consider the two extremes is to minimize the dimensionality of the problem, which we solve

employing discrete state space methods. Using insufficient grids of the state space can generate extremely unreliable

results in this set up.
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coefficient of ρz = 0.9, which is similar to the values used in many business cycle models and

σz = 3.4%. We set the mean of log output equal to −1/2σ2z so that average detrended output in

levels is standardized to one. In Model II, σz = 0, σg = 3% and ρg = 0.17.

To solve the model numerically we use the discrete state-space method. We first recast the

Bellman equations in detrended form and then discretize the state space. See the Appendix for proofs

regarding the equivalence of the detrended and original problem. We approximate the continuous

AR(1) process for income with a discrete Markov chain using 25 equally spaced grids5 of the original

processes steady state distribution. We then integrate the underlying normal density over each

interval to compute the values of the Markov transition matrix.

The asset space is discretized into 400 possible values. We ensured that the limits of our asset

space never bind along the simulated equilibrium paths. The solution algorithm involves the following

(see the Appendix for proofs regarding convergence of the algorithm):

(i) Assume an initial price function q0(a, z, g). Our initial guess is the risk free rate at each point

in the state space.

(ii) Use this q0 and an initial guess for V B,0 and V G,0 to iterate on the Bellman equations (6)

and (7) to solve for the optimal value functions V B, V G, V = max
­
V G, V B

®
and the optimal policy

functions.

(iii) For the initial guess q0, we now have an estimate of the default function D0(a, z, g). Next,

we update the price function as q1 = Et{(1−Dt+1)}
1+r∗ and using this q1 repeat steps (ii) and (iii) until

|qi+1 − qi| < ε, where i represents the number of the iteration and ε is a very small number.
5 It is important to span the stationary distribution sufficiently so as to include large negative deviations from the

average even if these are extremely rare events because default is more likely to occur in these states.
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3 Model I: Stable Trend

Model I assumes a deterministic trend (Γt = (µg)
t) and the process for zt is given by (3). In Figure

1A, we plot the difference between the value function with a good credit rating (V G) and that of

autarky (V A) as a function of z for our calibration. The agent defaults when output is relatively

low. The top panel of Figure 2A plots the region of default in (z, a) space. The line that separates

the darkly shaded from the lightly shaded region represents combinations of z and a along which

the agent is indifferent between defaulting and not defaulting. The darkly shaded region represents

combinations of low productivity and negative foreign assets for which it is optimal to default.

For a given realization of z, clearly the agent is more likely to default at lower values of a. Since

V B refers to financial autarky, its value is invariant to a. Conversely, V G is strictly increasing in

assets. This follows straightforwardly from the budget constraint and strict monotonicity of utility.

For each z, there is a unique point of intersection, say a(z), and the agent will default if foreign

assets lie below a.

The default decision as a function of z is less clear-cut. In the case when λ = 0, it must be

the case that V G should be at least as steep as V B at the indifference point, for a given a. To see

this, consider the value of an additional unit of endowment at the indifference point. The agent in

autarky must consume this additional income. The agent with a good credit standing can consume

it or save it. The larger opportunity set implies that the value of the additional endowment is at

least as great for the agent in good credit standing. Hence, the slope of V G relative to z must be

(weakly) greater than the slope of V B relative to z, at the indifference point. However, if λ > 0,

then the agent in autarky has an outcome not available to the one in good credit standing, i.e.

redemption with debt forgiveness. In this case, the previous argument’s premise does not hold.

The fact that financial autarky is relatively attractive in bad states of the world is not a feature

shared by alternative models based on Kehoe and Levine (1993). In that model, optimal “debt”
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contracts are structured so that the agent never chooses autarky. However, the participation con-

straint binds strongest in good states of nature, i.e. the states in which the optimal contract calls for

payments by the agent. In the bond-only framework, contracted payments are not state contingent

and therefore the burden of repayment is greatest in low endowment states.

3.1 Debt and Default Implications in Model I

A simple calculation a la Lucas (1987) quickly reveals that it is difficult to sustain a quantitatively

realistic level of debt in a standard framework without recourse to additional punishment.6 Consider

our endowment economy in which the standard deviation of shocks to detrended output are roughly

4%. For this calculation, we stack the deck against autarky by assuming no domestic savings (capital

or storage technology), that shocks are iid, and that autarky lasts forever. We stack the deck in

favor of financial integration by supposing that integration implies a constant consumption stream

(perfect insurance). In order to maintain perfect consumption insurance, we suppose that the agent

must make interest payments of rB each period. We now solve for how large rB can be before

the agent prefers autarky. We then interpret B as the amount of sustainable debt when interest

payments are equal to r.

Specifically, let Yt = Y ezte−(
1
2 )σ

2
z where z ∼ N(0,σ2z) and iid over time. We ensure that EYt = Y

regardless of the volatility of the shocks. Then,

V B = E
X
t

βt
Y 1−γt

1− γ
=
(Y e−(

1
2 )γσ

2
z)1−γ

(1− γ)(1− β)
. (9)

Assuming that financial integration results in perfect consumption insurance,

V G = E
X
t

βt
c1−γt

1− γ
=
(Y − rB)1−γ
(1− γ)(1− β)

. (10)

The economy will not default as long as V G ≥ V B, or rB
Y
≤ 1 − exp(−(12)γσ2z). The volatility of

detrended output for Argentina is 4.08% (i.e. σ2z = 0.0408
2 = 0.0017). For a coefficient of relative

6See Obstfeld and Rogoff (1996) and Mendoza (1992) for alternative calculations of the welfare gains from financial

integration.
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risk aversion of 2, this implies the maximum debt payments as a percentage of GDP is 0.17%. Or,

at a quarterly interest rate of 2%, debt cannot exceed 8.32% of output.

