## **Fiscal Devaluations**

EMMANUEL FARHI Harvard GITA GOPINATH
Harvard

OLEG ITSKHOKI Princeton

#### Motivation

- Currency devaluation: response to loss of competitiveness
  - New relevance: crisis in the Euro Area
- Fiscal devaluation: set of fiscal policies that lead to the same real outcomes but keeping exchange rate fixed
  - Old idea (Keynes, 1931): Uniform tariff cum export subsidy
  - More recently: VAT plus payroll subsidy
    - Cavallo and Cottani (2010), IMF Fiscal Monitor (2011)
- No longer a theoretical curiosity
  - France (2013)
  - Germany (2007)

#### What we do

- Formal analysis of fiscal devaluations
  - New Keynesian open economy model
  - Dynamic and GE
  - wage and price stickiness (in local or producer currency)
  - arbitrarily rich set of alternative asset market structures
  - general stochastic sequences of devaluations.
  - conventional fiscal instruments
- Example: optimal devaluation, nominal or fiscal



#### What we do

- Formal analysis of fiscal devaluations
  - New Keynesian open economy model
  - Dynamic and GE
  - wage and price stickiness (in local or producer currency)
  - arbitrarily rich set of alternative asset market structures
  - general stochastic sequences of devaluations.
  - conventional fiscal instruments
- Relate literature
  - 1 Partial equilibrium: Staiger and Sykes (2010), Berglas (1974)
  - 2 Fiscal implementation: Adao, Correia and Teles (2009)
  - 3 Quantitative studies of the VAT effects
  - 4 Taxes under sticky prices: Poterba, Rotemberg, Summers (1986)

## Main Findings

- Robust Policies: Small set of conventional fiscal instruments suffices for equivalence across various specifications at all horizons. Unilateral interventions.
- Sufficient Statistic: Size of tax adjustments functions only of size of desired devaluation and independent of details of environment.
- Revenue Neutrality
  - If restricted set of taxes then increasing in the trade deficit.

## Main Findings

- 1 Two robust Fiscal Devaluation policies
  - (FD') Uniform increase in import tariff and export subsidy

#### OR

- (FD") Uniform increase in value-added tax (with border adjustment) and reduction in payroll tax
- 2 In general, (FD') and (FD") need to be complemented with a reduction in consumption tax and increase in income tax
  - dispensed with if devaluation is unanticipated
- 3 If debt denominated in home currency, equivalence requires partial default (forgiveness)

### Outline

- 1 Static (one-period) model
- 2 Full dynamic model
- 3 Extensions
  - Monetary union
  - Capital
  - Labor mobility
  - Differential short-run tax pass-through
- 4 Optimal devaluation: an example

#### Fiscal devaluation

• Definition: Consider an equilibrium path of the economy with  $\mathcal{E}_t = \mathcal{E}_0(1 + \delta_t)$ , given  $\{M_t\}$ .

Fiscal  $\{\delta_t\}$ -devaluation is a sequence

$$\left\{M_t', \tau_t^m, \varsigma_t^x, \tau_t^v, \varsigma_t^p, \varsigma_t^c, \tau_t^n, \tau_t^d\right\}$$

that leads to the same real allocation, but with  $\mathcal{E}_t' \equiv \mathcal{E}_0$ .

Anticipated and unanticipated devaluations

## Static Model Setup

Two countries:

• Home: Unilateral fiscal and monetary policies.

• Foreign: Passive

Households:

— Preferences: U(C, N) and  $C = C_H^{\gamma} C_F^{1-\gamma}$ ,  $\gamma \ge 1/2$ 

Budget constraint

$$\frac{PC}{1+\varsigma^{c}}+M+T\leq \frac{WN}{1+\tau^{n}}+\frac{\Pi}{1+\tau^{d}}+B$$

— Cash in advance:  $PC/(1+\varsigma^c) \leq M$ 

## Static Model Setup

• Firms: Y = AN

$$\Pi = (1 - \tau^{\mathsf{v}}) P_H C_H + (1 + \varsigma^{\mathsf{x}}) \mathcal{E} P_H^* C_H^* - (1 - \varsigma^{\mathsf{p}}) WN$$

Government: balanced budget

$$\begin{aligned} M + T + TR &= 0, \\ TR &= \left(\frac{\tau^n}{1 + \tau^n} WN + \frac{\tau^d}{1 + \tau^d} \Pi - \frac{\varsigma^c}{1 + \varsigma^c} PC\right) \\ &+ \left(\tau^v P_H C_H - \varsigma^p WN\right) + \left(\frac{\tau^v + \tau^m}{1 + \tau^m} P_F C_F - \varsigma^x \mathcal{E} P_H^* C_H^*\right) \end{aligned}$$

