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Local instabilities have been observed when a large DC voltage is applied to a dielectric 

elastomer film, attached to a rigid and conducting substrate on one side and coated 

with a compliant electrode on the other side. Threshold voltage and wavelength of these 

local instabilities are analyzed in the following using the energy minimization method. 

1 ENERGY MINIMIZATION 

1.1 STRAIN ENERGY 
Objective: 

Find out the change of strain energy associated with a small perturbation on the 

top surface. 

Assumptions: 

• Linear elasticity 

• Plane strain 

• The specific shape of the perturbation on the surface: either no lateral 

displacement on the top surface 𝑢(𝑥, 𝑧 = ℎ) = 0  or no lateral stress on the top 

surface 𝜎𝑥𝑥(𝑥, 𝑧 = ℎ) = 0 

Procedure: 

• Assume a 𝜓(𝑥, 𝑧) = 𝑔(𝑧) cos 𝑘𝑥 form for the Airy stress function and solve ∇4𝜙 = 0 to 

get 𝑔(𝑧) = 𝐶1𝑒
−𝑘𝑧 + 𝐶2𝑧𝑒

−𝑘𝑧 + 𝐶3𝑒
𝑘𝑧 + 𝐶4𝑧𝑒

𝑘𝑧 

• Calculate the stresses 𝜎𝑥𝑥 = 𝜕
2𝜓 𝜕𝑧2⁄ , 𝜎𝑧𝑧 = 𝜕

2𝜓 𝜕𝑥2⁄ , 𝜎𝑦𝑦 = 𝜈(𝜎𝑥𝑥 + 𝜎𝑧𝑧) , 𝜎𝑥𝑧 =

−𝜕2𝜓 𝜕𝑥𝜕𝑧⁄ , and strains 𝜖𝑖𝑗 =
1

𝑌
((1 + 𝜈)𝜎𝑖𝑗 − 𝜈𝜎𝑘𝑘𝛿𝑖𝑗), and displacements 𝑢 = ∫ 𝜖𝑥𝑥𝑑𝑥 

and w= ∫𝜖𝑧𝑧𝑑𝑧. 

• Use the boundary conditions, described in terms of 𝑢, 𝑤, and 𝜎𝑖𝑗, to solve for the 

constants 𝐶𝑖 in 𝑔(𝑧). 

• Integrate over one wavelength to calculate the total strain energy Δ𝑈strain =

∫ ∫
1

2
𝜎𝑖𝑗𝜖𝑖𝑗𝑑𝑥

+𝜋 𝑘⁄

−𝜋 𝑘⁄
𝑑𝑧

ℎ

0
. 

1.2 ELECTROSTATIC ENERGY 
Objective: 



Find out the change of total electrostatic energy associated with a small 

perturbation on the top surface.  

Assumptions: 

The electric field is along the z direction. 

Procedure: 

• The total electrostatic energy includes the electrostatic energy stored in the 

capacitor (the elastomer membrane can be viewed as a soft capacitor) and the 

electrostatic energy of the external battery. The change of electrostatic energy 

of the capacitor and battery comes from the change of the total charge 𝑄 due 

to perturbation of the surface (voltage 𝜙 is constant): 

Δ𝑈battery = −𝜙Δ𝑄, 𝑈capacitor =
1

2
𝜙𝑄

   𝜙=const.   
→        Δ𝑈capacitor =

1

2
𝜙Δ𝑄 

• The change of total charge is 

𝑄 = ∫ 𝜌𝑑𝑥
+𝜋 𝑘⁄

−𝜋 𝑘⁄

= ∫ ⟦𝐷⟧𝑑𝑥
+𝜋 𝑘⁄

−𝜋 𝑘⁄

= ∫ 𝜖𝐸𝑛𝑑𝑥
+𝜋 𝑘⁄

−𝜋 𝑘⁄

≅ ∫ 𝜖
𝜙

𝑧
𝑑𝑥

+𝜋 𝑘⁄

−𝜋 𝑘⁄

 