Our simulated model will be shown to support higher debt levels because we impose an additional

loss of δ percent of output during autarky. Introducing such a loss into the above calculation implies

a debt cutoff of rB
Y
≤ 1 − (1 − δ) exp(−(12)γσ2z). If δ = 0.02, we can support debt payments of

20% of GDP, which implies a potentially large debt to GDP ratio. It is clear that to sustain any

reasonable amount of debt in equilibrium in a standard model, we need to incorporate punishments

beyond the inability to self-insure, particularly since in reality financial integration does not involve

full insurance and autarky does not imply complete exclusion from markets.

A second implication of the model is that default rarely occurs in equilibrium. This arises because

of the steepness of the interest rate schedule and the fact that the agent internalizes the effect of his

borrowing on the interest rate he must pay. Figure 3A plots the q schedule as a function of assets

for the highest and lowest realizations of z. Over asset regions for which agents never default, the

implied interest rate is the risk free rate (q = 1
1+r∗ ). However, the schedule is extremely steep over

the range of assets for which default is possible. Consequently, even when the current endowment

shock is below average the agent does not borrow much. At the margin, the borrower recognizes that

an additional unit of debt raises the average cost of debt by the slope of the interest rate schedule.

The steepness of the interest rate schedule is ultimately tied to the persistence of the endowment

process. Let z(a) denote the threshold endowment below which the agent defaults for the given asset

level. That is, z is the line separating the shaded region from the unshaded region in Figure 2. For

a given at+1, we can then express the probability of default at time t+ 1 as Pr(zt+1 < z(at+1)|zt),

and correspondingly qt(at+1, zt) =
(1−Pr(zt+1<z(at+1)|zt))

(1+r∗) . Suppose the investor is considering saving

an additional ∆a of assets. The change in the interest rate is given by
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q(at+1 +∆a, zt)− q(at+1, zt) =
−1
1 + r∗

X
z(a)≤zt+1≤z(a+∆a)

π(zt+1|zt). (11)

where π(zt+1|zt) represents the probability that zt+1 will happen conditional on zt. From Figure 2,

we see that quantitatively, the distance between z(a) and z(a+∆a) for small ∆a is extremely large.

That is, the steepness of the z(a) translates into the steepness of the q schedule.

We now link the shape of z(a) to the nature of the shock process. Recall that z(a) represents

combinations of a and z for which the agent is indifferent to default, i.e., V G = V B . An increase in a

raises only V G. Therefore, to maintain equality, we need to lower z̄ (recall that V G is more sensitive

to z at the indifference point). How much z̄ needs to fall depends on the difference in sensitivity:

∆V G

∆z −
∆V B

∆z , where ∆V
j , j = G,B, is the change in V j induced by the change in z. In the case

of Model I, this difference tends to be a very small number. This can be seen from Figure 1A that

plots the difference between V G and V B across z (for a given a). This implies that the slopes of V G

and V B with respect to z are not that different.

The similarity in slopes results from the underlying process for z. Suppose that z is a random

walk. In this case, a shock to z today is expected to persist indefinitely and will have a large impact

on expected lifetime utility. However, with a random walk income process there is limited need to

save out of additional endowment (the only reason would be precautionary savings and the insurance

provided by the option to default). This implies an additional unit of endowment will be consumed,

leaving little difference between financial autarky and a good credit history. This issue arises for

strictly transitory shock processes as well. Consider the other extreme and suppose that z is iid over

time. Then there is a stronger incentive to borrow and lend. However, the lack of persistence implies

the impact of an additional unit of endowment today is limited to its effect on current endowment,

resulting in a limited impact on the entire present discounted value of utility. That is, both ∆V G

and ∆V B are relatively small and therefore so is the difference. Therefore, whether a shock follows

a random walk or is iid, a given shock realization has little impact on the difference between V G
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and V B. Consequently, a large movement in z is necessary to maintain equality between V G and

V B for a given change in assets.

The key point is that in our benchmark Model I, the q schedule is extremely steep over the

relevant range of borrowing. Moreover, the slope increases dramatically as we move into the range

of potential default. Therefore, a large implicit demand for borrowing does not result in additional

borrowing and a high probability of default. Instead, it generates minimal borrowing and a large

movement in the slope of the interest rate function. The flip side of this is that net exports are

extremely stable.

3.2 Business Cycles Implications in Model I

Table 3, column 3A, reports key business cycle moments from Model I.7 Default is a rare event as

it occurs on average only two times in 10,000 periods (i.e., once every 2,500 years). Net export and

interest volatility is much lower than in the data. The model supports a maximum debt to GDP

ratio of 26%.

