Topic 12: Disability Insurance

Nathaniel Hendren

Harvard

Spring 2023

Disability Insurance

- Disability insurance in the US is one of the largest government expenditures
 - Fixing market failure from adverse selection?
- This lecture:
 - Models of DI
 - Trends in DI Spending
 - Impact of DI on outcomes and welfare analysis

Modeling DI

2 Trends in DI spending

Causal Impact of DI on Outcomes

Optimal Disability Insurance

- Discuss three models of DI:
 - New Dynamic Public Finance model: Golosov and Tsyvinksi (2006, JPE)
 - Disability unobserved and no ability to conduct informative assessment
 - Classic model: Diamond and Sheshinski (1995, JPubEc)
 - Disability assessment as imperfect signal of disutility of labor
 - 3 Structural model: Low and Pistaferri (2016, AER)
 - Disability modeled in dynamic life-cycle model as impacting the budget constraint

"New Dynamic Public Finance" Approach

- Golosov and Tsyvinski (2006, JPE) model disability in dynamic stochastic screening model
- Productivity / disutility of labor evolves over time, $y = \theta I$
- Additively separable utility over consumption and labor supply

$$u(c) + v(l)$$

• Leads to inverse Euler equation

$$\frac{1}{u'\left(c_{t}\right)} = E\left[\frac{1}{u'\left(c_{t+1}\right)}\right]$$

- Implies savings distortion!
 - Jensen's inequality

Inverse Euler Equation

- Logic of the inverse Euler equation:
 - Suppose no distortion in savings
 - Then, types that expect to claim disability in future will choose to save more to help increase future consumption
 - Taxing this savings helps prevent this "double deviation"
- Provides rationale for requiring asset test for disability insurance?
 - Similar to asset test for Medicaid?

Merging Social Insurance and Optimal Taxation

- Traditional distinction between optimal tax and social insurance
- Dynamically evolving type distribution merges these two forces
 - Demand for insurance against evolving abilities
 - e.g. disability/unemployment/health shock as special case of productivity shock?
- "New Dynamic Public Finance: A User's Guide" in 2006 Macro Annual provides nice treatment of this literature
 - But optimal tax often difficult to derive (e.g. depends on full history of shocks); what about MVPF of policy changes?

Diamond and Sheshinski (1995, JPubEc)

- Setup:
 - ullet Disutility of working, heta
 - Can provide screen that says "DISABLED" with probability $p\left(\theta\right)$, where p'>0
 - Binary labor supply choice
 - Decision for whether to apply for disability
- Main result: Consumption smoothing benefits weighed against the moral hazard costs
 - Baily-Chetty logic
 - Key difference: can rely on imperfect tag ("Disability")
 - Still want welfare benefits for those who are rejected
 - Welfare benefits are larger if screen is less informative
 - DI benefits larger if screen is more informative
 - How is this different w.r.t. UI?
 - Same issues in UI?
 - Unemployment an imperfect measure of true shock?

Optimal Disability Insurance

- Key distinction with disability insurance is the dynamic
- Suppose we observed consumption upon exiting labor force from shock
 - Would this summarize welfare impact?
- Additionally: Decision to apply for DI is dynamic
 - Value of dynamic model
- Low and Pistaferri (2015, AER)

Low and Pistaferri (2015, AER)

- Low and Pistaferri (2015, AER) set up dynamic life cycle model to evaluate DI
- Why estimate a structural model?
 - Incorporate dynamic responses generally not observed
 - Simulate policies not observed
- Key aspect of Low and Pistaferri model:
 - Dynamic labor supply decisions with stochastically evolving productivity/wage/disability shocks

Setup: Utility

Maximize

$$\max_{c,P,DI^{app}} V_{it} = E_t \sum_{s=t}^{T} \beta^{s-t} U(c_{is}, P_{is}; L_{is})$$

- where
 - ullet eta is the discount factor
 - ullet E_t is the expectations operator conditional on info available in period t
 - $P \in \{0, 1\}$ is an indicator for labor force participation
 - c_t is consumption
 - $L_{it} \in \{0, 1, 2\}$ is a discrete work limitation status (no limitation, partial limitation, full limitation)

Setup: Budget Constraint

Budget constraint

$$\begin{array}{lcl} A_{i,t+1} & = & R[A_{it} + (w_{it}h(1-\tau_w) - F(L_{it})) \, P_{it} \\ & + \left(B_{it}Z_{it}^{UI}\left(1-Z_{it}^{DI}\right) + D_{it}Z_{it}^{DI} + SSI_{it}Z_{it}^{DI}Z_{it}^{W}\right)(1-P_{it}) + W_{it}Z_{it}^{W} - c_{it} \end{array}$$

where

- A is assets
- R is rate of interest
- w is the hourly wage rate
- h is a fixed number of hours (500 per quarter)
- ullet $au_{\scriptscriptstyle W}$ is a proportional tax financing social security programs
- F is a fixed cost of work that depends on disability status
- B is unemployment benefits
- ullet W is the monetary value of a means-tested welfare payment
- D is the amount of disability insurance payments
- SSI is the amount of SSI benefits
- Z^j are indicators for participation in program j

Decisions

- Individuals choose:
 - Whether to work
 - If unemployed, choose whether to accept/reject job offers
 - Savings vs. consumption
 - No borrowing, $A \ge 0$ constraint imposed
 - No other insurance beyond government
 - Whether to apply for DI
 - Can only apply for DI if unemployed
- No choice of intensive margin labor earnings

Implementation

- Implementation as follows:
 - Specify and parameterize a utility function
 - Specify and parameterize a wage process
 - Specify the tax/transfer/insurance programs

