Private Information and Insurance Rejections

Nathaniel Hendren

Harvard and NBER

March, 2013

• Across a wide set of non-group insurance markets, companies reject applicants with certain observable, often high-risk, characteristics

- Across a wide set of non-group insurance markets, companies reject applicants with certain observable, often high-risk, characteristics
 - e.g. past stroke ineligible to purchase long-term care insurance

- Across a wide set of non-group insurance markets, companies reject applicants with certain observable, often high-risk, characteristics
 - e.g. past stroke ineligible to purchase long-term care insurance
- Rejections affect a non-trivial fraction of the population

- Across a wide set of non-group insurance markets, companies reject applicants with certain observable, often high-risk, characteristics
 - e.g. past stroke ineligible to purchase long-term care insurance
- Rejections affect a non-trivial fraction of the population
 - Murtaugh (1995) estimated 12-23% of 65 year olds ineligible to purchase (non-group) long-term care insurance

- Across a wide set of non-group insurance markets, companies reject applicants with certain observable, often high-risk, characteristics
 - e.g. past stroke ineligible to purchase long-term care insurance
- Rejections affect a non-trivial fraction of the population
 - Murtaugh (1995) estimated 12-23% of 65 year olds ineligible to purchase (non-group) long-term care insurance
- Why reject applicants? Why not offer some contract, perhaps at a higher price?

- Across a wide set of non-group insurance markets, companies reject applicants with certain observable, often high-risk, characteristics
 - e.g. past stroke ineligible to purchase long-term care insurance
- Rejections affect a non-trivial fraction of the population
 - Murtaugh (1995) estimated 12-23% of 65 year olds ineligible to purchase (non-group) long-term care insurance
- Why reject applicants? Why not offer some contract, perhaps at a higher price?
- I ask whether private information can explain rejections

• Provide a new "no-trade" condition showing private information can shut down trade altogether

- Provide a new "no-trade" condition showing private information can shut down trade altogether
- Oevelop new empirical methodology to ask whether this no-trade condition can explain rejections

- Provide a new "no-trade" condition showing private information can shut down trade altogether
- Oevelop new empirical methodology to ask whether this no-trade condition can explain rejections
 - Existing approaches only work where market exists

- Provide a new "no-trade" condition showing private information can shut down trade altogether
- Oevelop new empirical methodology to ask whether this no-trade condition can explain rejections
 - Existing approaches only work where market exists
 - Use information contained in subjective probability elicitations

- Provide a new "no-trade" condition showing private information can shut down trade altogether
- Oevelop new empirical methodology to ask whether this no-trade condition can explain rejections
 - Existing approaches only work where market exists
 - Use information contained in subjective probability elicitations
 - Allow elicitations to be noisy and potentially biased measures of true beliefs

- Provide a new "no-trade" condition showing private information can shut down trade altogether
- Oevelop new empirical methodology to ask whether this no-trade condition can explain rejections
 - Existing approaches only work where market exists
 - Use information contained in subjective probability elicitations
 - Allow elicitations to be noisy and potentially biased measures of true beliefs
- Apply the approach to three non-group market settings: Long-term care, Disability, and Life insurance

Preview of Results

• In all 3 markets, I find:

- In all 3 markets, I find:
 - Significant amounts of private information for those with observable characteristics that would lead to rejection

- In all 3 markets, I find:
 - Significant amounts of private information for those with observable characteristics that would lead to rejection
 - More than for those who are able to purchase insurance

- In all 3 markets, I find:
 - Significant amounts of private information for those with observable characteristics that would lead to rejection
 - More than for those who are able to purchase insurance
 - Enough private information to explain absence of trade for the rejected

- In all 3 markets, I find:
 - Significant amounts of private information for those with observable characteristics that would lead to rejection
 - More than for those who are able to purchase insurance
 - Enough private information to explain absence of trade for the rejected
- Along the way, find support for findings of previous literature (LTC and Life) of little/no adverse selection in market segments that are served by insurance companies

- In all 3 markets, I find:
 - Significant amounts of private information for those with observable characteristics that would lead to rejection
 - More than for those who are able to purchase insurance
 - Enough private information to explain absence of trade for the rejected
- Along the way, find support for findings of previous literature (LTC and Life) of little/no adverse selection in market segments that are served by insurance companies
 - Results suggest practice of rejections limit extent of *observed* adverse selection

- In all 3 markets, I find:
 - Significant amounts of private information for those with observable characteristics that would lead to rejection
 - More than for those who are able to purchase insurance
 - Enough private information to explain absence of trade for the rejected
- Along the way, find support for findings of previous literature (LTC and Life) of little/no adverse selection in market segments that are served by insurance companies
 - Results suggest practice of rejections limit extent of *observed* adverse selection
- Pattern of private information in Life setting can also explain *absence* of rejections in annuity markets

- 2 Comparative Statics / Measures of Private Information
- 3 Empirical Methodology
- 4 Setting and Data
- **5** Specification and Results

Binary Insurance Model

Model Environment

• Unit mass of agents endowed with wealth w

- Unit mass of agents endowed with wealth w
- Face potential loss of size I with privately known probability p

- Unit mass of agents endowed with wealth w
- Face potential loss of size I with privately known probability p
 - Distributed with c.d.f. F(p|X) where X are observables

- Unit mass of agents endowed with wealth w
- Face potential loss of size I with privately known probability p
 - Distributed with c.d.f. F(p|X) where X are observables
 - For brevity, drop X and let F(p) = F(p|X = x) with support Ψ

- Unit mass of agents endowed with wealth w
- Face potential loss of size I with privately known probability p
 - Distributed with c.d.f. F(p|X) where X are observables
 - For brevity, drop X and let F(p) = F(p|X = x) with support Ψ
 - Let P denote random draw from population (c.d.f. F(p))

- Unit mass of agents endowed with wealth w
- Face potential loss of size I with privately known probability p
 - Distributed with c.d.f. F(p|X) where X are observables
 - For brevity, drop X and let F(p) = F(p|X = x) with support Ψ
 - Let P denote random draw from population (c.d.f. F(p))
- Agents vNM preferences

$$pu\left(c_{L}\right)+\left(1-p\right)u\left(c_{NL}\right)$$

- Unit mass of agents endowed with wealth w
- Face potential loss of size I with privately known probability p
 - Distributed with c.d.f. F(p|X) where X are observables
 - For brevity, drop X and let F(p) = F(p|X = x) with support Ψ
 - Let P denote random draw from population (c.d.f. F(p))
- Agents vNM preferences

$$pu\left(c_{L}
ight)+\left(1-p
ight)u\left(c_{NL}
ight)$$

• When can agents obtain any insurance?

- Unit mass of agents endowed with wealth w
- Face potential loss of size I with privately known probability p
 - Distributed with c.d.f. F(p|X) where X are observables
 - For brevity, drop X and let F(p) = F(p|X = x) with support Ψ
 - Let P denote random draw from population (c.d.f. F(p))
- Agents vNM preferences

$$pu(c_L) + (1-p)u(c_{NL})$$

- When can agents obtain any insurance?
 - When is it possible to obtain allocations better than the endowment?

- Unit mass of agents endowed with wealth w
- Face potential loss of size I with privately known probability p
 - Distributed with c.d.f. F(p|X) where X are observables
 - For brevity, drop X and let F(p) = F(p|X = x) with support Ψ
 - Let P denote random draw from population (c.d.f. F(p))
- Agents vNM preferences

$$pu(c_L) + (1-p)u(c_{NL})$$

- When can agents obtain any insurance?
 - When is it possible to obtain allocations better than the endowment?
 - Allocation $A = \{c_L(p), c_{NL}(p)\}_{p \in \Psi}$

Definition

An allocation $A = \{c_L(p), c_{NL}(p)\}_{p \in \Psi}$ is implementable if

A is resource feasible:

$$\int \left[w - pl - pc_{L}\left(p\right) - \left(1 - p\right)c_{NL}\left(p\right)\right] dF\left(p\right) \ge 0$$

2 A is incentive compatible: $\forall p, \hat{p} \in \Psi$, $pu(c_L(p)) + (1-p)u(c_{NL}(p)) \ge pu(c_L(\hat{p})) + (1-p)u(c_{NL}(\hat{p}))$

3 A is individually rational:
$$\forall p \in \Psi$$

$$pu\left(c_{L}\left(p\right)\right) + (1-p)u\left(c_{NL}\left(p\right)\right) \geq pu\left(w-l\right) + (1-p)u\left(c_{NL}\left(p\right)\right) \leq pu\left(w-l\right)$$

p) u(w)

When is the Endowment the Only Implementable Allocation?

• Market allocations must be implementable

When is the Endowment the Only Implementable Allocation?

- Market allocations must be implementable
 - When is the endowment the only implementable allocation?

When is the Endowment the Only Implementable Allocation?

- Market allocations must be implementable
 - When is the endowment the only implementable allocation?
- What friction could prevent trade in this environment?

When is the Endowment the Only Implementable Allocation?

- Market allocations must be implementable
 - When is the endowment the only implementable allocation?
- What friction could prevent trade in this environment?
 - If type p prefers bundle (c_L, c_{NL}) to the endowment, then all types $P \geq p$ also prefer bundle (c_L, c_{NL})

Theorem

The endowment, $\{(w - l, w)\}$, is the only implementable allocation if and only if

$$\frac{p}{1-p}\frac{u'\left(w-l\right)}{u'\left(w\right)} \le \frac{E\left[P|P \ge p\right]}{1-E\left[P|P \ge p\right]} \,\,\forall p \in \Psi \setminus \{1\} \tag{1}$$

where $\Psi \setminus \{1\}$ denotes the support of F(p) excluding the point p = 1. Conversely, if (1) does not hold, then there exists an allocation that does not exhaust resources and provides a strict utility improvement to a positive mass of types.