## Equilibrium relationships I

PCP case

International relative prices:

$$\begin{split} P_H^* &= P_H \frac{1}{\mathcal{E}} \frac{1 - \tau^{\nu}}{1 + \varsigma^{\kappa}} \\ P_F &= P_F^* \mathcal{E} \frac{1 + \tau^m}{1 - \tau^{\nu}} \quad \Rightarrow \quad \mathcal{S} = \frac{P_F^*}{P_H^*} = \frac{P_F^*}{P_H} \mathcal{E} \frac{1 + \varsigma^{\kappa}}{1 - \tau^{\nu}} \end{split}$$

2 Wage and Price setting:

$$\begin{split} P_{H} &= \bar{P}_{H}^{\theta_{p}} \left[ \mu_{p} \frac{1 - \varsigma^{p}}{1 - \tau^{v}} \frac{W}{A} \right]^{1 - \theta_{p}} \\ W &= \bar{W}^{\theta_{w}} \left[ \mu_{w} \frac{1 + \tau^{n}}{1 + \varsigma^{c}} P C^{\sigma} N^{\varphi} \right]^{1 - \theta_{w}}, \end{split}$$

3 Demand — cash in advance:

$$PC < M(1 + \varsigma^c)$$

## Equilibrium relationships II

- **4** Goods market clearing:  $Y = C_H + C_H^*$
- **5** Exchange rate determination:
  - Budget constraint (allowing for partial default)

$$P^*C^* = P_F^*Y^* - \frac{1-d}{\mathcal{E}}B^h - B^{f*}$$
 
$$\Rightarrow \qquad \mathcal{E} = \frac{\frac{1-\tau^{\vee}}{1+\tau^m}M(1+\varsigma^c) - \frac{1-d}{1-\gamma}B^h}{M^* + \frac{1}{1-\gamma}B^{f*}}$$

## Equilibrium relationships II

Perfect risk-sharing:

$$\left(\frac{C}{C^*}\right)^{\sigma} = \frac{P^*\mathcal{E}}{P/(1+\varsigma^c)} \equiv \mathcal{Q} \qquad \Rightarrow \qquad \mathcal{E} = \frac{M}{M^*}\mathcal{Q}^{\frac{\sigma-1}{\sigma}}$$

### Results I

### **Proposition**

The following policies constitute a fiscal  $\delta$ -devaluation

1 under balanced trade or foreign-currency debt:

$$\begin{array}{ll} \text{(FD')} & \tau^m = \varsigma^{\mathsf{x}} = \delta \\ \text{(FD'')} & \tau^{\mathsf{v}} = \varsigma^{\mathsf{p}} = \frac{\delta}{1+\delta} \end{array} \right\} \quad \text{and} \quad \varsigma^{\mathsf{c}} = \tau^{\mathsf{n}} = \epsilon, \quad \frac{\Delta M}{M} = \frac{\delta - \epsilon}{1+\epsilon} \quad \forall \epsilon$$

2 under home-currency debt supplement with partial default:

$$d = \delta/1 + \delta$$

3 under complete international risk-sharing need to set:

$$\epsilon = \delta$$
 and  $\frac{\Delta M}{M} = -\frac{\sigma - 1}{\sigma} \frac{\Delta Q}{Q}$ 

#### Results II

- Local currency pricing: Same fiscal instruments for equivalence
- Law of one price does not hold
- Price setting in consumer currency
- Terms of trade appreciates

$$S = \frac{P_F}{P_H^*} \frac{1 - \tau^{\mathsf{v}}}{\mathcal{E}}$$

· Foreign firm profit margins decline

$$\Pi^* = P_F^* C_F^* + P_F C_F \frac{1 - \tau^{\mathsf{v}}}{\mathcal{E}} - W^* N^*$$

Price setting in consumer currency

$$P_H^* = \bar{P}_H^{*\theta_p} \left[ \mu_p \frac{1 - \varsigma^p}{1 + \varsigma^{\mathsf{x}}} \frac{1}{\mathcal{E}} \frac{W}{A} \right]^{1 - \theta_p},$$

Real effects differ under PCP and LCP

#### Results III

### 6 Revenue neutrality

- Revenue neutrality is relative to the fiscal effect of a nominal devaluation
- Result: (FD') and (FD") are fiscal revenue-neutral.

$$\begin{split} TR &= \frac{\delta}{1+\delta} \big( WN - PC \big) + \frac{\delta}{1+\delta} \big( P_H C_H - WN \big) + \frac{\delta}{1+\delta} P_F C_F \\ &= \left[ \frac{\delta}{1+\delta} - \frac{\delta}{1+\delta} \right] \big( PC - WN \big). \end{split}$$

- If use all four taxes: VAT + payroll, consumption + income
- If use only two: VAT +payroll, TR increasing in the trade deficit.

