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Abstract

In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma
multiforme) have brought new knowledge and new hope for improving the prognosis of this
incurable disease. Some clinical trials have reached Phase 11, following positive outcomes in
Phase I and Il, with respect to safety and immunological end points. Results are encouraging
especially when considering the promise of sustained efficacy by inducing antitumor
immunological memory. Progress in understanding the mechanisms of tumor-induced immune
suppression led to the development of drugs targeting immunosuppressive checkpoints, which are
used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of
the disease bring new challenges for the management of glioma and underscore a likely cause of
therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial,
personalized approach, including the standard of care: surgery, radiation, chemotherapy with
added active immunotherapy and multiagent targeting of immunosuppressive checkpoints.
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It has long been known that immunosuppressive treatment regimens or diseases
accompanied by an immunosuppressive state are associated with increased incidence of
malignancy [1] and that tumors progress more slowly and can even be rejected when an
immune response is elicited [2,3]. These observations have led to formulating the concept of
immune surveillance [4,5], stipulating that immune mechanisms are responsible for the
continuous monitoring and elimination of cells displaying neoplastic mutations. Cancer
cells, glioblastoma cells included, activate mechanisms to evade immune surveillance
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through immunosuppressive cytokines and cells, which act upon all aspects of the immune
defense to hinder the recognition and immune eradication of tumor cells.

In the context of the tumor-induced immunosuppressive environment, CD4* T-lymphocytes
eitherd not recognize the tumor antigens, recognize them but become anergic or differentiate
into Tregs, which suppress the immune response further [6]. In patients with glioma,
characterized by generalized lymphopenia, the proportion of CD4*FoxP3* Tregs has been
shown to be markedly increased and to correlate with a decreased proliferative capacity of
CD4* T-cells. Depletion of Tregs restored proliferation of CD4* T cells and this was
accompanied by a decrease in Th-2 (IL-4 and IL-10) and an increase of Th-1 (IL-6, IL-2,
TNF-a and IFN-y) cytokines [7]. CD8* cytotoxic T cells (CTLs) are functionally impaired
either directly by tumor cells or indirectly through inflammatory molecules in the tumor
microenvironment or through interactions with altered antigen-presenting cells (APCs),
Tregs or myeloid-derived suppressor cells [8]. Decreased expression of HLA class |
molecules by glioma cells, leading to impaired antigen presentation and lysis by CTLs, has
been correlated with increased grade of malignancy [9]. Also, decreased expression of the
costimulatory molecule B7 leads to poor costimulation and T-cell anergy [10], whereas high
expression of B7-H1 (PD-L1) on tumor cells inhibits the function of CD4*and CD8* cells
[11] and induces apoptosis of CTLs [12]. Glioma cells also express soluble Fas ligand,
responsible for the death of antigen-stimulated CTLs [13]. Myeloid-derived suppressor cells,
a heterogeneous population of immature myeloid cells, have also been shown to accumulate
in the blood of glioma patients and inhibit T-cell function, effect mediated through their
production of arginase 1 [14,15]. Natural killer (NK) cells are unable to activate their
cytotoxic mechanisms in the absence of activating receptors on tumor cells [16-19], which
are downregulated in glioma patients [20]. Also, glioma cells express surface proteins, like
galectin-1, which inhibit NK-mediated immune surveillance [21]. Finally, type Il NK T cells
(NKT cells) contribute to the immunosuppressive tumor microenvironment through
secretion of anti-inflammatory cytokines like TGF-gand IL-13 [22]. It is now evident that
successful immunotherapy for glioma needs to address the mechanisms of tumor-induced
immune suppression in addition to being mindful of the unique environment of the brain,
which, unlike other organs, has minimal tolerance for inflammation. Glioblastoma (GBM
[WHO grade 1V]) is the deadliest and most common form of glioma (0.59-3.69 new cases in
100,000 every year) [23]. The current standard of care (SOC): surgery, radiation and temo-
zolomide [24] can only offer patients a median survival of 14.6 months after diagnosis and a
5-year survival rate of 0.05-4.7% [25]. Interestingly, an increasing number of studies
(reviewed by [25]) indicate that an overactive immune system, as found in asthma, hay
fever, eczema and food allergies, reduces the risk of developing GBM, suggesting that
immune therapies for GBM could be a successful avenue to improve patient outcome.
Recent accumulating evidence has highlighted the heterogeneous and evolving nature of
GBM [26-29], and suggests that this heterogeneity represents a key to treatment failure.
Harnessing the power of the dynamic, versatile and continuously adapting immune system
to aid in the treatment of a moving target, like GBM, represents a challenging but
worthwhile pursuit.
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Numerous preclinical studies have demonstrated that several immunotherapeutic strategies
can be successful in animal models of GBM, including: gene therapy [30], passive
immunotherapy with antibodies against tumor antigens [31], adoptive T-cell transfer with T
cells activated against tumor antigens or engineered to express chimeric antigen receptors
(CARs) [32-34], immunomodulatory strategies aimed at inhibiting the immune checkpoints
used by tumors to escape from immune surveillance [35,36] as well as active
immunotherapy, employing peptide or dendritic cell (DC) vaccines (summarized in Table 1
[37-76]), to elicit immune reactivity against tumors and induce immunological memory
capable of preventing recurrence of the disease.

Taken into the clinic, many Phase | and Il clinical trials for GBM using immunotherapy in
combination with SOC have come to completion in the last 5 years. Results have shown that
immunological approaches are generally safe, with minimal side effects and able to elicit
specific immune responses and in some cases improve progression-free survival (PFS) and
overall survival (OS) [77-85]. Studies employed gene therapy [86-93], DC vaccines, which
vary primarily in the agents used to prime the DCs for antigen presentation: either GBM-
associated antigens (GAA) [81,94], autologous tumor lysates [78,82,94-97] or RNA from
GBM stem cells [85], with or without adjuvants aimed to activate Toll-like receptors
(TLRs). A few trials tested the effect of antigenic stimulation with peptides or tumor cells
[77,79,98-102] and some analyzed the effect of autologous T-cell transfer on eliciting an
antiglioma immune response [103,104] or the effect of specific antibodies against GBM
receptors or to deplete Tregs [105,106].

A growing interest for immunotherapeutic approaches for GBM is illustrated by the
increasing annual number of funded clinical trials worldwide (ClinicalTrials.org database,
Figure 1). Most of the trials involved active immunotherapy using different vaccination
strategies or gene therapy. Following promising results in the treatment metastatic
melanoma, where antibodies against CTLA-4 and PD-1 have shown an increase in OS
[107], or induce tumor regression [108], an important new addition to the anti-GBM toolbox
is represented by drugs targeting immunosuppressive checkpoints. It is currently thought
that immunotherapeutic strategies most likely to succeed will entail a combination of active
vaccination and immune checkpoint inhibition [109]. In this review, the authors highlight
advances in immune treatment strategies for GBM during the past 5 years and present some
of the ongoing challenges and future perspectives in the field. The authors apologize to all
scientists whose work they were unable to mention due to limitations in space. New insights
will soon be brought about by the results of open clinical trials testing immunotherapy
regimens for GBM (Table 2).