 When No-Trade Condition holds, any contract or menu of contracts would be so heavily adversely selected that it cannot earn positive profits

- When No-Trade Condition holds, any contract or menu of contracts would be so heavily adversely selected that it cannot earn positive profits
 - Provides a theory of rejections as market segments (i.e. values of X) for which the No-Trade Condition holds

- When No-Trade Condition holds, any contract or menu of contracts would be so heavily adversely selected that it cannot earn positive profits
 - Provides a theory of rejections as market segments (i.e. values of X) for which the No-Trade Condition holds
- No Trade Condition generalizes intuition in Akerlof (1970)

- When No-Trade Condition holds, any contract or menu of contracts would be so heavily adversely selected that it cannot earn positive profits
 - Provides a theory of rejections as market segments (i.e. values of X) for which the No-Trade Condition holds
- No Trade Condition generalizes intuition in Akerlof (1970)
 - Akerlof (1970) finds that a market for a specific contract can unravel if the demand curve falls everywhere below the average cost curve

- When No-Trade Condition holds, any contract or menu of contracts would be so heavily adversely selected that it cannot earn positive profits
 - Provides a theory of rejections as market segments (i.e. values of X) for which the No-Trade Condition holds
- No Trade Condition generalizes intuition in Akerlof (1970)
 - Akerlof (1970) finds that a market for a specific contract can unravel if the demand curve falls everywhere below the average cost curve
- I derive conditions under which *any* contract (or menu of contracts) would unravel

- When No-Trade Condition holds, any contract or menu of contracts would be so heavily adversely selected that it cannot earn positive profits
 - Provides a theory of rejections as market segments (i.e. values of X) for which the No-Trade Condition holds
- No Trade Condition generalizes intuition in Akerlof (1970)
 - Akerlof (1970) finds that a market for a specific contract can unravel if the demand curve falls everywhere below the average cost curve
- I derive conditions under which *any* contract (or menu of contracts) would unravel
 - Allow for variable premiums and deductibles

- When No-Trade Condition holds, any contract or menu of contracts would be so heavily adversely selected that it cannot earn positive profits
 - Provides a theory of rejections as market segments (i.e. values of X) for which the No-Trade Condition holds
- No Trade Condition generalizes intuition in Akerlof (1970)
 - Akerlof (1970) finds that a market for a specific contract can unravel if the demand curve falls everywhere below the average cost curve
- I derive conditions under which *any* contract (or menu of contracts) would unravel
 - Allow for variable premiums and deductibles
 - Previous literature has argued trade must always occur in these settings (Riley 1979, Chade and Schlee 2011)

• No trade requires people to be unwilling to subsidize worse risks

- No trade requires people to be unwilling to subsidize worse risks
 - Naturally requires perpetual existence of worse risks

- No trade requires people to be unwilling to subsidize worse risks
 - Naturally requires perpetual existence of worse risks
 - Otherwise highest risk, \bar{p} , can receive full insurance,

 $c_L = c_{NL} = w - \bar{p}l$

• No trade requires people to be unwilling to subsidize worse risks

- Naturally requires perpetual existence of worse risks
- Otherwise highest risk, \bar{p} , can receive full insurance,

 $c_L = c_{NL} = w - \bar{p}I$

Corollary

Suppose the No Trade condition holds. Then, $F(p) < 1 \forall p < 1$.

• No trade requires people to be unwilling to subsidize worse risks

- Naturally requires perpetual existence of worse risks
- Otherwise highest risk, \bar{p} , can receive full insurance,

 $c_L = c_{NL} = w - \bar{p}I$

Corollary

Suppose the No Trade condition holds. Then, $F(p) < 1 \forall p < 1$.

- Empirically relevant?
 - Does not require any mass at p = 1 (robustness/approximation)
 - Can be relaxed if each contract must attract non-trivial fraction of types

• Suppose each distinct allocation must attract a non-zero fraction $\alpha > 0$ of the market.

- Suppose each distinct allocation must attract a non-zero fraction $\alpha > 0$ of the market.
- Allocations take form $A = \cup_{i=1}^{N} A_i$, $A_i = \left(c_L^i, c_{NL}^i\right)$ and

$$\mu\left(p\left|\left(c_{L}\left(p\right),c_{NL}\left(p\right)\right)=\left(c_{L}^{i},c_{NL}^{i}\right)\right)\geq\alpha$$

where μ is the measure implied by $\textit{F}\left(\textit{p}\right)$

- Suppose each distinct allocation must attract a non-zero fraction $\alpha > 0$ of the market.
- Allocations take form $A = \cup_{i=1}^{N} A_i$, $A_i = \left(c_L^i, c_{NL}^i\right)$ and

$$\mu\left(p\left|\left(c_{L}\left(p\right),c_{NL}\left(p\right)\right)=\left(c_{L}^{i},c_{NL}^{i}\right)\right)\geq\alpha$$

where μ is the measure implied by F(p)

• Then, no trade iff

$$\frac{p}{1-p} \frac{u'\left(W-L\right)}{u'\left(W\right)} \leq \frac{E\left[P|P \geq p\right]}{1-E\left[P|P \geq p\right]}$$
$$\forall p \leq F^{-1}\left(1-\alpha\right), p \in \Psi \setminus \{1\}$$

- Suppose each distinct allocation must attract a non-zero fraction $\alpha > 0$ of the market.
- Allocations take form $A = \cup_{i=1}^N A_i$, $A_i = \left(c_L^i, c_{NL}^i\right)$ and

$$\mu\left(p\left|\left(c_{L}\left(p\right),c_{NL}\left(p\right)\right)=\left(c_{L}^{i},c_{NL}^{i}\right)\right)\geq\alpha$$

where μ is the measure implied by $\textit{F}\left(\textit{p}\right)$

• Then, no trade iff

$$\frac{p}{1-p} \frac{u'\left(W-L\right)}{u'\left(W\right)} \leq \frac{E\left[P|P \geq p\right]}{1-E\left[P|P \geq p\right]}$$
$$\forall p \leq F^{-1}\left(1-\alpha\right), p \in \Psi \setminus \{1\}$$

 Unraveling Intuition: "Thick upper tails" increase E [P|P ≥ p] and make no trade more likely

2 Comparative Statics / Measures of Private Information

- 3 Empirical Methodology
- 4 Setting and Data
- 5 Specification and Results
- 6 Conclusion

• The No Trade Condition holds iff

$$\frac{u'(w-l)}{u'(w)} \le \underbrace{\frac{\mathcal{F}[P|P \ge p]}{1 - \mathcal{F}[P|P \ge p]} \frac{1-p}{p}}_{W \in \Psi \setminus \{1\}} \forall p \in \Psi \setminus \{1\}$$

• The No Trade Condition holds iff

$$\frac{u'(w-l)}{u'(w)} \leq \underbrace{\frac{E\left[P|P \geq p\right]}{1-E\left[P|P \geq p\right]} \frac{1-p}{p}}{\left[1-E\left[P|P \geq p\right]} \forall p \in \Psi \setminus \{1\} \\ \iff \frac{u'(w-l)}{u'(w)} \leq \inf_{p \in \Psi \setminus \{1\}} T\left(p\right) = \text{"Min. Pooled Price Ratio"}$$

• $\frac{u'(w-l)}{u'(w)} - 1$ is highest markup on premiums individual would pay • $\inf_{p \in \Psi \setminus \{1\}} T(p) - 1$ is the implicit tax rate imposed by private information

• The No Trade Condition holds iff

$$\frac{u'(w-l)}{u'(w)} \leq \underbrace{\frac{E\left[P|P \geq p\right]}{1-E\left[P|P \geq p\right]} \frac{1-p}{p}}{\frac{u'(w-l)}{u'(w)}} \quad \forall p \in \Psi \setminus \{1\}$$
$$\iff \frac{u'(w-l)}{u'(w)} \leq \inf_{p \in \Psi \setminus \{1\}} T(p) = \text{"Min. Pooled Price Ratio"}$$

- u'(w-l)/u'(w) 1 is highest markup on premiums individual would pay
 inf_{p∈Ψ\{1}} T (p) 1 is the implicit tax rate imposed by private information
- **Comparative Static:** Higher values of Minimum Pooled Price Ratio more likely to lead to no trade

High Risk

• The No Trade Condition holds iff

$$\frac{u'(w-l)}{u'(w)} \leq \underbrace{\frac{E\left[P|P \geq p\right]}{1-E\left[P|P \geq p\right]} \frac{1-p}{p}}{\frac{1-p}{p}} \quad \forall p \in \Psi \setminus \{1\}$$
$$\iff \frac{u'(w-l)}{u'(w)} \leq \inf_{p \in \Psi \setminus \{1\}} T(p) = \text{"Min. Pooled Price Ratio"}$$

- u'(w-l)/u'(w) 1 is highest markup on premiums individual would pay
 inf_{p∈Ψ\{1}} T (p) 1 is the implicit tax rate imposed by private information
- **Comparative Static:** Higher values of Minimum Pooled Price Ratio more likely to lead to no trade
- Quantification of barrier to trade: $\inf_{p \in \Psi \setminus \{1\}} T(p) 1$

High Risk

• Will be helpful to have a second metric

• Will be helpful to have a second metric

Definition

The magnitude of private information, m(p), is given by

$$m(p) = E\left[P|P \ge p\right] - p$$

• Will be helpful to have a second metric

Definition

The magnitude of private information, m(p), is given by

$$m(p) = E[P|P \ge p] - p$$

• No Trade Condition written as

$$\frac{u'\left(w-l\right)}{u'\left(w\right)} \leq \frac{p+m\left(p\right)}{1-p-m\left(p\right)} \frac{1-p}{p} \quad \forall p \in \Psi \setminus \{1\}$$

• Will be helpful to have a second metric

Definition

The magnitude of private information, m(p), is given by

$$m(p) = E[P|P \ge p] - p$$

• No Trade Condition written as

$$\frac{u'\left(w-l\right)}{u'\left(w\right)} \leq \frac{p+m\left(p\right)}{1-p-m\left(p\right)} \frac{1-p}{p} \quad \forall p \in \Psi \setminus \{1\}$$

 Comparative Static: Higher values of m(p) ∀p more likely to lead to no trade

• **Comparative Statics:** What properties of *F* (*p*) makes no trade more likely?

- **Comparative Statics:** What properties of *F* (*p*) makes no trade more likely?
 - Qualitatively, thicker upper tails of F(p)

- **Comparative Statics:** What properties of *F* (*p*) makes no trade more likely?
 - Qualitatively, thicker upper tails of F(p)
 - Quantitatively, no trade more likely for
 - Higher values of minimum pooled price ratio, $\inf_{p \in \Psi \setminus \{1\}} T(p)$
 - Higher values of $m(p) \ \forall p$

- **Comparative Statics:** What properties of *F* (*p*) makes no trade more likely?
 - Qualitatively, thicker upper tails of F(p)
 - Quantitatively, no trade more likely for
 - Higher values of minimum pooled price ratio, $\inf_{p \in \Psi \setminus \{1\}} T(p)$
 - Higher values of $m(p) \forall p$
- **Quantification:** Minimum pooled price ratio also quantifies barrier to trade imposed by private information
 - Tax rate equivalence

- **Comparative Statics:** What properties of *F* (*p*) makes no trade more likely?
 - Qualitatively, thicker upper tails of F(p)
 - Quantitatively, no trade more likely for
 - Higher values of minimum pooled price ratio, $\inf_{p \in \Psi \setminus \{1\}} T(p)$
 - Higher values of $m(p) \forall p$
- **Quantification:** Minimum pooled price ratio also quantifies barrier to trade imposed by private information
 - Tax rate equivalence
- Empirical goals: Test comparative statics of model & quantify minimum pooled price ratio for those who would and would not be rejected

- **Comparative Statics:** What properties of *F* (*p*) makes no trade more likely?
 - Qualitatively, thicker upper tails of F(p)
 - Quantitatively, no trade more likely for
 - Higher values of minimum pooled price ratio, $\inf_{p \in \Psi \setminus \{1\}} T(p)$
 - Higher values of $m(p) \forall p$
- **Quantification:** Minimum pooled price ratio also quantifies barrier to trade imposed by private information
 - Tax rate equivalence
- Empirical goals: Test comparative statics of model & quantify minimum pooled price ratio for those who would and would not be rejected
- How to estimate properties of distribution of private information?

