Price Dynamics for Durable Goods

MICHAL FABINGER GITA GOPINATH Harvard

Harvard

Oleg Itskhoki Princeton

EPGE/FGV Advances in Macroeconomics May 2011

Motivation

- Durables play a crucial role in business cycle fluctuations
 - \sim 60% of non-service consumption, all of investment
 - most volatile component of GDP
- Standard macro models assume marginal cost or constant markup pricing for durables
 - DSGE models with durables
 - Barsky, House and Kimball (2007)
- Endogenous price dynamics can affect the cyclical properties of durables
- Pass-through and markup dynamics with durable good pricing
- (Interesting time inconsistency problem)

Motivation Gopinath, Itskhoki and Neiman (2011)

Figure: Change in US Import Values and Prices, 2008:07-2009:06

Main Findings

- Assumptions
 - Some degree of monopolistic power
 - Lack of commitment by firms
 - Discrete time periods between price setting
- Results
 - Endogenous markup dynamics
 - markups decrease with the stock of durables
 - 2 'Countercyclical' markups in response to cost shocks
 - incomplete pass-through
 - 3 'Procyclical' markups in response to demand shocks
 - 4 Adjustment-cost-like effect on quantities

Literature

Durable Monopoly Pricing

- Coase conjecture
 - Coase (1972), Stokey (1981), Bulow (1982), Gul et al. (1986), Bond and Samuelson (1984)
 - We focus on: $\Delta t \gg 0$, $\delta > 0$, dynamics
- Durable-good oligopoly pricing
 - Gul (1987), Esteban (2003), Esteban and Shum (2007)
 - We focus on: dynamics of markups, GE
- Macro models
 - Caplin and Leahy (2006), Parker (2001)
 - We focus on: general demand and market structures, GE

Demand

• Representative agent solves:

$$\max_{\{C_t, D_t, X_t, \ldots\}} \mathbb{E}_t \sum_{t=0}^{\infty} \beta^t U(C_t, D_t) \quad \text{s.t.} \quad \begin{array}{l} P_{Ct} C_t + P_t X_t \leq E_t \\ D_t = (1 - \delta) D_{t-1} + X_t \end{array}$$

Denote Λ_t the LM on expenditure constraint

- Partial durability, $\delta \in (0,1)$
- Discrete time, $\beta < 1$
- Optimal choice of D_t satisfies:

$$u'(D_t; \xi_t) = P_t - \beta(1 - \delta)\mathbb{E}_t \left\{ \frac{\Lambda_{t+1}}{\Lambda_t} P_{t+1} \right\},$$

where $u'(D_t, \xi_t) = U_D(C_t, D_t)/\Lambda_t$ and ξ_t is a stand-in for an arbitrary demand shock

• Approximation: $\Lambda_t \approx const$ (implies constant interest rate)

Demand

Two special cases

• Constant-elasticity demand:

$$u'(D,\xi) = \xi \cdot D^{-1/\sigma}$$

— in the limit $\delta \to 1$ results in constant markup pricing

• Linear demand:

$$u'(D,\xi) = a + \xi - bD$$

yields simple closed-form solutions

Market Structure

- Market structure:
 - Monopoly
 - Monopolistic competition
 - Homogenous-good Oligopoly
 - Next time: differentiated-good oligopoly
- Equilibrium concept:
 - Commitment (benchmark)
 - Discretion (Markov Perfect Equilibrium)
 - Not for now: reputational equilibria under oligopoly

Durable Good Monopoly Commitment

• Optimal pricing with commitment

$$V^{C}(D_{-1}) = \max_{\{P_{t}, X_{t}, D_{t}\}_{t \geq 0}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} (P_{t} - W_{t}) X_{t}$$

subject to durable stock dynamics

$$D_t = X_t + (1 - \delta)D_{t-1}$$

and durable-good demand

$$u'(D_t, \xi_t) = P_t - \beta(1 - \delta)\mathbb{E}_t P_{t+1}$$

and initial condition $D_{-1} = 0$

Commitment

(continued)

First-order optimality:

$$P_0: \qquad D_0 - (1-\delta)D_{-1} = \lambda_0, \ P_t, t \geq 1: \qquad D_t - (1-\delta)D_{t-1} = \lambda_t - (1-\delta)\lambda_{t-1}, \ D_t, t \geq 0: \qquad (P_t - W_t) - \beta(1-\delta)\mathbb{E}_t\{P_{t+1} - W_{t+1}\} = -\lambda_t u''(D_t, \xi_t),$$

where λ_t is LM on demand constraint

- Given initial condition $(D_{-1} = 0)$, we have $\lambda_t \equiv D_t$ (commitment \sim leasing)
- Optimality condition:

$$(P_t - W_t) - \beta(1 - \delta)\mathbb{E}_t\{P_{t+1} - W_{t+1}\} = \underbrace{-D_t u''(D_t, \xi_t)}_{\equiv \frac{1}{\sigma_t} u'(D_t, \xi_t)}$$