Targeting immunosuppressive checkpoints

Immune checkpoints are negative-regulatory signaling mechanisms responsible for
maintaining self-tolerance and preventing autoimmune reactions, which attenuate the
strength and duration of normal T-cell-mediated immune responses. It has become apparent
that diverse cancers, including GBM, co-opt the physiological function of immune
checkpoints to greatly diminish T-cell-mediated antitumor immunity [11,36,110-111].
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Two major checkpoints have been identified as immune escape mechanisms in both rodent
and human cancers: CTLA-4/CD152 and PD-1/CD279 [110], Both attenuate T-cell
activation and promote T-cell anergy, however, they differ in their spatial and temporal
activity. CTLA-4 is a powerful inhibitory T-cell receptor which preferentially binds to B7.1/
CDB80 and B7.2/CD86, ligands expressed on the surface of APCs, precluding their binding
to the T-cell costimulatory receptor CD28 and thus inhibiting T-cell proliferation and
cytokine production [112]. The CTLA-4 immune checkpoint occurs early in the immune
response, during the priming phase and acts primarily within secondary lymphoid organs.
Conversely, PD-1 signaling takes place directly within the tumor microenvironment, during
the effector phase, by interacting with one of two currently identified PD-1 ligands: PD-
L1/B7-H1/CD274 [113] or PD-L2/B7-DC/CD273 [112] expressed on the surface of cancer
cells. Engagement of PD-1 ligands with the PD-1 T-cell receptor also leads to T-cell
inhibition by blocking cell proliferation and inhibiting cytokine production [113,114].
CTLA-4 and PD-1 are both commensurately upregulated at the T-cell surface in response to
proinflammatory cues. A diagrammatic summary of the CTLA-4 and PD-1 immune
checkpoints is shown in Figure 2.

Cytotoxic T-lymphocyte-associated protein 4

A few human monoclonal antibodies targeting CTLA-4 (e.g., ipilimumab and
tremelimumab) have been evaluated for safety and efficacy in human cancer patients:
ipilimumab has been shown to improve OS in patients with metastatic melanoma in a Phase
I11 clinical trial [107]; however, another Phase Il trial using tremelimumab failed to show
significant survival advantage [115]. Several Phase | and Il studies of solid tumors using
these antibodies show promise of improved PFS [116] but can also elicit severe immune
adverse effects [117].

Preclinical investigations using anti-CTLA-4 antibodies against primary brain cancers have
demonstrated significant increases in animal survival. For example, Fecci et al. have shown
that administration of anti-CTLA-4 antibodies results in long-term survival in 80% of
immunocompetent mice bearing syngeneic SMA-560 intracranial tumors [111]. The
treatment normalized systemic CD4* T-cell counts and decreased the number of Tregs
(CD4*/CD25*/Foxp3*GITR™) [111]. Intratumoral administration of IL-12 in combination
with Anti-CTLA-4 antibodies leads to the eradication of intracranial GL261 gliomas,
increasing the number of CD8™ effector cells and reducing Foxp3* Tregs within the tumor
microenvironment [118]. Also, vaccination with GM- CSF-expressing glioma cells, when
combined with anti-CTLA-4 antibodies, has been shown to be more effective against
established murine GL261 intracranial tumors than either treatment alone [119].

Programmed cell death protein 1

Promising results in the treatment of metastatic melanoma and other solid tumors have been
demonstrated in many trials using the anti-PD-1 human antibodies: nivolumab and
pembrolizumab [108,120,121]. Preclinical glioma studies using anti-PD-1 antibodies have
also shown effectiveness. The combination of anti-PD-1 antibodies and radiotherapy has
been shown to double median survival and elicit long-term survival in 15-40% of mice
bearing GL261 gliomas compared with either treatment alone [122]. The authors show that
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the tumor microenvironment was infiltrated by CD8*/IFN-»*/TNF-a* CTLs along with
reductions in tumor-infiltrating CD4*/Foxp3* Tregs, thus suggesting that the mechanisms
targeted by immune checkpoint blocking antibodies in animal studies are similar to those in
human clinical trials. Recently, an investigation by Wainwright et al. has demonstrated that
combinatorial targeting of immune checkpoints in the murine GL261 glioma model is more
effective than single agent treatment, a strategy which could carry high potential value for
future clinical trials for GBM [123]. The establishment of long-term antitumor
immunological memory in many of these preclinical studies as demonstrated by the failure
of tumors to grow in response to tumor rechallenge suggests a potential added benefit of
immune checkpoint blockade in the prevention of tumor recurrence.

A few clinical trials have recently started to test the safety and efficacy of immune
checkpoint blockade in GBM patients. A randomized Phase I11 study is aimed to test
nivolumab versus bevacizumab in adult patients with recurrent GBM (CheckMate 143,
ClinicalTrials Identifier: NCT02017717). One of the arms of this trial will test the
combination therapy of nivolimab and ipilimumab. Three Phase I/11 studies will analyze
pembrolizumab with or without bevacizumab (NCT02337491) or pembrolizumab in
combination with MRI-guided laser ablation (NCT02311582) in patients with recurrent
GBM and will test the effect of anti-PD-1 antibody, pidilizumab against diffuse intrinsic
pontine glioma and recurrent GBM (NCT01952769). MEDI4736, a human anti-PD-LI
antibody, is currently being tested in combination with radiotherapy and bevacizumab in the
treatment of GBM (NCT02336165). A kinase inhibitor for TGF/RI (galunisertib) will be
evaluated in combination with nivolumab in several advanced solid tumors, including GBM
in a Phase 1b/1l safety study (NCT02423343).

Enthusiasm over the use of immune checkpoint blockade as a powerful immunotherapeutic
strategy in the fight against cancer has been undermined by a relatively high frequency of
immune-related adverse effects in the form of gastrointestinal, dermatological, hepatic and
endocrinological toxicities [124] which, in extreme cases, have led to treatment-related
death [125,126]. It is thought that immune-related adverse effects associated with immune
checkpoint blockade are due to aberrant infiltration of activated CD4*and CD8* T- cells into
normal tissues together with elevated levels of proinflammatory cytokines [127]. One study
found grade 3-4 toxicities in 41 of 296 patients, with three treatment-related deaths
attributed to pneumonitis in response to treatment to the PD-1 inhibitor nivolumab [121].
Newer agents targeting cognate PD-1 ligands (PD-ILs) have now been tested in NSCLC,
renal cell cancer and melanoma (NCT00729664) and show durable tumor regression with
less grade 3 or 4 adverse events compared with anti-CTLA-4 and anti-PD-1 blockade [128].

Immune stimulatory gene therapy

Clinical trials targeting gliomas with gene therapy started in the early 1990s [93] and have
employed a variety of vehicles to deliver genes, such as viral vectors, synthetic nanoparticles
and liposomes, neural and mesenchymal or embryonic stem cells [87,88,92,93,129] These
gene therapeutic approaches have aimed to introduce suicide genes or oncolytic viruses into
the tumor cells and/or to induce the expression of immunomodulatory cytokines to aid the
antitumor immune response. More recently, genetic techniques have been used to generate
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lymphocytes expressing CARs [33,34,130-132], with great selectivity and cytotoxicity
against tumor cells. While viral-mediated suicide gene therapy and oncolytic viral therapy
are not generally considered “classical” immunotherapeutic approaches, accumulating data
demonstrated that, in some cases, viral/gene therapy-mediated tumor cell death qualifies as
immunogenic cell death initiating ER stress, expression of calreticulin on the cell surface,
release of damage-associated molecular patterns like HMGB1 [133,134] and ATP and of
pathogen-associated molecular patterns from the viral vector/oncolytic virus, leading to
enhanced antigen presentation and antitumor immune response [135,136].