- **Comparative Statics:** What properties of *F* (*p*) makes no trade more likely?
 - Qualitatively, thicker upper tails of F(p)
 - Quantitatively, no trade more likely for
 - Higher values of minimum pooled price ratio, $\inf_{p \in \Psi \setminus \{1\}} T(p)$
 - Higher values of $m(p) \forall p$
- **Quantification:** Minimum pooled price ratio also quantifies barrier to trade imposed by private information
 - Tax rate equivalence
- Empirical goals: Test comparative statics of model & quantify minimum pooled price ratio for those who would and would not be rejected
- How to estimate properties of distribution of private information?
 - Previous approaches rely on revealed preference (more insurance -> higher claims?)

- **Comparative Statics:** What properties of *F* (*p*) makes no trade more likely?
 - Qualitatively, thicker upper tails of F(p)
 - Quantitatively, no trade more likely for
 - Higher values of minimum pooled price ratio, $\inf_{p \in \Psi \setminus \{1\}} T(p)$
 - Higher values of $m(p) \forall p$
- **Quantification:** Minimum pooled price ratio also quantifies barrier to trade imposed by private information
 - Tax rate equivalence
- Empirical goals: Test comparative statics of model & quantify minimum pooled price ratio for those who would and would not be rejected
- How to estimate properties of distribution of private information?
 - Previous approaches rely on revealed preference (more insurance -> higher claims?)
 - But doesn't work for those who would be rejected

2) Comparative Statics / Measures of Private Information

3 Empirical Methodology

4 Setting and Data

5 Specification and Results

6 Conclusion

- Realizations of an event, L, commonly insured in a market setting
 - e.g. dying in the next 10 years

- **Q** Realizations of an event, *L*, commonly insured in a market setting
 - e.g. dying in the next 10 years
- ② Subjective probability elicitation, Z, corresponding to L
 - e.g. "What is the probability (0-100%) that you will die in the next 10 years?"

- **Q** Realizations of an event, *L*, commonly insured in a market setting
 - e.g. dying in the next 10 years
- 2 Subjective probability elicitation, Z, corresponding to L
 - e.g. "What is the probability (0-100%) that you will die in the next 10 years?"
- Public Information, X, that would be used by insurance companies to price contracts

- **1** Realizations of an event, *L*, commonly insured in a market setting
 - e.g. dying in the next 10 years
- 2 Subjective probability elicitation, Z, corresponding to L
 - e.g. "What is the probability (0-100%) that you will die in the next 10 years?"
- Public Information, X, that would be used by insurance companies to price contracts
- **4** Classification of X into Θ^{Reject} and $\Theta^{NoReject}$

• Z may not express an agents' true beliefs

- Z may not express an agents' true beliefs
- I will provide two complementary treatments of these elicitations:

- Z may not express an agents' true beliefs
- I will provide two complementary treatments of these elicitations:
 - In Nonparametric lower bounds using relatively weak assumptions

- Z may not express an agents' true beliefs
- I will provide two complementary treatments of these elicitations:
 - In Nonparametric lower bounds using relatively weak assumptions
 - Test for presence of private information & comparative static

- Z may not express an agents' true beliefs
- I will provide two complementary treatments of these elicitations:
 - In Nonparametric lower bounds using relatively weak assumptions
 - Test for presence of private information & comparative static
 - 3 Add some structure to estimate distribution of private information, F(p)

- Z may not express an agents' true beliefs
- I will provide two complementary treatments of these elicitations:
 - In Nonparametric lower bounds using relatively weak assumptions
 - Test for presence of private information & comparative static
 - 3 Add some structure to estimate distribution of private information, F(p)
 - Construct an analogue of the minimum pooled price ratio

- Z may not express an agents' true beliefs
- I will provide two complementary treatments of these elicitations:
 - In Nonparametric lower bounds using relatively weak assumptions
 - Test for presence of private information & comparative static
 - 2 Add some structure to estimate distribution of private information, F(p)
 - Construct an analogue of the minimum pooled price ratio
 - Test comparative static and quantify barrier to trade

• General idea: Agents behave as if they have beliefs *P* about the loss *L*, but may not be able to express these beliefs on surveys

- General idea: Agents behave as if they have beliefs *P* about the loss *L*, but may not be able to express these beliefs on surveys
 - Savage (1954) axioms

- General idea: Agents behave as if they have beliefs *P* about the loss *L*, but may not be able to express these beliefs on surveys
 - Savage (1954) axioms
- Assumption 1: Elicitations contain no more information than true beliefs

$$\Pr\{L|X, Z, P\} = \Pr\{L|X, P\}$$

- General idea: Agents behave as if they have beliefs *P* about the loss *L*, but may not be able to express these beliefs on surveys
 - Savage (1954) axioms
- Assumption 1: Elicitations contain no more information than true beliefs

$$\Pr\{L|X, Z, P\} = \Pr\{L|X, P\}$$

- If Z contains information about L conditional on X, then so does P.
 - Implied by most notions of rational expectations

- General idea: Agents behave as if they have beliefs *P* about the loss *L*, but may not be able to express these beliefs on surveys
 - Savage (1954) axioms
- Assumption 1: Elicitations contain no more information than true beliefs

$$\Pr\{L|X, Z, P\} = \Pr\{L|X, P\}$$

- If Z contains information about L conditional on X, then so does P.
 - Implied by most notions of rational expectations
- **Test for Private Information:** Is *Z* predictive of *L*, conditional on *X*?

- General idea: Agents behave as if they have beliefs *P* about the loss *L*, but may not be able to express these beliefs on surveys
 - Savage (1954) axioms
- Assumption 1: Elicitations contain no more information than true beliefs

$$\Pr\{L|X, Z, P\} = \Pr\{L|X, P\}$$

- If Z contains information about L conditional on X, then so does P.
 - Implied by most notions of rational expectations
- **Test for Private Information:** Is *Z* predictive of *L*, conditional on *X*?
- But no statement about magnitude of private information

$$\Pr\left\{L|X,P\right\} = P$$

$$\Pr\left\{L|X,P\right\} = P$$

• Standard implicit assumption in existing literature

$$\Pr\left\{L|X,P\right\} = P$$

- Standard implicit assumption in existing literature
 - Implied by most notions of rational expectations

$$\Pr\left\{L|X,P\right\} = P$$

- Standard implicit assumption in existing literature
 - Implied by most notions of rational expectations
 - Provides simple link between unobserved beliefs, *P*, and observed realizations, *L*

The approach:

• Consider the predicted loss given X and Z

 $P_Z = \Pr\left\{L|X, Z\right\}$

The approach:

• Consider the predicted loss given X and Z

$$P_Z = \Pr\left\{L|X, Z\right\}$$

• Note that we don't require Z to be a number

The approach:

$$P_Z = \Pr\left\{L|X, Z\right\}$$

- Note that we don't require Z to be a number
- True beliefs are a mean preserving spread of the predicted values, P_Z

$$P_Z = E\left[P|X, Z\right]$$

The approach:

• Consider the predicted loss given X and Z

$$P_Z = \Pr\left\{L|X, Z\right\}$$

- Note that we don't require Z to be a number
- True beliefs are a mean preserving spread of the predicted values, P_Z

$$P_Z = E\left[P|X, Z\right]$$

• Predictive power of Z provides natural measure of amount of private information

The approach:

$$P_Z = \Pr\left\{L|X, Z\right\}$$

- Note that we don't require Z to be a number
- True beliefs are a mean preserving spread of the predicted values, P_Z

$$P_Z = E\left[P|X, Z\right]$$

- Predictive power of Z provides natural measure of amount of private information
- How do we measure this?

The approach:

$$P_Z = \Pr\left\{L|X, Z\right\}$$

- Note that we don't require Z to be a number
- True beliefs are a mean preserving spread of the predicted values, P_Z

$$P_Z = E\left[P|X, Z\right]$$

- Predictive power of Z provides natural measure of amount of private information
- How do we measure this?
 - Plot distribution of *P_Z* (more dispersed for the rejected?)

The approach:

$$P_Z = \Pr\left\{L|X, Z\right\}$$

- Note that we don't require Z to be a number
- True beliefs are a mean preserving spread of the predicted values, P_Z

$$P_Z = E\left[P|X, Z\right]$$

- Predictive power of Z provides natural measure of amount of private information
- How do we measure this?
 - Plot distribution of P_Z (more dispersed for the rejected?)
 - Measure predictive power of Z using dispersion metric derived from the theory

Recall m(p) = E [P|P ≥ p] − p: Difference between p and average probability of everyone worse than p

- Recall m(p) = E [P|P ≥ p] − p: Difference between p and average probability of everyone worse than p
- Consider E[m(P)]: Average difference between one's own probability and the probability for worse risks

- Recall m(p) = E [P|P ≥ p] − p: Difference between p and average probability of everyone worse than p
- Consider E[m(P)]: Average difference between one's own probability and the probability for worse risks
 - A measure of dispersion of P

- Recall m(p) = E [P|P ≥ p] − p: Difference between p and average probability of everyone worse than p
- Consider *E* [*m*(*P*)]: Average difference between one's own probability and the probability for worse risks
 - A measure of dispersion of P
- Construct analogue $E[m_Z(P_Z)|X]$ by everywhere replacing P with P_Z :

- Recall m(p) = E [P|P ≥ p] − p: Difference between p and average probability of everyone worse than p
- Consider *E* [*m*(*P*)]: Average difference between one's own probability and the probability for worse risks
 - A measure of dispersion of P
- Construct analogue $E[m_Z(P_Z)|X]$ by everywhere replacing P with P_Z :
 - Step 1: Construct $m_Z(p)$ for any p,

$$m_Z(p) = E[P_Z|P_Z \ge p, X] - p$$

- Recall m(p) = E [P|P ≥ p] − p: Difference between p and average probability of everyone worse than p
- Consider *E* [*m*(*P*)]: Average difference between one's own probability and the probability for worse risks
 - A measure of dispersion of P
- Construct analogue $E[m_Z(P_Z)|X]$ by everywhere replacing P with P_Z :
 - Step 1: Construct $m_Z(p)$ for any p,

$$m_Z(p) = E[P_Z|P_Z \ge p, X] - p$$

• Step 2: Average over p, w.r.t. P_Z , constructing $E[m_Z(P_Z)|X]$

- Recall m(p) = E [P|P ≥ p] − p: Difference between p and average probability of everyone worse than p
- Consider *E* [*m*(*P*)]: Average difference between one's own probability and the probability for worse risks
 - A measure of dispersion of P
- Construct analogue $E[m_Z(P_Z)|X]$ by everywhere replacing P with P_Z :
 - Step 1: Construct $m_Z(p)$ for any p,

$$m_Z(p) = E[P_Z|P_Z \ge p, X] - p$$

- Step 2: Average over p, w.r.t. P_Z , constructing $E[m_Z(P_Z)|X]$
- Generates lower bounds

$$E[m_{Z}(P_{Z})|X] \leq E[m(P)|X]$$

Empirical Tests

• Conduct two tests with assumptions so far:

Lower Bounds

- Conduct two tests with assumptions so far:
 - Test for presence of private information

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?
 - 2 Test (in spirit) of comparative static

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?
 - Pest (in spirit) of comparative static
 - More dispersed P_Z for rejected?