A typical feature of these models is that the current account and the interest rate tend to be

negatively correlated, a counterfactual implication. This follows from the steepness of the interest

rate function. That is, if the agent borrows more in good states of the world (countercyclical current

account) then one effect is for the interest rate to increase as the agent moves up the “loan supply

curve”. The countering effect is that a persistent good state can imply a lower probability of default

and therefore a shift down in the q schedule. To generate the empirical fact that countries borrow

more in good times at lower interest rates we need the second effect to dominate the first. However,

the steepness of the q schedule in Model I makes this a less likely outcome. Consequently, in
7To analyze the model economy’s stationary distribution we simulate the model for 10,000 periods and extract the

last 500 observations to rule out any effect of initial conditions. We then log and HP filter the simulated series in the

same way as the empirical data, using a HP filter smoothing parameter of 1600. The reported numbers are averages

over 500 such simulations.
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our parameterization of Model I, we obtain a countercyclical current account as the data suggests,

however the interest rate process is now procyclical.

We have adopted a relatively persistent process for income that generates a countercyclical

current account, but at the cost of procyclical interest rates. That the current account can be coun-

tercyclical even in an endowment economy with purely transitory shocks highlights the endogenous

response of interest rates. When the income shock is temporarily high, there is the typical incentive

to save to smooth consumption. In addition there is the interest rate effect that works through

shifts in the interest rate function. That is, all else equal, the expected probability of default is

lower when the current income state is high and expected to persist. This was seen in Figure 3A

where the price function shifts in for high z. What is less visible, but is also the case, is that the

slope of the interest rate function also is reduced. While q is countercyclical in equilibrium, we can

calculate the total marginal cost of borrowing an additional unit along the equilibrium path and

this is found to be countercyclical. This is then consistent with households wanting to borrow more

when income is temporarily high. There are alternative parameterizations of Model I that produces

a countercyclical interest rate process, as called for by the data. However, this occurs only when the

current account is procyclical.8

4 Model II: Stochastic Trend

In Model II: yt = Γt where we let Γt vary stochastically as in (4) and (5). The behavior of

this model is captured by the simulation results reported in Table 3, column 3B. One important

distinction between the model with stochastic trend and Model I is the rate of default in equilibrium.

Specifically, the rate of default increases by a factor of ten. The reason for this can be seen by
8For example, the countercyclical interest rate found in Arellano (2004) comes with a pro-cyclical current account.

While introducing investment may generate a countercyclical current account, it is not clear that the countercyclical

interest rate will be invariant to this extension.

16



contrasting the behavior of the difference between V B and V G between Figure 1A (Model I) and

Figure 1B (Model II). High and low states of the growth shock will have substantially different effects

on life time utility. Moreover, with persistent shocks, the value of financial integration will be high.

Consequently, (V G-V B) has a greater slope with respect to the g shocks (Figure 1B) as compared to

z shocks (Figure 1A). By the logic introduced in the context of Model I, this in turn suggests z(a)

has a smaller slope. This is seen in Figure 2. Compared to the figure in the top panel, the region

of default is larger and the slope of the line of indifference is smaller in the case of growth shocks.

This then translates into a less steep q function as seen in Figure 3B. Moreover, it also suggests that

default will occur in equilibrium with more frequency. That is, an implicit increase in the demand

for borrowing is not completely offset by a change in slope of the interest rate function, but rather

translates into additional borrowing and a higher rate of default.9

The results of the simulation of the model are reported in Table 3. Some improvements over

Model I are immediately apparent. Both the current account and interest rates are countercyclical

and positively correlated (though the magnitudes are lower than in the data). A positive shock

increases output today, but increases output tomorrow even more (due to the persistence of the

growth rate). This induces agents to borrow in good times. In Figure 3, we plot the q schedule as a

function of (detrended) a for a low and high value of g.We see that a positive shock lowers the interest

rate (raises q) for all levels of debt. In the reported parameterization, the shift in the q schedule

dominates the movement along the schedule induced by additional borrowing. Correspondingly, the

volatility of interest rates increases by a factor of 2.5. Net export volatility rises by a factor of 5

to match more closely the volatility in the data. However, interest rate volatility still remains well

below that observed empirically for Latin America.
9 It is also the case that a volatile trend generates volatility in consumption and an increased demand for the

insurance a defaultable bond provides, implying higher default rates as well. However, quantitatively, this effect is

small relative to that induced by the change in the shape of the interest rate function. See Aguiar and Gopinath

(2004a) for a full discussion.
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4.1 Sensitivity Analysis

In this section we perform sensitivity tests within the framework of Model II. First, we consider a

case with endogenous labor supply. The production function now takes the form yt = e
ztΓtL

α
t . We

set α = 0.68. The utility function takes the GHH form (from Greenwood et al 1988)

ut =

¡
ct − 1

ωµgΓt−1L
ω
t

¢1−γ
1− γ

, (12)

The ω parameter is calibrated to 1.455 implying an elasticity of labor supply of 2.2. This is the

value employed in previous studies (Mendoza(1991), Neumeyer and Perri (2004)). The results for the

simulation are reported in Table 4. The number of defaults are lower compared to the endowment

model, however the business cycle moments line up as in the data.

The importance of a high level of impatience in generating reasonable levels of default is also

seen in Table 4 where we report the results for higher levels of β. As β increases the number of

defaults drop from 23 to 11 per 2500 years.