Suicide gene therapy involves the introduction of viral genes into the tumor cells, most
commonly thymidine kinase (TK), resulting in the conversion of a systemically
administered prodrug: gancyclovir (GCV) into a toxic metabolite within tumor cells and
leading to tumor cell death [93,137]. In addition, vectors for gene therapy can be modified to
express immu-nostimulatory molecules, which will aid in the fight against GBM. A number
of studies using replication-deficient viruses have been conducted for GBM [92,138],
including a bicistronic system that carries IL-2 and TK [90] and FIt3L and TK [139].

Oncolytic viral therapy utilizes replication-competent viral vectors, able to selectively
replicate in tumor cells, induce tumor cell lysis and spread of viruses to adjacent cells
[87,93,140]. Additionally, the nonlytic viruses can express therapeutic genes in target cells.
Oncolytic herpes simplex virus (HSV), measles virus, poliovirus, Newcastle disease virus
and conditionally replicating adenovirus are all being tested at various stages in GBM
therapy [88]. G207 is a conditionally replicating mutant HSV that has an impaired RR
enzyme allowing it to replicate only in dividing cells. Since HSV is a human pathogen with
neurotropic properties, this genetic manipulation provides tumor selectivity with safety.
Phase | and Ib clinical studies using G207 showed no treatment-related toxicity with
repeated doses and direct injection into the resected cavity [141,142]. Promising therapeutic
responses were also identified in 8 out of 21 patients in the Phase I study and 3 out of 6
patients in the Phase Ib trial. Another genetically modified mutant HSV, HSV1716 was also
tested in a Phase | study, demonstrating no toxicity [91]. In a subsequent Phase Ib study, no
treatment-related toxicity was observed and evidence of viral replication was seen in tumor
biopsies by histological examination. Second-generation oncolytic HSV vectors are also in
preclinical development. Such vectors have been engineered to express therapeutic
transgenes such as TNF-a, VEGF and I1L-4 [93]. The two commonly tested conditionally
replicating Ads in glioma are ONYX-015 and Ad5Delta24 [137]. ONYX-015 has a deletion
in the early region EIB-55kD protein that normally binds to inactivated p53 in the infected
cells preventing them from undergoing apoptosis. Absence of this protein allows the virus to
only replicate in p53-deficient tumor cells. Phase | studies with ONYX-015 in patients with
recurrent glioma that were injected with various doses of ONYX-015 in the resection cavity
showed neither treatment-related toxicity nor clinical benefit [143,144]. The Ad5Delta24
can selectively replicate in glioma cells because of a deletion in the viral protein E1A and
preclinical studies have shown therapeutic efficacy against glioma xenografts [145.
However, cancer cells with intact Rb protein are refractory to Ad5Delta24. Ad5Delta24 was
further modified (Ad5Delta24-RGD) to increase its targeting to tumor cells and is currently
under a Phase | study. Genetically modified variants of measles virus such as MV-Edm, that
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have a high affinity for cellular CD46 receptors abundantly expressed on tumor cells, have
also been tested in preclinical settings with favorable therapeutic success [146,147]. MV-
Edm-CEA is also in a Phase | study. Specific targeting to tumor cells has also been achieved
by the creation of variants expressing glioma-specific ligands such as IL-13 against
IL-13Ra2 [148] and glycoproteins gD and gB to mediate HSV infection exclusively through
recognition of EGFR on glioblastoma cells [149].

Immune stimulatory gene therapy serves to generate a robust immune response against
glioma-specific antigens. Cytokine-mediated gene therapies also aim to achieve higher local
concentrations of cytokines/che-mokines and reduce systemic toxicity. Cytokine gene
therapy with IFN-# has shown efficacy in preclinical studies with human xenografts and in
mouse models of glioma, demonstrating augmentation of T-helper cell response, DC
activity, NK cells and prolonged survival [150-152]. IFN-galso induces MHC | expression
and therefore enhances the CTL response. A Phase I clinical trial with liposome-mediated
IFN-/£ gene injection into the resection cavity demonstrated minimal toxicity with more than
50% tumor reduction (Tl-weighted MRI) in two out of five patients for at least 16 months
[153]. Another dose escalation study with Ad-IFN-£in 11 patients with GBM also showed
therapeutic efficacy with no adverse effects except in one patient [154].

IFN-y-mediated gene therapy has not shown efficacy when administered alone [137];
however, in combination with TNF-g, it enhanced the survival of glioma bearing animals
along with an increase in T-cell recruitment to the tumor [155]. In other studies, IL-2 or
IL-12 gene therapy resulted in growth inhibition of a rat glioma [156]. A combination of
IL-2 with TK (GCV) in 12 patients with recurrent glioma using RV (retrovirus)-mediated
gene therapy showed 12-month PFS and OS rates of 14 and 25%, respectively, with minor
side effects [86]. Clinical trials using IL-4/TK gene-modified autologous glioma cells or
fibroblasts and a replicative oncolytic HSV carrying IL-12 gene therapy are underway [89].

FIt3L was initially characterized as the cytokine that resulted in enhanced myelopoiesis and
B lymphopoiesis and subsequently it was shown to have a potent effect on the generation of
both myeloid- and lymphoid-derived DC populations in mice [157]. Our group has
pioneered the development and efficacy testing of Ad-mediated delivery of recombinant
human FIt3L (Ad-FIt3L) in preclinical models of glioma [158]. Administration of Ad-FIt3L
significantly inhibited tumor growth and increased survival in a dose-dependent manner. We
have also developed a conditionally cytotoxic-immune stimulatory gene therapy that
delivers TK and FLT3L using Ads [159,160]. Tumor cells are selectively killed by the
TK/GCV administration. FIt3L serves to increase the recruitment of APCs to the tumor
microenvironment which take up antigens released by the dying tumor cells and
subsequently induce tumor-specific T-cell responses. Dying tumor cells also produce
HMGB1, which activates TLR2 on APCs. Our experiments showed that release of HMGB1
and activation of TLR2 were crucial for the TK-FIt3L-induced antiglioma response [133].
This gene therapy approach has demonstrated tumor regression, long-term survival and
immunological memory in several transplantable, orthotropic syngeneic models of GBM in
mice and rats [159-162]. Based on the excellent success seen in preclinical testing with the
TK-FIt3L gene therapy, a Phase | clinical trial was launched in 2013, using this cytotoxic
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immune stimulatory approach (NCT01611992). A diagram of this therapeutic mechanism is
presented in Figure 3.