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?
 - Pest (in spirit) of comparative static
 - More dispersed P_Z for rejected?
 - Higher values of $E[m_Z(P_Z)|X]$

$$\Delta_{Z} = E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{Reject}\right] - E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{NoReject}\right] > 0$$

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?
 - Pest (in spirit) of comparative static
 - More dispersed P_Z for rejected?
 - Higher values of $E[m_Z(P_Z)|X]$

$$\Delta_{Z} = E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{Reject}\right] - E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{NoReject}\right] > 0$$

• Tests theory with few assumptions about Z

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?
 - Itest (in spirit) of comparative static
 - More dispersed P_Z for rejected?
 - Higher values of $E[m_Z(P_Z)|X]$

$$\Delta_{Z} = E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{Reject}\right] - E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{NoReject}\right] > 0$$

- Tests theory with few assumptions about Z
 - Imposed no restrictions on $f_{Z|P}\left(Z|P\right)$

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?
 - Itest (in spirit) of comparative static
 - More dispersed P_Z for rejected?
 - Higher values of $E[m_Z(P_Z)|X]$

$$\Delta_{Z} = E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{Reject}\right] - E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{NoReject}\right] > 0$$

- Tests theory with few assumptions about Z
 - Imposed no restrictions on $f_{Z|P}\left(Z|P\right)$
- But has potential limitations

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?
 - Pest (in spirit) of comparative static
 - More dispersed P_Z for rejected?
 - Higher values of $E[m_Z(P_Z)|X]$

$$\Delta_{Z} = E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{Reject}\right] - E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{NoReject}\right] > 0$$

- Tests theory with few assumptions about Z
 - Imposed no restrictions on $f_{Z|P}\left(Z|P\right)$
- But has potential limitations
 - Comparisons with lower bounds $(E[m_Z(P_Z)] \text{ not } E[m(P)])$

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?
 - Pest (in spirit) of comparative static
 - More dispersed P_Z for rejected?
 - Higher values of $E[m_Z(P_Z)|X]$

$$\Delta_{Z} = E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{Reject}\right] - E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{NoReject}\right] > 0$$

- Tests theory with few assumptions about Z
 - Imposed no restrictions on $f_{Z|P}\left(Z|P\right)$
- But has potential limitations
 - Comparisons with lower bounds $(E[m_Z(P_Z)] \text{ not } E[m(P)])$
 - Comparative static using E[m(P)], not $m(p) \forall p$

- Conduct two tests with assumptions so far:
 - Itest for presence of private information
 - Are the subjective probabilities predictive of the loss?
 - Itest (in spirit) of comparative static
 - More dispersed P_Z for rejected?
 - Higher values of $E\left[m_{Z}\left(P_{Z}\right)|X
 ight]$

$$\Delta_{Z} = E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{Reject}\right] - E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{NoReject}\right] > 0$$

- Tests theory with few assumptions about Z
 - Imposed no restrictions on $f_{Z|P}\left(Z|P\right)$
- But has potential limitations
 - Comparisons with lower bounds $(E[m_Z(P_Z)] \text{ not } E[m(P)])$
 - Comparative static using E[m(P)], not $m(p) \forall p$
 - Can't quantify minimum pooled price ratio

• Add parametric assumption to $f_{Z|P}(Z|P) = f_{Z|P}(Z|P;\theta)$ to reduce dimensionality

- Add parametric assumption to $f_{Z|P}(Z|P) = f_{Z|P}(Z|P;\theta)$ to reduce dimensionality
 - Will discuss specification in detail after discussing the elicitation data

- Add parametric assumption to $f_{Z|P}(Z|P) = f_{Z|P}(Z|P;\theta)$ to reduce dimensionality
 - Will discuss specification in detail after discussing the elicitation data
- Expand observed density (cond'l on X = x)

$$f_{Z,L}(Z,L) = \int f_{Z,L}(Z,L|p) f_P(p) dp$$

= $\int \Pr \{L|Z,P=p\}^L (1-\Pr \{L|Z,P=p\})^{1-L} *$
 $*f_{Z|P}(Z|P=p;\theta) f_P(p) dp$
= $\int \rho^L (1-p)^{1-L} \underbrace{f_{Z|P}(Z|P;\theta)}_{Parametric} \underbrace{f_P(p)}_{Flexible} dp$

- Add parametric assumption to $f_{Z|P}\left(Z|P\right) = f_{Z|P}\left(Z|P;\theta\right)$ to reduce dimensionality
 - Will discuss specification in detail after discussing the elicitation data
- Expand observed density (cond'l on X = x)

$$f_{Z,L}(Z,L) = \int f_{Z,L}(Z,L|p) f_P(p) dp$$

= $\int \Pr \{L|Z,P=p\}^L (1-\Pr \{L|Z,P=p\})^{1-L} *$
 $*f_{Z|P}(Z|P=p;\theta) f_P(p) dp$
= $\int p^L (1-p)^{1-L} \underbrace{f_{Z|P}(Z|P;\theta)}_{Parametric} \underbrace{f_P(p)}_{Flexible} dp$

• Flexibly approximate $f_{p}\left(p
ight)$ and estimate f_{p} and heta using MLE

$$T(p) = \frac{E[P|P \ge p]}{1 - E[P|P \ge p]} \frac{1 - p}{p}$$

• Given estimates of f_P , construct T(p)

$$T(p) = \frac{E[P|P \ge p]}{1 - E[P|P \ge p]} \frac{1 - p}{p}$$

• Use f_P to construct $E[P|P \ge p]$ at each p

$$T(p) = \frac{E[P|P \ge p]}{1 - E[P|P \ge p]} \frac{1 - p}{p}$$

- Use f_P to construct $E[P|P \ge p]$ at each p
- Faces extremal quantile estimation problem for high values of p

$$T(p) = \frac{E[P|P \ge p]}{1 - E[P|P \ge p]} \frac{1 - p}{p}$$

- Use f_P to construct $E[P|P \ge p]$ at each p
- Faces extremal quantile estimation problem for high values of p
- Prevents estimation of T(p) for upper quantile values of p

$$T(p) = \frac{E[P|P \ge p]}{1 - E[P|P \ge p]} \frac{1 - p}{p}$$

- Use f_P to construct $E[P|P \ge p]$ at each p
- Faces extremal quantile estimation problem for high values of p
- Prevents estimation of T(p) for upper quantile values of p
- Estimate $T\left(p
 ight)$ for $p\leq F^{-1}\left(au
 ight)$ for fixed upper quantile au

$$T(p) = \frac{E[P|P \ge p]}{1 - E[P|P \ge p]} \frac{1 - p}{p}$$

- Use f_P to construct $E[P|P \ge p]$ at each p
- Faces extremal quantile estimation problem for high values of p
- Prevents estimation of T(p) for upper quantile values of p
- Estimate $T\left(p
 ight)$ for $p\leq F^{-1}\left(au
 ight)$ for fixed upper quantile au

• Construct
$$\inf_{p \in [0, F^{-1}(\tau)]} T(p)$$

$$T(p) = \frac{E[P|P \ge p]}{1 - E[P|P \ge p]} \frac{1 - p}{p}$$

- Use f_P to construct $E[P|P \ge p]$ at each p
- Faces extremal quantile estimation problem for high values of p
- Prevents estimation of T(p) for upper quantile values of p
- Estimate $T\left(p
 ight)$ for $p\leq F^{-1}\left(au
 ight)$ for fixed upper quantile au
 - Construct $\inf_{p \in [0, F^{-1}(\tau)]} T(p)$
 - \bullet Assess robustness to choice of τ

$$T(p) = \frac{E[P|P \ge p]}{1 - E[P|P \ge p]} \frac{1 - p}{p}$$

- Use f_P to construct $E[P|P \ge p]$ at each p
- Faces extremal quantile estimation problem for high values of p
- Prevents estimation of T(p) for upper quantile values of p
- Estimate $T\left(p
 ight)$ for $p\leq F^{-1}\left(au
 ight)$ for fixed upper quantile au
 - Construct $\inf_{p \in [0, F^{-1}(\tau)]} T(p)$
 - Assess robustness to choice of au
- Reason for restriction is primarily statistical limitations

• Given estimates of f_P , construct T(p)

$$T(p) = \frac{E[P|P \ge p]}{1 - E[P|P \ge p]} \frac{1 - p}{p}$$

- Use f_P to construct $E[P|P \ge p]$ at each p
- Faces extremal quantile estimation problem for high values of p
- Prevents estimation of T(p) for upper quantile values of p
- Estimate $T\left(p
 ight)$ for $p\leq F^{-1}\left(au
 ight)$ for fixed upper quantile au
 - Construct $\inf_{p \in [0, F^{-1}(\tau)]} T(p)$
 - Assess robustness to choice of au
- Reason for restriction is primarily statistical limitations
 - Economic rationale: $\inf_{p \in [0, F^{-1}(\tau)]} T(p)$ characterizes barrier to trade if firms must attract at least fraction 1τ of population to a contract

Inf Link

• Estimate predicted values $P_Z = \Pr\{L|X, Z\}$

- Estimate predicted values $P_Z = \Pr \{L|X, Z\}$
 - Test for presence of private information

- Estimate predicted values $P_Z = \Pr\{L|X, Z\}$
 - Test for presence of private information
 - Test comparative static

- Estimate predicted values $P_Z = \Pr \{L|X, Z\}$
 - Test for presence of private information
 - Test comparative static
 - Dispersion of P_Z

- Estimate predicted values $P_Z = \Pr\{L|X, Z\}$
 - Test for presence of private information
 - Test comparative static
 - Dispersion of P_Z
 - Comparison of lower bounds, $E[m_Z(P_Z)|X]$)

- Estimate predicted values $P_Z = \Pr\{L|X, Z\}$
 - Test for presence of private information
 - Test comparative static
 - Dispersion of P_Z
 - Comparison of lower bounds, $E\left[m_{Z}\left(P_{Z}\right)|X
 ight]$)
- ② Make parametric assumption on $f_{Z|P}\left(Z|P\right)$ and estimate distribution $f_{P}\left(p\right)$

- Estimate predicted values $P_Z = \Pr\{L|X, Z\}$
 - Test for presence of private information
 - Test comparative static
 - Dispersion of P_Z
 - Comparison of lower bounds, $E\left[m_{Z}\left(P_{Z}\right)|X
 ight]$)
- ② Make parametric assumption on $f_{Z|P}\left(Z|P\right)$ and estimate distribution $f_{P}\left(p\right)$
 - Qualitatively, look for "thick upper tails"

- Estimate predicted values $P_Z = \Pr\{L|X, Z\}$
 - Test for presence of private information
 - Test comparative static
 - Dispersion of P_Z
 - Comparison of lower bounds, $E\left[m_{Z}\left(P_{Z}\right)|X
 ight]$)
- ② Make parametric assumption on $f_{Z|P}\left(Z|P\right)$ and estimate distribution $f_{P}\left(p\right)$
 - Qualitatively, look for "thick upper tails"
 - Quantify minimum pooled price ratio, $\inf_{p \in [0, F^{-1}(\tau)]} T(p)$

- Estimate predicted values $P_Z = \Pr\{L|X, Z\}$
 - Test for presence of private information
 - Test comparative static
 - Dispersion of P_Z
 - Comparison of lower bounds, $E\left[m_{Z}\left(P_{Z}\right)|X
 ight]$)
- ② Make parametric assumption on $f_{Z|P}\left(Z|P\right)$ and estimate distribution $f_{P}\left(p\right)$
 - Qualitatively, look for "thick upper tails"
 - Quantify minimum pooled price ratio, $\inf_{p \in [0, F^{-1}(\tau)]} T(p)$
 - Test comparative static

- Estimate predicted values $P_Z = \Pr\{L|X, Z\}$
 - Test for presence of private information
 - Test comparative static
 - Dispersion of P_Z
 - Comparison of lower bounds, $E\left[m_{Z}\left(P_{Z}\right)|X
 ight]$)
- ② Make parametric assumption on $f_{Z|P}\left(Z|P\right)$ and estimate distribution $f_{P}\left(p\right)$
 - Qualitatively, look for "thick upper tails"
 - Quantify minimum pooled price ratio, $\inf_{p \in [0, F^{-1}(\tau)]} T(p)$
 - Test comparative static
 - Assess magnitude large/small enough?