#### **Features**

- 1 Taxes required for equivalence similar under PCP and LCP
- 2 Equivalence in real variables and nominal prices
  - Redistribution
- 3 Only a function of size of desired devaluation  $\delta$ 
  - Independent of details of micro frictions

- · Endogenous savings and portfolio decisions
- Dynamic (interest-elastic) money demand
- Arbitrary degrees of asset market completeness

#### Consumers

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(C_t, N_t, m_t),$$

$$\frac{P_t C_t}{1 + \varsigma_t^c} + M_t + \sum_{j \in J_t} Q_t^j B_{t+1}^j \leq \sum_{j \in J_{t-1}} (Q_t^j + D_t^j) B_t^j + M_{t-1} + \frac{W_t N_t}{1 + \tau_t^n} + \frac{\Pi_t}{1 + \tau_t^d} + T_t.$$

- Nested CES aggregators:  $C(C_H, C_F)$ ,  $C_H(\{C_{hi}\})$ ,  $C_F(\{C_{fi}\})$
- Generalizable to: Variable mark-ups, strategic complementarities in pricing, non-homothetic demand

- Producers
- firm i produces according to

$$Y_t(i) = A_t Z_t(i) N_t(i)^{\alpha}, \qquad 0 < \alpha \le 1,$$

$$\sum_{s=t}^{\infty} \theta_p^{s-t} \mathbb{E}_t \left\{ \Theta_{t,s} \frac{\Pi_s^i}{1 + \tau_s^d} \right\},\,$$

- Generalizable to: Menu cost pricing with real menu cost (labor).
- Government: Same as static.

- Equilibrium conditions
- Consolidated country budget constraint

$$\sum_{j \in \Omega_t} \frac{Q_t^{j*}}{P_t^*} B_{t+1}^j - \sum_{j \in \Omega_{t-1}} \frac{Q_t^{j*} + D_t^{j*}}{P_t^*} B_t^j = \frac{P_{Ht}^*}{P_t^*} \Big[ C_{Ht}^* - C_{Ft} \mathcal{S}_t \Big],$$

where 
$$C_{Ht}^* = (P_{Ht}^*/P_t^*)^{-\zeta} C_t^*$$
 and  $C_{Ft} = (P_{Ft}/P_t)^{-\zeta} C_t$ 

•  $S_t$  Terms of Trade :

$$S_t = \frac{P_{Ft}}{P_{Ht}^*} \frac{1}{\mathcal{E}_t} \frac{1 - \tau_t^{\mathsf{v}}}{1 + \tau_t^{\mathsf{m}}}$$

• International risk sharing condition:

$$\mathbb{E}_{t}\left\{\frac{Q_{t+1}^{j*} + D_{t+1}^{j*}}{Q_{t}^{j*}} \frac{P_{t}^{*}}{P_{t+1}^{*}} \left[ \left(\frac{C_{t+1}}{C_{t}}\right)^{-\sigma} \frac{Q_{t+1}}{Q_{t}} - \left(\frac{C_{t+1}^{*}}{C_{t}^{*}}\right)^{-\sigma} \right] \right\} = 0 \quad \forall j \in \Omega_{t}$$

•  $Q_t$ : Real Exchange Rate

$$Q_t = \frac{P_t^* \mathcal{E}_t}{P_t / (1 + \varsigma_t^c)}$$

Pricing equation:

$$\bar{P}_{Ht}(i) = \frac{\rho}{\rho - 1} \frac{\mathbb{E}_{t} \sum_{s \geq t} (\beta \theta_{p})^{s-t} C_{s}^{-\sigma} P_{s}^{-1} P_{Hs}^{\rho} (C_{Hs} + C_{Hs}^{*}) \frac{(1 + \varsigma_{s}^{c})(1 - \varsigma_{s}^{p})}{1 + \tau_{s}^{d}} \frac{W_{s}}{A_{s} Z_{s}(i)}}{\mathbb{E}_{t} \sum_{s \geq t} (\beta \theta_{p})^{s-t} C_{s}^{-\sigma} P_{s}^{-1} P_{Hs}^{\rho} (C_{Hs} + C_{Hs}^{*}) \frac{(1 + \varsigma_{s}^{c})(1 - \tau_{s}^{v})}{1 + \tau_{s}^{d}}}$$

Interest elastic money demand

$$\chi C_t^{\sigma} \left( \frac{M_t (1 + \varsigma_t^c)}{P_t} \right)^{-\nu} = \frac{i_{t+1}}{1 + i_{t+1}}$$

• Definition: Consider an equilibrium path of the economy with  $\mathcal{E}_t = \mathcal{E}_0(1 + \delta_t), \quad \text{given} \quad \{M_t\}.$ 

Fiscal  $\{\delta_t\}$ -devaluation is a sequence

$$\left\{M_t', \tau_t^m, \varsigma_t^x, \tau_t^v, \varsigma_t^p, \varsigma_t^c, \tau_t^n, \tau_t^d\right\}$$

that leads to the same real allocation, but with  $\mathcal{E}_t' \equiv \mathcal{E}_0$ .