Active immunotherapy

DC vaccines

DCs, the most effective APCs, can prime both CD4* T helper and CD8* cytotoxic cells
[163,164] and also function as strong activators of NK and NKT cells [165,166]. To
stimulate T cells and generate a specific and efficient antitumor immune response and
induce immunological memory, DCs need to deliver three signals: signal (Figure 3A),
represented by the by cross-presentation of antigenic peptides via MHC molecules; signal
(Figure 3B), by the interaction of costimulatory molecules, CD80 and CD86 with the CD28
receptor located on T cells [167,168] and signal (Figure 3C) by immunostimulatory
cytokines such as IL-12 and IL-2 secreted by DCs and activated CD4* T cells [169].

Preclinical studies

Since 1999, numerous preclinical studies (summarized in Table 1 [37-76]) have analyzed
the efficiency of DC vaccines in the treatment of glioma using rodent syngeneic models. The
first step in any vaccination protocol is represented by the generation of sufficient number of
DCs, typically from bone marrow cells, induced to differentiate with specific cytokines like
GM-CSF and/or FIt3L, pulsed with GAAs (tumor lysate or tumor-specific peptide/mRNA
epitopes) and injected (most often intradermally or subcutaneously) into animals either prior
to or after tumor inoculation (Figure 4). Oftentimes, adjuvants like CpG oligonucleotides or
lipopolysaccharide are coinjected in order to increase the expression of maturation markers:
CDB80 and CD86 on DCs. Preclinical studies have aimed to optimize several factors shown
to be critical in the efficacy of DC vaccination: DC differentiation, antigen loading,
administration route and adjuvant treatment.

DC differentiation

Bone marrow-derived mononuclear cells can be induced to differentiate into DCs through
the actions of two main cytokines, GM-CSF (used in combination with IL-4) and FIt3L
(used with IL-6) [170]. It has been shown that alpha-type 1-polarized DCs induce larger
numbers of antitumor CTLs, secrete increased amounts of 1L-12 and are resistant to
immunosuppression by Tregs [171]. DCs induced by FIt3L + IL-4 are of the « type, whereas
DCs generated with GMCSF are not, but can be converted into a1-DCs with
lipopolysaccharide, IFN-y, IFN-« IL-4 and poly- ICLC [172].

DC loading with tumor antigens

Most commonly, whole tumor lysates have been used to load DCs with GAAs. These
lysates can be generated with methods which induce necrosis or apoptosis: acid elution,
freeze-thawing, irradiation, temozolo-mide or thymidine-kinase + GCV treatment [71,173].
Alternatively, tumor RNA and tumor-specific pep-tidessmRNA including ephrin (Eph)-Al,
EphA2, IL-13ra2, survivin, gplOO and TRP-2 have been used to pulse DCs, or DCs have
been directly fused to tumor cells [45,46,68,76]. Using multiple epitopes to pulse DCs
decreases the risk of developing immune tolerance through immunoediting. Genetically
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engineering DCs to express common glioma antigens permit multiple epitope presentation
of GAAs, irrespective of the patient's human leukocyte antigen (HLA) type.

DC vaccination route

The route of DC administration represents a critical aspect of vaccination strategies. It has
been shown that increased proximity to the tumor site negatively impacts the efficacy of DC
vaccinations due to increased immunosuppression [174]. In addition, intratumoral
administration of immunostimulatory cytokines like 1L-12, IFN-yand FIt3L enhances the
efficacy of subcutaneous DC administration [45,59,71,175], suggesting that a combinatorial
approach, intratumoral, for cytokines and systemic, at the distance from the tumor, for DCs,
may represent an optimal strategy for vaccination.

Adjuvant treatment

In animal models, several proinflammatory cytokines have been used to improve the
therapeutic efficacy of DC vaccination, including IL-12, IFN-q, IL-4, IFN-S, CXCL10 and
FIt3L (Table 1). It was thought that chemotherapy negatively impacts immunotherapy for
glioma; however, it has been shown that temozolomide does not inhibit but rather enhances
the effect of DC vaccination [52] and that it does not impair the efficiency of
immunomodulatory gene therapy with Ad-TK+GCV and Ad-FIt3L [134]. Activation by
costimulatory molecules is critical to avoid T-cell anergy [176]. OX40 receptor (CD134) is a
costimulatory molecule that is expressed on activated CD4* and transiently expressed on
activated CD8™ T cells. Stimulatory anti-OX40 receptor antibodies have been shown to
enhance the therapeutic efficacy of DC vaccination in a mouse glioma model [53].

Clinical studies

In clinical trials, DCs are induced to differentiate from peripheral blood mononuclear cells
using most commonly GM-CSF and IL-4. DCs are then loaded with specific antigens,
transfected with tumor RNA or fused with tumor cells and induced to mature using
combinations of cytokines like: IL-6, TNF-a, PGE2 and IL-150r TNF-a, IL-15, IFN-q,
IFN-yand poly[l:C] [95]. Mature DCs can be administered directly to the patient or frozen
down for future use. Oftentimes, the number of cells produced is limited and it is critical to
harvest the peripheral blood mononuclear cell prior to beginning of any treatment, to avoid
collecting blood when the patients become lymphopenic.

The most advanced current clinical trial with DC vaccines for glioblastomas
(NCT00045968) using an autologous DC vaccine (DCVax-L), prepared by pulsing DCs
with proteins from the patient's own tumor, has reached Phase Il1. In earlier phases of the
trial, it has been shown that the vaccine is safe and elicits systemic antitumor CTL response,
yet, clinical benefit was very limited. This was attributed to actively progressing tumors and
high expression of TGF/2 in the tumor [96,97]. A study using autologous DC vaccines in
combination with TLR agonists as adjuvants: Imiqui-mod or poly-ICLC has shown that
patients who had tumors with a mesenchymal, but not proneural gene expression pattern
responded to treatment as demonstrated by increased OS compared with controls with the
same genetic signature [82].
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Another study of autologous DC vaccine pulsed with six GAA peptides (HER2, TRP-2,
gplO0, MAGE-1, IL13Ra2 and AIM-2) resulted in response to treatment of 33% of the 21
patients enrolled. PFS and OS correlated with the quantitative expression of MAGE1 and
AIM2 from resected tumors [81]. The tumors of all patients expressed at least three antigens
and 75% expressed all six antigens. The median PFS in newly diagnosed patients was 15.9
months and the median OS was 38.4 months. Furthermore, production of IFN-yand TNF-a
in stimulated CD8* T cells was increased and correlated with survival. Expression of CD133
has been shown to increase in recurrent GBM, indicative of resistance to treatment and
worse clinical outcome [177,178]. Following the GAA vaccine, there was a decrease in
CD133 expression in patients with recurrent GBM, suggesting that the vaccine therapy
resulted in a cytotoxic attack on glioma stem cells.

The treatment of 22 patients with recurrent GBM with a-type I-polarized DCs (aDCI)
pulsed with the GAA peptides: EphA2, IL13Ra2, YKL-40 and gplOO combined with
administration of poly-ICLC showed the induction of a positive immune response at least
against one of the peptides in 58% of patients, an increase in type 1 cytokines (IFN-a1 and
CXCL10) and that production of IL-12 correlated with time to progression [179].

