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Local instabilities have been observed when a large DC voltage is applied to a dielectric
elastomer film, attached to a rigid and conducting substrate on one side and coated
with a compliant electrode on the other side. Threshold voltage and wavelength of these
local instabilities are analyzed in the following using the energy minimization method.

1 ENERGY MINIMIZATION

1.1 STRAIN ENERGY
Objective:

Find out the change of strain energy associated with a small perturbation on the
top surface.

Assumptions:

Linear elasticity

Plane strain

The specific shape of the perturbation on the surface: either no lateral
displacement on the top surface u(x,z = h) = 0 or no lateral stress on the top
surface oy, (x,z=h) =0

Procedure:

Assume a (x, z) = g(z) cos kx form for the Airy stress function and solve V*¢ = 0 to
get g(2) = Cie ™% + Cze ™% + C3e¥ + Cyze™?
Calculate the stresses oy, = 0%Y/0z* , 0,, = 0°/0x? , 0y = V(Oyx + 0z7) . Oxz =

—0%/0xdz, and strains €;; = %((1 +v)oij — vakkéij), and displacements u = [ e,,dx
and w= [ €,,dz.

Use the boundary conditions, described in terms of u, w, and g;j, to solve for the
constants C; in g(z).

Integrate over one wavelength to calculate the total strain energy AUgirain =

h r+m/k1
fO f—TL‘/k Eo-ijEijdx dz.

1.2 ELECTROSTATIC ENERGY
Objective:



Find out the change of total electrostatic energy associated with a small
perturbation on the top surface.

Assumptions:
The electric field is along the z direction.
Procedure:

e The total electrostatic energy includes the electrostatic energy stored in the
capacitor (the elastomer membrane can be viewed as a soft capacitor) and the
electrostatic energy of the external battery. The change of electrostatic energy
of the capacitor and battery comes from the change of the total charge Q due
to perturbation of the surface (voltage ¢ is constant):

1 ¢=const.
AUbattery = —pAQ, Ucapacitor = ¢Q - AUcapac1t0r =

1A
§¢Q

e The change of total charge is

+m/k +m/k +m/k +m/k ¢
Q= j pdx =f [D]dx =f €E,dx Ef e—dx
n/k -n/k -n/k -n/k z

+n/k dx
CaQ=ee A(LW m)

e The total change in electrostatic energy is the sum of these two

1 +m/k dx
2
AUelectric = AUcapacitor + AUbattery = —Ef(b A <f y Z(X))
-n/k

1

Equivalently this is AUgectric = _E(CZ — C,)¢? where C, and C; are the capacitance of the

dielectric elastomer membrane after and before perturbing the surface, respectively.

1.3 ENERGY MINIMIZATION

The total change in energy due to the infinitesimal perturbation w, cos kx is a function of
voltage ¢, permittivity e, Young's modulus Y, Poisson’s ratfio v, elastomer thickness h,
pattern wavelength 1 = 2n/k, and perturbation amplitude wy:

1 +m/k dx +n'/k
AUyotal = AUelectric T AUstrain = — §€¢2A (_[ y Z(X)> f f y 2 5 0ij€ij dxdz
/k /k

Taylor expansion of the total energy has the form of
AUroral = (@, €,Y,v, L, YW + 0(wg)

Which means that the change in energy at w, = 0 is zero as expected, the first derivative
%AUtota] is zero indicating wy = 0 is an equilibrium point, and the second derivative

2
#AUtotal can be either positive or negative, showing stable equiliorium or unstable
0



equilibrium, respectively. Therefore, in the following analysis we will use —— AUtotal =0as

the transition from stable equilibrium to instability.

2 RESULTS

2.1 INCOMPRESSIBLE MATERIAL (v = 0.5)

Assuming an incompressible material, i.e. v = 0.5, the homogeneous strains are all zero in
the base state, i.e. the state prior to instability threshold. The strain energy due to a
perturbation on the top surface w(x,y, h) = wycoskx and u(x,y,h) =0 (and v(x,y,z) =0,
i.e. plane strain case) is

n(e*"* + 4nk ek — 1)

AUstrain = 3(e*hk — 2(2h%k? + 1)ehk + 1)

Where Y is the Young's modulus of the elastomer. The total change in electrostatic
energy is