Utility Function

Utility given by

$$u(c, P; L) = \frac{\left(c\left(e^{\theta L}\right)\left(e^{\eta P}\right)\right)^{1-\gamma}}{1-\gamma}$$

where $\theta < 0$ and $\eta < 0$

 Allows for complementarity between L and the marginal utility of consumption

Budget Constraint Specification

Wages given by

$$ln(w_{it}) = X'_{it}\mu + \sum_{j=1}^{2} \phi L^{j}_{it} + f_{i} + \epsilon_{it}$$

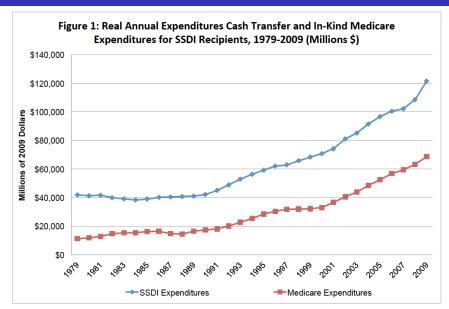
where

- $\epsilon_{it} = \epsilon_{it-1} + \zeta_{it}$, ζ_{it} is iid so that there is a random walk component
- fi is an individual-specific heterogeneity term
- X_{it} are characteristics like education
- $L_{it}^{J} = 1 \{L_{it} = j\}$ is a work-limitation status variable
 - Follows Markov process
- Tax/Transfer/Insurance Program fit to align with existing system (see paper)

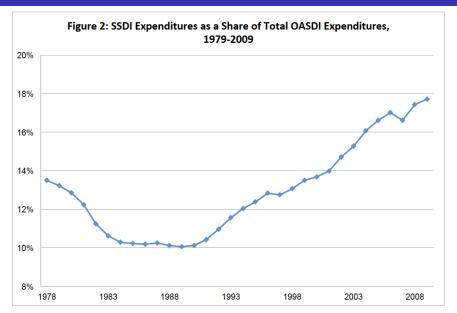
Results

- Implementation
 - Use data from the PSID
 - Use computer to solve model given parameter choices to match the data
 - Repeat iterations until model closely matches the data
- Main result: Optimal DI is higher if tax/transfer/welfare system is more generous
 - Prevents desire to claim UI for low-income workers
 - What is the reduced-form test of this?

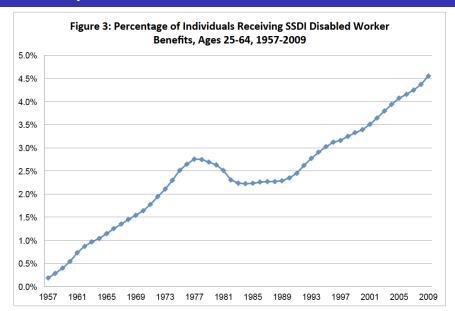
Modeling D

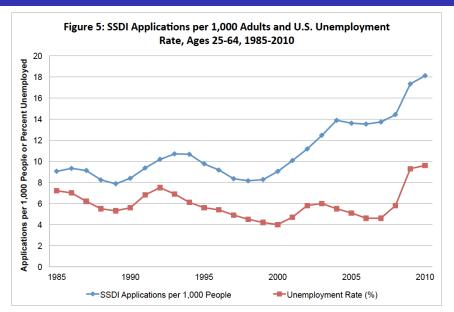

2 Trends in DI spending

Causal Impact of DI on Outcomes

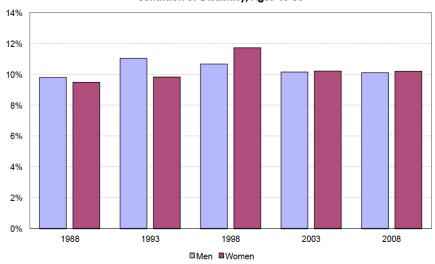

Greater Share of Govt Expenditure

- Dramatic recent increases in government expenditures
 - David Autor (2015) "The Unsustainable Rise of the Disability Rolls in the United States: Causes, Consequences, and Policy Options"
 - See also Autor and Duggan (2006, JEP)


Rising Costs in SSDI

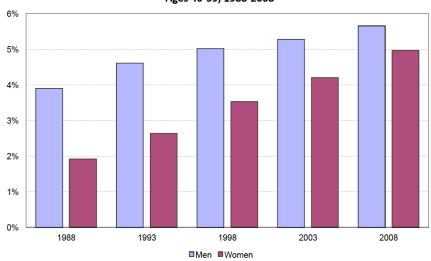

Greater Share of Govt Expenditure

Driven by Greater Enrollment



Correlated with Unemployment Rate...

Not by Increases in Measured Disabilities


Figure 6: Percentage of People Reporting a Work-Limiting Health Condition or Disability, Ages 40-59

• Source: Autor (2015)

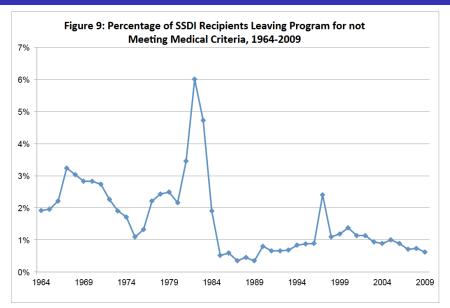

Increases for Both Men and Women

Figure 7: Fraction of Individuals Receiving SSDI Benefits Ages 40-59, 1988-2008

• Source: Autor (2015)