Default has an insurance (i.e. state contingent) component absent from a risk-free bond. The

agent only repays in the good (nondefault) states of nature. While the agent cannot explicitly move

resources across states of nature in the next period, she can move resources from good states next

period forward to today, leaving resources available in bad/default states next period unaffected.

Given that default provides insurance, one would expect that the value of this insurance would in-

crease with uncertainty. Table 5 explores this conjecture. For each model, we doubled the innovation

variance relative to the case reported in Table 3. We see that the rate of default roughly doubles

relative to the benchmark case for both models. It is interesting to note that despite the increased

rate of default, the higher volatility economies do not hold more debt in equilibrium, reflecting that

these economies face a different interest rate function.

Finally, we explore the sensitivity of our results to the cost of autarky parameter δ. The last

two columns of Table 5 report simulations of the two model economies where we have set δ = 0.005
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rather than 0.02. As expected, the lower cost of autarky results in very low debt levels observed in

equilibrium, where instead of roughly 25% debt to income ratios, we now have ratios closer to 5%.

This lack of borrowing is also reflected in the lower volatility of net exports and interest rates.

5 Third Party Bailouts

Incorporating shocks to trend has improved the model’s performance on a number of dimensions.

However, the default rate of once every 125 years remains low, at least compared to the track record

of many Latin American countries. In this section, we try to improve on Model II by augmenting the

model with a phenomenon observed in many default episodes — bailouts. For example, Argentina

received a $40 billion bailout in 2001 from the IMF, an amount nearly 15% of Argentine GDP in

2001. Such massive bailouts must influence the equilibrium debt market studied in the previous two

sections.

We model bailouts as a transfer from an (unmodelled) third party to creditors in the case of

default. While in practice bailouts often tend to nominally take the form of loans, we assume that

bailouts are grants. To the extent that such loans in practice are extended at below market interest

rates, they incorporate a transfer to the defaulting country. We also assume that creditors view

bailouts as pure transfers. Again, it may be the case in practice that creditors ultimately underwrite

the bailouts through tax payments. A reasonable assumption is that creditors do not internalize

this aspect of bailouts.

Specifically, bailouts take the following form. Creditors are reimbursed the amount of outstanding

debt up to some limit a∗. Any unpaid debt beyond a∗ is a loss to the creditor. From the creditors

viewpoint, therefore, every dollar lent up to a∗ is guaranteed. Any lending beyond that has an

expected return determined by the probability of default. Specifically, the break even price of debt
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solves

qt =
1

1 + r∗

½
min

¿
1,
a∗

a

À
+Et{1−Dt+1}max

¿
1− a

∗

a
, 0

À¾
.

The presence of bailouts obviously implies that debt up to a∗ carries a risk free interest rate. More-

over, the probability of default is used to discount only that fraction of debt that exceeds the limit.

The net result is to shift up and flatten the q schedule. To consider why the q schedule is flatter,

consider the case without bailouts, i.e. a∗ = 0. Each additional dollar of debt raises the probability

of default. As default implies zero repayment, this lowers the return on all debt. However, with

bailouts, an increase in the probability of default affects only the return on debt beyond a∗. While

this may have a large impact on the return of the marginal dollar, the sensitivity of the average

return is mitigated by the fact that part of the debt is guaranteed. From the agent’s perspective,

bailouts subsidize default. The increase in the rate of default is not surprising given that bailouts

are a pure transfer from a third party.

This intuition is confirmed in our simulation results reported in Column 3C of Table 3. We

calibrate a∗ so that the maximum bailout is 18% of (mean detrended) output and we now set the

time preference rate at 0.95 so that impatience rates are not as high as in the previous benchmark

simulations. We see that the agent now defaults roughly once every 27 years, similar to the Argentine

default rate. The increased rate of default however does not raise interest rate volatility. This reflects

the fact that bailouts insulate interest rates from changes in the probability of default. In this sense

the model with bailouts still leaves unexplained the high interest rate volatility that emerging markets

face.

6 Conclusion

We present a model of endogenous default that emphasizes the role of switches in growth regimes

in matching important business cycle features of Emerging Markets and in generating default levels

that are closer to the frequency observed in the data. The reason why a model with growth shocks
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performs better is that in such an environment a given probability of default is associated with

a smaller borrowing cost at the margin. This in turn rests on the fact that trend shocks have a

greater impact on the propensity to default than do standard transitory shocks, making interest

rates relatively less sensitive to the amount borrowed and relatively more sensitive to the realization

of the shock.

Further, to match the business cycle features of the interest rate and current account, the model

should predict that agents borrow more at lower interest rates during booms and the reverse during

slumps. Since the interest rate schedule tends to be very steep in these models, the typical prediction

is for the interest rate and current account to be negatively correlated. In the model with growth

shocks, however, we find that for plausible parameterizations the shift of the interest rate schedule

in good states, in anticipation of lower default probabilities, dominates the increase in interest rates

that arise because of additional borrowing. While the predictions still remain short of matching

quantitatively the magnitudes obtained in the data, the predicted sign of the correlations of income,

net exports, and the interest rate are in line with empirical facts.

We have left unexplained the question of what precisely are the default penalties economies face,

what underlies the stochastic trend and what are realistic impatience rates to be used to understand

sovereign default. This we leave as questions for future research.