4 Setting and Data

Setting and Data

Apply the approach to three non-group market settings: Long-term care, Disability, and Life

• Use data from Health and Retirement Study (1993-2008)

- Use data from Health and Retirement Study (1993-2008)
 - Survey asks subjective probability elicitations

- Use data from Health and Retirement Study (1993-2008)
 - Survey asks subjective probability elicitations
 - LTC: "What is percent chance (0-100) that you will move to a nursing home in the next five years?"

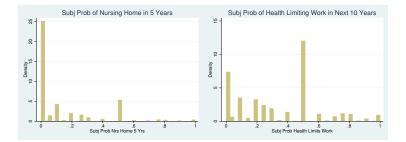
- Use data from Health and Retirement Study (1993-2008)
 - Survey asks subjective probability elicitations
 - LTC: "What is percent chance (0-100) that you will move to a nursing home in the next five years?"
 - Disability: "[What is the percent chance] that your health will limit your work activity during the next 10 years?"

- Use data from Health and Retirement Study (1993-2008)
 - Survey asks subjective probability elicitations
 - LTC: "What is percent chance (0-100) that you will move to a nursing home in the next five years?"
 - Disability: "[What is the percent chance] that your health will limit your work activity during the next 10 years?"
 - Life: "What is the percent chance that you will live to be AGE or more?" (where AGE ∈ {75, 80, 85, 90, 95, 100} is respondent-specific chosen to be 10-15 years from interview date)

- Use data from Health and Retirement Study (1993-2008)
 - Survey asks subjective probability elicitations
 - LTC: "What is percent chance (0-100) that you will move to a nursing home in the next five years?"
 - Disability: "[What is the percent chance] that your health will limit your work activity during the next 10 years?"
 - Life: "What is the percent chance that you will live to be AGE or more?" (where AGE ∈ {75, 80, 85, 90, 95, 100} is respondent-specific chosen to be 10-15 years from interview date)
- Panel allows us to construct corresponding realizations, L

- Use data from Health and Retirement Study (1993-2008)
 - Survey asks subjective probability elicitations
 - LTC: "What is percent chance (0-100) that you will move to a nursing home in the next five years?"
 - Disability: "[What is the percent chance] that your health will limit your work activity during the next 10 years?"
 - Life: "What is the percent chance that you will live to be AGE or more?" (where AGE ∈ {75, 80, 85, 90, 95, 100} is respondent-specific chosen to be 10-15 years from interview date)
- Panel allows us to construct corresponding realizations, L
- Empirical methodology will ask: what are the barriers to trade imposed by private information for obtaining insurance against these events?

Subjective Probability Histograms



- Comprehensive review of underwriting guidelines and interviews with underwriters provides conditions which would lead to rejection
 - LTC: ADL restrictions, past stroke, previous care, over age 80
 - Disability: Back condition, psychological condition, obesity
 - Life: Cancer, past stroke

- Comprehensive review of underwriting guidelines and interviews with underwriters provides conditions which would lead to rejection
 - LTC: ADL restrictions, past stroke, previous care, over age 80
 - Disability: Back condition, psychological condition, obesity
 - Life: Cancer, past stroke
- There are additional conditions, but barriers to constructing this match

- Comprehensive review of underwriting guidelines and interviews with underwriters provides conditions which would lead to rejection
 - LTC: ADL restrictions, past stroke, previous care, over age 80
 - Disability: Back condition, psychological condition, obesity
 - Life: Cancer, past stroke
- There are additional conditions, but barriers to constructing this match
 - HRS sometimes too "coarse" relative to rejection conditions

- Comprehensive review of underwriting guidelines and interviews with underwriters provides conditions which would lead to rejection
 - LTC: ADL restrictions, past stroke, previous care, over age 80
 - Disability: Back condition, psychological condition, obesity
 - Life: Cancer, past stroke
- There are additional conditions, but barriers to constructing this match
 - HRS sometimes too "coarse" relative to rejection conditions
- Construct "Uncertain" group

- Comprehensive review of underwriting guidelines and interviews with underwriters provides conditions which would lead to rejection
 - LTC: ADL restrictions, past stroke, previous care, over age 80
 - Disability: Back condition, psychological condition, obesity
 - Life: Cancer, past stroke
- There are additional conditions, but barriers to constructing this match
 - HRS sometimes too "coarse" relative to rejection conditions
- Construct "Uncertain" group
 - Allows confidence in "Reject" and "No Reject" groups Classification

• Control for all X variables that would be used in pricing contracts

Control for all X variables that would be used in pricing contracts
HRS can closely approximate the information currently used in pricing

- Control for all X variables that would be used in pricing contracts
 - HRS can closely approximate the information currently used in pricing
 - LTC: Finkelstein and McGarry (2006)

- Control for all X variables that would be used in pricing contracts
 - HRS can closely approximate the information currently used in pricing
 - LTC: Finkelstein and McGarry (2006)
 - Life: He (2008)

- Control for all X variables that would be used in pricing contracts
 - HRS can closely approximate the information currently used in pricing
 - LTC: Finkelstein and McGarry (2006)
 - Life: He (2008)
 - Assume similar information would be used for those currently rejected

- Control for all X variables that would be used in pricing contracts
 - HRS can closely approximate the information currently used in pricing
 - LTC: Finkelstein and McGarry (2006)
 - Life: He (2008)
 - Assume similar information would be used for those currently rejected
 - Paper provides extensive robustness to controls Public Information
 - Age and Gender only
 - Price controls
 - Extensive controls

• Start with all years of the HRS (1993-2008)

- Start with all years of the HRS (1993-2008)
- Need to observe L corresponding to elicitation Z

- Start with all years of the HRS (1993-2008)
- Need to observe L corresponding to elicitation Z
 - $\bullet\,$ e.g. observe 10+ years for Life setting

Summary Statistics

Sample Summary	Statistics
----------------	------------

	Sample Mean		n		
	Subj Prob	Loss	Insured*	# Obs	# HH
LTC					
No Reject	11.2%	5.2%	14.0%	9,027	3,206
Reject	17.1%	22.5%	10.5%	11,259	2,887
Uncertain	13.2%	7.3%	14.6%	10,976	3,870
Disability					
No Reject	27.6%	11.5%		763	290
Reject	38.5%	44.1%		2,216	975
Uncertain	33.5%	28.6%		5,534	2,362
Life					
No Reject	36.6%	27.3%	65.1%	2,689	1,419
Reject	55.6%	57.2%	63.3%	2,362	1,145
Uncertain	49.1%	43.3%	64.2%	6,800	3,545

*Calculated based on full sample prior to excluding individuals who purchased insurance

- **5** Specification and Results

$$\Pr\left\{L|X,Z\right\} = \Phi\left(\beta X + \Gamma\left(\textit{age},Z\right)\right)$$

$$\Pr\left\{L|X,Z\right\} = \Phi\left(\beta X + \Gamma\left(\textit{age},Z\right)\right)$$

• How predictive is Z of L conditional on X?

$$\Pr\left\{L|X,Z\right\} = \Phi\left(\beta X + \Gamma\left(\textit{age},Z\right)\right)$$

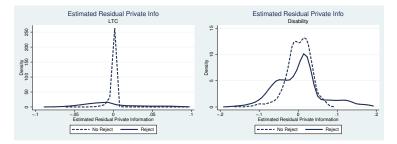
- How predictive is Z of L conditional on X?
- First, plot distribution of residuals, $P_Z \Pr{\{L|X\}}$

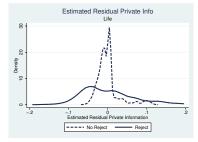
$$\Pr\left\{L|X,Z\right\} = \Phi\left(\beta X + \Gamma\left(\textit{age},Z\right)\right)$$

- How predictive is Z of L conditional on X?
- First, plot distribution of residuals, $P_Z \Pr{\{L|X\}}$
 - More dispersed for the rejected vs. not rejected?

Distribution of Predicted Values $P_Z - E[P_Z|X]$

Subjective Probabilities More Explanatory for the Reject Group





Nathaniel Hendren (Harvard and NBER)

• Use P_{Z} to construct the lower bounds, $E\left[m_{Z}\left(P_{Z}\right)|X ight]$

- Use P_Z to construct the lower bounds, $E[m_Z(P_Z)|X]$
- Construct

$$\Delta_{Z} = E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{Reject}\right] - E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{NoReject}\right]$$

- Use P_{Z} to construct the lower bounds, $E\left[m_{Z}\left(P_{Z}
 ight)|X
 ight]$
- Construct

$$\Delta_{Z} = E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{Reject}\right] - E\left[m_{Z}\left(P_{Z}\right)|X \in \Theta^{NoReject}\right]$$
• Test $\Delta_{Z} > 0$

Aggregation

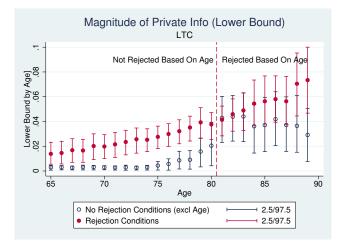
Lower bound rest					
	LTC	Disability	Life		
Reject	0.0358 ***	0.0512*** (0.000)	0.0587***		
p-value²	(0.000)		(0.000)		
No Reject	0.0049	0.0240	0.0249		
p-value²	(0.336)	(0.853)	(0.119)		
Difference: Δ_z p-value ³	0.0309***	0.0272	0.0338***		
	(0.000)	(0.121)	(0.000)		
Uncertain, E[m _z (P _z)]	0.0086***	0.0409***	0.0294***		
(p-value)	(0.001)	(0.000)	(0.000)		

Lower Bound Test

Robustness Subgroups

Nathaniel Hendren (Harvard and NBER) Private Info and Insurance Rejections

Lower Bounds - LTC by Age



Estimation of Distribution

• Make a parametric assumption on f(Z|P)

Estimation of Distribution

- Make a parametric assumption on f(Z|P)
- Assume Z drawn from a mixture of censored normal and ordered probit:

Estimation of Distribution

- Make a parametric assumption on f(Z|P)
- Assume Z drawn from a mixture of censored normal and ordered probit:
 - Non-focal respondents: Fraction (1λ) responds with censored normal distribution with mean $P + \alpha$ and variance σ^2

Estimation of Distribution

- Make a parametric assumption on f(Z|P)
- Assume Z drawn from a mixture of censored normal and ordered probit:
 - Non-focal respondents: Fraction (1λ) responds with censored normal distribution with mean $P + \alpha$ and variance σ^2
 - Focal point respondents: Fraction λ respond with ordered probit (0, 50, 100) with mean $P + \alpha$ and variance σ^2 , and focal window $\kappa \in [0, 0.5]$.