→ ΔQ = 𝜖𝜙 Δ(∫
𝑑𝑥

𝑧(𝑥)

+𝜋 𝑘⁄

−𝜋 𝑘⁄

) 

• The total change in electrostatic energy is the sum of these two 

Δ𝑈electric = Δ𝑈capacitor + Δ𝑈battery = −
1

2
𝜖𝜙2Δ(∫

𝑑𝑥

𝑧(𝑥)

+𝜋 𝑘⁄

−𝜋 𝑘⁄

) 

Equivalently this is Δ𝑈electric = −
1

2
(𝐶2 − 𝐶1)𝜙

2 where 𝐶2 and 𝐶1 are the capacitance of the 

dielectric elastomer membrane after and before perturbing the surface, respectively. 

1.3 ENERGY MINIMIZATION 
The total change in energy due to the infinitesimal perturbation 𝑤0 cos 𝑘𝑥 is a function of 

voltage 𝜙 , permittivity 𝜖 , Young’s modulus 𝑌 , Poisson’s ratio 𝜈 , elastomer thickness ℎ , 

pattern wavelength 𝜆 = 2𝜋 𝑘⁄ , and perturbation amplitude 𝑤0: 

Δ𝑈total = Δ𝑈electric + Δ𝑈strain = −
1

2
𝜖𝜙2Δ(∫

𝑑𝑥

𝑧(𝑥)

+𝜋 𝑘⁄

−𝜋 𝑘⁄

) + ∫ ∫
1

2
𝜎𝑖𝑗𝜖𝑖𝑗𝑑𝑥

+𝜋 𝑘⁄

−𝜋 𝑘⁄

𝑑𝑧
ℎ

0

 

Taylor expansion of the total energy has the form of 

Δ𝑈total = 𝑓(𝜙, 𝜖, 𝑌, 𝜈, ℎ, 𝜆)𝑤0
2 + 𝑂(𝑤0

4) 

Which means that the change in energy at 𝑤0 = 0 is zero as expected, the first derivative 
𝜕

𝜕𝑤0
Δ𝑈total  is zero indicating 𝑤0 = 0  is an equilibrium point, and the second derivative 

𝜕2

𝜕𝑤0
2 Δ𝑈total  can be either positive or negative, showing stable equilibrium or unstable 



equilibrium, respectively. Therefore, in the following analysis we will use 
𝜕2

𝜕𝑤0
2 Δ𝑈total = 0 as 

the transition from stable equilibrium to instability. 

2 RESULTS 

2.1 INCOMPRESSIBLE MATERIAL (𝝂 = 𝟎. 𝟓) 
Assuming an incompressible material, i.e. 𝜈 = 0.5, the homogeneous strains are all zero in 

the base state, i.e. the state prior to instability threshold. The strain energy due to a 

perturbation on the top surface 𝑤(𝑥, 𝑦, ℎ) = 𝑤0 cos 𝑘𝑥 and 𝑢(𝑥, 𝑦, ℎ) = 0 (and 𝑣(𝑥, 𝑦, 𝑧) = 0, 

i.e. plane strain case) is 

Δ𝑈strain =
𝜋(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3(𝑒4ℎ𝑘 − 2(2ℎ2𝑘2 + 1)𝑒ℎ𝑘 + 1)
𝑌𝑤0

2 

Where 𝑌  is the Young’s modulus of the elastomer. The total change in electrostatic 

energy is 

Δ𝑈electric = −
1

2
𝜖𝜙2Δ(∫

𝑑𝑥

𝑧(𝑥)