Anticipated and unanticipated devaluations

# Result I Complete markets

#### **Proposition**

Under complete international asset markets a fiscal  $\{\delta_t\}$ -devaluation can be achieved by one of the two policies:

$$\begin{split} \tau_t^m &= \varsigma_t^x = \varsigma_t^c = \tau_t^n = \tau_t^d = \delta_t & \text{ for } t \geq 0, \quad \text{or } \\ \tau_t^v &= \varsigma_t^p = \frac{\delta_t}{1 + \delta_t}, \qquad \varsigma_t^c = \tau_t^n = \delta_t & \text{ and } \quad \tau_t^d = 0 & \text{ for } t \geq 0; \\ \text{(FD}_F') & & \end{split}$$

as well as a suitable choice of  $M'_t$  for t > 0.

- analogous to static economy: terms of trade, RER
- interest-elastic money demand: no additional tax instruments

$$\chi C_t^{\sigma} \left( \frac{M_t (1 + \varsigma_t^c)}{P_t} \right)^{-\nu} = \frac{i_{t+1}}{1 + i_{t+1}}$$

## Result II Incomplete markets

#### Lemma

Under arbitrary international asset markets,  $(FD'_F)$  and  $(FD''_F)$  constitute a fiscal devaluation as long as the foreign-currency payoffs of all assets  $\{D^{j*}_t\}_{j,t}$  are unchanged.

- (FD'<sub>F</sub>) and (FD''<sub>F</sub>) replicate changes in all relative prices and price levels
- Require that  $\{D_t^{j*}, Q_t^{j*}\}$  are unchanged

$$Q_t^{j*} = \sum_{s>t} \mathbb{E}_t \big\{ \Theta_{t,s}^* D_s^{j*} \big\},\,$$

• Under no-bubble asset pricing require that the path of foreign-currency nominal asset payoffs  $\{D_t^{j*}\}$  is unchanged.

## Result II Incomplete markets

• Foreign-currency risk-free bond  $D_{t+1}^{f*} \equiv 1$  in foreign currency and its foreign-currency price is

$$Q_t^{f*} = \mathbb{E}_t \left\{ \Theta_{t+1}^* \right\} = \frac{1}{1 + i_{t+1}^*},$$

• Equities

$$\frac{D_t^e}{\mathcal{E}_t} = \frac{\Pi_t}{[1 + \tau_t^d]\mathcal{E}_t} \quad \text{and} \quad D_t^{e*} = \Pi_t^*.$$

No additional instruments required

## Result II Incomplete markets

- Local-currency risk-free bond  $D_{t+1}^h = 1$  in home currency and  $D_{t+1}^{h*} = 1/\mathcal{E}_{t+1}$  in foreign-currency.
- Need partial default (haircut,  $\tau_t^h$ ) to make its foreign-currency payoff the same as in a nominal devaluation:

$$D_{t+1}^{h*} = \frac{1 - \tau_{t+1}^h}{\mathcal{E}_{t+1}},$$

and hence price

$$\begin{aligned} Q_t^{h*} &= \mathbb{E}_t \left\{ \Theta_{t+1}^* \frac{1 - \tau_{t+1}^h}{\mathcal{E}_{t+1}} \right\}. \\ \tau_t^h &= \frac{\delta_t - \delta_{t-1}}{1 + \delta_t} \end{aligned}$$

# Result III Unanticipated devaluation

### Proposition

A one-time <u>unanticipated</u> fiscal  $\delta$ -devaluation in an <u>incomplete</u> <u>markets</u> economy:

$$\begin{array}{ll} \text{(FDD')} & \tau_t^m = \varsigma_t^{\mathsf{x}} = \delta \\ \text{(FDD'')} & \tau_t^{\mathsf{v}} = \varsigma_t^{\mathsf{p}} = \frac{\delta}{1+\delta} \end{array} \right\} \qquad \text{and} \qquad M_t' \equiv M_t.$$

- No consumption subsidy needed
- Applies to risk-free bonds and international equities economies
- Home-currency debt: one-time partial default  $d = \delta/(1+\delta)$