When comparing two Phase | clinical trials with DC vaccines pulsed either with autologous
tumor lysate (NCT00068510) or with the GAA: TRP-2, gplOO, HER-2/neu and survivin
(NCT00612001), there were no significant differences between the trials with respect to
frequency of helper, CTLs, B cells or NK cells; however, the GAA trial had a relative
increase in activated NK cells (CD3"CD4*CD16™ CD25%) as well as an increased ratio of
Tregs when compared with the tumor lysate-pulsed DC vaccine group [94]. This was
associated with decreased survival in the GAA trial. Decreased Treg populations
postvaccination correlated with increased survival in both groups, recommending the use of
monitoring Treg populations in clinical trials of immunotherapy for GBM.

A randomized Phase I clinical trial using SOC with added antiangiogenic therapy with
bevacizumab and DC vaccine (AVOH3), generated by priming DCs with autologous tumor
antigens, showed an increase in median OS (535 days +/- 155) in the combined
bevacizumab and vaccine group compared with the vaccine group (438 days +/- 205) or
bevacizumab alone group (406 days +/- 224) [78], suggesting a possible mechanism of
decreased immunosuppression induced by the anti-VEGF antibodies.

Targeting GSCs with active immunotherapy represents an attractive therapeutic strategy
considering that GSCs are resistant to the conventional approaches of radiotherapy and
chemotherapy. Many studies have focused on identifying cellular markers of GSC, notably
CD133, but also EGFRVIII, HER2, IL13Ra2 and LI-CAM, yet these markers are also found
on neural stem cells and other nontumor cells [180]. A recently completed Phase I/11 trial
(NCT00846456) using DCs transfected with autologous GSC mRNA (extracted from
glioma neurospheres), demonstrated induction of T-lymphocyte proliferation in response to
tumor lysate, hTERT or survivin peptides. The vaccinated patients had significantly longer
median PFS than the matched controls (694 days compared with 236 days) and also a longer
median OS (759 days) than the controls [85]. This study is encouraging and highlights the
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benefit of identifying GSCs by their sphere-forming ability rather than by particular surface
markers.

Amplifications of the EGFR gene with gain of function represent the most common (40%)
genetic alteration in GBM [181]. A mutant form of the EGFR gene, EGFRvIII, found in
-20-30% of GBM patients, expresses a truncated, constitutively active form of the receptor
which results in increased proliferation and survival advantage of GBM tumor cells [182].
Another transforming mutation is EGFRvIV, with a deletion in the C-terminal domain.
These mutations are very specific to glioma cells and hence an attractive target for therapy.
Numerous preclinical studies demonstrated the efficiency of targeting the EGFRvIII or wild-
type EGFR with peptide vaccines [183] or targeted antibodies [184] and led to development
of a clinical trial with autologous DC vaccines pulsed with the EGFRvIII keyhole limpet
hemocyanin (KLH)-conjugated specific peptide (PEPvIII-KLH/CDX-110), which showed
safety and efficacy in eliciting an antitumor immune response and improved survival in
GBM patients who express the respective variant [185].

Peptide vaccines

Peptide vaccines offer advantages compared with DC vaccines, as they do not require
generation of activated and mature autologous DCs, a process that may not be feasible in all
patients. It is important that the peptides are tumor-specific and that immune stimulatory
strategies (immune adjuvants, cytokines: 1L-2, GM-CSF) are coopted to ensure the proper
priming and maturation of the endogenous APCs.

Following promising results with the DC vaccine pulsed with the EGFRVIII peptide, a
subsequent Phase 1l multicenter study (ACTIVATE, ACTII) applied the PEPvIII-KLH/
CDX-100 vaccine (Rindo-pepimut/CDX-110) concurrent with temozolomide, without the
accompanying DCs, in patients with newly diagnosed EGFRvIII-positive GBM [186]. This
study showed that 6 out of 14 patients analyzed developed EGFRvIII-specific antibody
responses which correlated positively with OS, the median OS (26.0 months) being higher
than in the matched historical control group (15 months) and that at recurrence 82% of
patients lost EGFRvIII expression, demonstrating treatment-induced tumor immunoediting
and immune escape [185,186]. A subsequent Phase Il multicenter single-arm trial (ACTIII),
aimed to confirm previous results using the same therapeutic approach, showed a median
OS of 21.8 months, specific anti-EGFRvIII antibody titers in 85% of patients and decrease
in EGFRVIII immunoreactivity in 4/6 (67%) tumor samples [84]. A current Phase 111
multicenter clinical trial (ACTIV, NCT01480479) is testing the efficacy of (CDX-110,
Rintega, CellDex therapeutics), GM-CSF, temozolo-mide and KLH for the treatment of
adult patients with EGFRvIII-positive glioblastomas. Another Phase 11 study is looking at
the effects of combining rindopep-imut, GM-CSF and bevacizumab for the treatment of
relapsed EGFRvIII-positive glioma (NCT01498328).

Given the risk of immunoediting following single-peptide vaccinations, many investigators
are aiming to produce effective combinations of GBM-specific peptides to induce robust
antitumor immune responses and prevent the induction of immune tolerance. A pilot study
of 26 pediatric brain stem and high-grade gliomas used a combination of three GAA
peptides: EphA2, IL-13Ra2 and survivin, together with a pan HLA-DR tetanus toxoid

Immunotherapy. Author manuscript; available in PMC 2015 December 16.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Calinescu et al.

Page 12

peptide and the TLR3 agonist poly[l:C] administered intradermally in HLA-A2-positive
children. This study showed that the vaccines were well tolerated, induced specific anti-
GAA immune responses (by ELISPOT) and favorable clinical responses [102]. Some
patients presented initial pseudoprogression, as evidenced by worsening symptoms and
transient increased edema, evidenced on MRI scans, due to tumor infiltration with immune
cells following the vaccine. However, patients showing pseudoprogression survived longer,
suggesting that this may be a favorable prognostic marker for treatment efficacy.

In adult patients with high-risk low-grade glioma (LGG), a study using vaccinations with
eight courses of intramuscular administration of the GAAs: IL13Ra2, EphA2, WTI and
Survivin emulsified with the adjuvant Montanide-1SA-51 demonstrated robust IFNy
ELISPOT responses against at least 3 out of 4 peptides in 14 out of 22 patients and median
PFS of 17 months in newly diagnosed patients and 12 months in recurrent LGG. Results are
encouraging and warrant further studies using this approach in patients with LGG (WHO
grade I1), in which the slower course of disease progression allows for repeated vaccinations
with improved outcome [101].

Numerous other glioma-specific peptides have been identified (reviewed in [187]) and there
is great potential in finding combinations of peptides which may be used to generate an ‘off-
the-shelf” vaccine that will be effective in a broad range of glioma patients. Ongoing clinical
trials are testing a proprietary combination of 11 HLA-A2-restricted tumor-associated
peptides IMA950 alone (NCT020278648) or in combination with GM-CSF (NCT01222221)
or poly-ICLC (NCT01920191).

In Europe, the Glioma Actively Personalized Vaccine Consortium aims to rapidly
personalize peptide vaccines, within a few months after the initial surgery, using next-
generation sequencing, mass spectrometry and computational medicine algorithms. A
current Phase I clinical trial in newly diagnosed GBM patients (NCT02149225) will test the
safety profile of patient-tailored APVAC vaccines when administered with
immunomodulators concurrent with temozolomide. The frequency of antigen-specific CD8*
T cells will be monitored, as well as immune cell populations in the blood and tumor
together with a panel of serum cytokines/proteins to identify biomarkers of immune
response to the vaccine.