+𝜋 𝑘⁄

−𝜋 𝑘⁄

) = −
1

2
𝜖𝜙2 (∫

𝑑𝑥

ℎ + 𝑤0 cos 𝑘𝑥

+𝜋 𝑘⁄

−𝜋 𝑘⁄

−∫
𝑑𝑥

ℎ

+𝜋 𝑘⁄

−𝜋 𝑘⁄

) =

= −
1

2
𝜖𝜙2 (

2𝜋

𝑘√ℎ2 −𝑤0
2
−
2𝜋

𝑘ℎ
) = −

𝜋

𝑘
𝜖𝜙2 (

1

√ℎ2 −𝑤0
2
−
1

ℎ
) 

Therefore, the total energy, the first derivative and the second derivative are 

Δ𝑈total = Δ𝑈electric + Δ𝑈strain =
𝜋(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3(𝑒4ℎ𝑘 − 2(2ℎ2𝑘2 + 1)𝑒ℎ𝑘 + 1)
𝑌𝑤0

2 −
𝜋

𝑘
𝜖𝜙2 (

1

√ℎ2 −𝑤0
2
−
1

ℎ
) 

→ Δ𝑈total|𝑤0=0 = 0 

𝜕

𝜕𝑤0
Δ𝑈total =

2𝜋(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3(𝑒4ℎ𝑘 − 2(2ℎ2𝑘2 + 1)𝑒ℎ𝑘 + 1)
𝑌𝑤0 −

𝜋

𝑘
𝜖𝜙2

𝑤0
(ℎ2 −𝑤0

2)3 2⁄
 

→
𝜕

𝜕𝑤0
Δ𝑈total|

𝑤0=0

= 0 

𝜕2

𝜕𝑤0
2 Δ𝑈total =

2𝜋(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3(𝑒4ℎ𝑘 − 2(2ℎ2𝑘2 + 1)𝑒ℎ𝑘 + 1)
𝑌 −

𝜋

𝑘
𝜖𝜙2

ℎ2 + 2𝑤0
2

(ℎ2 −𝑤0
2)5 2⁄

 

→
𝜕2

𝜕𝑤0
2 Δ𝑈total|

𝑤0=0

=
2𝜋(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3(𝑒4ℎ𝑘 − 2(2ℎ2𝑘2 + 1)𝑒ℎ𝑘 + 1)
𝑌 −

𝜋

𝑘
𝜖𝜙2

1

ℎ3
 

Therefore, the transition from stable equilibrium to instability occurs when 

𝜕2

𝜕𝑤0
2 Δ𝑈total|

𝑤0=0

= 0 →
2𝜋(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3(𝑒4ℎ𝑘 − 2(2ℎ2𝑘2 + 1)𝑒ℎ𝑘 + 1)
𝑌 −

𝜋

𝑘
𝜖𝜙2

1

ℎ3
= 0

→ √
𝜖

𝑌

𝜙

ℎ
= (

2

3
ℎ𝑘

𝑒4ℎ𝑘 + 4ℎ𝑘𝑒2ℎ𝑘 − 1

𝑒4ℎ𝑘 − 2(2ℎ2𝑘2 + 1)𝑒2ℎ𝑘 + 1
)

1 2⁄

 



Figure 2.1.1 shows the plot of this transition line for √
𝜖

𝑌

𝜙

ℎ
 versus 𝜆 ℎ⁄ = 2𝜋 ℎ𝑘⁄ . 

 

Figure 2.1.1. plot of the transition line from stable equilibrium to instability for an 

incompressible elastomer whose surface is perturbed by 𝑤(𝑥, 𝑦, ℎ) = 𝑤0 cos 𝑘𝑥 and 

𝑢(𝑥, 𝑦, ℎ) = 0 (and 𝑣(𝑥, 𝑦, 𝑧) = 0, i.e. plane strain case) 

For small voltage √
𝜖

𝑌

𝜙

ℎ
, the second derivative is positive, 

𝜕2

𝜕𝑤0
2 Δ𝑈total|

𝑤0=0
> 0, showing that 

the base state is a stable equilibrium. As we increase the voltage to √
𝜖

𝑌

𝜙

ℎ
= 1.47, the 

second derivative becomes negative for 𝜆 ℎ⁄ = 2.57. Therefore, the critical voltage at 

which the system goes unstable and the corresponding pattern wavelength are 

√
𝜖

𝑌

𝜙𝑐
ℎ
= 1.47,

𝜆𝑐
ℎ
= 2.57  

 Further increasing the voltage leads to negative second derivative for a wider range of  

𝜆 ℎ⁄ , as shown in figure 2.1.1. 