Commitment (continued)

Combining optimality condition with demand:

$$u'(D_{t}, \xi_{t}) + D_{t}u''(D_{t}, \xi_{t}) = W_{t} - \beta(1 - \delta)\mathbb{E}_{t}W_{t+1}$$

$$P_{t} - \beta(1 - \delta)\mathbb{E}_{t}P_{t+1} = u'(D_{t}, \xi_{t})$$

Contrast with marginal cost pricing:

$$u'(D_t, \xi_t) = W_t - \beta(1 - \delta)\mathbb{E}_t W_{t+1}$$

Proposition

Durable pricing with commitment features no endogenous dynamics:

- $P_t \equiv \bar{P}$ when there are no shocks (W_t and ξ_t constant)
- D_{t-1} does not affect P_t , controlling for W_t and ξ_t
- P_t inherits the exogenous persistence of W_t and ξ_t relation

Commitment

Two special cases

- Constant-elasticity demand
 - → constant markup pricing

$$P_t = \frac{\sigma}{\sigma - 1} W_t$$

Linear demand

$$P_t = rac{1}{2} \left[rac{a}{1-eta(1-\delta)} + rac{\xi_t}{1-
ho_{ar{\xi}}eta(1-\delta)} + W_t
ight]$$

- response to cost shocks does not depend on δ
- level of markup increases with durability

Durable Good Monopoly Discretion

- Time inconsistency problem:
 - demand depends on expected price tomorrow
 - firm wants to promise high price tomorrow
 - but tomorrow it fails to internalize the effect of price on previous-period demand
 - firm competes with itself across time and in the limit of continuous time firm loses all monopoly power (Coase)
- Solution concept:
 - consumers are infinitesimal, form rational expectations about future prices and purchase durables according to demand
 - the firm set today's price to maximize value anticipating its inability to commit to future prices
 - accumulated stock of durables is the state variable
 - Markov Perfect Equilibrium
- Optimal price duration? Commitment versus flexibility

Discretion (continued)

• Formally, the problem of the firm:

$$V(D_{-1}, W, \xi) = \max_{(P, X, D)} \left\{ (P - W)X + \beta \mathbb{E}V(D, W', \xi') \right\}$$
s.t. $D = X + (1 - \delta)D_{-1},$ $u'(D, \xi) = P - \beta(1 - \delta)\mathbb{E}_t p(D, W', \xi')$

Equilibrium requirement:

$$p(D_{-1}, W, \xi) = \arg\max_{(P, X, D)} \left\{ (P - W)X + \beta \mathbb{E}V(D, W', \xi') \right\}$$

is the equilibrium strategy of the firm given state variable

Discretion (continued)

Optimality condition:

$$(P_t - W_t) - \beta (1 - \delta) \mathbb{E}_t \{ P_{t+1} - W_{t+1} \}$$

=
$$(D_t - (1 - \delta) D_{t-1}) \frac{1}{-\varphi'(P_t, W_t, \xi_t)},$$

where demand slope is

$$\varphi'(P_t, W_t, \xi_t) = \frac{1}{u''(D_t, \xi_t) + \beta(1 - \delta)\mathbb{E}_t p'(D_t, W_{t+1}, \xi_{t+1})}$$

- Perturbation argument
- Lack of commitment (contrast with leasing)
- State variable dynamics:

$$D_t = \varphi(p(D_{t-1}, W_t, \xi_t), W_t, \xi_t) = f(D_{t-1}, W_t, \xi_t)$$

Discretion General Results

Proposition

(a) Steady state:

$$\bar{P} = \frac{\bar{\sigma}}{\bar{\sigma} - \delta \bar{\kappa}} W,$$

where
$$\bar{\sigma} \equiv \frac{-u'(\bar{D})}{\bar{D}u''(\bar{D})}$$
, $\bar{\kappa} \equiv 1 + \frac{\beta(1-\delta)\rho'(\bar{D})}{u''(\bar{D})} > 1$, $u'(\bar{D}) = [1 - \beta(1-\delta)]\bar{P}$.

(b) Endogenous dynamics:

 D_{t-1} is state variable for pricing at t and $p'(\cdot, W, \xi) < 0$.