Appendix

This appendix characterizes and derives properties of the representative agent’s problem. The pri-

mary technical issues that separate our problem from standard optimizations concern the option to

default and the presence of trend growth. At any point in time, the state of the economy is given

by assets at, a credit standing ht ∈ {B,G} ≡ H, and an income process governed by yt = eztΓt

where Γt = g0 ∗ g1 ∗ ... ∗ gt. Let θ denote the shocks {z, g}, which are Markov processes drawn from
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z = [z1, ..., zNz ] and g = [g1, ..., gNg ], respectively. We assume that z and g are strictly positive, so

there is never a state in which the endowment is zero. These transition probability functions for z

and g satisfy monotonicity (i.e., if f is nondecreasing in (z, g), then so is E(f(z0, g0)|z, g)). The state

of the income process is then characterized by (Γt−1, θt). When omitting time subscript, this will be

written as (Γ(−1), θ) to remind the reader that we have separated the pre-existing trend component

Γt−1 and its current innovation gt.

There is one more random variable in the system — the redemption of a bad credit rating. We

therefore split the credit standing variable h into its random and nonrandom components. Let h̃t

denote the credit rating as of the end of t− 1 which is determined by the default decisions in t− 1.

Then ht = G with probability one if h̃t = G and with probability λ if h̃t = B. Let ρ ∈ 0, 1

denote the random variable with realization ρ = 1 denoting redemption. In sum, the state variable

st = (at, h̃t, ρt,Γt−1, θt).

Define Φ(st) as the budget correspondence mapping the state s into the range of possible con-

sumption, assets and credit standings h̃t+1. If h̃t = B, ρ = 0, then Φ(s) = (ct ≤ eztΓt, h̃t+1 =

B, at+1 = 0). If h̃t = G or ρ = 1, the agent has the choice of defaulting (h̃t+1 = B) and

facing the budget set of the previous sentence, or choosing not to default and selecting from

Φ(s) = (ct ≤ eztΓt + at − q(at+1,Γt−1, θt)at+1,h̃t+1 = G, at+1 ∈ [a, ā]µgΓt).

We restrict next period’s assets normalized by µgΓt to lie is some finite interval [a, ā]. That

is, debt and asset growth are bounded by trend growth. This rules out Ponzi schemes that entail

debt growing faster than the economy. It also rules out the possibility that agent’s accumulate a

large stock of assets relative to income.10 In our numerical simulations, we ensure that the asset

limits never bind in equilibrium. It will be convenient later to define the choice set for assets as

g−1t at+1 ∈ [a, ā]µgΓt−1, which is the same as above divided through by gt.

The price of a bond, q : (at+1,Γt−1, θt) → [0, 1/(1 + r∗], depends on the amount borrowed and
10The technical assumption needed to ensure that consumption normalized by income is stationary in our context

is E
n
βt(1 + r∗)t (Γt)

−γ
o
→ 0.
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the state of the income process. This function will be determined in equilibrium, but is taken as

given by the agent. For now, we take the function as homogenous of degree zero in at+1 and Γt−1.

We will show below that such an interest rate schedule exists in equilibrium.

The fact that q is homogenous of degree zero plus how we define the range of possible assets and

the nature of the endowment process ensures the budget set for assets is homogenous of degree one in

at and Γt−1. That is, if (ct, g
−1
t at+1) is feasible given st = (at, h̃t, ρt,Γt−1, θt), then (αct,αg

−1
t at+1)

is feasible given (αat, h̃t, ρt,αΓt−1, θt) for any α ≥ 0.

Preferences are given by u(c) = c1−γ

1−γ , γ > 1. The consumer’s problem for a given initial state s0

is then

v∗(s0) = sup{ct,at+1,h̃t+1}∞t=0
E0

( ∞X
t=0

βtu(ct)

)
(13)

s.t. (ct, g
−1
t at+1, h̃t+1) ∈ Φ(st) t = 0, 1, ...,

where E0 is expectation conditional on s0. As u < 0, the infinite sum is bounded above by zero. To

show it is bounded below, it suffices to show that there is a feasible path that yields finite expected

utility. The fact that the agent can always choose to default and enter autarky implies one such

feasible path conditional on a growth restriction. Specifically, if ct = eztΓt, every period, we need

that E0
P
t β

t (eztΓt)
1−γ is well defined, which requires limt→∞E0β

t (Γt)
1−γ = 0 for all starting s0.

Homogeneity of v∗ in (a,Γ): Let s(s0) be the optimal plan across all possible paths of st

starting at s0, with a corresponding consumption plan c(s0) and utility v∗(s0). Now consider a

starting state s00 which is the same as s0 in (h̃, ρ, θ), but the (a0,Γ−1) associated with s0 have been

replaced by (αa0,αΓ−1). The plan c(s00) = αc(s0) is feasible given the homogeneity of the budget

set. Moreover, it is optimal given the homogeneity of the utility function.11 The homogeneity of

u implies that this consumption plan results in a utility level of α1−γv∗, establishing that v∗ is

homogenous of degree 1− γ in (at,Γt−1).
11 If not, then the alternative, preferred plan scaled by 1/α would have been preferable at s0.
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Continuity of v∗ in assets: The continuity of v∗ in assets follows from the continuity of

utility and the budget constraints. In particular, consider an initial state s0 associated with an

asset position a0. Let s(s0) be the optimal plan starting from s0. We can rewrite the utility from

this program as v∗ = u(c∗0) + βE0U(s(s1)), where c∗0 is the optimal first period consumption and

βE0U(s(s1) represents the remaining terms in the summation of (13).