1 ) +m/k dx 1 X +m/k dx +1/k dx
AU = ——ep3A —|=== - )=
electric 2€% (f_n/k Z(x)> 2 €% (f_n/k h + wq cos kx ,f_n/k h)
1 2m 2m\ m 1 1
-2 €¢ ky/hZ — w2 kh)  k €¢ h? — w2 h
Therefore, the total energy, the first derivative and the second derivative are

n(e*™ + 4hk Mk — 1) 1 1
3(e*k — 2(2h%k2 + 1)ehk + 1) E¢ hZ—wZ h

AUrotal = AUglectric + AUstrain =

- AUtotallwo=0 =0

0 AUy = 2n(e*™® + 4hk e?k — 1) _ Eapz _ W0
awg 3(e*hk — 2(2h2kZ + 1)elk + 1) k (h? — w02)3/2
- afvo AUrotal o0 =0
L (et dhke e —1) | o, hPt2wh
oW total = 3(e4hk — 2(2h2k2 + 1)ehk + 1) k (h? —w§)5/2

92 2m(e*™® + 4hk e?k — 1) T 21
w2 AUsotal - = 3(e*k — 2(2h2kZ + 1)el* + 1) Y —Ee¢ h3

Therefore, the fransition from stable equilibrium to instability occurs when

92 AU —0o 2r(e*™ + 4hk e?k — 1) T ,1
awg total oo - 3(e4hk — 2(2h2k2 4+ 1)elk + 1) k €p W3
ep (2 N e*Mk + 4hke?Mk — 1 1z
N Z
Yh  \37 etk —2(2h2k2 + 1)e2hk + 1




Figure 2.1.1 shows the plot of this transition line for \/%% versus A/h = 2m/hk.
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Figure 2.1.1. plot of the transition line from stable equilibrium to instability for an
incompressible elastomer whose surface is perturbed by w(x, y, h) = w, cos kx and
u(x,y,h) =0 (and v(x,y,z) = 0, i.e. plane strain case)
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For small voltage \E% the second derivative is positive, 57 AUtotal
0

> 0, showing that

W():O

the base state is a stable equiliorium. As we increase the voltage to \/5% = 1.47, the
second derivative becomes negative for A/h = 2.57. Therefore, the critical voltage at
which the system goes unstable and the corresponding pattern wavelength are

€ ¢c

=1.47 AC—257
Yh T R

Further increasing the voltage leads to negative second derivative for a wider range of
A/h, as shown in figure 2.1.1.

2.2 THREE-DIMENSIONAL ANALYSIS

It is straightforward to extend the plane strain analysis of section 1.1 to three-dimensional
case. The linear elastic stress and strain fields for the 3D case is essentially superimposition
of the stress and strain fields of two plane strain problems with perpendicular zero strain
directions, i.e.

4

— X y
aij—al-j+0- i

— X
ij €ij = €jj T €

Where ¢;; and afj’. are the plane strain stress fields for the cases where €,, = 0 and €, = 0
(the case discussed in section 1.1), respectively. Similarly, for the strain fields €; and eiyj



are the strains for the plane strain cases where €,, = 0 and ¢,,, = 0, respectively. The
governing equations are checked to make sure that the stress, strain, and displacement
fields obtained from the superimposition of the corresponding plane strain fields satisfy
the governing equations. For the plane strain surface perturbations of w*(x,y, h) =
wy cos ky,y and w¥ (x,y, h) = wy cosk,x, the surface perturbation in 3D case is w(x,y, h) =
w¥ +wY = wy(cosk,y + cosk,x), represented in figure 2.2.1.

Figure 2.2.1. Schematic representation of the 3D surface perturbation w(x,y, h) =
wo(cos kyx + coskyy) for k, = ky, = k.

The strain energy for the 3D case when k, =k, = k is

2
Ywg

+n/k +m/k | 42 (e** + 4hk €2k — 1)
AUgtrain = f j f aueudx dydz =

n/k J-n/k 2 3k(e*hk — (4h2k2 + 2)ehk + 1)

The total electrostatic energy can be estimated using Taylor expansion when calculating
the integrals:
+m/k f+n'/k 1

dx d
i 200 y)

AUglectric = — 3 6¢2A (

+n/k r+m/k 1 +m/k +TL'/k
= ——e xd f f —dxd )
¢° < —n/k fﬂ/k h+w0(coskx+cosky) Y= w/k J-mie 1 Y

1 2<47Tz(hz+wo) O 4)_4n>z_2n ep*

-n/k

2 € n3k2 n3kz o

Therefore, the total energy, the first derivative and the second derivative are

412 (e*hk 4 4hk e2Mk — 1 2m2eqh?
( ) g - g+ o)

AUiotal = AUelectric T AUstrain =

3k(e*hk — (4h2k2 + 2)ehk + 1) h3k?
- AUtotallwozo =0
d 8r?(e*"* + 4hk e*k — 1) Alep? 2
_AUtotal hk hk Ywy — —357 Wo Tt O(WO)
dw, 3k(e*Mk — (4h2k?% + 2)elk + 1) h3k?
- a_WOAUtotal =0

Wo=0



6_2 _ 8m?(e* 4 4hk e?M* — 1) v 4meqp?