Discretion Linear Demand

Proposition

With linear demand and AR(1) demand and cost shocks, there exists a linear equilibrium:

$$P_{t} = \bar{P} - \alpha(D_{t-1} - \bar{D}) + \gamma(W_{t} - \bar{W}) + \omega \xi_{t},$$

$$D_{t} = \bar{D} + \phi(D_{t-1} - \bar{D}) - \psi(W_{t} - \bar{W}) + \chi \xi_{t},$$

with
$$\alpha > 0$$
, $\phi \in (0, 1 - \delta)$, $\gamma \in (0.5, 1)$, $\omega, \psi, \chi > 0$. Polaris

Corollary

- (i) D_t increases over time, as prices and markups fall.
- (ii) markups increase (procyclical) with demand shocks and decrease (countercyclical) with cost shocks.

Monopolistic competition

D-good is a CES aggregator of varieties:

$$D_t = \left(\int_0^1 D_{it}^{\frac{\sigma-1}{\sigma}} \mathrm{d}i\right)^{\frac{\sigma}{\sigma-1}}$$

- Two alternative assumptions:
 - (i) Durable aggregator: $D_t = X_t + (1 \delta)D_{t-1}$. Constant markup pricing (Barsky et al., 2007)
 - (ii) Durable varieties: $D_{it} = X_{it} + (1 \delta)D_{i,t-1}$. Problem isomorphic to that of a monopolist with ξ_t related to the equilibrium dynamics of D_t

Commitment (Cournot-Nash)

- Consider *N* symmetric firms producing a homogenous durable good with constant marginal cost and no shocks
- Durable good dynamics

$$D_t = (1 - \delta)D_{t-1} + \sum_{i=1}^{N} x_{it}$$

- A given firm commits to a sequence $\{\tilde{x}_{it}\}$ given the symmetric strategy of the other N-1 firms $\{x_t\}$. In equilibrium, $\tilde{x}_t=x_t$
- In equilibrium, $x_t = \frac{1}{N} \big(D_t (1-\delta) D_{t-1} \big)$ and $\lambda_t = D_t/N \Rightarrow$

$$(P_t - W_t) - \beta(1 - \delta)\mathbb{E}_t\{P_{t+1} - W_{t+1}\} = -\frac{D_t}{N}u''(D_t, \xi_t)$$

Discretion (Cournot-MPE)

- Under discretion, both competition within firm over time and between firms at a given t reduces markups
- A firm chooses $\tilde{x}(D_{-})$ given the symmetric strategy $x(D_{-})$ of the other N-1 firms and equilibrium price next period p(D):

$$egin{aligned} v(D_{-}) &= \max_{ ilde{x},D,P} \left\{ (P-W) ilde{x} + eta v(D)
ight\} \ & ext{s.t.} \qquad D &= (1-\delta) D_{-} + (N-1) x(D_{-}) + ilde{x} \ P &= u'(D) + eta (1-\delta) \mathbb{E} p(D) \end{aligned}$$

The solution to this problem in equilibrium yields:

$$\tilde{x}(D_{-}) = x(D_{-}), \qquad P = p(D_{-}),$$

$$D = f(D_{-}) = (1 - \delta)D_{-} + Nx(D_{-})$$

Discretion (Cournot-MPE)

• Optimality condition for a firm:

$$(P - W) - \beta [(1 - \delta) + (N - 1)x'(D)](P' - W')$$

= $\tilde{x}(D_{-})(-u''(D) - \beta(1 - \delta)p'(D))$

Impose equilibrium:

$$\tilde{x}(D_{-}) = x(D_{-}) = \frac{1}{N} (f(D_{-}) - (1 - \delta)D)$$

• Then equilibrium dynamics is characterized by

$$u'(D_{t}) = P_{t} - \beta(1 - \delta)P_{t+1},$$

$$(P_{t} - W) - \beta(P_{t+1} - W) \left(\frac{1 - \delta}{N} + \frac{N - 1}{N}f'(D_{t})\right)$$

$$= \frac{D_{t} - (1 - \delta)D_{t-1}}{N} \frac{1}{-\varphi'(P_{t})},$$

where $D_t = f(D_{t-1}), P_t = p(D_{t-1}) \text{ and } \varphi(\cdot) = f(p^{-1}(\cdot)).$

Proposition

With linear demand, there exists a linear oligopoly equilibrium:

$$D_t = \bar{D} + \phi^{(N)}(D_{t-1} - \bar{D})$$
 and $P_t = \bar{P} - \alpha^{(N)}(D_{t-1} - \bar{D}).$ $\phi^{(N)}$ and $\alpha^{(N)}$ decrease in N . $lacktriangledown$

 As number of firms increases, prices are closer to marginal cost and there is less endogenous dynamics

- Steady state markup cannot be solved for without $p'(\bar{D})$.
- To compute the steady state markup exactly, we need to know all derivatives of the policy function p(D) at \bar{D} .
- Similar problem arises in hyperbolic discounting
 - Krusell, Kuruscu, and Smith (2002)
 - Judd (2004)
 - Polynomial approximations
- In the case of durables, polynomial approximations should work perfectly.
- Each additional higher order term is suppressed by ϕ^n .