Let ak0 converge to a0, and denote the associated sequence of states s
k
0 (where all other elements

are the same as s0). Suppose that a1 is the amount of assets carried over to period 1 under s(s0).

Now consider a plan starting from sk0 that follows s(s0) at every point after the initial period.

This requires next period assets be a1. The budget constraint requires an initial consumption of

ck0 = ez0Γ0 + a
k
0 − qa1. As period zero consumption under s(s0), c∗0 = ez0Γ0 + a0 − qa1, we have

ck0 = c
∗
0 + a

k
0 − a0. This is feasible as a1 is in the choice set under both s0 as well as sk0 . Optimality

implies that v∗(sk0) ≥ u(ck0(s0)) + βE0U(s(s1)). This in turn implies: limk→∞(v∗(s0) − v∗(sk0)) ≥

limk→∞(u(c
∗
0)− u(ck0)) = 0, where the last equality comes from the continuity of the period utility

function and ak0 → a0. A similar line of reasoning that involves following the optimal plan starting

from sk0 after the initial period generates the reverse inequality.

Recursive Formulation: We now discuss the recursive formulation of the agent’s problem (13).

Recall that at time t, the state of our economy is st = (at, h̃t, ρt,Γt−1, θt) which resides in the space

S. We also include the interest rate schedule q in the value function to make explicit that the agent’s

actions and choices are predicated on this function.

V (st; q) = (14)

if ht = B (h̃t = B and ρt = 0): u((1− δ)yt) + βEtV (0, h̃t+1 = B, ρt+1,Γt, θt; q).

if ht = G (h̃t = G or ρt = 1):
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max

* u((1− δ)yt) + βEtV (0, h̃t+1 = B, ρt+1,Γt, θt; q),

maxct,at+1

n
u(ct) + βEtV (at+1, h̃t+1 = G, ρt+1,Γt, θt; q)

o
s.t. ct ≤ yt + at − qtat+1

at+1/(µgΓt) ∈ [a, a]

+

Let T denote the operator defined by (14). Let H(S, γ) denote the space of functions on S that

are homogenous of degree 1 − γ in x ≡ (a,Γ−1) for each h̃, ρ, and θ, and bounded and continuous

in the norm kfk = sup{h̃,ρ,θ} supkxk2=1 |f |.

Given that the optimum is finite, any solution to the Bellman equation that satisfies the transver-

sality condition will equal v∗. A few characteristics of T should be noted. First, the lower bound

on output and the option to default implies that the agent is never forced into a state with zero

consumption. This implies u is always finite and our operator maps bounded functions into bounded

functions. Moreover, the homogeneity of u and the budget set ensures that Tv is homogenous if

v ∈ H(S, γ). The Theorem of the Maximum implies that T preservers continuity.12 That is, T maps

H(S, γ) into itself.

Finally, iteration of the Bellman equation yields the fixed point. To see this, note that T is

monotone. That is, if v0 ≥ v, then Tv0 ≥ Tv. Moreover, as u ≤ 0, Tf ≤ f , where f is the zero

function (f = 0). Thus by induction, v∗ ≤ Tv∗ ≤ Tnf ≤ Tf . The sequence Tnf is monotone and

bounded below, so the limit exists and satisfies the Bellman equation.

Detrended Form: The fact that T maps H(S, γ) into itself implies that we can solve the

Bellman equation in detrended form. That is, suppose V ∈ H(S, γ) solves (14), that is V (st) =

max(ct,gtat+1,h̃t+1)∈Φ(st) {u(c) + βEtV (st+1)} , where we have suppressed the dependence on q. Now

consider a scale factor αt > 0:
12There is one technical issue with the application of the Theorem of the Maximum. The usual assumption is

that the objective function is continuous over the state space. However, the utility function is not defined at zero.

Nevertheless, while zero consumption is in the feasible set, it is never forced on the consumer and will never be chosen

by the consumer. Therefore, the usual proof that the maximum is continuous goes through.
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α1−γt V (st) = max
(ct,gtat+1,h̃t+1)∈Φ(st)

n
α1−γt u(ct) + βEtα

1−γ
t V (s0)

o
. (15)

Let ĉt = αtct and ât = αtat. Similarly, let ŝt = (ât, h̃t, ρt,αΓt−1, θt) if st = (at, h̃t, ρt,Γt−1, θt).

Note that αtat+1 = αt
αt+1

ât+1.

Linear homogeneity of the budget constraint ensures that (ct, g
−1
t at+1, h̃t+1) ∈ Φ(st) if and only

if (ĉt, αt
αt+1

g−1t ât+1, h̃t+1) ∈ Φ(ŝt) for any αt ≥ 0. Homogeneity of degree 1 − γ of V ∈ H(S, γ)

implies that α1−γt V (st) = V (ŝt) and αtV (st+1) =
αt
αt+1

V (ŝt+1).