Fewer People Leaving SSDI

Modeling D

2 Trends in DI spending

Causal Impact of DI on Outcomes

Disability Insurance

- Large debate: to what extent does disability insurance deter labor supply?
 - "Can't these people work anyway"?
- Research begins with the "Bound-Parsons" debate

 Early estimates of impact of DI on labor supply ran regressions of the form:

$$L = \beta DI\% + \gamma X + \epsilon$$

- X is a set of control variables
- L is labor force participation
- DI% is the fraction of earnings that DI system replaces
 - DI replacement rate is higher for low-income workers
- Finds $\beta < 0$
- Conclusion (Parsons 1980, 1982) : DI reduces labor supply

- Problem: disabled may have lower historical income
 - Implies higher DI replacement rate
 - National program implies only variation in income generates variation in Dl%
 - Omitted variable bias generates $\beta < 0$?
- Solution?: look at rejected DI applicants (Bound, 1989)

- Bound (1989, AER)
- Data from 1971 and 1977 surveys
- Shows that less than 50% of rejected DI applicants work
 - Argument: lower LFP can't be explained by DI

TABLE 2—EMPLOYMENT, EARNINGS, AND OTHER CHARACTERISTICS OF REJECTED DISABILITY
INSURANCE APPLICANTS

***************************************		NSUKANCE AL	TEICHITTO					
		1972		1978				
		Rejected			Rejected			
	Population	Applicants	Beneficiaries	Population	Applicants	Beneficiaries		
Labor Supply								
Percent Employed	77.7	32.6	3.2	69.3	28.7	2.3		
Percent Worked 71/77	91.9	45.0	7.5	86.7	40.4	5.5		
Percent Full Year								
(≥ 50 Weeks) ^a	76.8	47.4	31.4	83.5	41.2	22.2		
Percent Full Time								
(≥ 35 Hours) ^a	95.4	75.9	25.0	92.4	79.6	38.3		
Earnings Among Positive Earners								
Median Annual Earnings,								
71/77 ^b	\$9000	\$4000	\$700	\$14000	\$5300	\$1000		
Median Weekly Earnings ^b	175	120	25	300	218	70		
Demographics								
Median Age	58.7	57.9	58.1	53.8	55.6	58.3		
Median Education	11.0	8.1	8.1	11.7	9.2	9.1		
Percent Nonwhite	8.9	17.6	11.2	10.4	13.2	12.4		
Percent Married	87.8	77.3	83.6	87.2	74.3	79.9		
Percent Reporting								
Work Limitations								
Percent Severely Disabled	12.0	50.5	92.7	14.3	64.0	97.0		
Percent Partially Disabled	14.8	39.2	6.9	13.2	26.4	1.9		
Percent Capable of the Same								
Kind of Work as	_	14.5	0.7	_	11.0	0.8		
Before Health Limitation								
Percent with Health Condition								
Musculoskeletal	22.3	40.0	41.1	17.6	58.6	51.3		
Cardiovascular	28.8	56.4	60.4	21.0	58.6	67.4		
Mental/Nervous	6.8	16.4	27.4	5.1	26.3	31.0		
Respiratory	6.7	22.7	26.7	6.0	26.3	28.2		
Digestive	9.6	21.3	24.7	9.1	15.0	21.3		
Neurological	0.7	2.2	6.7	0.6	1.5	3.2		
Urogenital	2.4	4.9	6.5	3.0	6.8	7.5		
Cancer	3.7	6.2	6.9	2.8	2.3	7.7		
Endocrine	6.9	8.8	9.9	4.6	11.3	15.9		
Blind	3.8	10.7	11.1	2.3	13.5	13.4		
Median Year Applied for DI	-	68.7	67.0		74.5	74.4		
Number of Observations	2779	273	590	1272	136	1722		

TABLE 3—FINAL DETERMINATIONS OF DISABILITY AND THE CLINICAL TEAM EVALUATIONS OF WORK CAPACITY OF APPLICANTS

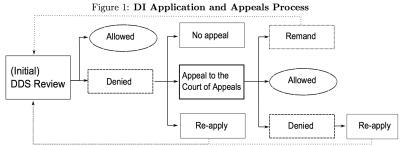
	Final Determin Allowance Denial						
Work Capacity	No.	Percent	No.	Percent	No.	Percent	
Fit for Work Under Normal Conditions	_	-	9	1.0	9	0.4	
Fit for Specific Jobs, Including Former							
Job, Under Normal Conditions	23	1.5	142	15.0	165	6.7	
Fit for Specific Jobs, Excluding Former							
Job, Under Normal Conditions	94	6.2	167	17.7	261	10.6	
Fit for Work Under Special Conditions	92	6.1	90	9.5	182	7.4	
Can Work Part-Time Under Normal Conditions	82	5.4	84	8.9	166	6.8	
Can Work Under Sheltered Conditions	134	8.9	87	9.2	221	9.0	
Can Work at Home Only	66	4.4	29	3.1	95	3.1	
Not Fit for Work	1019	67.5	336	35.6	1355	55.2	
Total	1510	100.0	944	100.0	2454	100.0	

Source: Derived from Saad Z. Nagi, Disability and Rehabilitation: Legal, Clinical, and Self-Concepts and Measurement, Columbus: Ohio State University Press, 1969, p. 94.