Wi k(e — (ARPKZ ¥ 2)erk + 1) WRk2

_ 8m?(e** 4 ahk e?* — 1) v Amled?
3k(e*hk — (4h2k2 + 2)elk + 1) h3k?

+0Ww§)

- a_WzAUtotal

0=0

Therefore, the tfransition from stable equilibrium to instability occurs when

92 AU 0 8r?(e*"* + 4hk ek — 1) v An’eg?
— = d - =
awg total i 3k(e4hk _ (4-h2k2 + Z)ehk + ]_) h3k?2
ep (2 ek 4 Ahke?hk — 1 12
=\ |ls—=\z
Yh 3 etk — 2(2h%k?% 4+ 1)e2hk 4+ 1

Which is the same as the critical voltage expression obtained for plane strain case. For
the case where k, is different from k,, we get the critical voltage versus critical
wavelength plot represented in figure 2.2.2, which shows that the minimum critical
voltage occurs when k, = k,, = k.
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Figure 2.2.2. Plot of critical voltage versus critical pattern wavelength for the three-
dimensional case where the surface is perturbed by w(x,y, k) = wy(cos kyx + coskyy).

2.3 DOUBLE PITTING

So far, we considered a sinusoidal perturbation of the surface of the form w(x,y, h) =
wy coskx for the plane strain case or w(x,y,h) =W0(coskxx+coskyy) for the three-
dimensional case. In this section, we analyze a double pitting pattern where the surface
perturbation has the form of w(x,y,h) = —WO((l —w,.) cos kx + w,. cos ka) and we will
assume plane strain deformation. Following the same procedure as in section 1.1. The
crifical voltage versus critical wavelength is calculated and plotted in figure 2.3.1. The
minimum critical voltage occurs when there is no secondary pitting, i.e. w,, =0 and



w(x,y, h) = —w, cos kx, which corresponds to the sinusoidal surface perturbation of section
2.1.
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Figure 2.3.1. Plot of double pitting surface perturbation for different values of w,. (left)
and critical voltage versus critical pattern wavelength (right).

2.4 DOUBLE LAYER

In the experimental setups, to prevent premature electrical breakdown we usually use
two layers of elastomers: a stiff bottom elastomer of thickness h; which is attached to the
rigid electrode, and a softer top elastomer of thickness h, which is attached to the stiff
elastomer on one side and coated by a complaint electrode on the other side. For this
case we need to solve the plane strain problem inside the stiff and the soft elastomer and
evaluate the constants using both the boundary conditions and the following interface
equations:

Wstiff(x’ y, hl) — Wsoft(x’ y, hl)
ustiff(x’ y, hl) — usoft(x' y, hl)
O-Zsé'lff(xJ Y, hl) = O-ngft(x' Y, hl)
33 (x, ¥, hy) = €52™(x, y, hy)

Results are plotted in figure 2.4.1.
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Figure 2.4.1. Critical voltage for double layer system when h; = h, = 1, for different
stiffness ratio of the two layers (left figure), and for ¥; /Y, = 10 and different h, /h,.

2.5 COMPRESSIBLE MATERIAL

For a compressible material, the initial state prior to instability is not strain free anymore,
but has a displacement field of

_(1+v)(1—2v) € ¢

= O’ = —_——
u w(2) 1= v 2 z
Which corresponds to
ep? v ep?
TR R A T

To include this in our analysis using Airy stress function, we should rewrite the Air stress
function in the following form:

ep? 2 ep? 2
2h? 1—v2h?
Following the procedure in section 1 with this new Airy stress function, we get a critical

voltage that decreases with decreasing Poisson’s ratio, and a critical wavelength that
increases with Poisson’s ratio.

Y(x,z) = g(z) coskx —

5F

A/h

Figure 2.5.1. Critical voltage and wavelength for different Poisson ratios.