Tumor cell vaccines

Results from a recent Phase 1/11 prospective clinical trial using temozolomide, fractionated
radiotherapy and autologous, formalin-fixed tumor cell vaccine in 24 patients with newly
diagnosed GBM show promising results with treated patients, exhibiting a median PFS of
8.2 months and OS of 22.2 months [79] Interestingly, the median PFS in patients with a
delayed-type hypersensitivity response at the third vaccination of greater than 10 mm was
significantly higher (OS = 29.5 months) compared with patients with smaller delayed-type
hypersensitivity, in congruence with the emerging concept that atopic reactions represent a
favorable prognostic sign for immunotherapy against GBM.

The heat shock protein chaperone gp96 plays a crucial role in folding, assembly and export
of TLRs and in binding to the CD91 receptor on APCs [188,189]. Activation of DCs, with
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tumor-associated peptides and proteins, is greatly enhanced when coupled to heat-shock
protein-peptide gp96. A recent Phase 11 clinical trial of adult recurrent GBM in which
vaccines were made by isolating tumor gp96 complexes from autolo-gous-resected tumors
(HSPPC-96) demonstrated their safety and encouraged further studies of efficacy [77]. The
median OS was 42.6 weeks, the 6 months survival: 90.2%, and 12 month survival of 29.3%,
with poorer outcome among patients with lymphopenia. In the previous Phase I trial, with
the same vaccine, significant peripheral immune responses were demonstrated in 11 out of
12 patients treated and also significant infiltration of tumor tissue with CD3* CD8* and
CD56™ IFN-y~positive cells. The median survival of responders was 47 weeks, longer than
the 16 weeks of the single nonresponder [98]. A follow-up randomized Phase Il open
clinical trial (NCT01814813) will compare the efficacy of the HSPPC-96 autologous
vaccine with or without bevacizumab therapy in recurrent, resectable GBMs.

Passive immunotherapy

Antibodies

Antibodies against EGFR (nimotuzumab) in combination with radiation and chemotherapy
(vinorelbin) have been used in a study of pediatric diffuse intrinsic pontine gliomas, which
presents with overexpression and amplification ERBB1/EGFR [105]. Results recently
published from this trial show that this treatment increased median OS (15 months) when
compared with a study of nimotuzumab and radiation alone (OS = 9.4). To overcome the
immunosuppressive effect of tumor-induced Tregs, a randomized, placebo-controlled pilot
study combined a selective antibody for the high-affinity IL-2R« (daclizumab) with a
vaccine (ZAP IT) targeting EGFRvIII, in temozolomide-treated GBM patients [106]. The
study shows that one administration of daclizumab reduced the number of Tregs, without
markedly affecting the number or activation of CD4* or CD8* T cells and favorably
influenced the production of antibodies against EGFRvIII.

Autologous T-cell transfer & CAR-modified lymphocytes

Adoptive T-cell therapy was first used in the treatment of melanoma patients [32].
Treatment efficacy is, however, limited by the immunosuppressive tumor environment and
the fact that not all patients have resectable tumors to be used in the production of tumor-
specific lymphocytes [190]. A Phase I clinical trial in patients with recurrent GBM- and
cytomegalovirus-positive serology, autologous T-cells transfer with cytomegalo-virus-
specific peptides-stimulated T cells, four out of ten patients who completed a minimum of
three T-cell infusions showed PFS during the extent of the study. The median survival was
403 days and the median PFS was 246 days. The clinical outcome was, however, not
correlated with antigen-specific T-cell number or functional phenotype [103], as indicated
by expression of CD103, characteristic of recent thymic emigrant status of vaccine-induced
CD8* T cells [191].

Genetically altering lymphocytes to express CARs provides a feasible and useful method of
passive immunotherapy against tumors. CARs consist of the antigen-binding region of a
monoclonal antibody fused with the signal transduction domain of CD3¢; or FCeR y (gamma
subunit of the Fc region of the immunoglobulin E receptor 1) [192]. They permit
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independence from MHC | expression on tumors and increased penetration and persistence
into the tumor microenvironment when compared with monoclonal antibodies.

CARs have been tested in clinical trials for neuroblastoma, renal cell carcinoma and B-cell
malignancies [193-195]. While therapies did show therapeutic efficacy, serious adverse
effects were also observed in some cases, possibly because of the expression of the targeted
antigen on normal tissues. It is therefore essential to select targets that are highly specific to
tumor cells. IL-13Ra2 is a cell surface receptor specific for glioma [196] and thus represents
a good target for immunotherapy. Preclinical data with I1L-13 zetakine CAR to target
1L-13R a2 showed elimination of human xenografts in mice [132]. The clinical trial testing
safety and feasibility of this therapeutic approach in patients with recurrent GBM has
recently been published [104], showing that the approach is feasible with minimal adverse
effects and that two out of three patients who received repeated intracranial infusion of
IL13-zetakine+CTLs developed transient anti-glioma responses, suggested by increased
regions of tumor necrosis visualized on MRI in one patient and decreased expression of
IL-13Ra2 in another.

HER2 is expressed by up to 80% of GBMs and absent from the normal brain [197], and
hence a good target for therapy. It has been shown that HER2-positive autologous GBM
cells can induce a specific T-cell response with increased production of IFN-yand IL-2 and
result in tumor regression in a xenograft GBM mouse model [130]. Furthermore, these T
cells can kill CD133 HER-2-positive glioma stem cells. A Phase | safety/efficacy clinical
trial using HER-2-spe-cific CARs will test this treatment in patients with glioblastoma
(NCT02442297).

Immune stimulatory adjuvants

Pathogen-associated molecular patterns bind to TLRs and have a high capacity to stimulate
cell-mediated immunity by increasing the production of immuno-stimulatory cytokines and
increasing expression of costimulatory molecules on APCs. Compounds most commonly
investigated as adjuvants for cancer vaccines are: polyriboinosinic—polyribocytidylic acid
(poly[l:C]) and its derivative poly-ICLC, (poly[l:C] stabilized with poly-L-lysine and
carboxymethylcel-lulose) (synthetic analogs of viral dSRNA polymers), TLR3 agonists
which have been shown to enhance antitumor response by activating NK and T cells
[198,199], CpG oligonucleotides (CpG ODN), strong activators of both the native and
adaptive immune system [200] and TLR7 agonists, like Imiquimod [201,202].

A prospective Phase Il clinical trial of pediatric glioma treated with poly-ICLC has proven
to be well tolerated by children with no observed dose-limiting toxicities, five out of ten
children showing long-term stable disease. The authors conclude that the results justify
biomarker studies for personalization of poly-ICLC as a single agent or adjuvant. Another
Phase Il study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide
in newly diagnosed GBM concluded that poly-ICLC may improve the efficacy of
radiotherapy and temozolamide treatment without added toxicity [203].

CpG ODNSs (TLR9 agonists) have shown promise in many preclinical studies and also in
Phase I clinical studies of glioma. A multicenter Phase 11 clinical study testing intratumoral
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administration of CpG-ODN for patients with recurrent GBM, showed little beneficial effect
in this use of single-agent CpG-ODN [200,204]. Several trials use CpG-ODNSs in
combination with other immunotherapeutic agents.