TABLE 4—SOURCES OF INCOME FOR DISABILITY INSURANCE APPLICANTS

Income Source	1971								
	Population		Rejected A Worked in 1971		Applicants Did not Work 1971		Beneficiaries		
	Percent	Mean	Percent	Mean	Percent	Mean	Percent	Mean	
Total Family Income	100.0	13413	100.0	9765	100.0	4087	100.0	5745	
Earnings ^a	92.0	12787	100.0	8296	36.9	3579	45.4	3640	
Own Earnings	91.9	10826	100.0	6732	0.0	_	7.5	1854	
Wife's Earnings	42.5	5110	48.4	3102	32.9	3909	39.0	3856	
Public Income Maintenance	25.7	3086	52.9	3463	83.2	4039	99.0	6131	
Social Security	8.9	1742	25.6	1373	52.4	1750	98.0	2300	
P.I.M. Net of Social Security	19.9	2404	33.1	2714	51.0	2683	46.7	3822	
Veterans Benefits	8.5	1384	13.2	2177	22.2	1833	30.0	2116	
Workers' Compensation	2.2	619	3.3	1374	2.0	2154	4.3	1971	
Welfare	2.0	1740	8.3	1854	28.2	2026	9.5	2949	
APTD	1.0	998	4.1	1117	18.8	1148	8.2	902	
AFDC	0.6	1737	3.3	1417	4.0	1725	2.4	1178	
Other Welfare	0.9	1121	3.3	1685	7.4	698	2.2	674	
Government Disability	3.3	4207	3.3	5597	3.4	1840	5.3	2745	
Unemployment Insurance	5.7	843	8.3	1052	2.0	292	0.7	1027	
Private Pensions, etc.b	8.0	2631	8.3	1109	16.1	2668	20.3	2309	
Asset Income	39.3	1371	22.9	2493	20.1	1864	22.4	1256	
Number of Observations	4817		122		149		590		

1977


Income Source	Rejected Applicants								
	Percent	Mean	Percent	Mean	Percent	Mean	Percent	Mear	
	Total Family Income	100.0	17784	100.0	13472	100.0	8272	100.0	10737
Earnings ^a	86.5	17337	100.0	10659	46.9	6060	46.1	6689	
Own Earnings	86.5	14486	100.0	7027	0.0	_	5.5	2924	
Wife's Earnings	41.6	6872	32.7	7230	39.5	4939	33.0	5999	
Public Income Maintenance	37.5	3409	68.5	3481	90.1	4748	99.8	5796	
Social Security	16.2	3329	42.6	3309	70.4	3997	99.3	4359	
P.I.M. Net of Social Security	27.5	2706	37.0	2800	44.4	3390	50.2	2917	
Veterans Benefits	9.6	1648	11.1	1285	16.1	2199	27.6	2039	
Workers' Compensation	2.6	2806	3.7	_c	8.6	3790	5.6	4651	
Welfare	4.3	1964	9.3	3002	17.3	2740	12.2	1573	
SSI	2.8	1910	5.6	_c	12.4	2174	9.8	1274	
AFDC	0.9	1734	7.4	_c	6.2	2353	2.2	1893	
Other Welfare	1.2	1188	0.0	_c	2.5	_c	2.0	1120	
Government Disability	2.3	6784	0.0	_c	4.9	_c	2.0	6430	
Unemployment Insurance	9.7	1241	14.8	2297	3.7	_c	2.4	1028	
Other Benefits	2.8	4332	1.9	_c	1.3	_c	7.6	3285	
Private Pensions, etc.b	21.8	2976	23.6	1874	28.4	3121	37.4	3572	
Asset Income	53.9	942	30.9	416	28.4	321	38.2	603	
Number of Observations		1272		55		81		1722	

- Bound (1989) shows low LFP for rejected applicants
- Clearly illustrates violation of orthogonality condition in previous regressions
- Parsons responds:
 - DI applicants may reduce their labor supply in order to become eligible
 - Have a hard time of coming back into the labor force
 - Therefore, they are not a good counterfactual for no DI
- Large literature follows: general consensus that generosity of DI reduces labor supply but not as much as suggested in cross-sectional regressions

Autor, Kostol, and Mogstad (2015)

- Study impact of DI using administrative data in Norway
- Study impacts on:
 - Earnings
 - Income (benefit substitution)
 - Spousal labor supply
 - Consumption proxies
- Key lesson: spousal labor supply can help mitigate disability shock

DI Reduces Earnings

Notes: This figure summarizes the description of the application and appeal process in the Norwegian DI system.

Autor, Kostol, and Mogstad (2015)

- Exploit random assignment of applicants to judges in the appeals process for DI
- Model:

$$A_{i} = \gamma Z_{ij} + X'_{i} \delta + \epsilon_{ij}$$

$$Y_{it} = \beta_{t} A_{i} + X'_{i} \theta_{t} + \eta_{it}$$

where

- A_i is an indicator for allowing DI after appeal
- Z_{ij} is the leniency measure of judge j to whom i is assigned
 - Based on previous case outcomes from the judge
- X_i is vector of controls
- Y_{it} is a dependent variable (e.g. consumption, earnings, spousal labor supply)

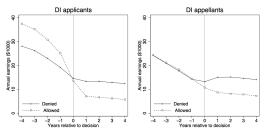

Judge Leniency Measure

Figure 4: Effect of Judge Leniency on DI Allowance

DI Appellents on Similar Trajectory

Figure 2: Earnings Trajectories of Allowed and Denied DI Applicants and Appellants

Notes: This figure displays mean real earnings for denied and allowed DI applicants (left-hand panel) and DI appellants (right-hand panel) in the nine years surrounding the initial DI determination (left-hand panel) and the initial outcome at appeal (right-hand panel). The applicant sample consists of all claims made during the period 1992-2003 by individuals who are at most 61 years of age. The appellant sample filed an appeal during the period 1994-2005 (see Section 3 for further details). Nominal values are deflated to 2005 and represented in US dollars using the average exchange rate NOK/\$ = 6.