## Extensions: Implementation in a Monetary Union

- Coordination with union central bank:
  - Union-wide money supply:

$$\bar{M}_t = M_t + M_t^*$$

- $M_t/M_t^*$  is endogenous
- Division of seigniorage between members:

$$\Delta \bar{M}_t = \Omega_t + \Omega_t^*$$

- Special cases: unilateral fiscal adjustment suffices
  - seigniorage is small  $(\Delta \bar{M}_t o 0)$
  - devaluing country is small  $(\Delta \bar{M}_t/\bar{M}_t \rightarrow 0)$

- Spain
- · Adjustment costs to capital
- Wage rigidity
- Debt elastic interest rate

$$i_{t+1}^* = i^* + \psi(e^{(B^* - B_{t+1})} - 1) + \varepsilon_{r,t},$$

#### Calibration

| Parameter                                          | Value     |
|----------------------------------------------------|-----------|
| Discount factor, $\beta$                           | 0.98      |
| Risk aversion, $\sigma$                            | 5.00      |
| Labor share, $lpha$                                | 0.75      |
| Depreciation rate, $\delta$                        | 0.05      |
| Frisch elasticity of labor supply, $1/arphi$       | 0.50      |
| Disutility of labor, $\kappa$                      | 1.00      |
| Capital adjustment cost parameter, $\phi_I$        | 2.00      |
| Semi-elasticity of $M/P$ to $i$ , $1/\nu$          | 0.2       |
| Relative weight for utility from money, $\chi$     | $5e^{-4}$ |
| Home bias, $\gamma_H$                              | 0.60      |
| Elasticity of subst. across H and F, $\zeta$       | 1.20      |
| Elasticity of subst. across home varieties, $\rho$ | 4.00      |
| Payroll subsidy, $\varsigma_p$                     | -0.18     |
| Value added tax, $	au_{ u}$                        | 0.16      |
| Capital subsidies, $\varsigma_k$                   | -0.18.3   |
| Labor income tax, $\tau_n$                         | 0.14      |

- At time zero, the economy is in its non-stochastic steady state.
- At time one, agents are hit by an unexpected shock to their cost of borrowing.
- $\rho_r=0.95$  ,  $\varepsilon_r=0.013$ . Match the 4% decline in GDP in Spain between 2008-2009.

#### Impulse Responses

31 / 35



F: Flexible prices, S: Sticky Prices, FD: Fiscal Devaluation(10%)

Figure: Impulse response to an interest rate shock

VAT increase of 7.6, payroll tax cut of 10.7, capital tax cut of 10.8 percentage points.

#### Impulse Responses



F: Flexible prices, S: Sticky Prices, FD: Fiscal Devaluation(10%)

Figure: Impulse response to an interest rate shock

## Welfare

|                                                              | Loss relative to no shock |             |
|--------------------------------------------------------------|---------------------------|-------------|
|                                                              | Permanent                 | 10 quarters |
| No intervention                                              | -0.64%                    | -3.65%      |
| 10% one-time devaluation                                     | -0.45%                    | -2.55%      |
|                                                              | Of this gap               |             |
| — 10% Fiscal devaluation                                     | 100%                      |             |
| <ul> <li>Fiscal devaluation w/out capital subsidy</li> </ul> | 68%                       |             |
| <ul> <li>Anticipated fiscal devaluation</li> </ul>           | 79%                       |             |
| — No seigniorage transfer                                    | 99%                       |             |

## **Implementation**

- 1 Non-uniform VAT (e.g., non-tradables)
  - match payroll subsidy
- 2 Multiple variable inputs (e.g., capital)
  - uniform subsidy
  - ► Model w/capital
- 3 Tax pass-through assumptions: equivalence of
  - VAT and exchange rate pass-through into foreign prices
  - VAT and payroll tax pass-through into domestic prices
  - (► Generalization)

# Summary

- **Robust Policies**: *Small* set of *conventional* fiscal instruments suffices for equivalence.
  - uniform import tariff and export subsidy
  - uniform increase in VAT and reduction in payroll tax
- Unanticipated devaluation: no additional instruments
- More generally does not suffice: Anticipated devaluations
  - Replicate savings/portfolio decisions
  - Exact equivalence in reset prices.

• Sufficient Statistic: 
$$\tau_t^{\mathsf{v}} = \frac{\bar{\tau}_0^{\mathsf{v}} + \delta_t}{1 + \delta_t}$$

- Revenue Neutrality
- Sidesteps the trilemma in international macro

## Quotes

#### Popular arguments for abandoning Euro and devaluation:

#### — Feldstein (FT 02/2010):

If Greece still had its own currency, it could, in parallel, devalue the drachma to reduce imports and raise exports... The rest of the eurozone could allow Greece to take a temporary leave of absence with the right and the obligation to return at a more competitive exchange rate.