Another immunostimulatory adjuvant, tetanus toxoid, has recently been shown to improve
the efficacy of DC vaccination and to prolong the survival of glioblastoma patients, with
more than 50% surviving longer than 40 months. In mice, it was shown that tetanus toxoid-
enhanced DC migration and suppressed tumor growth in a CCL3-dependent manner [80].

Ongoing challenges

During the last 5 years, much progress has been made in refining immunotherapeutic
approaches for the treatment of GBM and it is likely that soon, immunotherapy will be
included in the SOC for GBM, next to maximal possible surgical resection, radiation and
chemotherapy. It has become clear, however, that many details of immunotherapeutic
protocols still need to be carefully assessed. With current approaches, the OS is still very
short. A unique challenge of tumors localized in the brain is brought about by the minimal
tolerance to inflammation, difficult to avoid when attempting immunostimulatory treatment
strategies; hence, a delicate balance needs to be met between enhancing immune-mediated
tumor killing and limiting brain inflammation. A great need exists to identify biomarkers
with prognostic value and of clinical efficacy to guide the therapeutic intervention. Clinical
trials do not have a standardized protocol to analyze the antitumor immune response and this
makes it difficult to interpret the results and to compare one trial to the next. Given the
tremendous heterogeneity of clinical presentations, the intrinsic heterogeneity of each
individual tumor, as well as the immunoediting following various therapeutic interventions,
it is apparent that a single ‘magic bullet’, a ‘one-size-fits-all” approach will not be
forthcoming. Personalized medicine with ongoing monitoring of tumor progression and
immunological end points using a dynamically tailored therapeutic approach could bring
great promise to the management of GBM.

Conclusion and future perspective

Current open clinical trials of immunotherapy and GBM illustrate a predominance of studies
of DC vaccines in various combinatorial treatment strategies and an emerging popularity of
studies with antibodies targeting immunosuppressive checkpoints (ClinicalTrials.org, Table
2). Combinatorial approaches in preclinical trials of GBM show benefit when targeting
multiple immune checkpoints [123] or when adding cytokine therapy [118] and are likely to
result in better outcomes when translated to the clinic. Ongoing clinical trials are testing
many combination therapies. Antibodies against CTLA-4 and PD-1 are administered with
bevacizumab, and/or radiotherapy or kinase inhibitors (NCT02017717, NCT02337491,
NCT02336165, NCT02423343). Suicide gene therapy is combined with radiation therapy or
immune-stimulatory therapy (NCT01811992, NCT00634231). Oncolytic viral therapy is
used together with temozolomide or IFN-y (NCT01956734, NCT02197169). Peptide or DC
vaccines are tested with GMCSF, temozolomide, KLH or bevacizumab (NCT01920191,
NCT01480479, NCT01498328) and autologous T-cell transfer with DC vaccine or IL-2 and
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chemotherapy (NCT01326104, NCT01522820, NCT01454596). These trials will soon shed
light on the most promising avenues to pursue further.

Criteria for radiographic response assessment to immunotherapeutics have been recently
defined [205]; however, it has become clear that the neuro-oncology field would benefit
from guidelines tailored to the unique characteristics of brain tumors. The immunotherapy
Response Assessment in Neuro-Oncology (iRANO) criteria are currently being discussed
[206] and are meant to guide therapeutic decisions and prevent premature termination of
immunotherapeutic treatment due to pseudoprogression in patients responding to the
treatment. An open observational clinical trial (NCT01657734) is using advanced
multimodal imaging techniques: MRI spectroscopy, perfusion imaging and diffusion
imaging in patients with glioblastoma treated with DC therapy to characterize inflammatory
response, metabolism and tissue structures and will be instrumental in further shaping the
iRANO criteria.

Increased efforts are dedicated to establish reliable biomarkers to improve the assessment of
response to treatment and guide further therapeutic decisions. Advances in technology:
quantitative, high-sensitivity and resolution flow cytometry of rare populations, high-
throughput microscopy of tumor infiltrating lymphocytes in situ, whole transcriptome
profiling of tumor and immune genes, high-throughput sequencing of antigen-specific
receptors of whole lymphocyte populations (TCRseq and BCRseq) permit nowadays the
accumulation of large datasets, which allow for multidimensional profiling of tumors and
immunological parameters [207]. This will enable a more in depth analysis of response to
treatment and will likely improve therapeutic decisions and clinical outcome of GBM
toward the development of optimal personalized medicine.
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Executive summary

e Immunotherapy for glioblastoma multiforme (GBM) is increasingly viewed as
the fourth arm in the standard of care (SOC), as several clinical studies have
shown safety, increased progression-free survival (PFS) and the promise of
long-term efficacy through eliciting antitumor immunological memory.
Successful immunotherapy for glioma needs to address tumor-induced immune
suppression in addition to being mindful of the minimal tolerance for
inflammation in the brain.

Targeting immunosuppressive checkpoints

o CTLA-4: receptor expressed on T-lymphocytes, inhibits costimulatory
molecules on antigen-presenting cells, which results in T-cell anergy. Blocking
CTLA-4 with specific antibodies (ipilimumab, tremelimumab) increases the
survival of patients with metastatic melanoma and survival of animals in
preclinical glioma studies, increasing antitumor CD8 cytotoxicity and
decreasing accumulation of Tregs. Current clinical trials are testing these
antibodies in glioma patients.

e PD-1 ligands (PD-L1 and PD-L2) expressed by glioma cells bind to PD-1
receptors on T cells, blocking their proliferation and cytokine production. Anti-
PD-1 antibodies (nivolumab and pembrolizumab) have shown efficacy in the
treatment of metastatic melanoma and xenograft animal models of glioma. In
preclinical trials, decreased Treg infiltration, increased cytotoxic antitumor
immunity and establishment of immunologic memory have been demonstrated.
Clinical trials are underway to test these antibodies in glioma patients.

Immunostimulatory gene therapy

» Viral-mediated gene therapy induces immunogenic cell death of tumor cells
which enhances antigen presentation and antitumor immune responses.

»  Suicide gene therapy is the most common strategy for gene therapy in glioma.
Thymidine Kinase introduced into the tumor by viruses (or other vectors) will
convert an administered prodrug (ganciclovir), into a toxic analog, which
induces apoptosis of dividing tumor cells.

»  Oncolytic viral therapy induces tumor cell death through viruses genetically
modified to selectively replicate within tumor cells and can also express
therapeutic genes like TNFa, IL-4. Viruses most commonly used are oncolytic
HSV, RVs, measles virus (MV-Edm) and conditionally replicating adenovirus
(ONYX-015, Ad5Delta24).

+ Immunomodulatory gene therapy aims to create an immunostimulatory tumor
microenvironment within the brain. Clinical trials are testing combinations of
suicide gene therapy or oncolytic viral therapy with immunomodulating
cytokine gene therapy (IFNgS, TNFa, IFNy, IL-2, IL-12 and FIt3L).