Judge IV: Spousal Earnings and Benefit Substitution

Table 7: Effect of DI Allowance on Spousal Earnings and Transfer Payments

	Years after decision				
	1	2	3	4	
Panel A.	Marrie	d appellant	labor earr	nings (\$1000)	
Allowed DI	-4.924	-0.917	-4.686	-4.387	
	(3.503)	(4.132)	(4.042)	(3.831)	
Dependent mean	15.006	14.800	14.201	13.563	
Panel B.	Marrie	d appellant	total tran	sfers (\$1000)	
Allowed DI	9.478**	6.896	5.392	5.752	
	(3.868)	(4.265)	(3.561)	(3.627)	
Dependent mean	16.614	17.342	17.905	18.468	
Panel C.	Appellant spouse labor earnings (\$1000)				
Allowed DI	-5.963	-18.305**	-16.166*	-17.806**	
	(8.627)	(8.777)	(8.290)	(8.328)	
Dependent mean	40.927	39.472	38.751	37.442	
Panel D.	Appell	ant spouse	total trans	sfers (\$1000)	
Allowed DI	0.170	6.241*	6.307	8.620*	
	(3.292)	(3.601)	(4.178)	(4.608)	
Dependent mean	11.212	11.958	12.654	13.404	
Observations	7,813	7,699	7,594	7,480	

***p<.01, **p<.05, *p<.10. Standard errors (in parentheses) are clustered at the judge level.

Judge IV: Impact on Income only for Unmarried

Table 10: Effects of DI allowance on Household Disposable Income and Consumption

	A. Unmarr	ied and single	B. Married		
	Yearly	Yearly	Yearly	Yearly	
	disp. income	consumption	disp. income	consumption	
	(per capita)	(per capita)	(per capita)	(per capita)	
Allowed DI	9.086***	9.835*	-1.615	-0.830	
	(3.132)	(5.340)	(2.077)	(2.892)	
Dependent mean	24.857	25.934	25.681	26.256	
Observations	4,993	4,993	5,929	5,929	

^{***}p<.01, **p<.05, *p<.10. Standard errors (in parentheses) are clustered at the judge level.

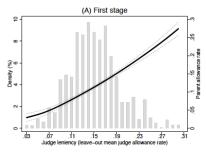
Cost-Benefit Ratios?

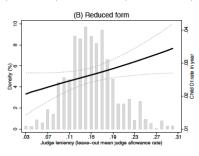
Table 9: Effects of DI Allowance on Fiscal Costs

	A. Full sample		B. Restricted sample		
	Yearly	Benefit-to-cost ratio:	Yearly	Benefit-to-cost ratio:	
	fiscal costs	$\Delta { m HH~income}/$	fiscal costs	$\Delta { m HH~income}/$	
	(per allowed)	Δ Fiscal cost	(per allowed)	Δ Fiscal cost	
Allowed DI	16.475***	0.44	15.631***	0.63	
	(4.408)		(4.784)		
Dependent mean	19.611		21.529		
Observations	14,077	14,077	10,933	10,933	

^{***}p<.01, **p<.05, *p<.10. Standard errors (in parentheses) are clustered at the judge level.

Autor, Kostol, and Mogstad (2015)


- Key lessons:
 - In Norway, benefit substitution is huge (many transfers to low-income)
 - Spousal labor earnings offset much of the reduction in earnings
 - Paper goes on to simulate welfare impacts
 - Key: depends on spousal labor supply elasticity
 - Larger welfare impact of DI for singles?


Dahl, Kostol, and Mogstad (2014)

- Dahl, Kostol, and Mogstad (2014): "Family Welfare Cultures"
- Study intergenerational persistence in welfare participation in Norway
- Main question: does DI receipt by parents cause children to be on welfare
- Empirical strategy: exploit random assignment to judges

First Stage and Reduced Form

Figure 3: Effect of Judge Leniency on Parents (First Stage) and Children (Reduced Form).

First Stage and Reduced Form

Table 3: Estimates of Intergenerational Welfare Transmission.

		Child on DI 5 years after parent's appeal decision		Child ever on parent's appea	-
	First stage	Reduced form	IV	Reduced form	IV
	A. No	o additional co	ntrols		
Parent's judge leniency	0.909***	0.055***		0.107***	
Parent allowed DI	(0.112)	(0.020)	0.061*** (0.022)	(0.030)	0.118*** (0.033)
	B. Wi	th additional c	ontrols		
Parent's judge leniency	0.869*** (0.108)	0.052** (0.020)		0.101*** (0.027)	
Parent allowed DI	()	, , ,	0.060*** (0.023)	, , ,	0.116*** (0.032)
Dependent mean	0.12	0.03		0.08	

^{***}p<.01, **p<.05, *p<.10. Standard errors (in parentheses) are clustered at the judge level.

Dahl, Kostol, and Mogstad (2014)

- Fairly large impact of obtaining DI on children obtaining DI
- Why?
 - Welfare culture?
 - Reduction of earnings?
 - Decision to apply?

First Stage and Reduced Form

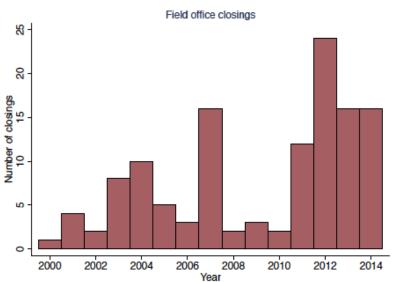
Table 5: Effect of Parent's DI Allowance on Child Labor and Educational Outcomes.