- Make a parametric assumption on f(Z|P)
- Assume Z drawn from a mixture of censored normal and ordered probit:
 - Non-focal respondents: Fraction (1λ) responds with censored normal distribution with mean $P + \alpha$ and variance σ^2
 - Focal point respondents: Fraction λ respond with ordered probit (0, 50, 100) with mean $P + \alpha$ and variance σ^2 , and focal window $\kappa \in [0, 0.5]$.
- Flexibly approximate $f_{P}\left(p|X\right)$ using mixtures of beta distributions
 - Index assumption: $f(p|X) = f(p|\Pr\{L|X\})$ to aggregate across X
 - Present results for $f(p|\Pr\{L|X\} = \Pr\{L\})$

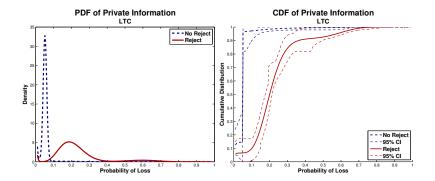
• Results similar across values of the index, $\Pr{\{L|X\}}$

- Make a parametric assumption on f(Z|P)
- Assume Z drawn from a mixture of censored normal and ordered probit:
 - Non-focal respondents: Fraction $(1-\lambda)$ responds with censored normal distribution with mean $P+\alpha$ and variance σ^2
 - Focal point respondents: Fraction λ respond with ordered probit (0, 50, 100) with mean $P + \alpha$ and variance σ^2 , and focal window $\kappa \in [0, 0.5]$.
- Flexibly approximate $f_{P}\left(p|X\right)$ using mixtures of beta distributions
 - Index assumption: $f(p|X) = f(p|\Pr{\{L|X\}})$ to aggregate across X
 - Present results for $f(p|\Pr\{L|X\} = \Pr\{L\})$

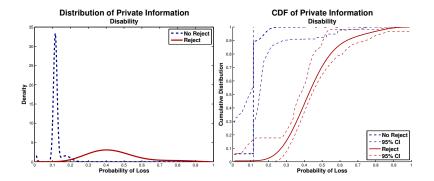
• Results similar across values of the index, $\Pr{\{L|X\}}$

- Qualitative tests of theory:
 - Thick upper tails

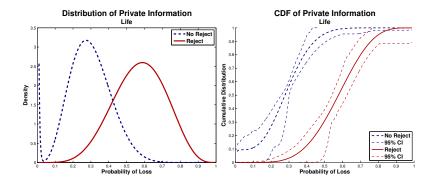
Distribution of Private Information - LTC



Distribution of Private Information - Disability



Distribution of Private Information - Life



T(p) Graph

$$\inf_{p\in[0,F^{-1}(\tau)]}T\left(p\right)$$

• Estimate analogue to minimum pooled price ratio:

$$\inf_{\boldsymbol{p}\in\left[0,\boldsymbol{F}^{-1}(\tau)\right]}T\left(\boldsymbol{p}\right)$$

• Preferred value is $\tau = 0.8$

$$\inf_{p\in[0,\mathcal{F}^{-1}(\tau)]}T\left(p\right)$$

- Preferred value is $\tau = 0.8$
 - Provides sufficient effective sample for $E[P|P \ge p]$

$$\inf_{\mathbf{p}\in[\mathbf{0},\mathbf{F}^{-1}(\tau)]}T\left(\mathbf{p}\right)$$

- Preferred value is $\tau = 0.8$
 - Provides sufficient effective sample for $E[P|P \ge p]$
 - Similar results for au=0.7 and au=0.9

• Estimate analogue to minimum pooled price ratio:

$$\inf_{\boldsymbol{p}\in[\boldsymbol{0},\boldsymbol{F}^{-1}(\tau)]}T\left(\boldsymbol{p}\right)$$

- Preferred value is $\tau = 0.8$
 - Provides sufficient effective sample for $E[P|P \ge p]$
 - Similar results for $\tau=0.7$ and $\tau=0.9$

Test:

$$\inf_{\boldsymbol{p}\in[\boldsymbol{0},\boldsymbol{F}^{-1}(\tau)]}T\left(\boldsymbol{p}\right)$$

- Preferred value is $\tau = 0.8$
 - Provides sufficient effective sample for $E[P|P \ge p]$
 - Similar results for au=0.7 and au=0.9
- Test:
 - Comparative Static: Higher values for the rejected

$$\inf_{\boldsymbol{p}\in[\boldsymbol{0},\boldsymbol{F}^{-1}(\tau)]}T\left(\boldsymbol{p}\right)$$

- Preferred value is $\tau = 0.8$
 - Provides sufficient effective sample for $E[P|P \ge p]$
 - Similar results for au=0.7 and au=0.9
- Test:
 - Comparative Static: Higher values for the rejected
 - Quantification: How big are the implied tax rates?

$$\inf_{\boldsymbol{p}\in[\boldsymbol{0},\boldsymbol{F}^{-1}(\tau)]}T\left(\boldsymbol{p}\right)$$

- Preferred value is $\tau = 0.8$
 - Provides sufficient effective sample for $E[P|P \ge p]$
 - Similar results for au=0.7 and au=0.9
- Test:
 - Comparative Static: Higher values for the rejected
 - Quantification: How big are the implied tax rates?
 - How much would agents need to be willing to pay for trade?

Tax Rate Equivalence: inf T(p) - 1			
	LTC	Disability	Life
Reject	0.827 **	0.661**	0.428**
5%	0.657	0.524	0.076
95%	1.047	0.824	0.780
No Reject	0.163	0.069	0.350
5%	0.000	0.000	0.000
95%	0.361	0.840	0.702
Difference	0.664**	0.592**	0.077
5%	0.428	0.177	-0.329
95%	0.901	1.008	0.535

What is a plausible willingness to pay?

- Existing estimates/calibrations of $\frac{u'(w-l)}{u'(w)}$:
 - LTC: 26-62% (Brown and Finkelstein, 2008)
 - Disability: 46-109% (Bound et al., 2004)

• Direct Calibration: Assume $u\left(c
ight)=rac{c^{1-\sigma}}{1-\sigma}$ and $l=\gamma w$

• If
$$\gamma = 10\%$$
 and $\sigma =$ 3, then $\frac{u'(w-l)}{u'(w)} - 1 = 0.372$

Results suggest asymmetric pattern of private information:

- One way to be healthy, but many observable ways to be sick
- Explains not only why high risk are rejected
- But also explains:
 - Rejections of high risks in health insurance?
 - Why no rejections in **Annuity** markets
- Few people know they drank from the fountain of youth
 - Rothschild and Stiglitz (1976): Highest risk type undistorted

• Results suggest private information can shut down insurance markets

- Results suggest private information can shut down insurance markets
 - Developed and tested a theory in which private information can cause rejections

- Results suggest private information can shut down insurance markets
 - Developed and tested a theory in which private information can cause rejections
 - Developed new empirical methodology for studying private information that doesn't require a market to exist

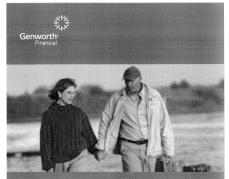
- Results suggest private information can shut down insurance markets
 - Developed and tested a theory in which private information can cause rejections
 - Developed new empirical methodology for studying private information that doesn't require a market to exist
 - Found evidence supportive of the theory in 3 non-group insurance markets: LTC, Life, and Disability

- Results suggest private information can shut down insurance markets
 - Developed and tested a theory in which private information can cause rejections
 - Developed new empirical methodology for studying private information that doesn't require a market to exist
 - Found evidence supportive of the theory in 3 non-group insurance markets: LTC, Life, and Disability
 - One way to be healthy, many (unobservable) ways to be sick
 - Also explains absence of rejections in annuities

7 Appendix

- Theory Appendix
- Rejections Summary Statistics
- Public Information Specifications
- Lower Bound Construction
- Lower Bound Robustness
- Lower Bound Subgroups
- Minimum Pooled Price Ratio Robustness
- Pooled Price Ratio
- Elicitation Error Parameters

Insurance Rejections



LONG TERM CARE INSURANCE UNDERWRITING GUIDE

Long Term Care Insurance Underwritten by Genworth Life Insurance Company, and in New York by Genworth Life Insurance Company of New Yo Administrative Offices: Richmond, VA UNINSURABLE CONDITIONS

Acquired Immune Deficiency Syndrome (AIDS) ADL limitation, present AIDS Related Complex (ARC) Alzheimer's Disease Amputation due to disease, e.g., diabetes or atherosclerosis Amyotrophic Lateral Sclerosis (ALS) , Lou Gehrig's Disease Ascites present Ataxia, Cerebellar Autonomic Insufficiency (Shy-Drager Syndrome) Autonomic Neuropathy (excluding impotence) Behoet's Disease Binswanger's Disease Bladder incontinence requiring assistance Blindness due to disease or with ADL/IADL limitations Bowel incontinence requiring assistance Buerger's Disease (thromboanglitis obliterans) Cerebral Vascular Accident (CVA) Chorea Chronic Memory Loss Cognitive Testing, failed Custic Fibrosis Dementia Diabetes treated with insulin Dialysis, Kidney (Renal) Ehlers-Danlos Syndrome Forgetfulness (frequent or persistent) Gangrene due to diabetes or peripheral vascular disease Hemiplegia Hover Lift Huntington's or other forms of Chorea Immune Deficiency Syndrome Korsakoff's Psychosis Leukemia-except for Chronic Lymphocytic Leukemia (CLL) and Hairy Cell Leukemia (HCL) Marfan's Syndrome Medications Antabuse (disulfiram) Aricept (donepezil HCI) Campral (acamprosate calcium) Cognex (tacrine) Depade (naltrexone Exelon (rivastigmine) Hydergine (ergoloid mesylate) Namenda (memantine) Razadyne (galantamine hydrobromide) Reminvi (galantamine hydrobromide) ReVia (naltrexone) Vivitrol (naitrexone) Memory Loss, chronic Mesothelioma Multiple Scierosis (MS)