• In the case of monopoly, the transition function f(D) satisfies

$$\frac{(1 - \beta (1 - \delta)) W - u'(f(D))}{f(D) - (1 - \delta) D} - u''(f(D))$$

$$= \beta (1 - \delta) \frac{(1 - \beta (1 - \delta)) W - u'(f(f(D)))}{f(f(D)) - (1 - \delta) f(D)} f'(f(D))$$

- Express f(D) as a power series.
- When Taylor expanded, the functional equation gives an infinite number of conditions for the derivatives of f(D) at \bar{D}
- The first one links \bar{D} and $f'(\bar{D})$.
- The second one links \bar{D} , $f'(\bar{D})$, and $f''(\bar{D})$.
- The third one links \bar{D} and the first three derivatives.
- Etc.

- If we set $f^{(n)}(\bar{D})$ to zero and solve the system, we make only a small mistake proportional to ϕ^n , where $\phi \equiv f'(\bar{D})$
- In practice, only a couple of terms will be needed.
- When translated to the GE context, this means that it is possible to solve GE models with durables and discretion, for arbitrary utility functions.

- $\beta = 0.9$
- $\delta = 0.2$
- Constant elasticity $\sigma = 2$
- Value function iteration on a grid, polynomial smoothing:

$$V(D_{-}) = \max_{D} \left\{ \left(u'(D) + \beta(1 - \delta)p(D) - W \right) \left(D - (1 - \delta)D_{-} \right) + \beta V(D) \right\}$$

Update $\tilde{V}(D_{-})$ and $D=\tilde{f}(D_{-})$, and calculate

$$\tilde{p}(D_{-}) = u'(f(D_{-})) + \beta(1-\delta)p(f(D_{-}))$$

Polynomially smooth $f(\cdot)$ and $p(\cdot)$

Dynamics with no shocks

Figure: Dynamic path of D_t

Dynamics with no shocks

Figure: Dynamic path of P_t

Unexpected permanent cost increase

Figure: Response of P_t

Unexpected permanent cost increase

Figure: Response of markup, P_t/W_t

Unexpected permanent cost increase

Figure: Response of D_t

Unexpected permanent demand increase

Figure: Response of P_t and markup P_t/W_t

Unexpected permanent demand increase

Figure: Response of D_t

Stochastic cost shocks

Table: Statistical properties

$log(\cdot)$	σ (%)	ho	$\operatorname{corr}(\cdot, \log W_t)$
Wage, W_t	4.9	0.80	1.00
Price, P_t	5.1	0.90	0.88
Markup, P_t/W_t	2.2	0.69	-0.19
Durable stock, D_t			
— constant markup	15.5	0.79	-0.99
discretion	12.2	0.95	-0.75
— ratio (disc/comm)			0.29
Durable purchases, X_t			
— constant markup	70.7	-0.08	-0.31
— discretion	21.4	0.57	-0.91
— ratio (disc/comm)			0.16

Numerical Example Stochastic cost shocks

Table: Pass-through

	$\log W_t$	$\log W_{t-1}$
$\log P_t$	0.91	
$\log P_t$	0.65	0.34
	$\Delta \log W_t$	$\Delta \log W_{t-1}$
$\Delta \log P_t$	0.61	
$\Delta \log P_t$	0.63	0.15

Stochastic demand shocks

Table: Statistical properties

$\log(\cdot)$	σ (%)	ρ	$\operatorname{corr}(\cdot, \log \xi_t)$
Demand, ξ_t	4.8	0.77	1.00
Price and markup, P_t/W	1.9	0.79	-0.18
Durable stock, D_t			
— constant markup	9.7	0.77	1.00
— discretion	7.2	0.94	0.66
— ratio (disc/comm)			-0.22
Durable purchases, X_t			
— constant markup	36.1	-0.03	0.91
— discretion	13.6	0.56	0.55

Conclusion

- Durable monopoly pricing results in endogenous dynamics
- Procyclical markups in response to demand shocks
- Countercyclical markups in response to cost shocks (incomplete pass-through)
- Oligopoly: endogenous dynamics dies out with N
- Next steps: general equilibrium, quantitative evaluation