5 years after parent's appeal decision

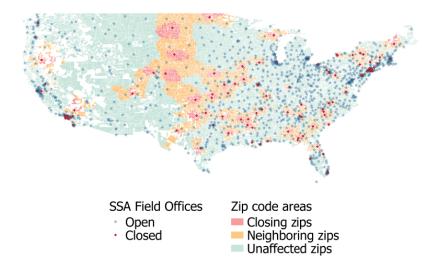
Dependent variable	Reduced form	IV	Dep. mean
A. DI	0.052**	0.060***	0.03
	(0.020)	(0.023)	
B. Any employment	-0.119**	-0.137**	0.58
	(0.055)	(0.065)	
C. Full-time work	-0.065	-0.075	0.42
	(0.079)	(0.090)	
D. College degree	-0.079	-0.091	0.25
	(0.060)	(0.069)	

^{***}p<.01, **p<.05, *p<.10. Standard errors (in parentheses) are clustered at the judge level.

Dahl, Kostol, and Mogstad (2014)

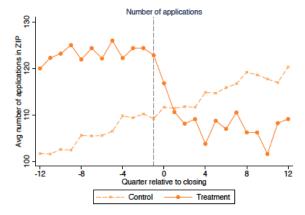

- Results suggest large intergenerational persistence in DI (12pp after 10 years)
- Behavioral response by children (lower earnings)
 - Income effects vs. welfare culture?
 - What's the difference?

Imperfect Take Up (Deshpande, 2016)


- Now, turn to the US Key question in the US context: How difficult should it be to apply for DI?
 - Depends on who the marginal applicant is..
- Deshpande (2016): "Who is Screened Out: Application Costs and the Targeting of Disability Programs"
 - Exploits closing of field offices for DI
- Compare applications from people zip codes that did vs. did not experience closure of nearest office
 - Control group: ZIPs with closures in future years

Field Office Closures (Deshpande, 2016)

Figure 2: Timing of Field Office Closings



Field Office Closures (Deshpande, 2016)

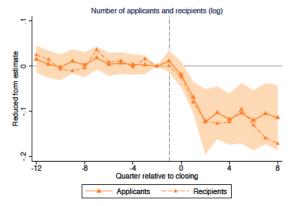

Compare to Control ZIPs with Closures in Future Years

Figure 4: Raw Plots of Number of Applications in Control and Treatment ZIPs

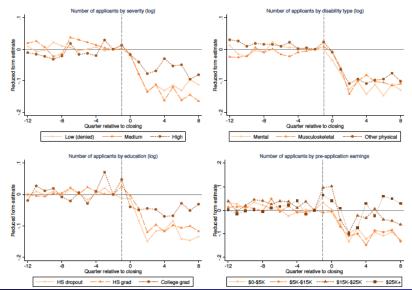

Difference in Difference Estimate

Figure 5: Effect of Closings on Number of Disability Applications and Allowances

Largest Drops by Least Severe Applications

Figure 6: Effect of Closings on Number of Disability Applications, by Subgroup

Imperfect Take Up (Deshpande, 2016)

- Results suggest significant decline of DI applications when a field office closes
- Welfare implications?
 - Least severe applications suggests those on the margin are not highly disabled?
 - But, reduction in accepted applications suggests many of those who are missed are actually disabled?
- Ideally: measure consumption smoothing impacts (or marginal utilities!)

Deshpande (2016, AER): Impact of SSI

- Now, turn to US and focus on Supplementary Social Security Income (SSI)
- SSI provides cash payments and Medicaid eligibility to low-income children and adults with disabilities
 - Imposes high marginal tax rates on parents of these children and the children themselves
- 1996 welfare reform: increased strictness of medical review to remain on SSI at age 18
- Empirical strategy: compare children who turn 18 on either side of the August 22, 1996 cutoff

RD Based on 18th Birthday

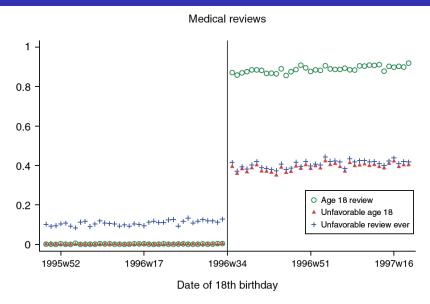


FIGURE 2. EMPIRICAL STRATEGY USING VARIATION IN ELIGIBILITY FOR MEDICAL REVIEWS

Leads to Semi-Persistent Drop in Enrollment

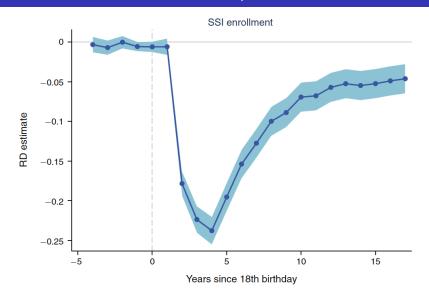
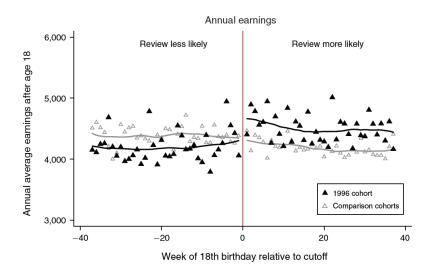



FIGURE 3. CHANGE IN FIRST STAGE FOR SSI ENROLLMENT OVER TIME

Slight Increase in Earnings

Impacts on Parents too (Substitution)