Active immunotherapy
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Ongoing challenges
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Dendritic cell (DC) vaccines, generated from autologous peripheral blood
mononuclear cells expanded ex vivo and induced to differentiate into DCs,
pulsed with various tumor antigens and reintroduced into the patient, represent
the most common strategy for active immunotherapy and personalized
medicine. A Phase 111 multicenter randomized clinical trial with autologous DC
vaccines is currently underway (NCT00045968).

Peptide vaccines offer advantages over cell-based vaccine with added
convenience of an ‘off the shelf” product. Many glioma-specific peptides have
been identified and tested in combination or alone in many studies. The most
commonly tested are EGFRvIII, EphA2, IL13Ra2, survivin, WT2725, gp100,
YKL-40, MAGE-1 in various combinations and added immune stimulatory
strategies using cytokines (IL-2, GMCSF) and adjuvants to activate TLR
receptors (CpG, poly[l:C]). Limitations are restricted to the HLA type of the
patients, most commonly used are HLA-A2-restricted peptides. A Phase |
clinical trial for personalized peptide vaccines is conducted in Europe by the
Glioma Actively Personalized Vaccine Consortium consortium.

Tumor cell vaccines using autologous tumor lysates show increased efficacy
especially in patients undergoing delayed-type hypersensitivity reactions
following vaccination. Glioma peptides coupled to the heat shock protein
chaperon gp96 have an increased capacity to activate DCs and elicit-specific
peripheral immune responses. Clinical trials using this strategy have shown
increased PFS.

Antibodies.

Autologous T-cell transfer with T cells stimulated with cytomegalovirus
peptides in patients with CMV-positive serology has shown increased PFS in a
Phase | trial.

Chimeric antigen receptor-modified lymphocytes. This strategy allows the
generation of clonally expanded T cells modified to express receptors, which
will recognize tumor cells independent of their MHC | expression. This
approach is limited to very specific tumor antigens (like EGFRvIII and IL-
13Ra2), which are not expressed on normal cells, as to not induce severe
autoimmune adverse effects.

Immune stimulatory adjuvants. These compounds are very useful in
nonspecifically stimulating cell-mediated immunity through the activation of
TLRs. Compounds used are: poly:[l:C], poly-ICLC, CpG- ODNs, imiquimod,
tetanus toxoid.

The survival of patients treated with SOC and effective immunotherapy is still
very short.
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» Immunoediting and the intrinsic heterogeneity of GBMs allow tumor cells to
escape treatment.

»  Clinical trials using combinatorial approaches with SOC and antibodies to target
immunosuppressive checkpoints are underway and show promise.

»  Care needs to be taken when severe autoimmune adverse reactions develop;
however, in many cases delayed hypersensitivity reaction may represent a
positive prognostic factor.

» A great need exists to identify biomarkers able to guide therapeutic strategies
and monitor efficacy of immunotherapeutic approaches.

Future perspective

» Ongoing clinical trials are testing combinations of immunotherapeutic
approaches together with SOC and will soon shed light on the most promising
avenues to pursue further.

e The immunotherapy Response Assessment in Neuro-Oncology criteria are
currently being discussed and will improve the therapeutic decision making
process to prevent premature termination of immunotherapeutic treatment due to
pseudoprogression.

e Advances in technology allow for multidimensional profiling of tumors and
immunological parameters which will enable a global analysis of response to
treatment and will likely improve therapeutic decisions and clinical outcome of
GBM through the development of optimal personalized medicine.
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Clinical trials testing immunotherapy for glioma
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Figure 1. Timeline of clinical trials for glioma using immunotherapy
A search for ‘immunotherapy’ and ‘glioma’ in the ClinicalTrials.gov database (March 2015)

yields a list of 61 clinical trials: 14 with dendritic cell vaccines, 9 testing synthetic peptide
vaccines, 8 using autologous T-cell transfer, 6 gene therapy, 4 with tumor cell lysate vaccine
combined with T-cell transfer, 2 with autologous NK or NKT cell transfer, 2 with allogeneic
T-cell transfer, 4 targeting immunosuppressive checkpoints and 7 using other immune
treatment strategies. Limitations of the search engine may not allow a comprehensive listing;
nonetheless, the graph illustrates the extensive interest in antiglioma vaccines and an
emerging trend of testing immunosuppressive checkpoints.

NK: Natural killer; NKT: NK T cell.
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Figure 2. CTLA-4 and PD-L1 immune checkpoints in glioma immune escape
The CTLA-4 immune checkpoint (left panel) occurs during the priming phase of the

immune response, primarily within secondary lymphoid organs. The inhibitory CTLA-4 T-
cell receptor binds with higher affinity to the CD80/86 ligands on the surface of APCs and
prevents their binding to and signaling through the costimulatory receptor CD28. This leads
to decreased T-cell activation and proliferation in the context of antigen presenting MHC
class I. PD-1 signaling (right panel) occurs during the effector phase of the immune response
within the tumor microenvironment. The PD-1 receptor on the T-cell surface interacts with
one of two PD-1 ligands that are expressed on the surface of tumor cells: PD-L1 or PD-L2.
This interaction, in the context of tumor antigen presenting MHC class I, decreases the T-
cell tumor lytic capacity and induces T-cell anergy.

APC: Antigen-presenting cell.
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Figure 3. Gene therapy for glioma with Ad-TK and Ad-FIt3L
(A) Thymidine kinase and FIt3L-expressing adenoviruses are injected directly into the

tumor. (B) Following GCV administration, TK will convert GCV to GCV-triphosphate that
is incorporated into the DNA of actively proliferating cells, that is, tumor cells, causing them
to undergo apoptosis and release tumor antigens, including HMGBL. FIt3L entering
systemic circulation will induce the trafficking of DCs into the tumor and their exposure to
tumor antigens. (C) DCs exposed to tumor antigens process them into peptides presented on
MHC class I/I1 molecules and increase the expression of the costimulatory molecules
CD80/86 on their surface. (D) Activated DCs travel to the draining lymph nodes where they
present antigenic peptides in combination with the costimulatory signals to naive CD4* and
CD8™ T cells, inducing clonal expansion and maturation of glioma-specific T cells, secretion
of stimulatory cytokines, trafficking into the tumor and cytolytic killing of glioma cells.

DC: Dendritic cell; GCV: Gancyclovir.
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Figure 4. Dendritic cell vaccination for glioma therapy
Mononuclear cells extracted from bone marrow are cultured with GM-CSF and IL-4 or

FIt3L and IL-6 to induce their differentiation into DCs. Tumor cells are killed by irradiation
or other cytotoxic stimuli to generate tumor antigens. DCs are then pulsed with tumor
antigens by co-culturing DCs with whole tumor lysates, purified and injected
subcutaneously or intradermally as a vaccine together with costimulatory agents such as
CpG oligonucleotide (CpG-ODN). CpG-ODNs stimulate DCs thorough signaling via Toll-
like receptors. Injected DCs migrate to lymph nodes, where they encounter CD8* and CD4*
T-cells. MHC-antigen complexes are recognized by T-cell receptors and IL-12 secreted by
the DCs further activates CD8* T cells to become antigen-specific CTLs. CTLs migrate into
the tumor where they attack and lyse tumor cells. CTL: Cytotoxic T-lymphocyte; DC:
Dendritic cell; GCV: Gancyclovir; TK: Thymidine kinase.
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