#### — Krugman (NYT): Why devalue? The Euro Trap, Pain in Spain

Now, if Greece had its own currency, it could try to offset this contraction with an expansionary monetary policy – including a devaluation to gain export competitiveness. As long as its in the euro, however, Greece can do nothing to limit the macroeconomic costs of fiscal contraction.

#### — Roubini (FT 06/2011): The Eurozone Heads for Break Up

...there is really only one other way to restore competitiveness and growth on the periphery: leave the euro, go back to national currencies and achieve a massive nominal and real depreciation.

#### Keynes (1931) in the context of Gold standard

Precisely the same effects as those produced by a devaluation of sterling by a given percentage could be brought about by a tariff of the same percentage on all imports together with an equal subsidy on all exports, except that this measure would leave sterling international obligations unchanged in terms of gold.



## Related Literature

### Comparison to ACT (Adao, Correia and Teles, JET, 2009)

|                                                                | ACT (2009)                                                                                                                 | FGI (2011)                                                     |                                         |  |  |  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|--|--|--|
| Allocation                                                     | Flexible-price (first best)                                                                                                | Nominal devaluation                                            | — one-time unexpected                   |  |  |  |
| Implementation                                                 | General non-constructive fiscal implementation principle                                                                   | Specific implementation: — simplicity, robustness, feasibility |                                         |  |  |  |
| Environment                                                    |                                                                                                                            |                                                                |                                         |  |  |  |
| - Nominal frictions                                            | Sticky prices (PCP or LCP)                                                                                                 | Sticky prices (PCP and LCP) and sticky wages                   |                                         |  |  |  |
| – Int'l asset markets                                          | Risk-free nominal bonds                                                                                                    | Arbitrary degree of completeness                               | Arbitrary incomplete markets            |  |  |  |
| Instruments                                                    | Separate consumption taxes by origin of the good and income taxes in both countries; additional instruments in other cases | VAT, payroll, consumption and income tax in one country        | VAT and payroll tax only in one country |  |  |  |
| Implementability                                               |                                                                                                                            |                                                                |                                         |  |  |  |
| <ul> <li>Analytical charac-<br/>terization of taxes</li> </ul> | No                                                                                                                         | Yes, simple characterization and expressions                   |                                         |  |  |  |
| <ul> <li>Int'l coordination of taxes</li> </ul>                | Yes                                                                                                                        | No, unilateral policy                                          |                                         |  |  |  |
| – Tax dependence on microenvironment                           | In general, yes                                                                                                            | No, robust to any changes in environment                       |                                         |  |  |  |
| – Tax dynamics                                                 | In general, complex dynamic path                                                                                           | Path of taxes follows the path of devaluation                  | Only one-time tax change                |  |  |  |

# Local currency pricing

- · Law of one price does not hold
- Price setting in consumer currency

$$P_{H}^{*} = \bar{P}_{H}^{*\theta_{p}} \left[ \mu_{p} \frac{1 - \varsigma^{p}}{1 + \varsigma^{x}} \frac{1}{\mathcal{E}} \frac{W}{A} \right]^{1 - \theta_{p}},$$

$$P_{F} = \bar{P}_{F}^{\theta_{p}} \left[ \mu_{p} \frac{1 + \tau^{m}}{1 - \tau^{v}} \mathcal{E} \frac{W^{*}}{A^{*}} \right]^{1 - \theta_{p}},$$

Terms of trade appreciates

$$S = \frac{P_F}{P_H^*} \frac{1}{\mathcal{E}} \frac{1 - \tau^{\mathsf{V}}}{1 + \tau^{\mathsf{m}}}$$

Foreign firm profit margins decline

$$\Pi^* = P_F^* C_F^* + P_F C_F \frac{1}{\mathcal{E}} \frac{1 - \tau^{\mathsf{v}}}{1 + \tau^{\mathsf{m}}} - W^* N^*$$



## Price setting

$$\bar{P}_{Ht} = \frac{\mathbb{E}_{t} \sum_{s \geq t} (\beta \theta_{p})^{s-t} C_{s}^{-\sigma} P_{s}^{-1} P_{Hs}^{\rho} Y_{s} \frac{\rho}{\rho-1} \frac{(1+\varsigma_{s}^{c})(1-\varsigma_{s}^{p})}{1+\tau_{s}^{d}} W_{s} / A_{s}}{\mathbb{E}_{t} \sum_{s \geq t} (\beta \theta_{p})^{s-t} C_{s}^{-\sigma} P_{s}^{-1} \frac{(1+\varsigma_{s}^{c})(1-\tau_{s}^{v})}{1+\tau_{s}^{d}}},$$