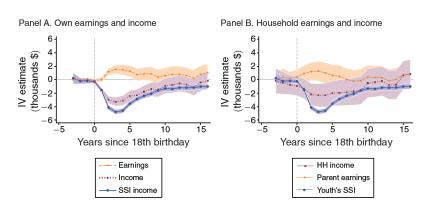


FIGURE 5. IV ESTIMATES OF THE EFFECT OF AGE 18 REMOVAL

Income Does Not Replace Benefits

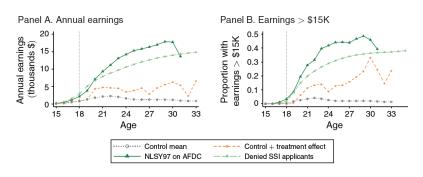


FIGURE 7. EARNINGS OF REMOVED SSI YOUTH VERSUS BROADER DISADVANTAGED POPULATION

Deshpande (2016, AER): Impact of SSI

- Results: SSI lowers earnings
- But earnings response is minimal for those who are removed from the program
 - Far from recovering the lost SSI income
- Suggests those who are enrolled in SSI on the margin do not have strong outside work options
- Thoughts:
 - What if un-enrolled earlier? Or, what if they knew they'd lose SSI at age 18 – maybe work harder in school?
 - Welfare implications?

Deshpande and Mueller-Smith (2022, QJE): Impact of SSI

Deshpande and Mueller-Smith study impacts on criminal justice outcomes

Impact of SSI on Crime

Nathaniel Hendren (Harvard)

Figure III: Reduced form: Criminal justice outcomes across cutoff Number of charges, ages 18-38 Annual likelihood of incarceration, ages 18-38 -18 -12 18 -18 18th birthday relative to PRWORA (months) 18th birthday relative to PRWORA (months) Number of income-generating charges, ages 18-38 Number of NON-income-generating charges, ages 18-38

Disability Insurance

Spring 2023

64 / 74

Impact of SSI on Crime

Table I: RD and IV estimates of effects on criminal justice outcomes

	Extensive		Intensive			
	RD Pt Est (SE)	IV Pt Est (SE)	Mean	RD Pt Est (SE)	IV Pt Est (SE)	Mean
First stage (N = $28,843$)						
Age 18 medical review	0.853***		0.002			
	(0.005)					
Unfavorable review	0.36***		0.0004			
	(0.007)					
On SSI from ages 19-22	-0.152***		0.822			
	(0.007)					
All crime						
Any charge $(N = 21,768)$	0.023**	0.062**	0.387	0.171*	0.464*	2.04
	(0.012)	(0.032)		(0.092)	(0.249)	
Incarcerated (annual likelihood/days) (N = 26,991)	0.011***	0.029***	0.047	3.222***	8.791***	13.39
	(0.004)	(0.010)		(1.133)	(3.092)	
Ever incarcerated ($N = 26,991$)	0.016**	0.043**	0.133			
	(0.008)	(0.021)				
Incarceration/parole/probation (ann likelihood/days) (N = 22,705)	0.011	0.029	0.229	4.671**	12.72**	36.03
,,	(0.010)	(0.027)		(2.328)	(6.331)	
Charges related to income-generating activity $(N = 21,768)$	(0.020)	(0.021)		(=:0=0)	(0.002)	
Total	0.034***	0.093***	0.240	0.140***	0.380***	0.623
	(0.011)	(0.03)		(0.039)	(0.105)	
Burglary	0.005	0.014	0.068	0.023	0.063	0.129
	(0.007)	(0.018)	0.000	(0.015)	(0.041)	0
Theft	0.029***	0.080***	0.121	0.088***	0.240***	0.258
A Iros	(0.009)	(0.023)	0.121	(0.024)	(0.064)	0.200
Fraud/forgery	0.007	0.018	0.076	0.006	0.016	0.135
Traud/lorgery	(0.007)	(0.020)	0.010	(0.016)	(0.044)	0.100
Robbery	0.008*	0.021*	0.030	0.006	0.017	0.046
Robbery	(0.005)	(0.012)	0.030	(0.008)	(0.021)	0.040
Drug distribution	0.005	0.012)	0.071	0.019	0.050	0.123
Diag distribution	(0.007)	(0.019)	0.011	(0.015)	(0.041)	0.120
Prostitution	0.005***	0.012***	0.004	0.014***	0.039***	0.010
FIOSTICUTION	(0.002)	(0.005)	0.004	(0.005)	(0.014)	0.010
71 (N. 91.769)	(0.002)	(0.005)		(0.005)	(0.014)	
Charges unrelated to income-generating activity (N = 21,768)	0.00#	0.014	0.055	0.000	0.000	
Total	0.005	0.014 (0.031)	0.357	0.036 (0.076)	0.098 (0.205)	1.585
N 11 1 1	(0.012) 0.013	0.031)	0.182	0.076)	(0.205)	0.37
Non-robbery violent			0.182			0.37
Th. 11 1 1/11 11 / 11	(0.010)	(0.027)	0.100	(0.026)	(0.072)	
Disorderly conduct/obstruction/resisting arrest	0.016*	0.043*	0.128	0.049**	0.132**	0.260
	(0.009)	(0.024)		(0.023)	(0.063)	

Summary

- Disability insurance expenditures are large and growing
- Significant evidence that DI reduces labor earnings (not surprising)
 - Some people that apply can work
 - But many do not even without DI!
 - Intergenerational impacts
- Various approaches to measuring welfare and thinking about optimal DI
 - Structural approach: DI is additional factor affecting budget constraint
 - Static welfare analysis: Income taxation with a tag (disability assessment)
 - Dynamic screening: savings as a tag

Thoughts on "Is it worth pursuing"?