We can then write

V (ŝ) = max
(ĉ,

αt
αt+1

g−1t at+1,h̃t+1)∈Φ(ŝ)

(
u(ĉ) + βEt

µ
αt
αt+1

¶1−γ
V (ŝt+1)

)
. (16)

Letting αt = (µgΓt−1)
−1, we have αt

αt+1
= gt. Thus an equivalent formulation of (14) is:

V (ŝt) = max
(ĉt,ât+1, ˜ht+1)∈Φ(st)

n
u(ĉt) + βEtg

1−γ
t V (ŝt+1)

o
. (17)

Note that ŝ no longer depends explicitly on Γt−1 and we can solve the Bellman equation without

keeping track of this variable. However, to compute the level of utility, we need to rescale: V (st) =

(µgΓt−1)
1−γV (ŝt).

Equilibrium: To close the model, we define equilibrium as an interest rate schedule that pro-

vides creditors with an expected return of r∗ conditional on the actions of the representative agent

consistent with q. Specifically, the equilibrium q satisfies

q =
1

1 + r∗
Pr{V (at+1, h̃t+1 = G,Γt, θt+1); q) > V (at+1, h̃t+1 = B,Γt, θt+1), ; q)} (18)

Let T q be the operator that maps Q into Q, where T qq equals the right hand side of (18) and Q

is the space of candidate interest rate functions. Homogeneity of the value function implies that

the inequality holds if and only if the same inequality holds for the detrended value function. This

implies that the operator maps elements of Q that are homogenous of degree zero in next period’s
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assets and Γ(−1) into homogenous functions. Moreover, the operator T q is monotone. A lower

interest rate schedule at every point implies a more attractive asset market for the agent. This in

turn increases the value of having a good credit rating (it also increase the value of a bad credit

rating, but only through the chance of redemption). This in turn implies a lower probability of

default at each point in the state space. Thus, if q0 ≥ q, then T qq0 ≥ T qq. Moreover, if q∗ is simply

the inverse of the risk free rate at all points, q∗ = 1
1+r∗ , then T

qq∗ ≤ q∗. By induction, we can iterate

down from q∗. As q is bounded below by the zero function, monotonicity implies the sequence will

converge to a fixed point.

27



References

[1] Aguiar, Mark and Gita Gopinath, 2004a. Defaultable Debt, Interest Rates, and the Current

Account. NBER working paper 10731.

[2] Aguiar, Mark and Gita Gopinath, 2004b. Emerging Market Business Cycles: The Cycle is the

Trend. NBER working paper 10734.

[3] Arellano, Christina, 2003. Default Risk, the Real Exchange Rate and Income Fluctuations in

Emerging Economies. Working paper.

[4] Broner, Fernando, Guido Lorenzoni, and Sergio Schmukler, 2003. Why Do Emerging Economies

Borrow Short Term?. Working paper.

[5] Chatterjee, Satyajit, Corbae Dean, Nakajimo Makoto and Jose Victor Rios Rull, 2002. A Quan-

titative theory of Unsecured Consumer Credit with the Risk of Default, working paper.

[6] Eaton, Jonathan and Mark Gersovitz, 1981. Debt with Potential Repudiation: Theoretical and

Empirical Analysis. Review of Economic Studies (48), 289-309.

[7] Gelos, Gaston R., Ratna Sahay, Guido Sandleris, 2003. Sovereign Borrowing by Developing

Countries: What Determines Market Access?. IMF Working Paper.

[8] Kehoe, Timothy and David K. Levine, 1993. Debt Constrained Asset Markets. Review of Eco-

nomic Studies. 60, 865-88.

[9] Kehoe, Patrick and Fabrizio Perri, 2002. International Business Cycles with Endogenous In-

complete Markets. Econometrica 70 (3), 907-28.

[10] Mendoza, Enrique, 1992. Dynamic Gains from North American Free Trade in an Equilibrium

Model of the Current Account. North American Journal of Economics and Finance.

[11] Obstfeld, Maurice and Kenneth S. Rogoff, 1996. Foundations of International Macroeconomics.

The MIT Press. Cambridge, Masachussettes.

28



[12] Perri, Fabrizio and Andy Neumeyer, 2004. Emerging Market Business Cycles: The Role of

Interest Rates. NBER Working Paper 10387.

[13] Reinhart, Carmen M., Kenneth S. Rogoff and Miguel A. Savastano, 2003. Debt Intolerance. In

William Brainard and George Perry (eds.), Brookings Papers on Economic Activity, 1-74.

[14] Rose, Andrew, 2003. One Reason Countries Pay Their Debts: Renegotiation and International

Trade. NBER Working Paper 8853.

29



30 

Table 1: Argentina Business Cycle Statistics (1983.1-2000.2) 

Data HP SE 

( )Yσ  4.08 (0.52) 

)( sRσ  3.17 (0.54) 

( )/TB Yσ  1.36 (0.24) 

( ) ( )/C Yσ σ  1.19 (0.04) 

( )Yρ  0.85 (0.08) 

( )YRs ,ρ  -0.59 (0.11) 

( )/ ,TB Y Yρ  -0.89 (0.10) 

( )YTBRs /,ρ  0.68 (0.13) 

( ),C Yρ  0.96 (0.01) 

The series were deseasonalized if a significant seasonal component was identified. We log the income, consumption and 
investment series and compute the ratio of the trade balance (TB) to GDP (Y) and the interest rate spread ( sR ). sR refers 
to the difference between Argentina dollar interest rates and US 3 month treasury bond rate (annualized numbers).  All 
series were then HP filtered with a smoothing parameter of 1600. GMM estimated standard errors are reported in 
parenthesis under column SE.  The standard deviations (Y, sR , TB/Y) are reported in percentage terms. 