• Suppose F(p) = p

Return to Theory & Return to Empirical Approach & Return to Empirical Results

• Suppose
$$F(p) = p$$

• Then,

$$E\left[P|P \ge p\right] = \frac{1+p}{2}$$

Return to Theory Return to Empirical Approach Return to Empirical Results

• Suppose
$$F(p) = p$$

• Then,

$$E\left[P|P \ge p\right] = \frac{1+p}{2}$$

• The No Trade Condition is

$$\frac{p}{1-p}\frac{u'\left(W-L\right)}{u'\left(W\right)} \leq \frac{1+p}{1-p} \quad \forall p \in [0,1)$$

Return to Theory Return to Empirical Approach Return to Empirical Results

• Suppose
$$F(p) = p$$

Then,

$$E\left[P|P \ge p\right] = \frac{1+p}{2}$$

The No Trade Condition is

$$\frac{p}{1-p}\frac{u'\left(W-L\right)}{u'\left(W\right)} \leq \frac{1+p}{1-p} \quad \forall p \in [0,1)$$

Equivalently,

$$\frac{u'\left(W-L\right)}{u'\left(W\right)} \leq \frac{1+p}{p} \quad \forall p \in [0,1)$$

Return to Theory Return to Empirical Approach Return to Empirical Results

• Suppose
$$F(p) = p$$

Then,

$$E\left[P|P \ge p\right] = \frac{1+p}{2}$$

• The No Trade Condition is

$$\frac{p}{1-p}\frac{u'\left(W-L\right)}{u'\left(W\right)} \leq \frac{1+p}{1-p} \quad \forall p \in [0,1)$$

Equivalently,

$$\frac{u'\left(W-L\right)}{u'\left(W\right)} \leq \frac{1+p}{p} \quad \forall p \in [0,1)$$

• Or,

$$\frac{u'\left(W-L\right)}{u'\left(W\right)} \le 2$$

No trade unless WTP 100% tax for insurance

Return to Theory Return to Empirical Approach Return to Empirical Results
Nathaniel Hendren (Harvard and NBER) Private Info and Insurance Rejections

• No trade requires people to be unwilling to subsidize worse risks

- No trade requires people to be unwilling to subsidize worse risks
 - Naturally requires perpetual existence of worse risks

- No trade requires people to be unwilling to subsidize worse risks
 - Naturally requires perpetual existence of worse risks
 - Otherwise highest risk, \bar{p} , can receive full insurance,

 $c_L = c_{NL} = w - \bar{p}l$

- No trade requires people to be unwilling to subsidize worse risks
 - Naturally requires perpetual existence of worse risks
 - Otherwise highest risk, p, can receive full insurance,

$$c_L = c_{NL} = w - \bar{p}l$$

Corollary

Suppose the No Trade condition holds. Then, $F(p) < 1 \forall p < 1$.

- No trade requires people to be unwilling to subsidize worse risks
 - Naturally requires perpetual existence of worse risks
 - Otherwise highest risk, \bar{p} , can receive full insurance,

$$c_L = c_{NL} = w - \bar{p}I$$

Corollary

Suppose the No Trade condition holds. Then, $F(p) < 1 \forall p < 1$.

- Empirically relevant?
 - Does not require any mass at p = 1 (robustness/approximation)
 - Can be relaxed if each contract must attract non-trivial fraction of types

- No trade requires people to be unwilling to subsidize worse risks
 - Naturally requires perpetual existence of worse risks
 - Otherwise highest risk, \bar{p} , can receive full insurance,

$$c_L = c_{NL} = w - \bar{p}I$$

Corollary

Suppose the No Trade condition holds. Then, $F(p) < 1 \forall p < 1$.

- Empirically relevant?
 - Does not require any mass at p = 1 (robustness/approximation)
 - Can be relaxed if each contract must attract non-trivial fraction of types
- Unraveling Intuition: "Thick upper tails" increase E [P|P ≥ p] and make no trade more likely

• Suppose each distinct allocation must attract a non-zero fraction $\alpha > 0$ of the market.

- Suppose each distinct allocation must attract a non-zero fraction $\alpha > 0$ of the market.
- Allocations take form $A = \cup_{i=1}^{N} A_i$, $A_i = (c_L^i, c_{NL}^i)$ and

$$\mu\left(p\left|\left(c_{L}\left(p\right),c_{NL}\left(p\right)\right)=\left(c_{L}^{i},c_{NL}^{i}\right)\right)\geq\alpha$$

where μ is the measure implied by $\textit{F}\left(\textit{p}\right)$

- Suppose each distinct allocation must attract a non-zero fraction $\alpha > 0$ of the market.
- Allocations take form $A = \cup_{i=1}^{N} A_i$, $A_i = \left(c_L^i, c_{NL}^i\right)$ and

$$\mu\left(p\left|\left(c_{L}\left(p\right),c_{NL}\left(p\right)\right)=\left(c_{L}^{i},c_{NL}^{i}\right)\right)\geq\alpha$$

where μ is the measure implied by F $\left(\mathbf{p}\right)$

Then, no trade iff

$$\frac{p}{1-p} \frac{u'\left(W-L\right)}{u'\left(W\right)} \leq \frac{E\left[P|P \geq p\right]}{1-E\left[P|P \geq p\right]}$$
$$\forall p \leq F^{-1}\left(1-\alpha\right), p \in \Psi \setminus \{1\}$$

• It is often the observably high (mean) risk who are rejected

- It is often the observably high (mean) risk who are rejected
- Model provides a qualitative explanation if distributions ordered according to common stochastic orderings

- It is often the observably high (mean) risk who are rejected
- Model provides a qualitative explanation if distributions ordered according to common stochastic orderings
 - Let P_1 and P_2 be two r.v. representing two risk populations

- It is often the observably high (mean) risk who are rejected
- Model provides a qualitative explanation if distributions ordered according to common stochastic orderings
 - Let P_1 and P_2 be two r.v. representing two risk populations
 - Suppose *P*₁ and *P*₂ are can be ordered according to the hazard rate ordering

- It is often the observably high (mean) risk who are rejected
- Model provides a qualitative explanation if distributions ordered according to common stochastic orderings
 - Let P_1 and P_2 be two r.v. representing two risk populations
 - Suppose P_1 and P_2 are can be ordered according to the hazard rate ordering
 - Then,

$$E\left[P_{1}\right] \leq E\left[P_{2}\right] \implies \inf_{p \in \Psi \setminus \{1\}} T_{1}\left(p\right) \leq \inf_{p \in \Psi \setminus \{1\}} T_{2}\left(p\right)$$

- It is often the observably high (mean) risk who are rejected
- Model provides a qualitative explanation if distributions ordered according to common stochastic orderings
 - Let P_1 and P_2 be two r.v. representing two risk populations
 - Suppose P_1 and P_2 are can be ordered according to the hazard rate ordering
 - Then,

$$E[P_1] \leq E[P_2] \implies \inf_{p \in \Psi \setminus \{1\}} T_1(p) \leq \inf_{p \in \Psi \setminus \{1\}} T_2(p)$$

• Distributions with higher mean loss impose larger barrier to trade

Validity of Lower Bound Test

Return

- When do higher values of E[m(P)] imply higher values of $m(p) \forall p$?
 - OK if normal with common mean
 - OK if increasing upper-tail skewness
- How does E[m(P)] relate to $\inf_{p} T(p)$?

$$\inf_{\rho} T(\rho) \leq 1 + \frac{E[m(P)]}{E[P(1-P)] - E[m(P)] \operatorname{Pr}\{L\} - E[(P-\operatorname{Pr}\{L\})m(P)]}$$

- When do higher values of $E[m_Z(P_Z)]$ imply higher values of E[m(P)]?
 - Suppose agents report true beliefs with probability λ (otherwise noise)
 - Then

$$E\left[m_{Z}\left(P_{Z}\right)\right] = \lambda E\left[m\left(P\right)\right]$$

so that similar values of $\boldsymbol{\lambda}$ ensure valid comparisons

• "No differential impact of measurement error"

Summary Statistics of Rejections - LTC

	Long-Term Care		
Classification	Condition	% Sample	
Rejection	Any ADL/IADL Restriction	7.5%	
•	Past Stroke	8.3%	
	Past Nursing/Home Care	13.6%	
	Over age 80	20.0%	
Uncertain	Lung Disease	10.7%	
	Heart Condition	29.6%	
	Cancer (Current)	15.4%	
	Hip Fracture	1.3%	
	Memory Condition	0.9%	
	Other Major Health Problems	26.8%	

Rejection Classification (LTC)

Summary Statistics of Rejections - Disability

	ejeetten elasemeatten (Bieabint)		
	Disability		
Classification	Condition	% Sample	
Rejection	Back Condition	22.7%	
	Obesity (BMI > 40)	1.7%	
	Psychological Condition	6.3%	
Uncertain	Arthritis	36.9%	
	Diabetes	7.7%	
	Lung Disease	5.1%	
	High Blood Pressure	31.3%	
	Heart Condition	6.9%	
	Cancer (Ever Have)	4.6%	
	Blue-collar/high-risk Job ³	23.3%	
	Wage < \$15 or income < \$30K	65.5%	
	Other Major Health Problems ²	16.2%	

Rejection Classification (Disability)

	Life		
Classification	Condition	% Sample	
Rejection	Cancer (Current) Stroke (Ever)	13.1% 7.3%	
Uncertain	Diabetes High Blood Pressure Lung Disease Cancer (Ever, not current) Heart Condition Other Major Health Problems	13.8% 50.7% 10.9% 12.1% 26.5% 23.5%	

Rejection Classification (Life)

Public Information - LTC

Covariate Specifications		
	Long-Term Care	
Price Controls	Extended Controls	
Age, Age^2, Gender	Full interactions of	
Gender*age	Age	
Gender*age^2	Gender	
Word Recall Performance ¹	Word Recall Performance ¹	
Indicators for	Indicators for	
ADL/IADL Restriction	ADL/IADL Restriction	
Psych Condition	Psychological Condition	
Diabetes	Diabetes	
Lung Disease	Lung Disease	
Arthritis	Arthritis	
Heart Disease	Heart Disease	
Cancer	Cancer	
Stroke	Stroke	
High blood pressure	High blood pressure	
	Interactions between 5 yr age bins and the	
	presence of:	
	Number of Health Conditions (High bp,	
	diabetes, heart condition, lung disease,	
	arthritis, stroke, obesity, psych	
	condition)	
	Number of ADL / IADL Restrictions	
	Number of living relatives (<=3)	
	Past home care usage	
	Census region (1-5)	
	Income Decile	

Public Information - Disability

Cova	riate Specifications
	Disability
Price Controls	Extended Controls
Age, Age^2, Gender	Full interactions of
Gender*age	Age
Gender*age^2	Gender
Indicators for	Full interactions of
Self Employed	wage decile
Obese	part time indicator
Psych condition	job tenure quartile
Back condition	self-employment indicator
Diabetes	
Lung Disease	Interactions between 5 yr age bins
Arthritis	and the presence of:
Heart Condition	Arthritis
Cancer	Diabettes
Stroke	Lung disease
High Blood Pressure	Cancer
	Heart condition
BMI	Psychological condition
	Back condition
Wage Decile	BMI Quartile
	Full interactions of
	BMI quartile
	5 year age bins
	Full interactions of
	Job requires stooping
	Job requires lifting

Public Information - Life

Covariate S				
Life				
Price Controls				
Age, Age^2, Gender Gender*age Gender*age*2 Smoker Status	Full interactions of Age Gender			
Indicator for years to question ² Indicator for death of parent	Full Interactions of age AGE in subj prob question			
before age 60	Interactions of 5 yr age bins with:			
BMI	Smoker Status Income Decile			
Indicators for Psychological Condition Diabetes Lung Disease Arthritis Heart Disease Cancer Stroke High blood pressure	Heart condition Stroke Cancer Lung disease Diabetes High blood pressure Census Region			
Income decile	Indicator for death of parent			
	before age 60	Return		

Return

• We approximate P_Z

$$\Pr\left\{L|X,Z\right\} = \Phi\left(\beta X + \Gamma\left(\mathsf{age},Z\right)\right)$$

where $\Gamma(age, Z)$ is approximated using an interaction of linear function of *age* and second-order chebyshev polynomials in Z, along with focal indicators at 0, 50 and 100.