2.2 THREE-DIMENSIONAL ANALYSIS 
It is straightforward to extend the plane strain analysis of section 1.1 to three-dimensional 

case. The linear elastic stress and strain fields for the 3D case is essentially superimposition 

of the stress and strain fields of two plane strain problems with perpendicular zero strain 

directions, i.e. 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑥 + 𝜎𝑖𝑗

𝑦
, 𝜖𝑖𝑗 = 𝜖𝑖𝑗

𝑥 + 𝜖𝑖𝑗
𝑦
,  

Where 𝜎𝑖𝑗
𝑥 and 𝜎𝑖𝑗

𝑦
 are the plane strain stress fields for the cases where 𝜖𝑥𝑥 = 0 and 𝜖𝑦𝑦 = 0 

(the case discussed in section 1.1), respectively. Similarly, for the strain fields 𝜖𝑖𝑗
𝑥  and 𝜖𝑖𝑗

𝑦
 

 2

 𝑤0
2 Δ𝑈total  0

 2

 𝑤0
2 Δ𝑈total > 0



are the strains for the plane strain cases where 𝜖𝑥𝑥 = 0 and 𝜖𝑦𝑦 = 0, respectively. The 

governing equations are checked to make sure that the stress, strain, and displacement 

fields obtained from the superimposition of the corresponding plane strain fields satisfy 

the governing equations. For the plane strain surface perturbations of 𝑤𝑥(𝑥, 𝑦, ℎ) =

𝑤0 cos 𝑘𝑦𝑦 and 𝑤𝑦(𝑥, 𝑦, ℎ) = 𝑤0 cos 𝑘𝑥𝑥, the surface perturbation in 3D case is 𝑤(𝑥, 𝑦, ℎ) =

𝑤𝑥 +𝑤𝑦 = 𝑤0(cos 𝑘𝑦𝑦 + cos 𝑘𝑥𝑥), represented in figure 2.2.1. 

 

Figure 2.2.1. Schematic representation of the 3D surface perturbation 𝑤(𝑥, 𝑦, ℎ) =

𝑤0(cos 𝑘𝑥𝑥 + cos 𝑘𝑦𝑦) for 𝑘𝑥 = 𝑘𝑦 = 𝑘. 

The strain energy for the 3D case when 𝑘𝑥 = 𝑘𝑦 = 𝑘 is 

Δ𝑈strain = ∫ ∫ ∫
1

2
𝜎𝑖𝑗𝜖𝑖𝑗𝑑𝑥

+𝜋 𝑘⁄

−𝜋 𝑘⁄

𝑑𝑦
+𝜋 𝑘⁄

−𝜋 𝑘⁄

𝑑𝑧
ℎ

0

=
4𝜋2(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3𝑘(𝑒4ℎ𝑘 − (4ℎ2𝑘2 + 2)𝑒ℎ𝑘 + 1)
𝑌𝑤0

2 

The total electrostatic energy can be estimated using Taylor expansion when calculating 

the integrals: 

Δ𝑈electric = −
1

2
𝜖𝜙2Δ(∫ ∫

1

𝑧(𝑥)
𝑑𝑥

+𝜋 𝑘⁄

−𝜋 𝑘⁄

𝑑𝑦
+𝜋 𝑘⁄

−𝜋 𝑘⁄

)