 
Table 2A: Common Benchmark Parameter Values 

Risk Aversion γ  2 

World Interest Rate r* 1% 

Loss of Output in Autarky δ 2% 

Probability of Redemption λ 10% 

Mean (Log) Transitory Productivity zµ  21
2 zσ−  

Mean Growth Rate gµ  1.006 

 
Table 2B: Model Specific Benchmark Parameter Values 

 Model I: Transitory 
Shocks 

Model II: Growth 
Shocks 

Model II with Bail 
Outs 

zσ  3.4% 0 0 

zρ  0.90 NA NA 

gσ  0 3% 3% 

gρ  NA 0.17 0.17 

β  0.8 0.8 0.95 

Bail Out Limit NA NA 18% 
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Table 3: Benchmark Simulation Results 

 Data Model I 
(3A) 

Model II 
(3B) 

Model II with  
Bail Outs (3C) 

( )yσ  4.08 4.32 4.45 4.43 

( )cσ  4.85 4.37 4.71 4.68 

( )/TB Yσ  1.36 0.17 0.95 1.10 

( )sRσ  3.17 0.04 0.32 0.12 

     

( ),C Yρ  0.96 0.99 0.98 0.97 

( )/ ,TB Y Yρ  -0.89 -0.33 -0.19 -0.12 

( )YRs ,ρ  -0.59 0.51 -0.03 -0.02 

( )YTBRs /,ρ  0.68 -0.21 0.11 0.38 

     
Rate of Default (per 
10,000 quarters) 75 2 23 92 

Mean Debt Output Ratio 
(%)  27 19 18 

Maximum sR   
(basis points) 

 23 151 57 

Note: Simulation results reported are averages over 500 simulations each of length 500 (drawn from a stationary 
distribution). The simulated data is treated in an identical manner to the empirical data. Standard deviations are 
reported in percentages. 
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Table 4:  Sensitivity Analysis 

  Innovation Variance  Cost of Autarky  Time Preference Endogenous Labor 
Supply 

  Model I 
(σz=6.4%) 

Model 
II 

(σg=6%) 

 Model I 
(δ=0.5%)

Model II 
(δ=0.5%)

 Model II 
85.0=β  

Model II 
9.0=β  

Model II 
 

( )yσ   8.60 8.25  4.32 4.42  4.43 4.43 4.44 

( )cσ   8.68 8.56  4.33 4.46  4.67 4.66 4.85 

( )/TB Yσ   0.36 1.28  0.07 0.25  0.85 0.76 0.79 

( )sRσ   0.16 0.64  0.08 0.32  0.24 0.16 0.24 

           

( ),C Yρ   0.99 0.99  0.99 0.99  0.98 0.99 0.99 

( )/ ,TB Y Yρ   -0.29 -0.18  -0.31 -0.17  -0.20 -0.23 -0.49 

( )YRs ,ρ   0.30 0.07  0.33 -0.03  -0.002 -0.05 -0.23 

( )YTBRs /,ρ   -0.17 -0.05  -0.15 0.05  0.01 0.11 0.26 

           

Rate of 
Default  
(per 10,000 
quarters) 

 4 47 

 

3 23 

 

16 11 16 

Mean Debt 
Output Ratio 
(%) 

 25 15 
 

6 5 
 

19 19 15 

Maximum 
sR   

(basis points) 
 52 301 

 
40 185 

 
120 80 191 

( )gσ   0 3.0  0 3.0  3.0 3.0 2.3 

Note: Simulation results reported are averages over 500 simulations each of length 500 (drawn from a stationary distribution). Standard deviations 
are reported in percentages. In column 7 we consider the case of endogenous labor supply where the elasticity of labor supply is taken to be 2.2 
implying an ω of 1.455 
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Figure 1A: Model I 
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Figure 1B: Model II 

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.881 0.932 0.983 1.0341 1.0851

g state

V_G - V_B

 
Note: V_G represents the value function when the agent chooses to repay and 
is in good credit standing and V_B is the value function when the agent 
chooses to default. We have plotted here the difference between the two value 
functions for a given level of assets, across different productivity states. 
Figure 2A corresponds to the case when z varies and Figure 2B to the case 
when g varies. The (V_G-V_B) line is more steeply sloped in the case of g 
shocks.
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Figure 2: Default Region 

 

 
Note: The darkly shaded region represents combinations of the productivity state and assets for which the economy will 
prefer default. The lightly shaded region accordingly is the nondefault region. The vertical axis represents the realization of 
the productivity shock. The horizontal axis represents assets normalized by (mean) trend income.  In both pictures, the 
agent is more likely to default when holding larger amounts of debt (negative assets) and when in worse productivity states. 
The line of indifference is less steeply sloped in the case of g shocks.  
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Figure 3A: Model I 
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Figure 3B: Model II 
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Note: Figures 4A and 4B plot the Price of the Bond (inverse of one plus the interest rate) as a function of assets for the 
highest and lowest values of z in the case of Fig. 4A and the same for growth shocks in Fig. 4B. The price function is less 
sensitive to changes in borrowing in the case of g shocks (Fig. 4B). 
 