Return

• Given P_Z , we estimate its distribution by assuming

$$P_Z - E[P_Z|X] = \Pr\{L|X, Z\} - \Pr\{L|X\}$$

has the same distribution conditional on age.

• We then estimate $m_Z(p)$ for every age group (for every p) and then average over the values of P_Z .

Lower Bounds - LTC

magintado or i ritat	magintate of Firtute merination (Letter Deality) 210			
		LTC		
	Age &	Price	Extended	
	Gender	Controls	Controls	
Reject	0.0336***	0.0358***	0.0313***	
s.e. ¹	(0.0038)	(0.0037)	(0.0036)	
p-value ²	0.0000	0.0000	0.0000	
No Reject	0.0048	0.0049	0.0041	
s.e. ¹	(0.0018)	(0.0018)	(0.0018)	
p-value ²	0.2557	0.3356	0.3805	
Difference: Δ_Z	0.0288***	0.0309***	0.0272***	
s.e. ¹	(0.0041)	(0.0041)	(0.0039)	
p-value ³	0.0000	0.0000	0.0000	
Uncertain	0.009***	0.0086***	0.0079***	
Bootstrap s.e.	(0.0024)	(0.0025)	(0.0024)	
Wald test p-value	0.0001	0.0014	0.0001	

Magnitude of Private Information (Lower Bound) - LTC

Magnitude of Frivate i	Maginitude of Private Information (Lower Bound) - Disability		
	LTC		
	Age &	Price	Extended
	Gender	Controls	Controls
Reject	0.0727***	0.0512***	0.0504***
s.e. ¹	(0.0092)	(0.0086)	(0.0083)
p-value ²	0.000	0.000	0.000
No Reject	0.036	0.024	0.023
s.e. ¹	(0.0116)	(0.009)	(0.0072)
p-value ²	0.684	0.853	0.932
Difference: Δ_Z	0.0365*	0.027	0.0274*
s.e. ¹	(0.0146)	(0.0127)	(0.0109)
p-value ³	0.091	0.121	0.092
Uncertain	0.0506***	0.0409***	0.0363***
Bootstrap s.e.	(0.0058)	(0.0047)	(0.0051)
Wald test p-value	0.0000	0.0000	0.0000

Magnitude of Private Information (Lower Bound) - Disability

Lower Bounds - Life

inagintado or ritira	magintado or ritato information (Lottor Bound) - Lito			
		Life		
	Age &	Price	Extended	
	Gender	Controls	Controls	
Reject	0.0759***	0.0587***	0.0604***	
s.e. ¹	(0.0088)	(0.0083)	(0.0078)	
p-value ²	0.000	0.000	0.000	
No Reject	0.031**	0.025	0.021	
s.e. ¹	(0.0076)	(0.007)	(0.0066)	
p-value ²	0.010	0.119	0.239	
Difference: Δ_Z	0.0449***	0.0338***	0.0397***	
s.e. ¹	(0.0112)	(0.0107)	(0.0103)	
p-value ³	0.000	0.000	0.001	
Uncertain	0.0463***	0.0294***	0.028***	
Bootstrap s.e.	(0.0058)	(0.0054)	(0.0051)	
Wald test p-value	0.0000	0.0001	0.0001	

Magnitude of Private Information (Lower Bound) - Life

	LTC Dria	LTC, Price Controls		Life, Price Controls	
	LIC, Pric	e controls	Lile, Price	Controls	
	Primary Sample	Excluding Insured	Primary Sample	Excluding Insured	
Reject s.e. ¹	0.0358*** (0.0037)	0.0351*** (0.0041)	0.0587*** (0.0083)	0.0491* (0.0115)	
p-value ²	0.0000	0.0000	0.0000	0.0523	
No Reject	0.0049	0.0038	0.0249	0.0377	
s.e. ¹ p-value ²	(0.0018) 0.3356	(0.0019) 0.8325	(0.007) 0.1187	(0.0107) 0.2334	
Difference: Δ_Z	0.0309***	0.0313***	0.0338***	0.011	
s.e. ¹ p-value ³	(0.0041) 0.000	(0.0046) 0.000	(0.0107) 0.000	(0.0157) 0.301	
Uncertain	0.0086***	0.0064	0.0294***	0.0269	
s.e. ¹ p-value ²	(0.0025) 0.0014	(0.0024) 0.1130	(0.0054) 0.0001	(0.0078) 0.1560	
F					

Table 4: Robustness to Moral Hazard: No Insurance Sample

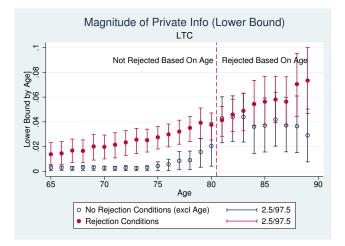
Lower Bounds - Organ Controls (Life)

	Preferred Specification	Organ + Extended Controls (1993/1994 Only)
Reject	0.0587***	0.0526***
s.e. ¹	(0.0083)	(0.0098)
p-value ²	0.000	0.002
No Reject	0.0249	0.0218
s.e. ¹	(0.007)	(0.007)
p-value ²	0.1187	0.3592
Difference: Δ_Z	0.0338***	0.0308**
s.e. ¹	(0.0107)	(0.0121)
p-value ³	0.0000	0.0260
Uncertain	0.0294***	0.0342***
s.e. ¹	(0.0054)	(0.0063)
p-value ²	0.0001	0.0003

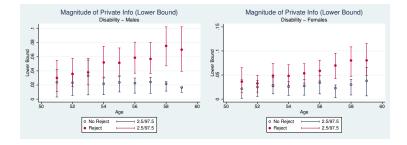
Table A2: Cancer Organ Controls (Life Setting)

Nathaniel Hendren (Harvard and NBER) Private Info and Insurance Rejections

Lower Bounds - LTC by Age

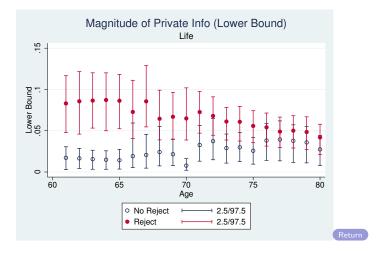


Lower Bounds - Disability by Age & Gender



Return

Lower Bounds - Life by Age



Minimum Pooled Price Ratio - LTC

Minimum Pooled Price Ratio (LTC)				
		LTC		
Quantile Region: Ψ_{τ}	0-70%	0-80%	0-90%	
Reject	1.827	1.827	1.827	
5%	1.661	1.657	1.624	
95%	2.250	2.047	2.030	
No Reject	1.163	1.163	1.163	
5%	1.000	1.000	1.000	
95%	1.361	1.361	1.366	
Difference	0.664	0.664	0.664	
5%	0.430	0.428	0.407	
95%	1.026	0.901	0.922	

Nathaniel Hendren (Harvard and NBER) Private Info and Insurance Rejections

Minimum Pooled Price Ratio - Disability

Quantile Region: Ψ_{τ}	Disability					
	0-70%	0-80%	0-90%	-		
Reject	1.661	1.661	1.661	-		
5%	1.518	1.524	1.528			
95%	1.824	1.824	1.795			
No Reject	1.069	1.069	1.069			
5%	1.000	1.000	1.000			
95%	1.918	1.840	1.728			
Difference	0.592	0.592	0.592			
5%	0.158	0.177	0.215			
95%	1.026	1.008	0.970	G		

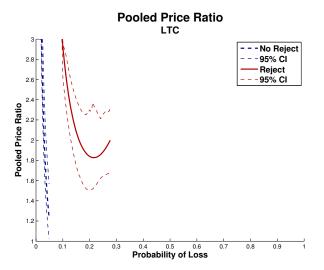
Minimum Pooled Price Ratio (DIS)

Minimum Pooled Price Ratio - Life

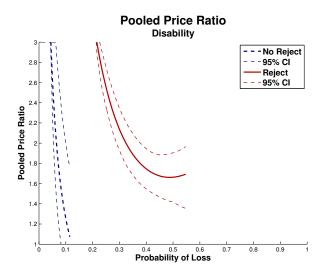
		-				
Quantile Region: $\Psi_{\scriptscriptstyle T}$	0-70%	0-80%	0-90%	-		
Reject	1.488	1.428	1.369	-		
5%	1.124	1.076	1.000			
95%	1.815	1.780	1.754			
No Reject	1.423	1.350	1.280			
5%	1.000	1.000	1.000			
95%	1.750	1.702	1.665			
Difference	0.065	0.077	0.089			
5%	-0.344	-0.329	-0.340			
95%	0.505	0.535	0.558	Return		

Minimum Pooled Price Ratio (LIFE)

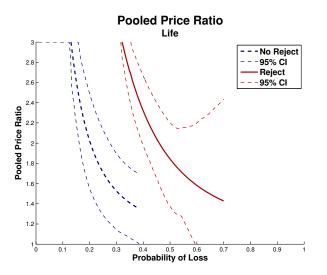
Pooled Price Ratio - LTC



Pooled Price Ratio - Disability



Pooled Price Ratio - Life



Return to F(p)

	LTC		Disa	Disability		Life	
	No Reject	Reject	No Reject	Reject	No Reject	Reject	
Standard Deviation (σ)	0.293	0.443	0.298	0.311	0.422	0.462	
s.e.	(0.015)	(0.009)	(0.025)	(0.016)	(0.014)	(0.013)	
Fraction Focal Respondents (λ) s.e.	0.364	0.348	0.292	0.417	0.375	0.383	
	(0.046)	(0.01)	(0.032)	(0.018)	(0.014)	(0.013)	
Focal Window (κ)	0.173	0.001	0.000	0.000	0.001	0.000	
s.e.	(0.058)	(0.015)	(0.073)	(0.053)	(0.014)	(0.003)	
Bias (α)	-0.078	-0.286	0.086	-0.099	0.034	0.014	
s.e.	(0.025)	(0.01)	(0.041)	(0.017)	(0.014)	(0.016)	

Table A4: Elicitation Error Parameters