= −
1

2
𝜖𝜙2 (∫ ∫

1

ℎ + 𝑤0(cos 𝑘𝑥 + cos 𝑘𝑦)
𝑑𝑥

+𝜋 𝑘⁄

−𝜋 𝑘⁄

𝑑𝑦
+𝜋 𝑘⁄

−𝜋 𝑘⁄

−∫ ∫
1

ℎ
𝑑𝑥

+𝜋 𝑘⁄

−𝜋 𝑘⁄

𝑑𝑦
+𝜋 𝑘⁄

−𝜋 𝑘⁄

)

= −
1

2
𝜖𝜙2 (

4𝜋2(ℎ2 +𝑤0
2)

ℎ3𝑘2
+ 𝑂(𝑤0

4) −
4𝜋2

ℎ𝑘2
) ≅ −

2𝜋2𝜖𝜙2

ℎ3𝑘2
𝑤0
2 

Therefore, the total energy, the first derivative and the second derivative are 

Δ𝑈total = Δ𝑈electric + Δ𝑈strain =
4𝜋2(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3𝑘(𝑒4ℎ𝑘 − (4ℎ2𝑘2 + 2)𝑒ℎ𝑘 + 1)
𝑌𝑤0

2 −
2𝜋2𝜖𝜙2

ℎ3𝑘2
𝑤0
2 + 𝑂(𝑤0

4) 

→ Δ𝑈total|𝑤0=0 = 0 

𝜕

𝜕𝑤0
Δ𝑈total =

8𝜋2(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3𝑘(𝑒4ℎ𝑘 − (4ℎ2𝑘2 + 2)𝑒ℎ𝑘 + 1)
𝑌𝑤0 −

4𝜋2𝜖𝜙2

ℎ3𝑘2
𝑤0 + 𝑂(𝑤0

3) 

→
𝜕

𝜕𝑤0
Δ𝑈total|

𝑤0=0

= 0 



𝜕2

𝜕𝑤0
2 Δ𝑈total =

8𝜋2(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3𝑘(𝑒4ℎ𝑘 − (4ℎ2𝑘2 + 2)𝑒ℎ𝑘 + 1)
𝑌 −

4𝜋2𝜖𝜙2

ℎ3𝑘2
+ 𝑂(𝑤0

2) 

→
𝜕2

𝜕𝑤0
2 Δ𝑈total|

𝑤0=0

=
8𝜋2(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3𝑘(𝑒4ℎ𝑘 − (4ℎ2𝑘2 + 2)𝑒ℎ𝑘 + 1)
𝑌 −

4𝜋2𝜖𝜙2

ℎ3𝑘2
 

Therefore, the transition from stable equilibrium to instability occurs when 

𝜕2

𝜕𝑤0
2 Δ𝑈total|

𝑤0=0

= 0 →
8𝜋2(𝑒4ℎ𝑘 + 4ℎ𝑘 𝑒2ℎ𝑘 − 1)

3𝑘(𝑒4ℎ𝑘 − (4ℎ2𝑘2 + 2)𝑒ℎ𝑘 + 1)
𝑌 −

4𝜋2𝜖𝜙2

ℎ3𝑘2
= 0

→ √
𝜖

𝑌

𝜙

ℎ
= (

2

3
ℎ𝑘

𝑒4ℎ𝑘 + 4ℎ𝑘𝑒2ℎ𝑘 − 1

𝑒4ℎ𝑘 − 2(2ℎ2𝑘2 + 1)𝑒2ℎ𝑘 + 1
)

1 2⁄

 

Which is the same as the critical voltage expression obtained for plane strain case. For 

the case where 𝑘𝑥  is different from 𝑘𝑦 , we get the critical voltage versus critical 

wavelength plot represented in figure 2.2.2, which shows that the minimum critical 

voltage occurs when 𝑘𝑥 = 𝑘𝑦 = 𝑘. 

 

Figure 2.2.2. Plot of critical voltage versus critical pattern wavelength for the three-

dimensional case where the surface is perturbed by 𝑤(𝑥, 𝑦, ℎ) = 𝑤0(cos𝑘𝑥𝑥 + cos 𝑘𝑦𝑦). 