- Under (FDD"),  $(1 + \varsigma_s^c)(1 \tau_s^v) = (1 + \varsigma_s^c)(1 \varsigma_s^p) = 1$ , therefore the reset price  $\bar{P}_{Ht}$  stays the same, and hence so does  $P_{Ht}$
- (FDD') additionally requires compensating with  $\tau_s^d = \delta_t$ , unless devaluation is unanticipated

▶ back to slides

## Home-currency Bond

- Partial defaults on home-currency bonds: contingent sequence {d<sub>t</sub>}
- The international risk sharing condition becomes

$$Q_{t} = \beta \mathbb{E}_{t} \left\{ \left( \frac{C_{t+1}^{*}}{C_{t}^{*}} \right)^{-\sigma} \frac{P_{t}^{*} \mathcal{E}_{t}}{P_{t+1}^{*} \mathcal{E}_{t+1}} (1 - d_{t+1}) \right\}$$

$$= \beta \mathbb{E}_{t} \left\{ \left( \frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{P_{t}}{P_{t+1}} \frac{1 + \varsigma_{t+1}^{c}}{1 + \varsigma_{t}^{c}} (1 - d_{t+1}) \right\},$$

Country budget constraint can now be written as

$$Q_t \frac{1}{\mathcal{E}_t} B_{t+1}^h - \left(1 - d_t\right) \frac{\mathcal{E}_{t-1}}{\mathcal{E}_t} \frac{1}{\mathcal{E}_{t-1}} B_t^h = \left(1 - \gamma\right) \left[ P_t^* C_t^* - P_t C_t \frac{1}{\mathcal{E}_t} \frac{1 - \tau_t^v}{1 + \tau_t^m} \right]$$

## International trade in equities

Budget constraint

$$\begin{split} \frac{P_{t}C_{t}}{1+\varsigma_{t}^{c}} + M_{t} + \left(\omega_{t+1} - \omega_{t}\right) \mathbb{E}_{t} \left\{\Theta_{t+1}V_{t+1}\right\} - \left(\omega_{t+1}^{*} - \omega_{t}^{*}\right) \mathbb{E}_{t} \left\{\Theta_{t+1}\mathcal{E}_{t+1}V_{t+1}^{*}\right\} \\ \leq \frac{W_{t}N_{t}}{1+\tau_{t}^{d}} + \omega_{t} \frac{\Pi_{t}}{1+\tau_{t}^{d}} + (1-\omega_{t}^{*})\mathcal{E}_{t}\Pi_{t}^{*} + M_{t-1} - \mathcal{T}_{t}, \end{split}$$

Value of the firm:

$$\begin{aligned} V_t &= \mathbb{E}_t \sum_{s=t}^{\infty} \Theta_{t,s} \frac{\Pi_s}{1 + \tau_s^d}, \qquad \Theta_{t,s} = \prod_{\ell=t+1}^s \Theta_{\ell}, \ \Theta_{\ell} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}} \frac{1 + \varsigma_{t+1}^c}{1 + \varsigma_t^c}, \\ V_t^* &= \mathbb{E}_t \sum_{s=t}^{\infty} \Theta_{t,s}^* \Pi_s^* \end{aligned}$$

• Risk-sharing conditions

$$\mathbb{E}_t \sum_{t=0}^{\infty} \left( \Theta_{t,s} - \Theta_{t,s}^* \frac{\mathcal{E}_t}{\mathcal{E}_s} \right) \frac{\Pi_s}{1 + \tau_s^d} = 0 \quad \text{and} \quad \mathbb{E}_t \sum_{t=0}^{\infty} \left( \Theta_{t,s} \frac{\mathcal{E}_s}{\mathcal{E}_t} - \Theta_{t,s}^* \right) \Pi_s^* = 0.$$

## Model with capital

• Choice of capital input by firms:

$$\frac{L_t}{K_t} = \frac{\alpha}{1 - \alpha} \frac{(1 - \varsigma_t^r)}{(1 - \varsigma_t^p)} \frac{R_t}{W_t}$$

• Choice of capital investment by households:

$$U_{c,t}\frac{(1+\varsigma_t^c)}{(1+\varsigma_t^i)} = \beta \mathbb{E}_t U_{c,t+1} \left[ \frac{R_{t+1}}{P_{t+1}} \frac{(1+\varsigma_{t+1}^c)}{(1+\tau_{t+1}^k)} + (1-\delta) \frac{(1+\varsigma_{t+1}^c)}{(1+\varsigma_{t+1}^i)} \right]$$