- Some things you'll hear that limit upside of knowledge generation:
 - One-sided projects
 - Same variation of previous paper
 - Program not large enough to be of 'general interest'

Thoughts on "Is it worth pursuing"?

- Some things you'll hear that limit upside of knowledge generation:
 - One-sided projects
 - Same variation of previous paper
 - Program not large enough to be of 'general interest'
- My take:
 - Start with a puzzle (and sometimes you have to find your puzzle)
 - Don't require massive data acquisition before first-analysis (unless it's a two-sided question and you care)
 - If you're genuinely interest in a project there's no substitute for this!
 - One-sided projects can still be ok

Thoughts on "Is it worth pursuing"?

- Some things you'll hear that limit upside of knowledge generation:
 - One-sided projects
 - Same variation of previous paper
 - Program not large enough to be of 'general interest'
- My take:
 - Start with a puzzle (and sometimes you have to find your puzzle)
 - Don't require massive data acquisition before first-analysis (unless it's a two-sided question and you care)
 - If you're genuinely interest in a project there's no substitute for this!
 - One-sided projects can still be ok
- As you go, your project idea always evolves...let it! Iterate between empirics, theory, and ideas
 - $\bullet \ \, \mathsf{Idea} <\!\!-\!\!> \mathsf{Theory} <\!\!-\!\!> \mathsf{Empirics}$
 - Papers never follow a linear path (e.g. ask me about my JMP / Movers paper w Raj / etc).
 - The "scientific method" is not about testing hypotheses in data, but rather a series of learning opportunities as you explore data.

General Advice for Grad School

- Stay curious
 - Professors always joke that undergrads come up with better ideas than grad students
 - Don't be afraid to be creative crazy questions are ok
 - Don't get caught up in the literature / what's been done
 - But once you have a "good" idea, read deeply in that literature and figure out what has been done, then iterate with your idea
- Choose topics that you are passionate about
 - Researching those topics isn't work!
 - Will be easier to convince others its interesting if you think it is

Execution of Research

- After classes end in 2nd year, fewer opportunities for "discipline" here's how I wish I'd applied mine:
 - Write good code and document your exploratory results in comments in your code
 - When getting a dataset, first thing to do is open it up and look at it
 - Spend an hour to make sure the data looks reasonable
 - It's always worth writing out a model to explain your patterns / derive your regression equations
 - Not always clear it goes in the paper but still useful regardless

Data Advice

- Most common question I am asked: How can I get access to US Tax / Census data?
 - My response:
 - Can your question be asked without tax data? e.g. can you use less-restricted census data / FSRDC
 - Do you have power? If you're using cross-state variation, you're ruining most of the value of population data
 - Can you do preliminary analysis using public data to have a sense of whether your pattern is there?
 - If you have a project worth pushing for census / tax data, here are the paths:
 - If you can only use Census data, submit an FSRDC application
 - Submit to the SOI call for proposals (coming this summer)
 - Collaborate with a researcher at the Office of Tax Analysis at Treasury or the Joint Committee for Taxation (both of whom have access to the data).
 - Ask for advice from folks with access, but remember many (like me)
 may be prevented from working on your project idea because it requires
 formal approval

Other Data Partners

- Other countries' admin data is often less restrictive:
 - Norway, Denmark, Sweden, Germany, Italy, France...
- Firms have an enormous amount of information
 - Generally under-explored in research:
 - Transactions / sales information
 - HR information
 - Search / website info
- Other good sources for merging to gain new outcomes:
 - Voterfiles (contains race/demographics)
 - credit reports / court records

Presentations

- Graduate school has far too few opportunities to present
 - Take each presentation seriously, not just as feedback on your work but as an opportunity to improve your skills at presenting
 - But don't let the stress overwhelm you everyone gets stressed in presentations (including me) but the hope is you can translate it into productive energy
- Practice your presentations (I have never given a seminar that I have not practiced at least 10 times through)
 - Think through how you want to make your arguments to the listener
 - Practice transitions between slides
 - Know your slides and the details
 - Put some effort into slide construction often one graph (or one number) can "make" a paper
 - More practice ex-ante can also reduce stress
- Appreciate feedback
 - You are not your paper

Some Topics I Find Interesting

Public Economics provides the toolkit to ask and answer the most pressing policy issues of our time:

- How should we fight growing inequality?
- How can we expand economic opportunity for kids?
- How should we fight climate change?
- How should we design choice architectures to help people overcome their behavioral biases?

Public economics helps us relate positive and normative analysis

 Main advice: Find a topic area for you to explore both positively and normatively

Some Topics I Find Interesting

Questions I like:

- Should we tax firms versus people (e.g. firm owners), and if so how and why?
- ② Desirability of place-based versus national policy
- Sendogeneity of public policies (i.e. political economy) what are we missing by not thinking about political economy constraints?
- Why don't people take up social benefits? (and should we incentivize them to?)
- What other markets are missing because of private information and what are the welfare implications? (Credit? Reclassification risk? Income insurance?)
- Career trajectories within the firm are they 'efficient' or burdened by problems of information asymmetries - and if so, should the govt intervene?
- Competition in insurance markets what's the equilibrium? [Note: I've given up trying to think this can be solved...]
- Indogenous preferences and impact on PF / role of policy (MVPF of being a jerk? Altruism? Endogenous altruism? Endogenous reductions in gender bias or racism?