2.3 DOUBLE PITTING 
So far, we considered a sinusoidal perturbation of the surface of the form 𝑤(𝑥, 𝑦, ℎ) =

𝑤0 cos 𝑘𝑥  for the plane strain case or 𝑤(𝑥, 𝑦, ℎ) = 𝑤0(cos𝑘𝑥𝑥 + cos𝑘𝑦𝑦)  for the three-

dimensional case. In this section, we analyze a double pitting pattern where the surface 

perturbation has the form of 𝑤(𝑥, 𝑦, ℎ) = −𝑤0((1 − 𝑤𝑟) cos 𝑘𝑥 + 𝑤𝑟 cos2𝑘𝑥)  and we will 

assume plane strain deformation. Following the same procedure as in section 1.1. The 

critical voltage versus critical wavelength is calculated and plotted in figure 2.3.1. The 

minimum critical voltage occurs when there is no secondary pitting, i.e. 𝑤𝑟 = 0  and 
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𝑤(𝑥, 𝑦, ℎ) = −𝑤0 cos𝑘𝑥, which corresponds to the sinusoidal surface perturbation of section 

2.1. 

           

Figure 2.3.1. Plot of double pitting surface perturbation for different values of 𝑤𝑟 (left) 

and critical voltage versus critical pattern wavelength (right). 

2.4 DOUBLE LAYER 
In the experimental setups, to prevent premature electrical breakdown we usually use 

two layers of elastomers: a stiff bottom elastomer of thickness ℎ1 which is attached to the 

rigid electrode, and a softer top elastomer of thickness ℎ2 which is attached to the stiff 

elastomer on one side and coated by a complaint electrode on the other side. For this 

case we need to solve the plane strain problem inside the stiff and the soft elastomer and 

evaluate the constants using both the boundary conditions and the following interface 

equations: 

𝑤stiff(𝑥, 𝑦, ℎ1) = 𝑤
soft(𝑥, 𝑦, ℎ1) 

𝑢stiff(𝑥, 𝑦, ℎ1) = 𝑢
soft(𝑥, 𝑦, ℎ1) 

𝜎𝑧𝑧
stiff(𝑥, 𝑦, ℎ1) = 𝜎𝑧𝑧

soft(𝑥, 𝑦, ℎ1) 

𝜖𝑥𝑧
stiff(𝑥, 𝑦, ℎ1) = 𝜖𝑥𝑧

soft(𝑥, 𝑦, ℎ1) 

Results are plotted in figure 2.4.1. 
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Figure 2.4.1. Critical voltage for double layer system when ℎ1 = ℎ2 = 1, for different 

stiffness ratio of the two layers (left figure), and for 𝑌1 𝑌2⁄ = 10 and different ℎ1 ℎ2⁄ . 

2.5 COMPRESSIBLE MATERIAL 
For a compressible material, the initial state prior to instability is not strain free anymore, 

but has a displacement field of 

𝑢 = 0, 𝑤(𝑧) = −
(1 + 𝜈)(1 − 2𝜈)

1 − 𝜈
√
𝜖

𝑌

𝜙

ℎ2
𝑧 

Which corresponds to  

𝜎𝑧𝑧 = −
𝜖𝜙2

2ℎ2
, 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = −

𝜈

1 − 𝜈

𝜖𝜙2

2ℎ2
 

To include this in our analysis using Airy stress function, we should rewrite the Air stress 

function in the following form: 

𝜓(𝑥, 𝑧) = 𝑔(𝑧) cos 𝑘𝑥 −
𝜖𝜙2

2ℎ2
𝑥2 −

𝜈

1 − 𝜈

𝜖𝜙2

2ℎ2
𝑧2 

Following the procedure in section 1 with this new Airy stress function, we get a critical 

voltage that decreases with decreasing Poisson’s ratio, and a critical wavelength that 

increases with Poisson’s ratio. 

 

Figure 2.5.1. Critical voltage and wavelength for different Poisson ratios. 
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