- Results:
  - **1** When consumption subsidy  $\varsigma_t^c$  is not used, only capital expenditure subsidy to firms  $\varsigma_t^r$  is required (parallel to payroll subsidy). All variable inputs should be subsidized uniformly
  - Otherwise, investment subsidy and capital income tax need to be used in addition:

$$\varsigma_t^i = \tau_t^k = \varsigma_t^c = \delta_t$$

## Pass-through of VAT and payroll tax

• Static model with differential pass-through  $\xi_p > \xi_\tau$ :

$$P_H = \left[ar{P}_H \cdot rac{(1-arsigma^
ho)^{\xi_
ho}}{(1- au^{
ho})^{\xi_
ho}}
ight]^{ heta_
ho} \left[\mu_
ho rac{1-arsigma^
ho}{1- au^{
ho}} rac{W}{A}
ight]^{1- heta_
ho}$$

### Proposition

Fiscal devaluation is as characterized in Results I-III, but with payroll subsidy given by

$$arsigma^p = 1 - \left(rac{1}{1+\delta}
ight)^{rac{\xi_{arsigma}^{artheta_{artheta}+1- heta_{artheta}}{\xi_{artheta}^{artheta_{artheta}+1- heta_{artheta}}}.$$

- still  $\tau^{\nu} = \delta/(1+\delta)$ , to mimic international relative prices
- $-\xi_{\nu} > \xi_{\rho}$  implies  $\varsigma^{\rho} > \tau^{\nu} = \delta/(1+\delta)$
- as  $\theta_p$  decreases towards 0,  $\varsigma^p$  decreases towards  $\delta/(1+\delta)$

- Symmetry of VAT and ER pass-through into import prices
  - Campa, Goldberg, Gonzalez-Minguez (2005): SRPT 66%, LRPT 81% (4 months)
  - Andrade, Carre, and Benassy-Quere (2010): French exports to the euro zone (1996-2005), median pass-through of VAT shocks 70-82% at a one year horizon.
  - Conclude that similar pass-through behavior for ER and VAT shocks over a year.
- Symmetry of VAT and payroll into domestic prices
  - Carbonnier (2007) studies two French reforms that involved steep decreases in the VAT in 1987 and then in 1999:
  - Finds that the pass-through into domestic prices was 57 percent in the new car sales market and 77 percent in the household repair services market.
  - Carare and Danninger (2008): German VAT, payroll. Finds evidence of staggered price adjustment to ER shocks.

# Quantitative investigation

Source: Gopinath and Wang (2011)

|                                        | Germany | Spain | Portugal | Italy | Greece |
|----------------------------------------|---------|-------|----------|-------|--------|
| Taxes                                  |         |       |          |       |        |
| — VAT                                  | 13%     | 7%    | 11%      | 9%    | 8%     |
| — payroll contributions                | 14%     | 18%   | 9%       | 24%   | 12%    |
| — including employee's SSC             | 27%     | 22%   | 16%      | 29%   | 22%    |
| % change, 1995-2010                    |         |       |          |       |        |
| - wages                                | 25%     | 61%   | 64%      | 39%   | 127%   |
| - productivity                         | 17%     | 19%   | 28%      | 3%    | 42%    |
| Required devaluation*                  |         | 34%   | 28%      | 28%   | 77%    |
| Maximal fiscal devaluation**           |         | 23%   | 11%      | 32%   | 14%    |
| — with German fiscal revaluation       |         | 38%   | 26%      | 47%   | 29%    |
| — additionally reducing employee's SSC |         | 43%   | 34%      | 56%   | 43%    |

- Required devaluation brings unit labor cost  $(W_t/A_t)$  relative to Germany to its 1995 ratio
- Maximal fiscal devaluation is constrained by zero lower bound on payroll contributions and 45% maximal VAT rate (which is never binding). A reduction of x in payroll tax and similar increase in VAT is equivalent to a x/(1-x) devaluation
- $-\,$  Maximal German revaluation is an additional decrease in German VAT of 13% and a similar increase in German payroll tax, equivalent to an additional 15% devaluation against Germany

back to slides

# Optimal Devaluation Setup

- Small open economy
- Flexible prices, sticky wages
- Permanent unexpected negative productivity shock
- Nominal devaluation is optimal
- Fiscal devaluation requires no consumption subsidy (VAT+payroll, or tariff+subsidy)
- Parameters:

$$\beta = 0.99$$
,  $\theta_w = 0.75$ ,  $\gamma = 2/3$ ,  $\sigma = 4$ ,  $\varphi = \kappa = 1$ ,  $\eta = 3$ 



